Freescale Semiconductor Data Sheet: Advanced Information Document Number: MCF51JE256 Rev. 4, 08/2012 An Energy-Efficient Solution from Freescale MCF51JE256/128 MCF51JE256/128 The MCF51JE256 series devices are members of the low-cost, low-power, high-performance ColdFire V1 family of 32-bit microcontrollers (MCUs). Not all features are available in all devices or packages; see Table 1 for a comparison of features by device. 32-Bit ColdFire V1 Central Processor Unit (CPU) • Up to 50.33 MHz ColdFire CPU above 2.4 V and 40 MHz CPU above 2.1 V and 20 MHz CPU above 1.8 V across temperature range of -40°C to 105°C. • ColdFire Instruction Set Revision C (ISA_C). • 32-bit multiply and accumulate (MAC) supports signed or unsigned integer or signed fractional inputs. On-Chip Memory • 256 K Flash comprised of two independent 128 K flash arrays; read/program/erase over full operating voltage and temperature; allows interrupt processing while programming. • 32 KB System Random-access memory (RAM). • Security circuitry to prevent unauthorized access to RAM and Flash contents. Power-Saving Modes • Two ultra-low power stop modes. Peripheral clock enable register can disable clocks to unused modules to reduce currents. • Time of Day (TOD) — Ultra low-power 1/4 sec counter with up to 64 sec timeout. • Ultra-low power external oscillator that can be used in stop modes to provide accurate clock source to the TOD. 6 µs typical wake up time from stop3 mode. Clock Source Options • Oscillator (XOSC1) — Loop-control Pierce oscillator; 32.768 kHz crystal or ceramic resonator dedicated for TOD operation. • Oscillator (XOSC2) for high frequency crystal input for MCG reference to be used for system clock and USB operations. • Multipurpose Clock Generator (MCG) — PLL and FLL; precision trimming of internal reference allows 0.2% resolution and typical +0.5% to -1% deviation over temperature and voltage; supports CPU frequencies up to 50 MHz. System Protection • Watchdog computer operating properly (COP) reset with option to run from dedicated 1 kHz internal clock source or bus clock. • Low-voltage detection with reset or interrupt; selectable trip points; separate low voltage warning with optional interrupt; selectable trip points. • Illegal opcode and illegal address detection with reset. • Flash block protection for each array to prevent accidental write/erasure. • Hardware CRC to support fast cyclic redundancy checks. Development Support • Integrated ColdFire DEBUG_Rev_B+ interface with single wire BDM connection supports same electrical interface used by the S08 family debug modules. • Real-time debug with 6 hardware breakpoints (4 PC, 1 address and 1 data). • On-chip trace buffer provides programmable start/stop recording conditions. 80-LQFP 12mm x 12mm 81-BGA 10mm x 10mm 104-BGA 10mm x 10mm Peripherals • USB — Dual-role USB On-The-Go (OTG) device, supports USB in either device, host or OTG configuration. On-chip transceiver and 3.3V regulator help save system cost, fully compliant with USB Specification 2.0. Allows control, bulk, interrupt and isochronous transfers. • SCIx — Two serial communications interfaces with optional 13-bit break; option to connect Rx input to PRACMP output on SCI1 and SCI2; High current drive on Tx on SCI1 and SCI2; wake-up from stop3 on Rx edge. • SPI1 — Serial peripheral interface with 32-bit FIFO buffer; 16-bit or 8-bit data transfers; full-duplex or single-wire bidirectional; double-buffered transmit and receive; master or slave mode; MSB-first or LSB-first shifting. • SPI2 — Serial peripheral interface with full-duplex or single-wire bidirectional; Double-buffered transmit and receive; Master or Slave mode; MSB-first or LSB-first shifting. • IIC — Up to 100 kbps with maximum bus loading; Multi-master operation; Programmable slave address; Interrupt driven byte-by-byte data transfer; supports broadcast mode and 10-bit addressing. • CMT — Carrier Modulator timer for remote control communications. Carrier generator, modulator and driver for dedicated infrared out (IRO). Can be used as an output compare timer. • TPMx — Two 4-channel Timer/PWM Module; Selectable input capture, output compare, or buffered edge- or center-aligned PWM on each channel; external clock input/pulse accumulator. • Mini-FlexBus — Multi-function external bus interface with user programmable chip selects and the option to multiplex address and data lines. • PRACMP — Analog comparator with selectable interrupt; compare option to programmable internal reference voltage; operation in stop3. • ADC12 — 12-bit Successive approximation ADC with up to12 single-ended channels; internal bandgap reference channel; operation in stop3; fully functional from 3.6V to 1.8V. • PDB — Programmable delay block with 16-bit counter and modulus and prescale to set reference clock to bus divided by 1 to bus divided by 2048; 8 trigger outputs for ADC module provides periodic coordination of ADC sampling sequence with sequence completion interrupt; Back-to-Back mode and Timed mode. • DAC — 12-bit resolution DAC; configurable settling time. Input/Output • Up to 68 GPIOs and 1 output-only pin. • Voltage Reference output (VREFO). • Dedicated infrared output pin (IRO) withhigh current sink capability. • Up to 16 KBI pins with selectable polarity. • Up to 16 pins of rapid general purpose I/O (RGPIO). This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2009-2012. All rights reserved. 100-LQFP 14mm x 14mm Contents Table of Contents 1 2 3 4 5 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Pinouts and Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.1 104-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.2 100-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.3 81-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.4 80-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Preliminary Electrical Characteristics . . . . . . . . . . . . . . . . . .15 3.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .15 3.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .15 3.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .16 3.4 ESD Protection Characteristics. . . . . . . . . . . . . . . . . . .18 3.5 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 3.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .21 3.7 PRACMP Electricals . . . . . . . . . . . . . . . . . . . . . . . . . . .24 3.8 12-bit DAC Electricals . . . . . . . . . . . . . . . . . . . . . . . . . .24 3.9 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .26 3.10 MCG and External Oscillator (XOSC) Characteristics .29 3.11 Mini-FlexBus Timing Specifications . . . . . . . . . . . . . . .32 3.12 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 3.12.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .34 3.12.2 TPM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 3.13 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 3.14 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .40 3.15 USB Electricals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 3.16 VREF Electrical Specifications . . . . . . . . . . . . . . . . . . .41 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 4.1 Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 4.2 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . .44 4.3 Mechanical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . .44 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 List of Figures Figure 1. MCF51JE256/128 Block Diagram. . . . . . . . . . . . . . . . . 3 Figure 2. 104-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 3. 100-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 4. 81-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 5. 80-Pin LQFP Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 6. Stop IDD versus Temperature. . . . . . . . . . . . . . . . . . . 23 Figure 7. Offset at Half Scale vs Temperature . . . . . . . . . . . . . . 26 Figure 8. ADC Input Impedance Equivalency Diagram . . . . . . . 28 Figure 9. Mini-FlexBus Read Timing . . . . . . . . . . . . . . . . . . . . . 