VISHAY MBRB2045CTPBF

VS-MBRB20..CTPbF, VS-MBR20..CT-1PbF Series
www.vishay.com
Vishay Semiconductors
Schottky Rectifier, 2 x 10 A
VS-MBRB20..CTPbF
FEATURES
VS-MBR20..CT-1PbF
• 150 °C TJ operation
• Center tap D2PAK and TO-262 packages
• Low forward voltage drop
• High frequency operation
Base
common
cathode
2
Base
common
cathode
2
• High purity, high temperature epoxy
encapsulation for enhanced mechanical
strength and moisture resistance
• Guard ring for enhanced ruggedness and long term
reliability
2
1 Common
3
Anode cathode Anode
2
1 Common
3
Anode cathode Anode
D2PAK
TO-262
• Meets MSL level 1, per J-STD-020, LF maximum peak of
260 °C
• Halogen-free according to IEC 61249-2-21 definition
• Compliant to RoHS Directive 2002/95/EC
• AEC-Q101 qualified
PRODUCT SUMMARY
Package
TO-263AB (D2PAK), TO-262AA
IF(AV)
2 x 10 A
VR
35 V, 45 V
VF at IF
0.72 V
IRM max.
15 mA at 125 °C
TJ max.
150 °C
Diode variation
Common cathode
EAS
8 mJ
DESCRIPTION
This center tap Schottky rectifier has been optimized for
low reverse leakage at high temperature. The proprietary
barrier technology allows for reliable operation up to 150 °C
junction temperature. Typical applications are in switching
power supplies, converters, freewheeling diodes, and
reverse battery protection.
MAJOR RATINGS AND CHARACTERISTICS
SYMBOL
CHARACTERISTICS
VALUES
IF(AV)
Rectangular waveform (per device)
20
IFRM
TC = 135 °C (per leg)
20
UNITS
A
VRRM
35/45
V
IFSM
tp = 5 μs sine
1060
A
VF
10 Apk, TJ = 125 °C
0.57
V
TJ
Range
- 65 to 150
°C
VOLTAGE RATINGS
PARAMETER
Maximum DC reverse voltage
Maximum working peak reverse voltage
Revision: 16-Jan-12
SYMBOL
VR
VS-MBRB2035CTPbF
VS-MBR2035CT-1PbF
VS-MBRB2045CTPbF
VS-MBR2045CT-1PbF
UNITS
35
45
V
VRWM
Document Number: 94305
1
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-MBRB20..CTPbF, VS-MBR20..CT-1PbF Series
www.vishay.com
Vishay Semiconductors
ABSOLUTE MAXIMUM RATINGS
PARAMETER
Maximum average
forward current
SYMBOL
per leg
per device
Peak repetitive forward current per leg
Non-repetitive peak surge current
Non-repetitive avalanche energy per leg
TEST CONDITIONS
TC = 135 °C, rated VR
IFRM
Rated VR, square wave, 20 kHz, TC = 135 °C
IFSM
UNITS
10
IF(AV)
5 μs sine or
3 μs rect. pulse
VALUES
20
Following any rated load condition
and with rated VRRM applied
Surge applied at rated load conditions halfwave,
single phase, 60 Hz
20
A
1060
150
EAS
TJ = 25 °C, IAS = 2 A, L = 4 mH
8
mJ
IAR
Current decaying linearly to zero in 1 μs
Frequency limited by TJ maximum
VA = 1.5 x VR typical
2
A
VALUES
UNITS
Repetitive avalanche current per leg
ELECTRICAL SPECIFICATIONS
PARAMETER
SYMBOL
TEST CONDITIONS
20 A
Maximum forward voltage drop
VFM (1)
TJ = 25 °C
10 A
TJ = 125 °C
20 A
Maximum instantaneous
reverse current
IRM (1)
Threshold voltage
VF(TO)
TJ = 25 °C
Rated DC voltage
TJ = 125 °C
TJ = TJ maximum
0.84
0.57
V
0.72
0.1
15
mA
0.354
V
17.6
m
Forward slope resistance
rt
Maximum junction capacitance
CT
VR = 5 VDC (test signal range 100 kHz to 1 MHz), 25 °C
600
pF
Typical series inductance
LS
Measured from top of terminal to mounting plane
8.0
nH
10 000
V/μs
VALUES
UNITS
Maximum voltage rate of change
dV/dt
Rated VR
Note
(1) Pulse width < 300 μs, duty cycle < 2 %
THERMAL - MECHNICAL SPECIFICATIONS
PARAMETER
SYMBOL
TEST CONDITIONS
Maximum junction temperature range
TJ
- 65 to 150
Maximum storage temperature range
TStg
- 65 to 175
Maximum thermal resistance,
junction to case per leg
RthJC
DC operation
2.0
Typical thermal resistance,
case to heatsink
RthCS
Mounting surface, smooth and greased
0.50
°C/W
Approximate weight
Mounting torque
minimum
maximum
Non-lubricated threads
Case style TO-263AB (D2PAK)
Marking device
Case style TO-262AA
Revision: 16-Jan-12
°C
2
g
0.07
oz.
