MIC863 Micrel MIC863 Dual Ultra Low Power Op Amp in SOT23-8 Final Information General Description Features The MIC863 is a dual low power operational amplifier in SOT23-8 package. It is designed to operate in the 2V to 5V range, rail-to-rail output, with input common-mode to ground. The MIC863 provides 450kHz gain-bandwidth product while consuming only a 4.2µA supply current. With low supply voltage and SOT23-8 packaging, MIC863 provides two channels as general-purpose amplifiers for portable and battery-powered applications. Its package provides the maximum performance available while maintaining an extremely slim form factor. The minimal power consumption of this IC maximizes the battery life potential. • • • • • • • • SOT23-8 packaging 450kHz gain-bandwidth product 800kHz, –3dB bandwidth 4.2µA supply current/channel Rail-to-rail output Ground sensing at input (common mode to GND) Drives large capactive loads (0.02µF) Unity gain stable Applications • • • • • • Portable equipment Medical instrument PDAs Pagers Cordless phones Consumer electronics Ordering Information Part Number Standard Marking Pb-Free Marking Ambient Temp. Range Package A35 MIC863YM8 A35 –40°C to +85°C SOT23-8 MIC863BM8 Typical Application V+ 10µF 0.1µF 510Ω 1/ MIC863 2 VOUT 1/ MIC863 2 RF 50Ω 100pF Peak Detector Circuit for AM Radio Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com January 2005 1 MIC863 MIC863 Micrel Pin Configuration OUTA 1 8 V+ INA– 2 7 OUTB INA+ 3 6 INB– V– 4 5 INB+ SOT23-8 (M8) Pin Description Pin Number Pin Name 1 OUTA Output: Amplifier A Output 2 INA– Amplifier A Inverting (Input) 3 INA+ Amplifier A Non-Inverting (Input) 4 V– 5 INB+ Amplifier B Non-Inverting (Input) 6 INB– Amplifier B Inverting (Input) 7 OUTB Output: Amplifier B Output 8 V+ MIC863 Pin Function Negative Supply Positive Supply 2 January 2005 MIC863 Micrel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Voltage (VV+ – V–) ......................................... +6.0V Differential Input Voltage (VIN+ – VIN–), Note 4 ...... +6.0V Input Voltage (VIN+ – VIN–) .................. V+ + 0.3V, V– –0.3V Lead Temperature (soldering, 5 sec.) ....................... 260°C Output Short Circuit Current Duration .................. Indefinite Storage Temperature (TS) ........................................ 150°C ESD Rating, Note 3 Supply Voltage (V+ – V–) .......................... +2.0V to +5.25V Ambient Temperature Range ..................... –40°C to +85°C Package Thermal Resistance θJA (Using 4 layer PCB) ................................. 100°C/W θCA(Using 4 layer PCB) ................................... 