33 Figure 10.Mini-FlexBus Write Timing . . . . . . . . . . . . . . . . . . . . 33 Figure 11.Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 12.IRQ/KBIPx Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 13.Timer External Clock . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14.Timer Input Capture Pulse . . . . . . . . . . . . . . . . . . . . . Figure 15.SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . Figure 16.SPI Master Timing (CPHA = 1) . . . . . . . . . . . . . . . . . Figure 17.SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . Figure 18.SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . Figure 19.Typical VREF Output vs Temperature . . . . . . . . . . . . Figure 20.Typical VREF Output vs VDD . . . . . . . . . . . . . . . . . . . 36 36 38 38 39 39 42 43 List of Tables Table 1. MCF51JE Features by MCU and Package. . . . . . . . . . 4 Table 2. MCF51JE256/128 Functional Units. . . . . . . . . . . . . . . . 5 Table 2-3.Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . 11 Table 4. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . 15 Table 5. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . 16 Table 6. Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 17 Table 7. ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . 18 Table 8. ESD and Latch-Up Protection Characteristics. . . . . . . 18 Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 10.Supply Current Characteristics . . . . . . . . . . . . . . . . . . 21 Table 11.Stop Mode Adders. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 12.PRACMP Electrical Specifications . . . . . . . . . . . . . . . 24 Table 13.DAC 12LV Operating Requirements . . . . . . . . . . . . . . 24 Table 14.DAC 12-Bit Operating Behaviors . . . . . . . . . . . . . . . . . 25 Table 15.12-bit ADC Operating Conditions . . . . . . . . . . . . . . . . 26 Table 16.12-bit SAR ADC Characteristics full operating range (VREFH = VDDAD, VREFL = VSSAD) . . . . . . . . . . . . 28 Table 17.MCG (Temperature Range = –40 to 105×C Ambient) . 29 Table 18.XOSC (Temperature Range = –40 to 105×C Ambient) 31 Table 19.Mini-FlexBus AC Timing Specifications . . . . . . . . . . . . 32 Table 20.Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 21.TPM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 22.SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 23.Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 24.Internal USB 3.3 V Voltage Regulator Characteristics 40 Table 25.VREF Electrical Specifications . . . . . . . . . . . . . . . . . . 41 Table 26.VREF Limited Range Operating Behaviors . . . . . . . . . 42 Table 27.Orderable Part Number Summary. . . . . . . . . . . . . . . . 44 Table 28.Package Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 29.Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 MCF51JE256 Datasheet, Rev. 4 2 Freescale Semiconductor COCOx VDDA/VSSA HWTRS[H:A] PDB HWTRS[H:A] VREFH/VREFL ADP[11:4] DADP/M[3:0] ADC12 Dtrig VDDA/VSSA ACMPO Dtrig Port A DADP[3:0] DADM[3:0] PRACMP VREFH/VREFL DACO DACO ACMPO VREFH/VREFL RX1 TX1 SCI1 RX2 TX2 IIC SDA SCL KBI1 & KBI2 KBI1P[7:0] KBI2P[7:0] Port C SCI2 Port B VDDA/VSSA IRO 4 Ch TPM1 TPM1CH[3:0] TPMCLK IRO: CMT Hardware CRC TPM2CH[3:0] TPMCLK INTC RGPIO[15:8] MCG V1 ColdFire Core with MAC PTD1/CMPP2/RESET MOSI1 SS1 MISO1 SPSCK1 Clock Check & Select SPI2 MOSI2 SS2 MISO2 SPSCK2 XOSC2 CLKO LVD FLASH1 128/64 KB IRQ USBOTG Manager 128/64 KB RAM 32KB VREG VSS1,2,3 VDD1,2,3 XOSC1 EXTAL1 XTAL1 Robust Update FLASH2 FB_D[7:0] FB_AD[19:0] USB_DM USB_DM USB_DP USB_ALTCLK USB_PULLUP(D+) USB_DM_DOWN USB_DP_DOWN USB_VBUSVLD USB_ID USB_SESSVLD USB_SESSEND USB_DP VUSB33 Port H COP MINIFLEX BUS CLKO TOD VBUS Port J FB_AD[19:0] SPI1 SIM PTE4/CMPP3/ TPMCLK/VPP/IRQ IRCLK Port F REF CLK RGPIO[7:0] Port G RGPIO control BKGD/MS control PTD0/BKGD/MS 4 Ch TPM2 DBG BDM Port E VREF Port D VREFO PTA7 PTA6 PTA5 PTA4 PTA3/KBI1P2/FB_D6/ADP5 PTA2/KBI1P1/RX1/ADP4 PTA1/KBI1P0/TX1/FB_D1 PTA0/FB_D2/SS1 PTB7/KBI1P4/RGPIOP1/FB_AD0 PTB6/KBI1P3/RGPIOP0/FB_AD17 PTB5/XTAL2 PTB4/EXTAL2 PTB3/XTAL1 PTB2/EXTAL1 PTB1/BLMS PTB0 PTC7/KBI2P2CLKOUT/ADP11 PTC6/KBI2P1/PRACMPO/ADP10 PTC5/KBI2P0/CMPP1/ADP9 PTC4/KBI1P7/CMPP0/ADP8 PTC3/KBI1P6/SS2/ADP7 PTC2/KBI1P5/SPSCK2/ADP6 PTC1/MISO2/FB_D0/FB_AD1 PTC0/MOSI2/FB_OE_b/FB_CS0 PTD7/USB_PULLUP(D+)/RX1 PTD6/USB_ALTCLK/TX1 PTD5/SCL/RGPIOP11/TPM1CH3 PTD4/SDA/RGPIOP10/TPM1CH2 PTD3/USB_PULLUP(D+)/RGPIOP9/TPM1CH1 PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0 PTE7/USB_VBUSVLD/TPM2CH3 PTE6/FB_RW_b/USB_SESSEND/RX2 PTE5/FB_D7/USB_SESSVLD/TX2 PTE3/KBI2P6/FB_AD8 PTE2/KBI2P5/RGPIOP14/FB_AD7 PTE1/KBI2P4/RGPIOP13/FB_AD6 PTE0/KBI2P3/FB_ALE/FB_CS1 PTF7/MISO1 PTF6/MOSI1 PTF5/KBI2P7/FB_D3/FB_AD9 PTF4/SDA/FB_D4/FB_AD10 PTF3/SCL/FB_D5/FB_AD11 PTF2/TX2/USB_DM_DOWN/TPM2CH0 PTF1/RX2/USB_DP_DOWN/TPM2CH1 PTF0/USB_ID/TPM2CH2 PTG7/FB_AD18 PTG6/FB_AD19 PTG5/FB_RW_b PTG4/USB_SESSVLD PTG3/USB_DP_DOWN PTG2/USB_DM_DOWN PTG1/USB_SESSEND PTG0/SPSCK1 PTH7/RGPIOP7/FB_D2 PTH6/RGPIOP6/FB_D3 PTH5/RGPIOP5/FB_D4 PTH4/RGPIOP4/FB_D5 PTH3/RGPIOP3/FB_D6 PTH2/RGPIOP2/FB_D7 PTH1/FB_D0 PTH0/FB_OE_b PTJ7/FB_AD13 PTJ6/FB_AD14 PTJ5/FB_AD15 PTJ4/RGPIOP15/FB_AD16 PTJ3/RGPIOP12/FB_AD5 PTJ2/FB_AD4 PTJ1/FB_AD3 PTJ0/FB_AD2 Green pins not available on the 100, 81 or 80 pin package Blue pins not available on the 81 or 80 pin package Red pin not available on the 80 pin package Figure 1. MCF51JE256/128 Block Diagram MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 3 Features 1 Features The following table provides a cross-comparison of the features of the MCF51JE256/128 according to package. Table 1. MCF51JE Features by MCU and Package Feature MCF51JE256 MCF51JE128 262144 131072 FLASH size (bytes) RAM size (bytes) 32K Pin quantity 104 100 32K 81 Programmable Analog Comparator (PRACMP) yes Debug Module (DBG) yes Multipurpose Clock Generator (MCG) yes Inter-Integrated Communication (IIC) yes Interrupt Request Pin (IRQ) yes Keyboard Interrupt (KBI) 16 1 69 Digital General purpose I/O 65 Power and Ground Pins 48 81 80 47 48 47 8 Time Of Day (TOD) yes Serial Communications (SCI1) yes Serial Communications (SCI2) yes Serial Peripheral Interface (SPI1(FIFO)) yes Serial Peripheral Interface(SPI2) yes Carrier Modulator Timer pin (IRO) yes Programmable Delay Block (PDB) yes TPM input clock pin (TPMCLK) yes TPM1 channels 4 TPM2 channels 4 XOSC1 yes XOSC2 yes USBOTG yes MiniFlex Bus yes Rapid GPIO 16 DATA 9 ADC single-ended channels 12 DAC ouput pin (DACO) yes Voltage reference output pin (VREFO) yes 1 80 Port I/O count does not include BLMS, BKGD and IRQ. BLMS BKGD are Output only, IRQ is input only. The following table describes the functional units of the MCF51JE256/128. MCF51JE256 Datasheet, Rev. 4 4 Freescale Semiconductor Features Table 2. MCF51JE256/128 Functional Units Unit Function DAC (digital to analog converter) Used to output voltage levels. 12-BIT SAR ADC (analog-to-digital converter) Measures analog voltages at up to 12 bits of resolution. The ADC has up to 12 single-ended inputs. PDB (Programmable Delay Block) Precisely trigger the DAC FIFO buffer. Mini-FlexBus Provides expansion capability for off-chip memory and peripherals. USB On-the-Go Supports the USB On-the-Go dual-role controller. CMT (Carrier Modulator Timer) Infrared output used for the Remote Controller operation. MCG (Multipurpose Clock Generator) Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources. BDM (Background Debug Module) Provides single pin debugging interface (part of the V1 ColdFire core). CF1 CORE (V1 ColdFire Core) Executes programs and interrupt handlers. PRACMP Analog comparators for comparing external analog signals against each other, or a variety of reference levels. COP (Computer Operating Properly) Software Watchdog. IRQ (Interrupt Request) Single-pin high-priority interrupt (part of the V1 ColdFire core). CRC (Cyclic Redundancy Check) High-speed CRC calculation. DBG (Debug) Provides debugging and emulation capabilities (part of the V1 ColdFire core). FLASH (Flash Memory) Provides storage for program code, constants, and variables. IIC (Inter-integrated Circuits) Supports standard IIC communications