6 (5)
kgf · cm
(lbf · in)
12 (10)
MBRB2035CT
MBRB2045CT
MBR2035CT-1
MBR2045CT-1
Document Number: 94305
2
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-MBRB20..CTPbF, VS-MBR20..CT-1PbF Series
Vishay Semiconductors
100
100
TJ = 150 °C
TJ = 125 °C
TJ = 25 °C
10
1
0.2
IR - Reverse Current (mA)
IF - Instantaneous Forward Current (A)
www.vishay.com
10
TJ = 150 °C
TJ = 125 °C
1
TJ = 100 °C
0.1
TJ = 75 °C
TJ = 50 °C
0.01
TJ = 25 °C
0.001
0.0001
0.4
0.6
0.8
1.0
1.2
1.4
1.6
0
1.8
5
10
15
20
25
30
35
40
45
VFM - Forward Voltage Drop (V)
VR - Reverse Voltage (V)
Fig. 1 - Maximum Forward Voltage Drop Characteristics
(Per Leg)
Fig. 2 - Typical Values of Reverse Current vs.
Reverse Voltage (Per Leg)
CT - Junction Capacitance (pF)
1000
TJ = 25 °C
100
0
10
20
30
40
50
VR - Reverse Voltage (V)
ZthJC - Thermal Impedance (°C/W)
Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)
10
1
PDM
t1
t2
0.1
D = 0.75
D = 0.50
D = 0.33
D = 0.25
D = 0.20
Single pulse
(thermal resistance)
0.01
0.00001
0.0001
0.001
0.01
Notes:
1. Duty factor D = t1/t2
2. Peak TJ = PDM x ZthJC + TC
0.1
1
10
100
t1 - Rectangular Pulse Duration (s)
Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics (Per Leg)
Revision: 16-Jan-12
Document Number: 94305
3
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-MBRB20..CTPbF, VS-MBR20..CT-1PbF Series
Vishay Semiconductors
10
150
145
Average Power Loss (W)
Allowable Case Temperature (°C)
www.vishay.com
DC
140
135
Square wave (D = 0.50)
Rated VR applied
130
125
D = 0.20
D = 0.25
D = 0.33
D = 0.50
D = 0.75
8
RMS limit
6
4
DC
2
See note (1)
120
0
0
3
6
9
12
15
0
2
4
6
8
10
12
14
16
IF(AV) - Average Forward Current (A)
Fig. 5 - Maximum Allowable Case Temperature vs.