70°C/W Electrical Characteristics V+ = +2V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. Symbol Parameter Condition Min Typ Max Units VOS Input Offset Voltage –6 –5 Differential Offset Voltage 0.1 6 5 mV 0.5 mV Input Offset Voltage Temp Coefficient 6 µV/°C IB Input Bias Current 10 pA IOS Input Offset Current 5 pA VCM Input Voltage Range CMRR > 50dB 0.5 1 V CMRR Common-Mode Rejection Ratio 0 < VCM < 1V 45 75 dB PSRR Power Supply Rejection Ratio Supply voltage change of 2V to 2.7V 50 85 dB AVOL Large-Signal Voltage Gain RL = 100kΩ, VOUT 1.4VPP 66 81 dB RL = 500kΩ, VOUT 1.4VPP 73 90 dB VOUT Maximum Output Voltage Swing RL = 500kΩ VOUT Minimum Output Voltage Swing RL = 500kΩ GBW Gain-Bandwidth Product RL = 200kΩ, CL = 2pF, Av = 11 320 kHz PM Phase Margin RL = 200kΩ, CL = 2pF, Av = 11 69 ° BW –3dB Bandwidth AV = 1, CL = 2pF, RL = 1MΩ 600 kHz SR Slew Rate AV = 1, CL = 2pF, RL = 1MΩ, Positive Slew Rate = 0.17V/µs 0.33 V/µs ISC Short-Circuit Output Current Source 1.8 2.6 mA Sink 1.5 2.2 mA IS Supply Current (per Op Amp) No Load Channel to Channel Crosstalk Note 5 V+–3mV V+–1.4mV V V–+0.5mV V–+ 3mV 3.5 -100 7 V µA dB V+ = +2.7V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. VOS Input Offset Voltage –6 0.1 6 mV –5 5 Differential Offset Voltage 0.5 mV Input Offset Voltage Temp Coefficient 6 µV/°C IB Input Bias Current 10 pA IOS Input Offset Current 5 pA VCM Input Voltage Range CMRR > 60dB 1 1.8 V CMRR Common-Mode Rejection Ratio 0 < VCM < 1.35V 60 83 dB PSRR Power Supply Rejection Ratio Supply voltage change from 2.7V to 3V 55 85 dB AVOL Large-Signal Voltage Gain RL = 100k, VOUT 2VPP 70 83 dB RL = 500k, VOUT 2VPP 78 91 dB January 2005 3 MIC863 MIC863 Micrel Symbol Parameter Condition GBW Gain-Bandwidth Product RL = 200kΩ, CL = 2pF, Av = 11 350 kHz PM Phase Margin RL = 200kΩ, CL = 2pF, Av = 11 65 ° BW –3dB Bandwidth AV = 1, CL = 2pF, RL = 1MΩ 600 kHz SR Slew Rate AV = 1, CL = 2pF, RL = 1MΩ Positive Slew Rate = 0.17V/µs 0.35 V/µs ISC Short-Circuit Output Current Source 4.5 6.3 mA Sink 4.5 6.2 mA IS Supply Current (per Op Amp) No Load Channel to Channel Crosstalk Note 5 Min Typ 3.6 Max 7 –120 Units µA dB V+= +5V, V–= 0V, VCM= V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. VOS Input Offset Voltage –6 –5 Differential Offset Voltage 0.1 6 5 mV 0.5 mV Input Offset Voltage Temp Coefficient 6 µV/°C IB Input Bias Current 10 pA IOS Input Offset Current 5 pA VCM Input Voltage Range (from V–) CMRR > 60dB 3.5 4.1 V CMRR Common-Mode Rejection Ratio 0 < VCM < 3.5V 60 85 dB PSRR Power Supply Rejection Ratio Supply voltage change from 3V to 5V 60 86 dB AVOL Large-Signal Voltage Gain RL = 100kΩ, VOUT 4.0VPP 73 81 dB RL = 500kΩ, VOUT 4.0VPP 78 88 dB VOUT Maximum Output Voltage Swing RL = 500kΩ VOUT Minimum Output Voltage Swing RL = 500kΩ GBW Gain-Bandwidth Product RL = 200kΩ, CL = 2pF, Av = 11 PM Phase Margin BW –3dB Bandwidth SR ISC IS V+–3mV