protocol and SMBus. INTC (Interrupt Controller) Controls and prioritizes all device interrupts. KBI1 & KBI2 Keyboard Interfaces 1 and 2. LVD (Low-voltage Detect) Provides an interrupt to the ColdFire V1 CORE in the event that the supply voltage drops below a critical value. The LVD can also be programmed to reset the device upon a low voltage event. VREF (Voltage Reference) The Voltage Reference output is available for both on- and off-chip use. RAM (Random-Access Memory) Provides stack and variable storage. RGPIO (Rapid General-purpose Input/output) Allows for I/O port access at CPU clock speeds. RGPIO is used to implement GPIO functionality. SCI1, SCI2 (Serial Communications Interfaces) Serial communications UARTs capable of supporting RS-232 and LIN protocols. SIM (system integration unit) MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 5 Features Table 2. MCF51JE256/128 Functional Units (continued) Unit Function SPI1 (FIFO), SPI2 (Serial Peripheral Interfaces) SPI1 and SPI2 provide standard master/slave capability. SPI contains a FIFO buffer in order to increase the throughput for this peripheral. TPM1, TPM2 (Timer/PWM Module) Timer/PWM module can be used for a variety of generic timer operations as well as pulse-width modulation. VREG (Voltage Regulator) Controls power management across the device. XOSC1 and XOSC2 (Crystal Oscillators) These devices incorporate redundant crystal oscillators. One is intended primarily for use by the TOD, and the other by the CPU and other peripherals. MCF51JE256 Datasheet, Rev. 4 6 Freescale Semiconductor Pinouts and Pin Assignments 2 Pinouts and Pin Assignments 2.1 104-Pin MAPBGA The following figure shows the 104-pin MAPBGA pinout configuration. 1 2 3 4 5 6 7 8 9 10 11 A PTF6 PTF7 USB_DP USB_DM VUSB33 PTF4 PTF3 FB_AD12 PTJ7 PTJ5 PTJ4 A B PTG0 PTA0 PTG3 VBUS PTF5 PTJ6 PTH0 PTE5 PTF0 PTF1 PTF2 B C IRO PTG4 PTA6 PTG2 PTG6 PTG5 PTG7 PTH1 PTE4 PTE6 PTE7 C D PTA5 PTA4 PTB1 VDD1 VDD3 PTA1 PTE3 PTE2 D E VSSA PTA7 PTB0 PTA2 PTJ3 PTE1 E F VREFL PTJ2 PTJ0 PTJ1 F G ADP2 PTD5 PTD7 PTE0 G VSS3 PTD4 PTD3 PTD2 H PTG1 H J ADP0 K L VDD2 ADP3 DACO 1 2 PTC7 PTA3 VSS1 PTH7 PTH6 PTH4 PTH3 PTH2 PTD6 PTC2 PTC0 PTC1 J ADP1 PTH5 PTB6 PTB7 PTC3 PTD1 PTC4 PTC5 PTC6 K VREFO VREFH VDDA PTB3 PTB2 PTD0 PTB5 PTB4 L 4 5 6 7 8 9 10 11 3 VSS2 Figure 2. 104-Pin MAPBGA MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 7 Pinouts and Pin Assignments 2.2 100-Pin LQFP VDD1 VSS1 VBUS USB_DP USB_DM VUSB33 PTF5/KBI2P7/FB_D3/FB_AD9 PTF4/SDA/FB_D4/FB_AD10 PTF3/SCL/FB_D5/FB_AD11 FB_AD12 PTJ7/FB_AD13 PTJ6/FB_AD14 PTJ5/FB_AD15 PTJ4/RGPIOP15/FB_AD16 PTF2/TX2/USB_DM_DOWN/TPM2CH0 PTF1/RX2/USB_DP_DOWN/TPM2CH1 PTF0/USB_ID/TPM2CH2 PTE7/USB_VBUSVLD/TPM2CH3 PTE6/FB_RW/USB_SESSEND/RX2 PTE5/FB_D7/USB_SESSVLD/TX2 VDD3 VSS3 96 95 94 92 91 90 89 88 87 86 84 83 82 81 80 79 78 77 76 85 PTF6/MOSI1 97 93 PTF7/MISO1 98 PTG0/SPSCK1 100 99 The following figure shows the 100-pin LQFP pinout configuration. PTA0/FB_D2/SS1 1 75 PTE4/CMPP3/TPMCLK/IRQ IRO 2 74 PTE3/KBI2P6/FB_AD8 PTG5/FB_RW 3 73 PTE2/KBI2P5/RGPIOP14/FB_AD7 PTG6/FB_AD19 4 72 PTE1/KBI2P4/RGPIOP13/FB_AD6 PTG7/FB_AD18 5 71 PTJ3/RGPIOP12/FB_AD5 PTH0/FB_OE 6 70 PTJ2/FB_AD4 PTH1/FB_D0 7 69 PTJ1/FB_AD3 PTA1/KBI1P0/TX1/FB_D1 8 68 PTA2/KBI1P1/RX1/ADP4 9 67 PTJ0/FB_AD2 PTE0/KBI2P3/FB_ALE/FB_CS1 PTA3/KBI1P2/FB_D6/ADP5 10 66 PTD7/USB_PULLUP(D+)/RX1 PTA4 11 65 PTA5 12 64 PTD6/USB_ALTCLK/TX1 PTD5/SCL/RGPIOP11/TPM1CH3 PTA6 13 63 PTD4/SDA/RGPIOP10/TPM1CH2 PTA7 14 62 PTD3/USB_PULLUP(D+)/RGPIOP9/TPM1CH1 PTB0 15 61 PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0 PTB1/BLMS 16 60 VSSA 17 59 PTD1/CMPP2/RESET PTD0/BKGD/MS VREFL 18 58 PTC7/KBI2P2/CLKOUT/ADP11 NC 19 57 PTC6/KBI2P1/PRACMPO/ADP10 NC 20 56 PTC5/KBI2P0/CMPP1/ADP9 ADP2 21 55 PTC4/KBI1P7/CMPP0/ADP8 NC 22 54 PTC3/KBI1P6/SS2/ADP7 NC 23 53 PTC2/KBI1P5/SPSCK2/ADP6 NC 24 52 PTC1/MISO2/FB_D0/FB_AD1 NC 25 51 PTC0/MOSI2/FB_OE/FB_CS0 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PTB2/EXTAL1 PTB3/XTAL1 VDD2 PTB4/EXTAL2 PTB5/XTAL2 PTB6/KBI1P3/RGPIOP0/FB_AD17 PTB7/KBI1P4/RGPIOP1/FB_AD0 PTH2/RGPIOP2/FB_D7 PTH3/RGPIOP3/FB_D6 PTH4/RGPIOP4/FB_D5 PTH5/RGPIOP5/FB_D4 PTH6/RGPIOP6/FB_D3 PTH7/RGPIOP7/FB_D2 33 ADP1 VSS2 32 VREFO 36 31 NC VDDA 30 ADP0 35 29 NC 34 28 NC NC 27 ADP3 VREFH 26 DACO 100 LQFP Figure 3. 100-Pin LQFP MCF51JE256 Datasheet, Rev. 4 8 Freescale Semiconductor Pinouts and Pin Assignments 2.3 81-Pin MAPBGA The following figure shows the 81-pin MAPBGA pinout configuration. 1 2 3 4 5 6 7 8 9 A IRO PTG0 PTF6 USB_DP VBUS VUSB33 PTF4 PTF3 PTE4 A B PTF7 PTA0 PTG1 USB_DM PTF5 PTE7 PTF1 PTF0 PTE3 B C PTA4 PTA5 PTA6 PTA1 PTF2 PTE6 PTE5 PTE2 PTE1 C PTA7 PTB0 PTB1 PTA2 PTA3 PTD5 PTD7 PTE0 D VDD2 VDD3 VDD1 PTD2 PTD3 PTD6 E VSS2 VSS3 VSS1 PTB7 PTC7 PTD4 F ADP3 VREFO PTB6 PTC0 PTC1 PTC2 G ADP1 PTC3 PTC4 PTD0 PTC5 PTC6 H J D E ADP2 F G ADP0 DACO H J VSSA VREFL VREFH VDDA PTB2 PTB3 PTD1 PTB4 PTB5 1 2 3 4 5 6 7 8 9 Figure 4. 81-Pin MAPBGA MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 9 Pinouts and Pin Assignments 2.4 80-Pin LQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 80-Pin LQFP 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 PTE4/CMPP3/TPMCLK/IRQ PTE3/KBI2P6/FB_AD8 PTE2/KBI2P5/RGPIOP14/FB_AD7 PTE1/KBI2P4/RGPIOP13/FB_AD6 PTE0/KBI2P3/FB_ALE/FB_CS1 PTD7/USB_PULLUP(D+)/RX1 PTD6/USB_ALTCLK/TX1 PTD5/SCL/RGPIOP11/TPM1CH3 PTD4/SDA/RGPIOP10/TPM1CH2 PTD3/USB_PULLUP(D+)/RGPIOP9/TPM1CH1 PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0 PTD1/CMPP2/RESET PTD0/BKGD/MS PTC7/KBI2P2/CLKOUT/ADP11 PTC6/KBI2P1/PRACMPO/ADP10 PTC5/KBI2P0/CMPP1/ADP9 PTC4/KBI1P7/CMPP0/ADP8 PTC3/KBI1P6/SS2/ADP7 PTC2/KBI1P5/SPSCK2/ADP6 PTC1/MISO2/FB_D0/FB_AD1 DACO ADP3 NC NC ADP0 NC VREFO ADP1 NC VREFH VDDA VSS2 PTB2/EXTAL1 PTB3/XTAL1 VDD2 PTB4/EXTAL2 PTB5/XTAL2 PTB6/KBI1P3/RGPIOP0/FB_AD17 PTB7/KBI1P4/RGPIOP1/FB_AD0 PTC0/MOSI2/FB_OE/FB_CS0 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 PTA0/FB_D2/SS1 IRO PTA1/KBI1P0/TX1/FB_D1 PTA2/KBI1P1/RX1/ADP4 PTA3/KBI1P2/FB_D6/ADP5 PTA4 PTA5 PTA6 PTA7 PTB0 PTB1/BLMS VSSA VREFL NC NC ADP2 NC NC NC NC 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PTG0/SPSCK1 PTF7/MISO1 PTF6/MOSI1 VDD1 VSS1 VBUS USB_DP USB_DM VUSB33 PTF5/KBI2P7/FB_D3/FB_AD9 PTF4/SDA/FB_D4/FB_AD10 PTF3/SCL/FB_D5/FB_AD11 PTF2/TX2/USB_DM_DOWN/TPM2CH0 PTF1/RX2/USB_DP_DOWN/TPM2CH1 PTF0/USB_ID/TPM2CH2 PTE7/USB_VBUSVLD/TPM2CH3 PTE6/FB_RW/USB_SESSEND/RX2 PTE5/FB_D7/USB_SESSVLD/TX2 VDD3 VSS3 The following figure shows the 80-pin LQFP pinout configuration. Figure 5. 80-Pin LQFP Pinout MCF51JE256 Datasheet, Rev. 4 10 Freescale Semiconductor Pinouts and Pin Assignments 2.5 Pin Assignments Table 3. Package Pin Assignments Package Default Function Alternate 1 Alternate 2 Alternate 3 Composite Pin Name 1 PTA0 FB_D2 SS1 — PTA0/FB_D2/SS1 A1 2 IRO — — — IRO 3 — — PTG5 FB_RW — — PTG5/FB_RW 4 — — PTG6 FB_AD19 — — PTG6/FB_AD19 C7 5 — — PTG7 FB_AD18 — — PTG7/FB_AD18 B7 6 — — PTH0 FB_OE — — PTH0/FB_OE C8 7 — — PTH1 FB_D0 — — PTH1/FB_D0 D9 8 C4 3 PTA1 KBI1P0 TX1 FB_D1 PTA1/KBI1P0/TX1/FB_D1 E9 9 D5 4 PTA2 KBI1P1 RX1 ADP4 PTA2/KBI1P1/RX1/ADP4 H3 10 D6 5 PTA3 KBI1P2 FB_D6 ADP5 PTA3/KBI1P2/FB_D6/ADP5 D2 11 C1 6 PTA4 — — — PTA4 D1 12 C2 7 PTA5 — — — PTA5 C3 13 C3 8 PTA6 — — — PTA6 E2 14 D2 9 PTA7 — — — PTA7 104 MAPB GA 100 LQFP 81 MAPB GA 80 LQFP B2 1 B2 C1 2 C6 C5 E3 15 D3 10 PTB0 — — — PTB0 D3 16 D4 11 PTB1 BLMS — — PTB1/BLMS E1 17 J1 12 VSSA — — — VSSA F1 18 J2 13 VREFL — — — VREFL F2 19 D1 19 — — — — NC G2 20 E2 15 — — — — NC G1 21 F2 16 ADP2 — — — ADP2 H1 22 F1 17 — — — — NC H2 23 E2 18 NC — — — NC F3 24 F3 19 — — — — NC G3 25 E3 20 — — — — NC L2 26 G2 21 DACO — — — DACO L1 27 G3 22 ADP3 — — — ADP3 K1 28 H4 23 — — — — NC K2 29 G4 24 NC — — — NC J1 30 G1 25 ADP0 — — — ADP0 J2 31 H1 26 — — — — NC L4 32 G5 27 VREFO — — — VREFO K3 33 H3 28 ADP1 — — — ADP1 L3 34 H2 29 NC — — — NC MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 11 Pinouts and Pin Assignments Table 3. Package Pin Assignments (continued) Package Default Function Alternate 1 Alternate 2 Alternate 3 Composite Pin Name 30 VREFH — — — VREFH 104 MAPB GA 100 LQFP 81 MAPB GA 80 LQFP L5 35 J3 L6 36 J4 31 