MIC922 Micrel MIC922 230MHz Low-Power SC-70 Op Amp Final Information General Description Features The MIC922 is a high-speed operational amplifier with a gainbandwidth product of 230MHz. The part is unity gain stable. It has a very low 2.5mA supply current, and features the Teeny™ SC-70 package. Supply voltage range is from ±2.5V to ±9V, allowing the MIC922 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC922 is stable driving any capacitative load and achieves excellent PSRR and CMRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC922 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables. • • • • • • • 230MHz gain bandwidth product 400MHz –3dB bandwidth 2.5mA supply current SC-70 package 1500V/µs slew rate Drives any capacitive load Unity gain stable Applications • • • • • Video Imaging Ultrasound Portable equipment Line drivers Ordering Information Pin Configuration Part Number Junction Temp. Range Package MIC922BC5 –40°C to +85°C SC-70 Functional Pinout IN– V– IN+ 3 2 1 Part Identification IN– V– IN+ 3 2 1 A39 4 5 4 5 OUT V+ OUT V+ SC-70 SC-70 Pin Description Pin Number Pin Name Pin Function 1 IN+ Noninverting Input 2 V– Negative Supply (Input) 3 IN– Inverting Input 4 OUT Output: Amplifier Output 5 V+ Positive Supply (Input) Teeny is a trademark of Micrel, Inc. Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com March 2002 1 MIC922 MIC922 Micrel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Voltage (VV+ – VV–) ........................................... 20V Differential Input Voltage (VIN+ – VIN–) .......... 4V, Note 3 Input Common-Mode Range (VIN+, VIN–) .......... VV+ to VV– Lead Temperature (soldering, 5 sec.) ....................... 260°C Storage Temperature (TS) ........................................ 150°C ESD Rating, Note 4 ................................................... 1.5kV Supply Voltage (VS) ....................................... ±2.5V to ±9V Junction Temperature (TJ) ......................... –40°C to +85°C Package Thermal Resistance SC-70-5 (θJA) .................................................... 450°C/W Electrical Characteristics (±5V) V+ = +5V, V– = –5V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted. Symbol Parameter Condition Min Typ Max Units VOS Input Offset Voltage -5 0.8 5 mV VOS VOS Temperature Coefficient 15 IB Input Bias Current 1.7 4.5 µA IOS Input Offset Current 0.3 2 µA VCM Input Common-Mode Range +3.25 V CMRR Common-Mode Rejection Ratio –2.5V < VCM < +2.5V 75 80 dB PSRR Power Supply Rejection Ratio ±3.5V < VS < ±9V 68 87 dB AVOL Large-Signal Voltage Gain RL = 2kΩ, VOUT = ±2V 65 74 dB 77 dB 3.6 V -2 –3.25 RL = 100Ω, VOUT = ±1V VOUT Maximum Output Voltage Swing positive, RL = 2kΩ +3 negative, RL = 2kΩ positive, RL = 100Ω –3.6 +2.7 µV/°C –3 3.0 negative, RL = 100Ω, Note 5 –2.6 V V –2.3 V GBW Unity Gain-Bandwidth Product CL = 1.7pF 200 MHz PM Phase