V+–1.3mV V V–+0.7mV V–+3mV V 450 kHz 63 ° AV = 1, CL = 2pF, RL = 1MΩ 800 kHz Slew Rate AV = 1, CL = 2pF, RL = 1MΩ Positive Slew Rate = 0.2V/µs 0.35 V/µs Short-Circuit Output Current Source 17 23 mA Sink 18 27 mA Supply Current (per Op Amp) No Load Channel to Channel Crosstalk Note 5 4.2 8 –120 µA dB Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensitive Note 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to increase. Note 5. DC signal referenced to input. Refer to Typical Characteristics graphs for AC performance. MIC863 4 January 2005 MIC863 Micrel DC Performance Characteristics 4 V± = ±1.35V -1 Sinking -6 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) January 2005 OFFSET VOLTAGE (mV) 1.08 0.81 0.54 0 1.35 OUTPUT VOLTAGE (V) 2.5 2.34 2.18 2.02 1.86 1.7 1.54 1.38 1.22 0.9 85°C OUTPUT VOLTAGE (V) Output Voltage vs. Output Current 0.25 25°C 0 85°C -0.25 -0.5 -0.75 -1 –40°C -1.25 -1.5 -1.75 -2 Sinking -2.25 V± = ±2.5V -2.5 0 4 8 12 16 20 24 28 32 36 40 OUTPUT CURRENT (mA) Short Circuit Current vs. Temperature 35 Sinking 30 25 20 V± = 2.5V 15 10 V± = ±1.35V 5 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 5 Short Circuit Current vs. Temperature SHORT CIRCUIT CURRENT (mA) 9 25°C 0.135 25°C 0 Sinking V± = ±1.35V -0.135 85°C -0.270 -0.405 -0.540 –40°C -0.675 -0.810 -0.945 -1.080 -1.215 -1.350 0 1 2 3 4 5 6 7 8 9 10 OUTPTU CURRENT (mA) SHORT CIRCUIT CURRENT (mA) 14 -40°C 1.35 Sourcing V± = ±1.35V 1.215 1.08 0.945 0.81 0.675 0.54 0.405 25°C -40°C 0.27 0.135 85°C 0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 OUTPUT CURRENT (mA) Output Voltage vs. Output Current OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) SHORT-CIRCUIT CURRENT (mA) 19 Output Voltage vs. Output Current SUPPLY VOLTAGE (±V) Short Circuit Current vs. Temperature V± = ±2.5V 1.06 SHORT-CIRCUIT CURRENT (mA) SHORT-CIRCUIT CURRENT (mA) 44 40 Sinking 36 32 28 24 20 16 12 8 4 0 Output Voltage vs. Output Current 24 0.27 Short Circuit Current vs. Supply Voltage Short Circuit Current vs. Supply Voltage 29 1.2 1.0 0.8 0.6 -40°C 0.4 25°C 0.2 85°C 0 -0.2 -0.4 -0.6 -0.8 V± = ±2.5V -1.0 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 COMMON-MODE VOLTAGE (V) COMMON-MODE VOLTAGE (V) 33 30 Sourcing -40°C 27 24 21 18 25°C 15 85°C 12 9 6 3 0 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 SUPPPLY VOLTAGE (V) 2.75 2.50 Sourcing 2.25 2.00 1.75 1.50 1.25 1.00 –40°C 0.75 25°C 0.50 0.25 85°C 0 0 -3 -6 -9 -12-15-18-21-24-27-30 OUTPUT CURRENT (mA) -0.27 -1.35 SUPPLY VOLTAGE (V) Offset Voltage vs. Common-Mode Voltage V± = ±1.35V -0.54 -45°C -0.81 25°C 1.2 1.0 0.8 -40°C 0.6 0.4 25°C 0.2 85°C 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.08 85°C OFFSET VOLTAGE (mV) 5.4 5.0 4.6 4.2 3.8 3.4 3.0 2.6 2.2 1.8 1.4 1.0 Offset