VDDA — — — VDDA H6 37 F4 32 VSS2 — — — VSS2 L8 38 J5 33 PTB2 EXTAL1 — — PTB2/EXTAL1 L7 39 J6 34 PTB3 XTAL1 — — PTB3/XTAL1 D6 40 E4 35 VDD2 — — — VDD2 L11 41 J8 36 PTB4 EXTAL2 — — PTB4/EXTAL2 L10 42 J9 37 PTB5 XTAL2 — — PTB5/XTAL2 K5 43 G6 38 PTB6 KBI1P3 RGPIOP0 FB_AD17 PTB6/KBI1P3/RGPIOP0/ FB_AD17 K6 44 F7 39 PTB7 KBI1P4 RGPIOP1 FB_AD0 PTB7/KBI1P4/RGPIOP1/ FB_AD0 J7 45 — — PTH2 RGPIOP2 FB_D7 — PTH2/RGPIOP2/FB_D7 J6 46 — — PTH3 RGPIOP3 FB_D6 — PTH3/RGPIOP3/FB_D6 J5 47 — — PTH4 RGPIOP4 FB_D5 — PTH4/RGPIOP4/FB_D5 K4 48 — — PTH5 RGPIOP5 FB_D4 — PTH5/RGPIOP5/FB_D4 J4 49 — — PTH6 RGPIOP6 FB_D3 — PTH6/RGPIOP6/FB_D3 J3 50 — — PTH7 RGPIOP7 FB_D2 — PTH7/RGPIOP7/FB_D2 J10 51 G7 40 PTC0 MOSI2 FB_OE FB_CS0 PTC0/MOSI2/FB_OE/ FB_CS0 J11 52 G8 41 PTC1 MISO2 FB_D0 FB_AD1 PTC1/MISO2/FB_D0/FB_AD1 J9 53 G9 42 PTC2 KBI1P5 SPSCK2 ADP6 PTC2/KBI1P5/SPSCK2/ADP6 K7 54 H5 43 PTC3 KBI1P6 SS2 ADP7 PTC3/KBI1P6/SS2/ADP7 K9 55 H6 44 PTC4 KBI1P7 CMPP0 ADP8 PTC4/KBI1P7/CMPP0/ADP8 K10 56 H8 45 PTC5 KBI2P0 CMPP1 ADP9 PTC5/KBI2P0/CMPP1/ADP9 K11 57 H9 46 PTC6 KBI2P1 PRACMPO ADP10 PTC6/KBI2P1/PRACMPO/ ADP10 F8 58 F8 47 PTC7 KBI2P2 CLKOUT ADP11 PTC7/KBI2P2/CLKOUT/ADP11 L9 59 H7 48 PTD0 BKGD MS — PTD0/BKGD/MS K8 60 J7 49 PTD1 CMPP2 RESET — PTD1/CMPP2/RESET H11 61 E7 50 PTD2 USB_ALTCL K RGPIOP8 TPM1CH0 PTD2/USB_ALTCLK/RGPIOP8/ TPM1CH0 H10 62 E8 51 PTD3 USB_PULL UP(D+) RGPIOP9 TPM1CH1 PTD3/USB_PULLUP(D+)/ RGPIOP9/TPM1CH1 H9 63 F9 52 PTD4 SDA RGPIOP10 TPM1CH2 PTD4/SDA/RGPIOP10/ TPM1CH2 G9 64 D7 53 PTD5 SCL RGPIOP11 TPM1CH3 PTD5/SCL/RGPIOP11/ TPM1CH3 J8 65 E9 54 PTD6 USB_ALTCL K TX1 — PTD6/USB_ALTCLK/TX1 MCF51JE256 Datasheet, Rev. 4 12 Freescale Semiconductor Pinouts and Pin Assignments Table 3. Package Pin Assignments (continued) Package 104 MAPB GA 100 LQFP 81 MAPB GA 80 LQFP G10 66 D8 55 G11 67 D9 F10 68 F11 F9 Default Function Alternate 1 Alternate 2 Alternate 3 Composite Pin Name PTD7 USB_PULL UP(D+) RX1 — PTD7/USB_PULLUP(D+) /RX1 56 PTE0 KBI2P3 FB_ALE FB_CS1 PTE0/KBI2P3/FB_ALE/ FB_CS1 — — PTJ0 FB_AD2 — — PTJ0/FB_AD2 69 — — PTJ1 FB_AD3 — — PTJ1/FB_AD3 70 — — PTJ2 FB_AD4 — — PTJ2/FB_AD4 E10 71 — — PTJ3 RGPIOP12 FB_AD5 — PTJ3/RGPIOP12/FB_AD5 E11 72 C9 57 PTE1 KBI2P4 RGPIOP13 FB_AD6 PTE1/KBI2P4/RGPIOP13/ FB_AD6 D11 73 C8 58 PTE2 KBI2P5 RGPIOP14 FB_AD7 PTE2/KBI2P5/RGPIOP14/ FB_AD7 D10 74 B9 59 PTE3 KBI2P6 FB_AD8 — PTE3/KBI2P6/FB_AD8 C9 75 A9 60 PTE4 CMPP3 TPMCLK IRQ PTE4/CMPP3/TPMCLK/VPP/ IRQ H8 76 F5 61 VSS3 — — — VSS3 D8 77 E5 62 VDD3 — — — VDD3 B8 78 C7 63 PTE5 FB_D7 USB_ SESSVLD TX2 PTE5/FB_D7/USB_SESSVLD/ TX2 C10 79 C6 64 PTE6 FB_RW USB_ SESSEND RX2 PTE6/FB_RW_b/ USB_SESSEND/RX2 C11 80 B6 65 PTE7 USB_VBUS VLD TPM2CH3 — PTE7/USB_VBUSVLD/ TPM2CH3 B9 81 B8 66 PTF0 USB_ID TPM2CH2 — PTF0/USB_ID/TPM2CH2 B10 82 B7 67 PTF1 RX2 USB_DP_ DOWN TPM2CH1 PTF1/RX2/USB_DP_DOWN/ TPM2CH1 B11 83 C5 68 PTF2 TX2 USB_DM_ DOWN TPM2CH0 PTF2/TX2/USB_DM_DOWN/ TPM2CH0 A11 84 — — PTJ4 RGPIOP15 FB_AD16 — PTJ4/RGPIOP15/FB_AD16 A10 85 — — PTJ5 FB_AD15 — — PTJ5/FB_AD15 B6 86 — — PTJ6 FB_AD14 — — PTJ6/FB_AD14 A9 87 — — PTJ7 FB_AD13 — — PTJ7/FB_AD13 A8 88 — — FB_AD12 — — — FB_AD12 A7 89 A8 69 PTF3 SCL FB_D5 FB_AD11 PTF3/SCL/FB_D5/FB_AD11 A6 90 A7 70 PTF4 SDA FB_D4 FB_AD10 PTF4/SDA/FB_D4/FB_AD10 B5 91 B5 71 PTF5 KBI2P7 FB_D3 FB_AD9 PTF5/KBI2P7/FB_D3/FB_AD9 A5 92 A6 72 VUSB33 — — — VUSB33 A4 93 B4 73 USB_DM — — — USB_DM A3 94 A4 74 USB_DP — — — USB_DP B4 95 A5 75 VBUS — — — VBUS MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 13 Pinouts and Pin Assignments Table 3. Package Pin Assignments (continued) Package Default Function Alternate 1 Alternate 2 Alternate 3 Composite Pin Name 76 VSS1 — — — VSS1 104 MAPB GA 100 LQFP 81 MAPB GA 80 LQFP H4 96 F6 D4 97 E6 77 VDD1 — — — VDD1 A1 98 A3 78 PTF6 MOSI1 — — PTF6/MOSI1 A2 99 B1 79 PTF7 MISO1 — — PTF7/MISO1 B1 100 A2 80 PTG0 SPSCK1 — — PTG0/SPSCK1 F4 — B3 — PTG1 USB_SESS END — — PTG1/USB_SESSEND C4 — — — PTG2 USB_DM_D OWN — — PTG2/USB_DM_DOWN B3 — — — PTG3 USB_DP_D OWN — — PTG3/USB_DP_DOWN C2 — — — PTG4 USB_SESS VLD — — PTG4/USB_SESSVLD MCF51JE256 Datasheet, Rev. 4 14 Freescale Semiconductor Preliminary Electrical Characteristics 3 Preliminary Electrical Characteristics This section contains electrical specification tables and reference timing diagrams for the MCF51JE256/128 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed. NOTE The parameters specified in this data sheet supersede any values found in the module specifications. 3.1 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate: Table 4. Parameter Classifications P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. 3.2 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 15 Preliminary Electrical Characteristics Table 5. Absolute Maximum Ratings # 1 2 3 Rating Symbol Value Unit 1 Supply voltage VDD –0.3 to 3.8 V 2 Maximum current into VDD IDD 120 mA 3 Digital Input voltage VIn –0.3 to VDD + 0.3 V 4 Instantaneous maximum current Single pin limit (applies to all port pins)1, 2, 3 ID 25 mA 5 Storage temperature range Tstg –55 to 150 C Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values. All functional non-supply pins are internally clamped to VSS and VDD. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption). This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD). 3.3 Thermal Characteristics This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. MCF51JE256 Datasheet, Rev. 4 16 Freescale Semiconductor Preliminary Electrical Characteristics Table 6. Thermal Characteristics # Symbol Rating Value Unit Operating temperature range (packaged): 1 2 TA TJMAX Thermal resistance 1 2 3 4 MCF51JE128 –40 to 105 135 C C Single-layer board — 1s JA Thermal 4 –40 to 105 Maximum junction temperature 1,2,3,4 3 MCF51JE256 resistance1, 2, 3, 4 104-pin MBGA 67 100-pin LQFP 53 81-pin MBGA 67 80-pin LQFP 53 C/W Four-layer board — 2s2p JA 104-pin MBGA 39 100-pin LQFP 41 81-pin MBGA 39 80-pin LQFP 39 C/W Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Junction to Ambient Natural Convection 1s — Single layer board, one signal layer 2s2p — Four layer board, 2 signal and 2 power layers The average chip-junction temperature (TJ) in C can be obtained from: TJ = TA + (PD JA) Eqn. 1 where: TA = Ambient temperature, C JA = Package thermal resistance, junction-to-ambient, C/W PD = Pint PI/O Pint = IDD VDD, Watts — chip internal power PI/O = Power dissipation on input and output pins — user determined For most applications, PI/O Pint and can be neglected. An approximate relationship between PD and TJ (if PI/O is neglected) is: PD = K (TJ + 273C) Eqn. 2 Solving Equation 1 and Equation 2 for K gives: K = PD (TA + 273C) + JA (PD)2 Eqn. 3 MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 17 Preliminary Electrical Characteristics where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively for any value of TA. 3.4 ESD Protection Characteristics Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage. All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E. A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table 7. ESD and Latch-up Test Conditions Model Human Body Machine Description Symbol Value Unit Series Resistance R1 1500 Storage Capacitance C 100 pF Number of Pulse per pin — 3 — Series Resistance R1 0 Storage Capacitance C 200 pF Number of Pulse per pin — 3 — Minimum input voltage limit — –2.5 V Maximum input voltage limit — 7.5 V Latch-up Table 8. ESD and Latch-Up Protection Characteristics # 3.5 Rating Symbol Minimum Maximum Unit C 1 Human Body Model (HBM) VHBM 2000 — V T 2 Machine Model (MM) VMM 200 — V T 3 Charge Device Model (CDM) VCDM 500 — V T 4 Latch-up Current at TA = 125C ILAT 00 — mA T DC Characteristics This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes. MCF51JE256 Datasheet, Rev. 4 18 Freescale Semiconductor Preliminary Electrical Characteristics Table 9. DC Characteristics # Symbol 1 — 2 VOH Characteristic Condition 2 C — 1.8 — 3.6 V — VDD 1.8 V, ILoad = –600 A VDD – 0.5 — — V C VDD 2.7 V, ILoad = –10 mA VDD – 0.5 — — V P VDD 2.3 V, ILoad = –6 mA VDD – 0.5 — — V T VDD 1.8V, ILoad = –3 mA VDD – 0.5 — — V C — — — 100 mA D VDD 1.8 V, ILoad = 600 A — — 0.5 V