Margin CL = 1.7pF 49 ° BW –3dB Bandwidth Av = 1, CL = 1.7pF 320 MHz SR Slew Rate C=1.7pF, Gain=1, VOUT=4VPP negative SR = 360V/µs 420 V/µs ISC Short-Circuit Output Current source 65 78 mA sink 40 47 mA IS Supply Current No Load 2.5 3 mA Input Voltage Noise f = 10kHz 9 nV/√Hz Input Current Noise f = 10kHz 1.1 pA/√Hz Electrical Characteristics V+ = +9V, V– = –9V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted Symbol Parameter VOS Input Offset Voltage VOS Input Offset Voltage Temperature Coefficient 15 IB Input Bias Current 1.7 4.5 µA IOS Input Offset Current 0.3 2 µA VCM Input Common-Mode Range +7.25 V CMRR Common-Mode Rejection Ratio –6.5V < VCM < +6.5V 58 83 dB PSRR Power Supply Rejection Ratio ±3.5V < VS < ±9V 68 87 dB MIC922 Condition Min Typ Max Units -5 0.4 5 mV –7.25 2 µV/°C March 2002 MIC922 Micrel Symbol Parameter Condition AVOL Large-Signal Voltage Gain RL = 2kΩ, VOUT = ±3V Min Typ 65 76 dB 86 dB 7.5 V RL = 100Ω, VOUT = ±1V VOUT Maximum Output Voltage Swing positive, RL = 2kΩ 7 negative, RL = 2kΩ –7.5 Max –7 Units V GBW Unity Gain-Bandwidth Product CL = 1.7pF 230 MHz PM Phase Margin CL = 1.7pF 44 ° BW –3dB Bandwidth AV = 1, CL = 1.7pF 400 MHz SR Slew Rate C=1.7pF, Av =1, VOUT=8VPP, positive SR = 750V/µs 1500 V/µs ISC Short-Circuit Output Current source 70 84 mA sink 40 50 mA IS Supply Current No Load 2.5 3 mA Input Voltage Noise f = 10kHz 9 nV/√Hz Input Current Noise f = 10kHz 1.1 pA/√Hz Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to change). Note 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Note 5. Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in “Typical Characteristics.” March 2002 3 MIC922 MIC922 Micrel Test Circuits V+ 10µF V+ 0.1µF 50Ω R2 BNC 5k Input 10µF 0.1µF 10k 10k 10k 2k 3 BNC MIC922 BNC 4 R1 5k Input 5 3 1 2 2 5k R3 200k Input 50Ω All resistors: 1% metal film Output 0.1µF R5 5k 10µF V– All resistors 1% 0.1µF R4 250Ω R2 R2 + R 5 + R4 VOUT = VERROR 1 + + R1 R7 10µF V– PSRR vs. Frequency 100pF BNC R6 0.1µF BNC 4 1 R7a 100Ω 50Ω 0.1µF MIC922 R7c 2k R7b 200Ω Output 5 CMRR vs. Frequency V+ V+ 10µF 10pF R1 20Ω 10µF 3 R3 27k S1 S2 R5 20Ω R2 4k 3 5 0.1µF MIC922 4 1 2 R4 27k 0.1µF 10pF 10µF BNC MIC922 To Dynamic Analyzer VIN 4 300Ω 1 2 0.1µF 50Ω VOUT FET Probe CL 10µF V– V– Noise Measurement MIC922 0.1µF 5 Closed Loop Frequency Response Measurement 4 March 2002 MIC922 Micrel Typical Characteristics Supply Current vs. Supply Voltage Supply Current vs. Temperature 2.60 2.25 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 2.30 OFFSET VOLTAGE (mV) –40°C 8 7 6 5 4 3 2 1 0 -1 -2 -3 -5 -4 -3 -2 -1 0 1 2 3 4 5 25°C –40°C 85°C COMMON-MODE VOLTAGE (V) COMMON-MODE VOLTAGE (V) Output Voltage vs. Output Current Output Voltage vs. Output Current 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Output Voltage vs. Output Current 5.5 5.0 Sourcing V± = ±5V 4.5 4.0 3.5 3.0 2.5 –40°C 