Voltage vs. Common-Mode Voltage 0.90 1.06 1.22 1.38 1.54 1.70 1.86 2.02 2.18 2.34 2.50 SUPPLY CURRENT (µA) Supply Current vs. Supply Voltage 30 Sourcing 25 2.5V 20 15 10 1.35V 5 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) MIC863 MIC863 Micrel Supply Current per Channel vs. Temperature Offset Voltage vs. Temperature 0.8 V± = ± 2.5V 5 4 3 V± = ± 1.35V 2 1 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) MIC863 OFFSET VOLTAGE (mV) SUPPLY CURRENT/CH (µA) 6 0.7 0.6 0.5 0.4 V± = ± 1.35V 0.3 0.2 V± = ± 2.5V 0.1 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 6 January 2005 MIC863 Micrel AC Perfomance Characteristics 20 225 180 15 180 10 135 10 135 5 90 5 90 0 45 0 45 -5 0 -5 0 -45 -90 GAIN (dB) 225 15 -135 -180 1M -225 -10 -15 Av = 1 V± = ±2.5V -20 C = 2pF L -25 R = 1MΩ L -30 100k 1k 10k FREQUENCY (Hz) Close Loop Unity Gain Frequency Response 1000pF 12 1µF 100pF 6 3 0 -3 2pF -6 -9 Av = 1 V± = ±1.35V -12 100k 10k 1k 100 FREQUENCY (Hz) January 2005 -45 -90 CL -135 V— -180 1M 9 0.01µF 0.1µF 1000pF 1µF 100pF 6 3 2pF 0 -3 -6 1M PHASE (°) GAIN (dB) GAIN (dB) FET Probe RF -225 Gain Bandwidth and Phase Margin vs. Capacitive Load -9 Av = 1 V± = ±2.5V -12 100k 10k 1k 100 FREQUENCY (Hz) 7 1M GAIN BANDWIDTH (kHz) 9 0.1µF -180 -225 -270 1M 500 15 0.01µF GAIN (dB) 12 180 135 90 45 0 -45 -90 -135 V+ 18 15 20 15 10 5 0 -5 -10 Av = 1 -15 V+ = +1.5V V– = –0.5V -20 C = 1.7pF L -25 R = 1MΩ L -30 1k 10k 100k FREQUENCY Close Loop Unity Gain Frequency Response 18 GAIN (dB) 1M 20 -10 -15 Av = 1 V± = ±1.35V -20 C = 2pF L -25 R = 1MΩ L -30 100k 1k 10k FREQUENCY (Hz) 1M Unity Gain Frequency Response PHASE (°) GAIN (dB) Unity Gain Frequency Response 225 180 135 90 45 0 -45 -90 -135 -180 -225 Unity Bandwidth Frequency Response 225 180 135 90 45 0 -45 -90 -135 -180 -225 PHASE (°) 25 20 15 10 5 0 -5 Av = 2 V± = ±2.5V -10 CL = 2pF -15 RF = 20kΩ -20 R = 1MΩ L -25 100k 1k 10k FREQUENCY (Hz) PHASE (°) 1M GAIN (dB) Gain Bandwidth Frequency Response 225 180 135 90 45 0 -45 -90 -135 -180 -225 PHASE (°) GAIN (dB) Gain Bandwidth Frequency Response 25 20 15 10 5 0 -5 Av = 2 V± = ±1.35V -10 CL = 2pF -15 R = 20kΩ F -20 R = 1MΩ L -25 100k 1k 10k FREQUENCY (Hz) 1M 50 40 30 20 10 0 -10 Av = 11 V± = ±2.5V -20 CL = 2pF -30 R = 200kΩ F -40 R = 1MΩ L -50 100k 1k 10k FREQUENCY (Hz) 80 450 V± = ±2.5V 400 Gain Bandwidth 60 350 50 300 250 200 150 100 50 0 1 70 40 Phase Margin 30 20 PHASE MARGIN (°) 1M 225 180 135 90 45 0 -45 -90 -135 -180 -225 PHASE MARGIN (°) -135 -180 -225 50 40 30 20 10 0 -10 Av = 11 V± = ±1.35V -20 CL = 2pF -30 RF = 200kΩ -40 R = 1MΩ L -50 100k 1k 10k FREQUENCY (Hz) PHASE (°) 225 180 135 90 45 0 -45 -90 GAIN (dB) 50 40 30 20 10 0 -10 -20 Av = 11 -30 V+ = +1.5V V– = –0.5V RF = 200kΩ -40 C = 2.0pF R = 1MΩ L L -50 1k 