C VDD 2.7 V, ILoad = 10 mA — — 0.5 V P VDD 2.3 V, ILoad = 6 mA — — 0.5 V T VDD 1.8 V, ILoad = 3 mA — — 0.5 V C — — — 100 mA D VDD 2.7 V 0.70 x VDD — — V P VDD 1.8 V 0.85 x VDD — — V C VDD 2.7 V — — 0.35 x VDD V P VDD 1.8 V — — 0.30 x VDD V C — 0.06 x VDD — — mV C all input only pins (Per pin) VIn = VDD or VSS — — 0.5 A P all input/output (per pin) VIn = VDD or VSS — 0.003 0.5 A P Operating Voltage Output high voltage Minimum Typical1 Maximum Unit All I/O pins, low-drive strength All I/O pins, high-drive strength 3 4 IOHT VOL Output high current Output low voltage Max total IOH for all ports All I/O pins, low-drive strength All I/O pins, high-drive strength 5 6 7 IOLT VIH VIL Output low current Max total IOL for all ports Input high voltage all digital inputs Input low voltage all digital inputs 8 Vhys Input hysteresis 9 |IIn| Input leakage current 10 |IOZ| Hi-Z (off-state) leakage current3 all digital inputs MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 19 Preliminary Electrical Characteristics Table 9. DC Characteristics (continued) # Symbol 11 Characteristic RPU Pull-up resistors RPD Internal pull-down resistors4 12 all digital inputs, when enabled 17.5 — 52.5 k P — 17.5 — 52.5 k P Single pin limit VSS > VIN > VDD –0.2 — 0.2 mA Total MCU limit, includes sum of all stressed pins VSS > VIN > VDD –5 — 5 mA DC injection current 5, 6, 7 14 CIn Input Capacitance, all pins — — — 8 pF C 15 VRAM RAM retention voltage — — 0.6 1.0 V C 16 VPOR POR re-arm voltage8 — 0.9 1.4 1.79 V C 17 tPOR POR re-arm time — 10 — — s D VDD falling 2.11 2.16 2.22 V P VDD rising 2.16 2.21 2.27 V P VDD falling 1.80 1.82 1.91 V P VDD rising 1.86 1.90 1.99 V P VDD falling 2.36 2.46 V P VDD rising 2.36 2.46 2.56 V P VDD falling 2.11 2.16 2.22 V P VDD rising 2.16 2.21 2.27 V P 19 20 21 3 4 5 6 7 C IIC 18 2 Minimum Typical1 Maximum Unit — 13 1 Condition VLVDH VLVDL Low-voltage detection threshold — high range9 Low-voltage detection threshold — low range9 VLVWH Low-voltage warning threshold — high VLVWL D range9 2.56 Low-voltage warning threshold — low range9 22 Vhys Low-voltage inhibit reset/recover hysteresis10 — — 50 — mV C 23 VBG Bandgap Voltage Reference11 — 1.145 1.17 1.195 V P Typical values are measured at 25C. Characterized, not tested As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above VLVDL. Does not include analog module pins. Dedicated analog pins should not be pulled to VDD or VSS and should be left floating when not used to reduce current leakage. Measured with VIn = VDD. All functional non-supply pins are internally clamped to VSS and VDD,except PTD1. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). MCF51JE256 Datasheet, Rev. 4 20 Freescale Semiconductor Preliminary Electrical Characteristics 8 9 10 11 Maximum is highest voltage that POR is guaranteed. Run at 1 MHz bus frequency. Low voltage detection and warning limits measured at 1 MHz bus frequency. Factory trimmed at VDD = 3.0 V, Temp = 25C. 3.6 Supply Current Characteristics Table 10. Supply Current Characteristics # Symbol 1 RIDD 2 3 4 5 RIDD RIDD RIDD WIDD Parameter Bus Freq VDD (V) Unit Temperature (C) C 25.165 MHz 3 44 48 mA –40 to 25 P 25.165 MHz 3 44 48 mA 105 P 20 MHz 3 32.3 — mA –40 to 105 T 8 MHz 3 16.4 — mA –40 to 105 T 1 MHz 3 2.9 — mA –40 to 105 T 25.165 MHz 3 29 29.6 mA –40 to 105 C 20 MHz 3 25.4 — mA –40 to 105 T 8 MHz 3 12.7 — mA –40 to 105 T 1 MHz 3 2.4 — mA –40 to 105 T 16 kHz FBI 3 232 280 A –40 to 105 T 16 kHz FBE 3 231 296 A –40 to 105 T 16 kHz BLPE 3 74 75 A 0 to 70 T 16 kHz BLPE 3 74 120 A –40 to 105 T 25.165 MHz 3 16.5 — mA –-40 to 105 C 20 MHz 3 10.3 — mA –-40 to 105 T 8 MHz 3 6.6 — mA –-40 to 105 T 1 MHz 3 1.7 — mA –-40 to 105 T Typical1 Maximum Run supply current FEI mode, all modules ON2 Run supply current FEI mode, all modules OFF3 Run supply current LPR=0, all modules OFF3 Run supply current LPR=1, all modules OFF3 Wait mode supply current FEI mode, all modules OFF3 MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 21 Preliminary Electrical Characteristics Table 10. Supply Current Characteristics (continued) # Symbol 6 S2IDD 7 Parameter Bus Freq VDD (V) Unit Temperature (C) C N/A 3 0.410 1 A -40 to 25 P N/A 3 3.7 10 A 70 C N/A 3 10 20 A 85 C N/A 3 21 31.5 A 105 P N/A 2 0.410 0.640 A -40 to 25 C N/A 2 3.4 9 A 70 C N/A 2 9.5 18 A 85 C N/A 2 20 30 A 105 C N/A 3 0.750 1.3 A -40 to 25 P N/A 3 8.5 18 A 70 C N/A 3 20 28 A 85 C N/A 3 53 63 A 105 P N/A 2 0.400 0.900 A -40 to 25 C N/A 2 8.2 16 A 70 C N/A 2 18 26 A 85 C N/A 2 47 59 A 105 C Typical1 Maximum Stop2 mode supply current4 Stop3 mode supply current No clocks active S3IDD 1 Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value. ON = System Clock Gating Control registers turn on system clock to the corresponding modules. 3 OFF = System Clock Gating Control registers turn off system clock to the corresponding modules. 4 All digital pins must be configured to a known state to prevent floating pins from adding current. Smaller packages may have some pins that are not bonded out; however, software must still be configured to the largest pin package available so that all pins are in a known state. Otherwise, floating pins that are not bonded in the smaller packages may result in a higher current draw. NOTE: I/O pins are configured to output low; input-only pins are configured to pullup-enabled. IRO pin connects to ground. FB_AD12 pin is pullup-enabled. DACO, and VREFO pins are at reset state and unconnected. 2 Table 11. Stop Mode Adders Temperature (°C) # Parameter 1 LPO 2 EREFSTEN 3 1 IREFSTEN 4 TOD Condition — RANGE = HGO = 0 — Does not include clock source current Units C 250 nA D 850 1000 nA D 80 93 125 A T 100 150 250 nA D -40 25 70 85 105 50 75 100 150 600 650 750 — 73 50 75 MCF51JE256 Datasheet, Rev. 4 22 Freescale Semiconductor Preliminary Electrical Characteristics Table 11. Stop Mode Adders (continued) Temperature (°C) # 5 1 Parameter LVD1 Condition Units C 172 A T -40 25 70 85 105 LVDSE = 1 116 117 126 132 6 PRACMP Not using the bandgap (BGBE = 0) 17 18 24 35 74 A T 7 ADC1 ADLPC = ADLSMP = 1 Not using the bandgap (BGBE = 0) 75 85 100 115 165 A T 8 DAC1 High power mode; no load on DACO 500 500 500 500 500 A T 1 Not available in stop2 mode. Figure 6. Stop IDD versus Temperature MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 23 Preliminary Electrical Characteristics 3.7 PRACMP Electricals Table 12. PRACMP Electrical Specifications # 3.8 Characteristic Symbol Minimum Typical Maximum Unit C VPWR 1.8 — 3.6 V P 1 Supply voltage 2 Supply current (active) (PRG enabled) IDDACT1 — — 80 A D 3 Supply current (active) (PRG disabled) IDDACT2 — — 40 A D 4 Supply current (ACMP and PRG all disabled) IDDDIS — — 2 nA D 5 Analog input voltage VAIN VSS – 0.3 — VDD V D 6 Analog input offset voltage VAIO — 5 40 mV D 7 Analog comparator hysteresis VH 3.0 — 20.0 mV D 8 Analog input leakage current IALKG — — 1 nA D 9 Analog comparator initialization delay tAINIT — — 1.0 s D 10 Programmable reference generator inputs VIn2 (VDD25) 1.8 — 2.75 V D 11 Programmable reference generator setup delay tPRGST — 1 — s D 12 Programmable reference generator step size Vstep 0.75 1 1.25 LSB D 13 Programmable reference generator voltage range Vprgout VIn/32 — Vin V P Unit C 12-bit DAC Electricals Table 13. DAC 12LV Operating Requirements # 1 Characteristic Symbol Minimum Maximum 1 Supply voltage VDDA 1.8 3.6 V P 2 Reference voltage VDACR 1.15 3.6 V C 3 Temperature TA -40 105 °C C 4 Output load capacitance1 CL — 100 pF C 5 Output load current IL — 1 mA C A small load capacitance (47 pF) can improve the bandwidth performance of the DAC. MCF51JE256 Datasheet, Rev. 4 24 Freescale Semiconductor Preliminary Electrical Characteristics Table 14. DAC 12-Bit Operating Behaviors # Characteristic Symbol Minimum Typical Maximum Unit C N 12 — 12 bit T — 50 100 A T — 345 500 A T Notes 1 Resolution 2 Supply current low-power mode IDDA_DAC 3 Supply current high-power mode IDDA_DAC 4 Full-scale Settling time (1 LSB) (0x080 to 0xF7F or 0xF7F to 0x080) low-power mode 5 Full-scale Settling time (1 LSB) (0x080 to 0xF7F or 0xF7F