Average Forward Current (Per Leg)
Fig. 6 - Forward Power Loss Characteristics (Per Leg)
IFSM - Non-Repetitive Surge Current (A)
IF(AV) - Average Forward Current (A)
1000
At any rated load condition
and with rated VRRM applied
following surge
100
10
100
1000
10 000
tp - Square Wave Pulse Duration (µs)
Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)
Note
(1) Formula used: T = T - (Pd + Pd
C
J
REV) x RthJC;
Pd = Forward power loss = IF(AV) x VFM at (IF(AV)/D) (see fig. 6);
PdREV = Inverse power loss = VR1 x IR (1 - D); IR at VR1 = Rated VR
Revision: 16-Jan-12
Document Number: 94305
4
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VS-MBRB20..CTPbF, VS-MBR20..CT-1PbF Series
www.vishay.com
Vishay Semiconductors
ORDERING INFORMATION TABLE
Device code
VS- MBR
1
2
B
20
45
CT
-1
3
4
5
6
7
1
-
Vishay Semiconductors product
2
-
Essential part number
3
-
B = D2PAK
7
TRL PbF
8
9
None
None = TO-262
4
-
7 = -1
Current rating (20 = 20 A)
5
-
Voltage ratings
6
-
CT = Essential part number
7
-
8
-
35 = 35 V
45 = 45 V
None = D2PAK
3
=B
-1 = TO-262
3
None
None = Tube
TRL = Tape and reel (left oriented - for D2PAK only)
TRR = Tape and reel (right oriented - for D2PAK only)
9
-
PbF = Lead (Pb)-free (for TO-262 and D2PAK tube)
P = Lead (Pb)-free (for D2PAK TRR and TRL)
ORDERING INFORMATION (Example)
PREFERRED P/N
QUANTITY PER T/R
MINIMUM ORDER QUANTITY
PACKAGING DESCRIPTION
50
1000
Antistatic plastic tube
VS-MBR2035CT-1PBF
50
1000
Antistatic plastic tube
VS-MBRB2035CTTRLP
800
800
13" diameter reel
VS-MBRB2035CTTRRP
800
800
13" diameter reel
VS-MBRB2035CTPBF
VS-MBRB2045CTPBF
50
1000
Antistatic plastic tube
VS-MBR2045CT-1PBF
50
1000
Antistatic plastic tube
VS-MBRB2045CTTRLP
800
800
13" diameter reel
VS-MBRB2045CTTRRP
800
800
13" diameter reel
LINKS TO RELATED DOCUMENTS
Dimensions
www.vishay.com/doc?95014
Part marking information
www.vishay.com/doc?95008
Packaging information
www.vishay.com/doc?95032
SPICE model
www.vishay.com/doc?95504
Revision: 16-Jan-12
Document Number: 94305
5
For technical questions within your region: [email protected], [email protected], [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Outline Dimensions
Vishay High Power Products
D2PAK, TO-262
DIMENSIONS FOR D2PAK in millimeters and inches
Conforms to JEDEC outline D2PAK (SMD-220)
(2)(3)
E
B
Pad layout
A
A
(E)
c2
11.00
MIN.
(0.43)
A
(3) L1
4
9.65
MIN.
(0.38)
(D1) (3)
Detail A
D
H
1
2
17.90 (0.70)
15.00 (0.625)
(2)
3
3.81
MIN.
(0.15)
L2
B
B
2.32
MIN.
(0.08)
A
2 x b2
c
2.64 (0.103)
2.41 (0.096)
(3)
E1
C
View A - A
2xb
± 0.004 M B
0.010 M A M B
Plating
2x e
Base
Metal
(4)
b1, b3
H
Gauge
plane
Seating
plane
Lead assignments
Diodes
1. - Anode (two die)/open (one die)
2., 4. - Cathode
3. - Anode
SYMBOL
MILLIMETERS
MIN.
c1 (4)
(c)
B
0° to 8°
MAX.
L3
Lead tip
A1
L
(b, b2)
L4
Section B - B and C - C
Scale: None
Detail “A”
Rotated 90 °CW
Scale: 8:1
INCHES
MIN.
MAX.
NOTES
SYMBOL
MILLIMETERS
MIN.
MAX.
INCHES
MIN.
MAX.