10k 100k FREQUENCY Gain Bandwidth and Phase Margin Gain Bandwidth and Phase Margin PHASE MARGIN (°) GAIN (dB) Gain Bandwidth and Phase Margin 10 0 10 100 1000 CAPACITIVE LOAD (pF) MIC863 MIC863 Micrel Gain Bandwidth and Phase Margin vs. Capacitive Load 80 Gain Bandwidth 300 250 60 50 200 Phase Margin 40 150 30 100 20 50 10 0 1 200k 70 V+ 20k FET Probe RF V– 0 10 100 1000 CAPACITIVE LOAD (pF) PSRR vs. Frequency 60 40 20 0 V+ = 2.7V -20 1 -40 10 100 1k 10k 100k 1M FREQUENCY (Hz) 400 350 300 250 200 150 100 50 V± = ±1.35V 0 1 10 100 1000 1k FREQUENCY (Hz) 10000 10k 90 80 70 60 50 40 30 20 10 0 V+ = 5V -10 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) MIC863 Input Voltage Noise vs. Frequency INPUT VOLTAGE NOISE (nV/rtHz) 80 INPUT VOLTAGE NOISE (nV/rtHz) MIC863 Input Voltage Noise vs. Frequency 100 PSRR (dB) CL 50Ω PSRR (dB) V± = ±1.35V 350 PHASE MARGIN (°) GAIN BANDWIDTH (kHz) 400 PSRR vs. Frequency 400 350 300 250 200 150 100 50 V± = ± 2.5V 0 1 10 100 1000 1k FREQUENCY (Hz) 10000 10k Channel-to-Channel Crosstalk CROSSTALK (dB) -45 -50 -55 -60 -65 -70 1k MIC863 10k FREQUENCY (Hz) 100k 8 January 2005 MIC863 Micrel Functional Characteristics Small Signal Pulse Response Test Circuit 3: AV = 1 OUTPUT 50mV/div AV = 1 V+ = +1.35V V- = -1.35V CL = 2pF RL = 1MΩ Small Signal Pulse Response Test Circuit 3: AV = 1 Small Signal Pulse Response Test Circuit 3: AV = 1 INPUT 50mV/div TIME 10µs/div OUTPUT 50mV/div AV = 1 V+ = 2.5V V- = -2.5V CL = 50pF RL = 1MΩ TIME 10µs/div TIME 10µs/div Small Signal Pulse Response Test Circuit 3: AV = 1 Small Signal Pulse Response Test Circuit 3: AV = 1 INPUT 50mV/div OUTPUT 50mV/div AV = 1 V+ = 1.35V V- = -1.35V CL = 50pF RL = 1MΩ INPUT 50mV/div AV = 1 V+ = 1.35V V- = -1.35V CL = 100pF RL = 1MΩ OUTPUT 50mV/div OUTPUT 50mV/div AV = 1 V+ = 2.5V V- = -2.5V CL = 2pF RL = 1MΩ TIME 10µs/div INPUT 50mV/div OUTPUT 50mV/div INPUT 50mV/div INPUT 50mV/div Small Signal Pulse Response Test Circuit 3: AV = 1 TIME 10µs/div January 2005 AV = 1 V+ = 2.5V V- = -2.5V CL = 100pF RL = 1MΩ TIME 10µs/div 9 MIC863 MIC863 Micrel Small Signal Pulse Response Test Circuit 4: AV = -1 INPUT 50mV/div INPUT 50mV/div Small Signal Pulse Response Test Circuit 3: Av = 1 OUTPUT 50mV/div Small Signal Pulse Response Test Circuit 4: AV = -1 Small Signal Pulse Response Test Circuit 4: AV = -1 INPUT 50mV/div TIME 10µs/div OUTPUT 50mV/div AV = -1 V+ = 2.5V V- = -2.5V CL = 2pF RF = 20kΩ RL = 1MΩ AV = -1 V+ = 1.35V V- = -1.35V CL = 50pF RF = 20kΩ RL = 1MΩ TIME 10µs/div Small Signal Pulse Response Test Circuit 4: AV = -1 Large Signal Pulse Response Test Circuit 3: Av = 1 INPUT 50mV/div TIME 10µs/div OUTPUT 50mV/div OUTPUT 200mV/div AV = -1 V+ = 2.5V V- = -2.5V CL = 50pF RF = 20kΩ RL = 1MΩ TIME 10µs/div MIC863 AV = -1 V+ = 