to 0x080) high-power mode TsFSHP — — 30 s T • VDDA = 3 V or 2.2 V • VREFSEL = 1 • Temperature = 25°C 6 Code-to-code Settling time (1 LSB) (0xBF8 to 0xC08 or 0xC08 to 0xBF8) low-power mode TsC-CLP — — 5 s T • VDDA = 3 V or 2.2 V • VREFSEL = 1 • Temperature = 25°C 7 Code-to-code Settling time (1 LSB) (0xBF8 to 0xC08 or 0xC08 to 0xBF8) high-power mode TsC-CHP — 1 — s T • VDDA = 3 V or 2.2 V • VREFSEL = 1 • Temperature = 25°C 8 DAC output voltage range low (high-power mode, no load, DAC set to 0, 3 V at room temperature) Vdacoutl — — mV T 9 DAC output voltage range high (high-power mode, no load, DAC set to 0x0FFF) Vdacouth VDACR–100 — mV T 10 Integral non-linearity error INL — — 8 LSB T 11 Differential non-linearity error VDACR is > 2.4 V DNL — — ±1 LSB T 12 Offset error 13 Gain error (VREF = Vext = VDD) 14 Power supply rejection ratio VDD 2.4 V LP HP TsFSLP EO — — — ±0.4 200 100 — ±3 s %FSR T • VDDA = 3 V or 2.2 V • VREFSEL = 1 • Temperature = 25°C T Calculated by a best fit curve from VSS + 100mV to VREFH –100mV Calculated by a best fit curve from VSS + 100mV to VREFH –100mV EG — ±0.1 ±0.5 %FSR T PSRR 60 — — dB T MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 25 Preliminary Electrical Characteristics Table 14. DAC 12-Bit Operating Behaviors # Characteristic Symbol Minimum Typical Maximum Unit 15 Temperature drift of offset voltage (DAC set to 0x0800)1 Tco — — 16 Offset aging coefficient AC — — 1 2 8 C Notes mV T See Typical Drift figure that follows. V/yr T See Typical Drift figure that follows. Figure 7. Offset at Half Scale vs Temperature 3.9 ADC Characteristics Table 15. 12-bit ADC Operating Conditions # Symb 1 VDDAD 2 VDDAD 3 VSSAD 4 VREFH Characteristic Supply voltage Minimum Typical1 Maximum Conditions Absolute Supply voltage Delta to VDD (VDD-VDDAD)2 Ground voltage Ref Voltage High Delta to VSS (VSS-VSSAD — )2 Unit C 1.8 — 3.6 V D -100 0 +100 mV D -100 0 +100 mV D 1.13 VDDAD VDDAD V D MCF51JE256 Datasheet, Rev. 4 26 Freescale Semiconductor Preliminary Electrical Characteristics Table 15. 12-bit ADC Operating Conditions (continued) Symb Characteristic Conditions Unit C 5 VREFL Ref Voltage Low — VSSAD VSSAD VSSAD V D 6 VADIN Input Voltage — VREFL — VREFH V D 7 CADIN Input Capacitance — — 4 5 pF C 8 RADIN Input Resistance — — 2 5 k C 9 RAS — — 1 k C 4 MHz < fADCK > 8 MHz — — 2 k C fADCK < 4 MHz — — 5 k C 10-bit mode fADCK > 8MHz — — 2 k C 4 MHz < fADCK < 8 MHz — — 5 k C fADCK < 4 MHz — — 10 k C 8-bit mode fADCK > 8 MHz — — 5 k C fADCK < 8 MHz — — 10 k C High Speed (ADLPC=0, ADHSC=1) 1.0 — 8.0 MHz D High Speed (ADLPC=0, ADHSC=0) 1.0 — 5.0 MHz D Low Power (ADLPC=1, ADHSC=1) 1.0 — 2.5 MHz D Analog Source Resistance3 12 bit mode fADCK > 8 MHz 10 1 2 3 Minimum Typical1 Maximum # fADCK ADC Conversion Clock Freq. Typical values assume VDDAD = 3.0V, Temp = 25C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. DC potential difference. External to MCU. Assumes ADLSMP=0. MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 27 Preliminary Electrical Characteristics SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS RAS RADIN ADC SAR ENGINE + VADIN VAS + – CAS – RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 8. ADC Input Impedance Equivalency Diagram Table 16. 12-bit SAR ADC Characteristics full operating range (VREFH = VDDAD, VREFL = VSSAD) # 1 2 Symbol IDDAD Characteristic Supply Current (ADLSMP=0, ADCO=1) ADC Asynchronous fADACK Clock Source (tADACK =1/fADACK) Conditions1 Minimum Typical2 Maximum — 215 — A T ADLPC=0, ADHSC=0 — 470 — A T ADLPC=0, ADHSC=1 — 610 — A T Stop, Reset, Module Off — 0.01 — A C ADLPC=1, ADHSC=0 — 2.4 — MHz P ADLPC=0, ADHSC=0 — 5.2 — MHz P ADLPC=0, ADHSC=1 — 6.2 — MHz P 3.5 LSB3 T T — Sample Time — See Reference Manual for sample times. 4 — Conversion Time — See Rreference Manual for conversion times. TUE — 1.75 — 0.8 ±1.5 LSB3 — 0.5 ±1.0 LSB3 T — 0.7 1 LSB3 T 10-bit single-ended mode — 0.5 ±0.75 LSB3 T 8-bit single-ended mode — 0.2 ±0.5 LSB3 T Total Unadjusted 12-bit single-ended mode Error 10-bit single-ended mode 32x Hardware Averaging (AVGE = %1 AVGS = 8-bit single-ended mode %11) 12-bit single-ended mode 6 Differential Non-Linearity C ADLPC=1, ADHSC=0 3 5 Unit MCF51JE256 Datasheet, Rev. 4 28 Freescale Semiconductor Preliminary Electrical Characteristics Table 16. 12-bit SAR ADC Characteristics full operating range (VREFH = VDDAD, VREFL = VSSAD) (continued) # Symbol Conditions1 Minimum Typical2 Maximum Unit C — 1.0 2.5 LSB3 T 10-bit single-ended mode — 0.5 ±1.0 3 LSB T 8-bit single-ended mode — 0.3 ±0.5 LSB3 T 12-bit single-ended mode — 0.7 2.0 LSB3 T — 0.4 ±1.0 LSB3 T — 0.2 ±0.5 3 T — 1.0 3.5 3 LSB T — 0.4 ±1.5 LSB3 T — 0.2 ±0.5 3 LSB T — — ±0.5 LSB3 D mV D Characteristic 12-bit single-ended mode 7 8 9 3 EFS 12-bit single-ended mode Full-Scale Error 10-bit single-ended mode (VADIN = VDDAD) 8-bit single-ended mode Quantization Error All modes 11 EIL Input Leakage Error (IIn = leakage current (refer to DC Characteristics) All modes 12 m Temp Sensor Slope 13 2 EZS Zero-Scale Error 10-bit single-ended mode (VADIN = VSSAD) 8-bit single-ended mode EQ 10 1 INL Integral Non-Linearity VTEMP25 Temp Sensor Voltage IIn * RAS LSB -40C to 25C — 1.646 — mV/xC C 25C to 125C — 1.769 — mV/xC C 25C — 701.2 — mV C All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD. Typical values assume VDDAD = 3.0V, Temp = 25C, fADCK=2.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 1 LSB = (VREFH - VREFL)/2N 3.10 MCG and External Oscillator (XOSC) Characteristics Table 17. MCG (Temperature Range = –40 to 105C Ambient) # Rating 1 Internal reference startup time Average internal reference 2 frequency factory trimmed at VDD=3.0V and temp=25C Symbol Min Typical Max Unit C tirefst — 55 100 s D — 31.25 — kHz C 31.25 — 39.0625 KHz C 16 — 20 MHz C 32 — 40 MHz C 40 — 60 MHz C — 0.1 0.2 %fdco C — 0.2 0.4 %fdco C fint_ft user trimmed Low range (DRS=00) 3 DCO output frequency range trimmed Resolution of trimmed DCO output 4 frequency at fixed voltage and temperature Mid range (DRS=01) fdco_t High range1 (DRS=10) with FTRIM without FTRIM fdco_res_t MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 29 Preliminary Electrical Characteristics Table 17. MCG (Temperature Range = –40 to 105C Ambient) (continued) # Rating Total deviation of trimmed DCO 5 output frequency over voltage and temperature 6 7 Acquisition time Symbol over fixed voltage and temp range of 0 - 70 C Max Unit C — 1.0 2 %fdco P — 0.5 1 %fdco C fdco_t FLL2 tfll_acquire — — 1 ms C PLL3 tpll_acquire — — 1 ms D CJitter — 0.02 0.2 %fdco C fvco 7.0 — 55.0 MHz D fpll_ref 1.0 — 2.0 MHz D Long term Jitter of DCO output clock (averaged over 2mS interval) 4 9 PLL reference frequency range Jitter of PLL output clock measured Long term over 625 ns 11 Lock frequency tolerance Typical over voltage and temperature 8 VCO operating frequency 10 Min fpll_jitter_625 ns 4 — 0.566 — %fpll D 2.98 % D Entry5 Dlock 1.49 — Exit6 Dunl 4.47 — 5.97 % D s D D FLL tfll_lock — — tfll_acquire+ 1075(1/fint_t) PLL tpll_lock — — tpll_acquire+ 1075(1/fpll_ref) s 13 Loss of external clock minimum frequency - RANGE = 0 floc_low (3/5) x fint_t — — kHz 14 Loss of external clock minimum frequency - RANGE = 1 floc_high (16/5) x fint_t — — kHz 12 Lock time 1 2 3 4 5 6 D D This should not exceed the maximum CPU frequency of 50.33 MHz. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bit is changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval. Below Dlock minimum, the MCG is guaranteed to enter lock. Above Dlock maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock. Below Dunl minimum, the MCG will not exit lock if already in lock. Above Dunl maximum, the MCG is guaranteed to exit lock. MCF51JE256 Datasheet, Rev. 4 30 Freescale Semiconductor Preliminary Electrical Characteristics Table 18. XOSC (Temperature Range = –40 to 105C Ambient) # 1 2 Symbol Minimum Typical1 Maximum Unit Characteristic Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) • Low range (RANGE = 0) flo 32 — 38.4 kHz • High range (RANGE = 1), • FEE or FBE mode 2 fhi-fll 1 — 5 MHz • High range (RANGE = 1), • PEE or PBE mode 3 fhi-pll 1 — 16 MHz • High range (RANGE = 1), • High gain (HGO = 1), • FBELP mode fhi-hgo 1 — 16 MHz • High range (RANGE = 1), • Low power (HGO = 0), • FBELP mode fhi-lp 1 — 8 MHz C1 C2 Load capacitors Feedback resistor Low range (32 kHz to 38.4 kHz) RF See Note 4 — 10 — 3 M High range (1 MHz to 16 MHz) Series resistor — Low range — — 1 — — 0 — — 100 — — 0 — — 0 0 4 MHz — 0 10 1 MHz — 0 20 — 200 — — 400 — — 5 — — 15 — Low Gain (HGO = 0) 4 High Gain (HGO = 1) RS • Low Gain (HGO = 0) k • High Gain (HGO = 1) 5 Series resistor — High range 8 MHz RS Low range, low gain (RANGE=0,HGO=0) 6 Crystal start-up time 5, 6 Low range, high gain (RANGE=0,HGO=1) t CSTL ms High range, low gain (RANGE=1,HGO=0) High range, high gain (RANGE=1, HGO=1) 1 k tCSTH Data in Typical column was characterized at 3.0 V, 25C or is typical recommended value. When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz. When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz. See crystal or resonator manufacturer’s recommendation. This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. 2 3 4 5 6 o MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 31 Preliminary Electrical Characteristics 3.11 Mini-FlexBus Timing Specifications A multi-function external bus interface called Mini-FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 25.1666 MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices, a simple chip-select based interface can be used. All processor bus timings are synchronous; that is, input setup/hold and output delay are given in respect to the rising edge of a reference clock, MB_CLK. The MB_CLK frequency is half the internal system bus frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Mini-FlexBus output clock (MB_CLK). All other timing relationships can be derived from these values. Table 19. Mini-FlexBus AC Timing Specifications # 1 2 Characteristic Symbol Min Max Unit C — — 25.1666 MHz — 1 Frequency of Operation 2 Clock Period MB1 39.73 — ns D 3 Output Valid1 MB2 — 20 ns T 4 Output Hold1 MB3 1.0 — ns D 5 Input Setup2 MB4 22 — ns T 6 Input Hold2 MB5 10 — ns D Specification is valid for all MB_A[19:0], MB_D[7:0], MB_CS[1:0], MB_OE, MB_R/W, and MB_ALE. Specification is valid for all MB_D[7:0]. MCF51JE256 Datasheet, Rev. 4 32 Freescale Semiconductor Preliminary Electrical Characteristics Figure 9. Mini-FlexBus Read Timing Figure 10. Mini-FlexBus Write Timing MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 33 Preliminary Electrical Characteristics 3.12 AC Characteristics This section describes ac timing characteristics for each peripheral system. 3.12.1 Control Timing Table 20. Control Timing # 1 Minimum Typica l1 Maximum Unit C VDD 1.8 V fBus dc — 10 MHz D VDD > 2.1 V fBus dc — 20 MHz D VDD > 2.4 V fBus dc — 25.165 MHz D tLPO 700 1000 1300 s P textrst 100 — — ns D trstdrv 66 x tcyc — — ns D latch setup time tMSSU 500 — — ns D latch hold time tMSH 100 — — ns D Bus frequency (tcyc = 1/fBus) 2 Internal low-power oscillator period 3 External reset pulse width2 4 Reset low drive 5 Symbol Parameter Active background debug mode (tcyc = 1/fSelf_reset) 6 Active background debug mode 7 IRQ pulse width • Asynchronous path2 • Synchronous path3 tILIH, tIHIL 100 1.5 x tcyc — — ns 8 KBIPx pulse width • Asynchronous path2 • Synchronous path3 tILIH, tIHIL 100 1.5 x tcyc — — ns 9 Port rise and fall time (load = 50 pF)4, Low Drive tRise, tFall — 11 — ns D tRise, tFall — 35 — ns D tRise, tFall — 40 — ns D tRise, tFall — 75 — ns D Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1) 1 2 3 4 D D Typical values are based on characterization data at VDD = 5.0 V, 25 C unless otherwise stated. This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case. Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40 C to 105 C. MCF51JE256 Datasheet, Rev. 4 34 Freescale Semiconductor Preliminary Electrical Characteristics textrst RESET PIN Figure 11. Reset Timing tIHIL IRQ/KBIPx IRQ/KBIPx tILIH Figure 12. IRQ/KBIPx Timing MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 35 Preliminary Electrical Characteristics 3.12.2 TPM Timing Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock. Table 21. TPM Input Timing # C Function Symbol Minimum Maximum Unit 1 — External clock frequency fTPMext dc fBus/4 MHz 2 — External clock period tTPMext 4 — tcyc 3 D External clock high time tclkh 1.5 — tcyc 4 D External clock low time tclkl 1.5 — tcyc 5 D Input capture pulse width tICPW 1.5 — tcyc tTPMext tclkh TPMxCLK tclkl Figure 13. Timer External Clock tICPW TPMxCHn TPMxCHn tICPW Figure 14. Timer Input Capture Pulse MCF51JE256 Datasheet, Rev. 4 36 Freescale Semiconductor Preliminary Electrical Characteristics 3.13 SPI Characteristics The following table and Figure 15 through Figure 18 describe the timing requirements for the SPI system. Table 22. SPI Timing No.1 Characteristic2 Symbol Minimum Maximum Unit C Master Slave fop fop fBus/2048 0 fBus/2 fBus/4 Hz Hz D Master Slave tSPSCK tSPSCK 2 4 2048 — tcyc tcyc D Master Slave tLead tLead 12 1 — — tSPSCK tcyc D Master Slave tLag tLag 12 1 — — tSPSCK tcyc D Master Slave tWSPSCK tWSPSCK tcyc –30 tcyc – 30 1024 tcyc — ns ns D Master Slave tSU tSU 15 15 — — ns ns D Master Slave tHI tHI 0 25 — — ns ns D ta — 1 tcyc D tdis — 1 tcyc D Master Slave tv tv — — 25 25 ns ns D Master Slave tHO tHO 0 0 — — ns ns D Input Output tRI tRO — — tcyc – 25 25 ns ns D Input Output tFI tFO — — tcyc – 25 25 ns ns D Operating frequency 1 SPSCK period 2 Enable lead time 3 Enable lag time 4 Clock (SPSCK) high or low time 5 Data setup time (inputs) 6 Data hold time (inputs) 7 8 9 Slave access time3 Slave MISO disable time4 Data valid (after SPSCK edge) 10 Data hold time (outputs) 11 Rise time 12 Fall time 13 1 2 3 4 Numbers in this column identify elements in Figure 15 through Figure 18. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins. Time to data active from high-impedance state. Hold time to high-impedance state. MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 37 Preliminary Electrical Characteristics SS1 (OUTPUT) 2 2 SCK (CPOL = 0) (OUTPUT) 3 5 4 SCK (CPOL = 1) (OUTPUT) 5 4 6 MISO (INPUT) 7 MSB IN2 BIT 6 . . . 1 11 MOSI (OUTPUT) LSB IN 11 MSB OUT2 12 BIT 6 . . . 1 LSB OUT NOTES: 1. SS output mode (MODFEN = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 15. SPI Master Timing (CPHA = 0) SS(1) (OUTPUT) 2 2 SCK (CPOL = 0) (OUTPUT) 3 5 4 SCK (CPOL = 1) (OUTPUT) 5 4 6 MISO (INPUT) 7 MSB IN(2) 11 MOSI (OUTPUT) BIT 6 . . . 1 LSB IN 12 MSB OUT(2) BIT 6 . . . 1 LSB OUT NOTES: 1. SS output mode (MODFEN = 1, SSOE = 1). 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 16. SPI Master Timing (CPHA = 1) MCF51JE256 Datasheet, Rev. 4 38 Freescale Semiconductor Preliminary Electrical Characteristics SS (INPUT) 3 2 SCK (CPOL = 0) (INPUT) 5 4 2 SCK (CPOL = 1) (INPUT) 5 4 8 MISO (OUTPUT) 12 11 BIT 6 . . . 1 MSB OUT SLAVE SLAVE LSB OUT SEE NOTE 7 6 MOSI (INPUT) 9 BIT 6 . . . 1 MSB IN LSB IN NOTE: 1. Not defined, but normally MSB of character just received Figure 17. SPI Slave Timing (CPHA = 0) SS (INPUT) 2 3 2 SCK (CPOL = 0) (INPUT) 5 4 SCK (CPOL = 1) (INPUT) 5 4 11 MISO (OUTPUT) SEE NOTE 8 MOSI (INPUT) SLAVE 12 MSB OUT 6 BIT 6 . . . 1 9 SLAVE LSB OUT 7 MSB IN BIT 6 . . . 1 LSB IN NOTE: 1. Not defined, but normally LSB of character just received Figure 18. SPI Slave Timing (CPHA = 1) MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 39 Preliminary Electrical Characteristics 3.14 Flash Specifications This section provides details about program/erase times and program-erase endurance for the Flash memory. Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed information about program/erase operations, see the Memory chapter in the Reference Manual for this device (MCF51JE256RM). Table 23. Flash Characteristics # 3 4 Minimum Typical Maximum Unit 3.6 V C Supply voltage for program/erase -40C to 105C Vprog/erase 1.8 2 Supply voltage for read operation VRead 1.8 — 3.6 V D fFCLK 150 — 200 kHz D 5 — 6.67 s D frequency1 — D 3 Internal FCLK 4 Internal FCLK period (1/FCLK) tFcyc 5 Byte program time (random location)2 tprog 9 tFcyc P 7 2 Symbol 1 6 1 Characteristic Byte program time (burst Page erase time mode)2 tBurst 4 tFcyc P 2 tPage 4000 tFcyc P 2 tMass 20,000 tFcyc P 8 Mass erase time 9 Program/erase endurance3 TL to TH = –40C to + 105C T = 25C 10 Data retention4 tD_ret 10,000 — — 100,000 — — cycles 15 100 — years C C The frequency of this clock is controlled by a software setting. These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase. Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory. 3.15 USB Electricals The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org. If the Freescale USB On-the-Go implementation has electrical characteristics that deviate from the standard or require additional information, this space would be used to communicate that information. Table 24. Internal USB 3.3 V Voltage Regulator Characteristics # Characteristic Symbol Minimum Typical Maximu m Unit C 1 Regulator operating voltage Vregin 3.9 — 5.5 V C 2 VREG output Vregout 3 3.3 3.75 V P MCF51JE256 Datasheet, Rev. 4 40 Freescale Semiconductor Preliminary Electrical Characteristics Table 24. Internal USB 3.3 V Voltage Regulator Characteristics (continued) # Characteristic 3 VUSB33 input with internal VREG disabled 4 VREG Quiescent Current 3.16 Symbol Minimum Typical Maximu m Unit C Vusb33in 3 3.3 3.6 V C IVRQ — 0.5 — mA C VREF Electrical Specifications Table 25. VREF Electrical Specifications # Characteristic Symbol Minimum Maximum Unit C VDDA 1.80 3.6 V C 1 Supply voltage 2 Temperature TA –40 105 C C 3 Output Load Capacitance CL — 100 nf D 4 Maximum Load — — 10 mA — 5 Voltage Reference Output with Factory Trim. VDD = 3 V. Vout 1.148 1.152 V P 6 Temperature Drift (Vmin - Vmax across the full temperature range) Tdrift — 25 mV1 T 7 Aging Coefficient2 Ac — 60 V/year C 8 Powered down Current (Off Mode, VREFEN = 0, VRSTEN = 0) I — 0.10 A C 9 Bandgap only (MODE_LV[1:0] = 00) I — 75 A T 10 Low-Power buffer (MODE_LV[1:0] = 01) I — 125 A T 11 Tight-Regulation buffer (MODE_LV[1:0] = 10) I — 1.1 mA T 12 Load Regulation (MODE_LV = 10) — — 100 V/mA C 13 Line Regulation MODE = 1:0, Tight Regulation VDD < 2.3 V, Delta VDDA = 100 mV, VREFH = 1.2 V driven externally with VREFO disabled. (Power Supply Rejection DC 70 dB C — 1 See typical chart below. Linear reliability model (1008 hours stress at 125oC = 10 years operating life) used to calculate Aging V/year. Vrefo data recorded per month. 2 MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 41 Preliminary Electrical Characteristics Table 26. VREF Limited Range Operating Behaviors # 1 Characteristic Symbol 1 Voltage Reference Output with Factory Trim Vout 2 Temperature Drift (Vmin – Vmax Temperature range from 0° C to 50° C Tdrift Minimum 1.149 — Maximum Unit C 1.152 mV T 3 mV1 T See typical chart that follows (Figure 19). Figure 19. Typical VREF Output vs Temperature MCF51JE256 Datasheet, Rev. 4 42 Freescale Semiconductor Preliminary Electrical Characteristics Figure 20. Typical VREF Output vs VDD MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 43 Ordering Information 4 Ordering Information This section contains ordering information for the device numbering system. See Table 1 for feature summary by package information. 4.1 Part Numbers Table 27. Orderable Part Number Summary Freescale Part Number Description Flash / SRAM (Kbytes) Package Temperature MCF51JE256VML MCF51JE256 ColdFire Microcontroller 256K/32K 104 MAPBGA –40 to 105 °C MCF51JE256VLL MCF51JE256 ColdFire Microcontroller 256K/32K 100 LQFP –40 to 105 °C MCF51JE256VMB MCF51JE256 ColdFire Microcontroller 256K/32K 81 MAPBGA –40 to 105 °C MCF51JE256VLK MCF51JE256 ColdFire Microcontroller 256K/32K 80 LQFP –40 to 105 °C MCF51JE128VMB MCF51JE128 ColdFire Microcontroller 128K/32K 81 MAPBGA –40 to 105 °C MCF51JE256CML MCF51JE256 ColdFire Microcontroller 256K/32K 104 MAPBGA –40 to 85 °C MCF51JE256CLL MCF51JE256 ColdFire Microcontroller 256K/32K 10O LQFP –40 to 85 °C MCF51JE256CMB MCF51JE256 ColdFire Microcontroller 256K/32K 81 MAPBGA –40 to 85 °C MCF51JE256CLK MCF51JE256 ColdFire Microcontroller 256K/32K 80 LQFP –40 to 85 °C MCF51JE128CMB MCF51JE128 ColdFire Microcontroller 128K/32K 81 MAPBGA –40 to 85 °C MCF51JE128CLK MCF51JE128 ColdFire Microcontroller 128K/32K 80 LQFP –40 to 85 °C 4.2 Package Information Table 28. Package Descriptions Pin Count 100 4.3 Package Type Low Quad Flat Package Abbreviation Designator Case No. Document No. LQFP LL 983-03 98ASS23308W 80 Low Quad Flat Package LQFP LK 1418 98ASS23174W 104 MAP BGA Package MAPBGA ML 1285-02 98ARH98267A 81 MAP BGA Package MAPBGA MB 1662-01 98ASA10670D Mechanical Drawings Table 28 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MCF51JE256/128 Product Summary pages at http://www.freescale.com. To view the latest drawing, either: • Click on the appropriate link in Table 28, or MCF51JE256 Datasheet, Rev. 4 44 Freescale Semiconductor Revision History • Open a browser to the Freescale® website (http://www.freescale.com), and enter the appropriate document number (from Table 28) in the “Enter Keyword” search box at the top of the page. 5 Revision History This section lists major changes between versions of the MCF51JE256 Data Sheet. Table 29. Revision History Revision Date 0 March/April 09 Description Initial Draft 1 July 2009 • • • • 2 July 2009 • Changed MCG (XOSC) Electricals Table - Row 2, Average Internal Reference Frequency typical value from 32.768 to 31.25 April 2010 • Updated Thermal Characteristics table. Reinserted the 81 and 104 MapBGA devices. • Revised the ESD and Latch-Up Protection Characeristic description to read: Latch-up Current at TA = 125°C. • Changed Table 9. DC Characteristics rows 2 and 4, to 1.8 V, ILoad = -600 mA conditions to 1.8 V, ILoad = 600A respectively. • Corrected the 16-bit SAR ADC Operating Condition table Ref Voltage High Min value to be 1.13 instead of 1.15. • Updated the ADC electricals. • Inserted the Mini-FlexBus Timing Specifications. • Added a Temp Drift parameter to the VREF Electrical Specifications. • Removed the S08 Naming Convention diagram. • Updated the Orderable Part Number Summary to include the Freescale Part Number suffixes. • Completed the Package Description table values. • Changed the 80LQFP package drawing from 98ARL10530D to 98ASS23174W. • Updated electrical characteristic data. 3 Revised to follow standard template. Removed extraneous headings from the TOC. Corrected units for Monotoncity to be blank in for the DAC specification. Updated ADC characteristic tables to include 16-Bit SAR in headings. MCF51JE256 Datasheet, Rev. 4 Freescale Semiconductor 45 Revision History Table 29. Revision History Revision 4 Date Description August 2012 • In Table 1.”MCF51JE256/128 Features by MCU and Package, removed the row of “12-bit SAR ADCDifferential Channels”. • In Table 3, “Package Pin Assignments”, changed from: ‘A1’ — PTG1 USB_ SESSEND to:’B3’ — PTG1 USB_ SESSEND. • In Table 10,”Supply Current Characteristics”, for S3IDD changed the max value from ‘1.2’ to ‘1.3’ and typical value from ‘0.650’ to ‘0.750’ for the first row. • In Table 10,”Supply Current Characteristics”: — For parameter 3 and parameter 4 changed LPS to LPR. — For parameter 3,changed “FBILP” to “FBI”. — For parameter 4, changed “FBELP” to “BLPE”. • Fixed the TBD parameters and added figure"Typical Output vs VDD", following the same setup of MM256DS — Added Figure 7,”Offset at Half Scale vs Temperature”. — Updated Table 9,”DC Characteristics”. — Updated Table 10,”Supply Current Characteristics”. — Updated Table 11,”Stop Mode Adders”. — Added Figure 20,”Typical Output vs. VDD. — Updated Table 14,”DAC 12-Bit Operating Behaviors”. — Updated Table 20,”Control Timing”. — Removed “SPI Electrical Characteristics” table. — Updated Table 25”VREF Electrical Specifications”. — Updated Table 26,”VREF Limited Range Operating Behaviors“. • Updated Figure 3, Figure 4, and Figure 5. MCF51JE256 Datasheet, Rev. 4 46 Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Document Number: MCF51JE256 Rev. 4 08/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009-2012. All rights reserved.