2.0 1.5 85°C 1.0 0.5 25°C 0 0 10 20 30 40 50 60 70 80 OUTPUT CURRENT (mA) 0.9 Sinking 0.0 V± = ±9V -0.9 -1.8 25°C -2.7 -3.6 -4.5 -5.4 –40°C -6.3 -7.2 -8.1 85°C -9.0 -60-54-48-42-36-30-24-18-12 -6 0 OUTPUT CURRENT (mA) Bias Current vs. Temperature 3 INPUT BIAS CURRENT (µA) Sinking 25°C 85°C 8.3 9.0 6.9 7.6 5.5 6.2 –40°C 3.4 4.1 4.8 9.0 25°C 6 0 -6 -12 -18 -24 -30 -36 -42 -48 -54 -60 2.0 2.7 NOISE VOLTAGE (nV/HZ) 85°C 7.6 8.3 V± = ±9V 0.2 Short Circuit Current vs. Supply Voltage –40°C 5.5 6.2 6.9 4.1 4.8 2.7 3.4 2.0 March 2002 V± = ±5V 0.4 Output Votage vs. Output Current 0.5 Sinking 0 V± = ±5V -0.5 -1.0 -1.5 -2.0 –40°C -2.5 25°C -3.0 -3.5 -4.0 85°C -4.5 -5.0 -50-45-40-35-30-25-20-15-10 -5 0 OUTPUT CURRENT (mA) Short-Circuit Current vs. Supply Voltage SUPPLY VOLTAGE (±V) 0.6 V± = ±9V -9.0 85°C OUTPUT VOLTAGE (V) OFFSET VOLTAGE (mV) OUTPUT VOLTAGE (V) 25°C 99 90 Sourcing 81 72 63 54 45 36 27 18 9 0 0.8 Offset Voltage vs. Common-Mode Voltage V± = ±5V 9.9 9.0 Sourcing V± = ±9V 8.1 7.2 6.3 –40°C 5.4 4.5 3.6 2.7 +25°C 1.8 +85°C 0.9 0 0 10 20 30 40 50 60 70 80 90 OUTPUT CURRENT (mA) 1 2.25 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 SUPPLY VOLTAGE (V) Offset Voltage vs. Common-Mode Voltage SHORT-CIRCUIT CURRENT (mA) OFFSET VOLTAGE (mV) V± = ±2.5V 2.30 85°C 2.35 V± = ±2.5V 1.2 OUTPTU VOLTAGE (V) 2.35 OUTPUT VOLTAGE (V) 2.40 2.40 9.0 V± = ±5V 2.45 25°C 2.45 5.4 7.2 2.50 2.50 0 1.8 3.6 2.55 2.55 -3.6 -1.8 V± = ±9V 2.60 1.4 –40°C -7.2 -5.4 2.65 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 2.70 8 7 6 5 4 3 2 1 0 -1 -2 -3 Offset Voltage vs. Temperature SUPPLY VOLTAGE (±V) 5 2.5 V± = ±2.5V 2 1.5 V± = ±5V 1 V± = ±9V 0.5 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) MIC922 MIC922 Micrel Open-Loop Frequency Response Open-Loop Frequency Response 85°C 30 20 180 60 RL = 100Ω 135 90 50 40 No Load 45 0 10 Gain Bandwidth 0 RL = 100Ω -45 -90 -10 -20 -135 -180 -30 V± = ±9V -40 100M 10M 1M CAPACITIVE LOAD (pF) -225 -270 30 20 180 Phase RL = 100Ω 135 90 No Load 45 0 Gain 10 0 -45 -90 RL = 100Ω -10 -20 -135 -180 -30 V± = ±5V -40 100M 10M 1M CAPACITIVE LOAD (pF) -225 -270 PHASE MARGIN (°) 25°C Phase Margin GAIN BANDWIDTH (MHz) –40°C 50 40 PHASE MARGIN (°) 60 GAIN BANDWIDTH (MHz) 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 BIAS CURRENT (±V) Bias Current vs. Supply Voltage SUPPLY VOLTAGE (±V) 35 200 400 600 800 1000 LOAD CAPACITANCE (pF) 0 0 Positive Slew Rate 700 30 200 400 600 800 1000 LOAD CAPACITANCE (pF) 180 500 400 300 200 160 41 150 40 0 1 2 3 4 5 6 7 8 9 10 SUPPLY VOLTAGE (±V) V± = ±9V 1000 800 600 400 350 300 250 200 150 100 200 150 100 50 MIC922 200 400 600 800 1000 LOAD CAPACITANCE (pF) 900 1000 700 800 V± = ±5V 90 80 70 60 50 40 Closed-Loop Gain vs. Frequency 1.7pF 220pF 100pF 1000pF 800pF 600pF 30 20 10 0 1x10 1M6 10x10 10M 6 100x10 100M6 FREQUENCY (Hz) 6 500x106 30 CLOSED-LOOP GAIN (dB) 250 LOAD