NOTES
A
4.06
4.83
0.160
0.190
D1
6.86
8.00
0.270
0.315
3
A1
0.00
0.254
0.000
0.010
E
9.65
10.67
0.380
0.420
2, 3
E1
7.90
8.80
0.311
0.346
3
b
0.51
0.99
0.020
0.039
b1
0.51
0.89
0.020
0.035
b2
1.14
1.78
0.045
0.070
b3
1.14
1.73
0.045
0.068
c
0.38
0.74
0.015
0.029
c1
0.38
0.58
0.015
0.023
c2
1.14
1.65
0.045
0.065
D
8.51
9.65
0.335
0.380
4
2.54 BSC
0.100 BSC
H
14.61
15.88
0.575
0.625
4
L
1.78
2.79
0.070
0.110
L1
-
1.65
-
0.066
4
L2
1.27
1.78
0.050
0.070
2
L4
L3
Notes
(1) Dimensioning and tolerancing per ASME Y14.5 M-1994
(2) Dimension D and E do not include mold flash. Mold flash shall not
exceed 0.127 mm (0.005") per side. These dimensions are
measured at the outmost extremes of the plastic body
(3) Thermal pad contour optional within dimension E, L1, D1 and E1
(4) Dimension b1 and c1 apply to base metal only
(5) Datum A and B to be determined at datum plane H
(6) Controlling dimension: inch
Document Number: 95014
Revision: 31-Mar-09
e
(7)
0.25 BSC
4.78
5.28
3
0.010 BSC
0.188
0.208
Outline conforms to JEDEC outline TO-263AB
For technical questions concerning discrete products, contact: [email protected]
For technical questions concerning module products, contact: [email protected]
www.vishay.com
1
Outline Dimensions
D2PAK, TO-262
Vishay High Power Products
DIMENSIONS FOR TO-262 in millimeters and inches
Modified JEDEC outline TO-262
(Datum A) (2) (3)
E
A
A
c2
B
E
A
(3) L1
Seating
plane
D
1
2 3
C
L2
B
D1 (3)
B
C
L (2)
A
c
3 x b2
3xb
E1
A1
(3)
Section A - A
2xe
Plating
0.010 M A M B
(4)
b1, b3
Base
metal
Lead assignments
Diodes
1. - Anode (two die)/open (one die)
2., 4. - Cathode
3. - Anode
Lead tip
SYMBOL
c1
c
(4)
(b, b2)
Section B - B and C - C
Scale: None
MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
A
4.06
4.83
0.160
0.190
A1
2.03
3.02
0.080
0.119
b
0.51
0.99
0.020
0.039
b1
0.51
0.89
0.020
0.035
b2
1.14
1.78
0.045
0.070
b3
1.14
1.73
0.045
0.068
c
0.38
0.74
0.015
0.029
c1
0.38
0.58
0.015
0.023
c2
1.14
1.65
0.045
0.065
NOTES
4
4
4
D
8.51
9.65
0.335
0.380
D1
6.86
8.00
0.270
0.315
3
E
9.65
10.67
0.380
0.420
2, 3
E1
7.90
8.80
0.311
0.346
3
e
2.54 BSC
0.100 BSC
L
13.46
14.10
0.530
0.555
L1
-
1.65
-
0.065
L2
3.56
3.71
0.140
0.146
Notes
(1) Dimensioning and tolerancing as per ASME Y14.5M-1994
(2) Dimension D and E do not include mold flash. Mold flash shall not
exceed 0.127 mm (0.005") per side. These dimensions are
measured at the outmost extremes of the plastic body
(3) Thermal pad contour optional within dimension E, L1, D1 and E1
(4) Dimension b1 and c1 apply to base metal only
(5) Controlling dimension: inches
www.vishay.com
2
2
(6)
3
Outline conform to JEDEC TO-262 except A1 (maximum), b
(minimum) and D1 (minimum) where dimensions derived the
actual package outline
For technical questions concerning discrete products, contact: [email protected]
For technical questions concerning module products, contact: [email protected]
Document Number: 95014
Revision: 31-Mar-09
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to
obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Revision: 12-Mar-12
1
Document Number: 91000