CAPACITANCE (pF) Closed Loop Gain vs. Frequency 100 CLOSED-LOOP GAIN (dB) SLEW RATE (V/µs) 300 500 600 LOAD CAPACITANCE (pF) Negative Slew Rate V± = ±5V 200 300 400 0 100 900 1000 700 800 0 500 600 0 400 50 0 200 300 200 LOAD CAPACITANCE (pF) V± = ±5V 400 100 0 0 43 42 170 Positive Slew Rate SLEW RATE (V/µs) SLEW RATE (V/µs) 600 350 45 44 190 450 1200 400 47 46 Negative Slew Rate 1400 V± = ±9V 0 100 POSITIVE SLEW RATE (V/µs) 800 35 Gain Bandwidth Gain Bandwidth 200 0 100 0 0 Gain Bandwidth 50 210 900 1000 40 40 49 48 700 800 50 100 Phase Margin 220 500 600 45 45 50 400 100 150 230 200 300 50 50 Phase Margin GAIN BANDWIDTH (MHz) 150 200 V± = ±5V 240 55 PHASE MARGIN (°) 55 GAIN BANDWIDTH (MHz) Phase Margin 200 250 PHASE MARGIN (°) GAIN BANDWIDTH (MHz) V± = ±9V Gain Bandwidth and Phase Margin vs. Supply Voltage Gain Bandwidth and Phase Margin vs. Load 60 PHASE MARGIN (°) Gain Bandwidth and Phase Margin vs. Load 250 V± = ±9V 20 10 1.7pF 0 -10 -20 -30 100pF 1000pF -40 -50 -60 -70 6 1x10 1M 220pF 400pF 800pF 600pF 6 6 10x10 100x10 100M 10M FREQUENCY (Hz) 500x106 March 2002 MIC922 Micrel Open-Loop Gain vs. Frequency 30 20 10 0 -10 -20 -30 -40 1M March 2002 60 V± = ±5V 50 40 1.7pF 50pF 100pF 225pF 1000pF 675pF 450pF 10M 100M FREQUENCY (Hz) OPEN-LOOP GAIN (dB) OPEN-LOOP GAIN (dB) 60 Open-Loop Gain vs. Frequency V± = ±9V 50 40 30 20 10 0 -10 -20 -30 -40 1M 1.7pF 50pF 100pF 225pF 450pF 675pF 1000pF 100M 10M FREQUENCY (Hz) 7 MIC922 MIC922 Micrel Functional Characteristics INPUT (50mV/div) Small Signal Response V± = ±5.0V Av = 1 CL = 1.7µF RL = 1MΩ OUTPUT (50mV/div) Small Signal Response Small Signal Response INPUT (50mV/div) TIME (100ns/div) TIME (100ns/div) Small Signal Response Small Signal Response INPUT (50mV/div) TIME (100ns/div) V± = ±9.0V Av = 1 CL = 1000pF RL = 1MΩ OUTPUT (50mV/div) V± = ±5.0V Av = 1 CL = 1000pF RL = 1MΩ OUTPUT (50mV/div) INPUT (50mV/div) V± = ±9.0V Av = 1 CL = 100pF RL = 1MΩ OUTPUT (50mV/div) V± = ±5.0V Av = 1 CL = 100pF RL = 1MΩ TIME (100ns/div) TIME (100ns/div) MIC922 V± = ±9.0V Av = 1 CL = 1.7µF RL = 1MΩ TIME (100ns/div) OUTPUT (50mV/div) INPUT (50mV/div) OUTPUT (50mV/div) INPUT (50mV/div) Small Signal Response 8 March 2002 MIC922 Micrel Large Signal Response OUTPUT (1V/div) OUTPUT (2V/div) Large Signal Response V± = ±5.0V Av = 1 CL = 1.7µF RL = 1MΩ Positive Slew Rate = 418V/µs Negative Slew Rate = 356V/µs V± = ±9.0V Av = 1 CL = 1.7µF RL = 1MΩ Positive Slew Rate = 747V/µs Negative Slew Rate = 1320V/µs Large Signal Response Large Signal Response OUTPUT (2V/div) TIME (25ns/div) OUTPUT (1V/div) TIME (25ns/div) V± = ±5.0V Av = 1 CL = 100pF RL = 1MΩ Positive Slew Rate = 350V/µs Negative Slew Rate = 303V/µs V± = ±9.0V Av = 1 CL = 100pF RL = 1MΩ Positive Slew Rate = 274V/µs Negative Slew Rate = 274V/µs TIME (25ns/div) Large Signal Response Large Signal Response OUTPUT (1V/div) OUTPUT (2V/div) TIME (25ns/div) V± = ±9.0V Av = 1 CL = 1000pF RL = 1MΩ Positive Slew Rate = 78V/µs Negative Slew Rate = 51V/µs V± = ±5.0V Av = 1 CL = 1000pF RL = 1MΩ Positive Slew Rate = 106V/µs Negative Slew Rate = 66V/µs TIME (250ns/div) TIME (250ns/div) March 2002 9 MIC922 MIC922 Micrel It is important to ensure adequate supply bypassing capacitors are located close to the device. Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Thermal Considerations The SC70-5 package, like all small packages, has a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85°C. The part can be operated up to the absolute maximum temperature rating of 125°C, but between 85°C and 125°C performance will degrade, in par-ticular CMRR will reduce. An MIC922 with no load, dissipates power equal to the quiescent supply current × supply voltage Applications Information The MIC922 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable, capable of driving high capacitance loads. Driving High Capacitance The MIC922 is stable when driving high capacitance, making it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive limited capacitance. Note: increasing load capacitance does reduce the speed of the device. In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (<100Ω) in series with the output. Feedback Resistor/Capacitor Selection Conventional op amp gain configurations and resistor selection apply, the MIC922 is NOT a current feedback device. Also, for minimum peaking, the feedback resistor should have low parasitic capacitance. To use the part as a follower, the output should be connected to input via a short wire. At high frequency, the parasitic capacitance at the input might cause peaking in the closed-loop frequency response. A 1pF capacitor should be used across the feedback resistor to compensate for this parasitic peaking. Layout Considerations All high speed devices require careful PCB layout. The following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane. MIC922 ( ) PD(no load) = VV + − VV − IS When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current. ( ) PD(output stage) = VV + − VOUT IOUT Total Power Dissipation = PD(no load) + PD(output stage) Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The SC70-5 package has a thermal resistance of 450°C/W. Max. AllowablePowerDissipation = 10 TJ(max) − TA(max) 450°C / W March 2002 MIC922 Micrel Package Information 0.65 (0.0256) BSC 1.35 (0.053) 2.40 (0.094) 1.15 (0.045) 1.80 (0.071) 2.20 (0.087) 1.80 (0.071) DIMENSIONS: MM (INCH) 1.00 (0.039) 1.10 (0.043) 0.80 (0.032) 0.80 (0.032) 0.30 (0.012) 0.15 (0.006) 0.10 (0.004) 0.00 (0.000) 0.18 (0.007) 0.10 (0.004) 0.30 (0.012) 0.10 (0.004) SC-70 (C5) March 2002 11 MIC922 MIC922 Micrel MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB USA http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 2002 Micrel Incorporated MIC922 12 March 2002