1.35V V- = -1.35V CL = 2pF RF = 20kΩ RL = 1MΩ TIME 10µs/div OUTPUT 50mV/div INPUT 50mV/div OUTPUT 50mV/div AV = 1 V+ = 1.5V V– = –0.5V CL = 2pF RL = 1MΩ AV = 1 V+ = 1.5V V– = –0.5V CL = 2pF RL = 1MΩ Positive Slew Rate = 0.17V/µs Negative Slew Rate = 0.33V/µs TIME 10µs/div 10 January 2005 MIC863 Micrel Large Signal Pulse Response Test Circuit 3: AV = 1 Large Signal Pulse Response Test Circuit 3: AV = 1 AV = 1 V+ = 1.35V V- = -1.35V CL = 2pF RL = 1MΩ OUTPUT 1V/div OUTPUT 500mV/div AV = 1 V+ = 2.5V V- = -2.5V CL = 2pF RL = 1MΩ Positive Slew Rate = 0.17V/µs Negative Slew Rate = 0.354V/µs Positive Slew Rate = 0.197V/µs Negative Slew Rate = 0.359V/µs TIME 10µs/div TIME 10µs/div Large Signal Pulse Response Test Circuit 3: AV = 1 Large Signal Pulse Response Test Circuit 3: AV = 1 AV = 1 V+ = 1.35V V- = -1.35V CL = 50pF RL = 1MΩ OUTPUT 1V/div OUTPUT 500mV/div AV = 1 V+ = 2.5V V- = -2.5V CL = 50pF RL = 1MΩ Positive Slew Rate = 0.177V/µs Negative Slew Rate = 0.34V/µs Positive Slew Rate = 0.20V/µs Negative Slew Rate = 0.355V/µs TIME 10µs/div TIME 10µs/div Large Signal Pulse Response Test Circuit 3: AV = 1 Large Signal Pulse Response Test Circuit 3: AV = 1 AV = 1 V+ = 2.5V V- = -2.5V CL = 100pF RL = 1MΩ OUTPUT 1V/div OUTPUT 500mV/div AV = 1 V+ = 1.35V V- = -1.35V CL = 100pF RL = 1MΩ Positive Slew Rate = 0.197V/µs Negative Slew Rate = 0.343V/µs Positive Slew Rate = 0.175V/µs Negative Slew Rate = 0.383V/µs TIME 10µs/div January 2005 TIME 10µs/div 11 MIC863 MIC863 Micrel INPUT 1V/div ∆VPP = 2.62V Rail-to-Rail Output Operation Rail-to-Rail Output Operation ∆VPP = 2.7V AV = 2 V+ = 2.5V V- = -2.5V CL = 2pF RL = 5kΩ RF = 20kΩ ∆VPP = 5V OUTPUT 2V/div AV = 2 V+ = 1.35V V- = -1.35V CL = 2pF RL = 5kΩ RF = 20kΩ INPUT 2V/div TIME 250µs/div OUTPUT 1V/div INPUT 1V/div ∆VPP = 5V TIME 250µs/div TIME 250µs/div MIC863 AV = 2 V+ = 2.5V V- = -2.5V CL = 2pF RL = 1MΩ RF = 20kΩ OUTPUT 1V/div AV = 2 V+ = 1.35V V- = -1.35V CL = 2pF RL = 1MΩ RF = 20kΩ Rail-to-Rail Output Operation OUTPUT 1V/div INPUT 1V/div Rail-to-Rail Output Operation TIME 250µs/div 12 January 2005 MIC863 Micrel Supply and Loading Resistive Considerations The MIC863 is intended for single supply applications configured with a grounded load. It is not advisable to operate the MIC863 under either of the following conditions when the load is less than 20kΩ and the output swing is greater than 1V(peak-to-peak): 1). A grounded load and split supplies (±V) or 2). A single supply where the load is terminated above ground. Under the above conditions, there may be some instability when the output is sinking current. Applications Information Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. January 2005 13 MIC863 MIC863 Micrel Package Information 0.20 0.38 0.22 0.38 0.22 0.65REF 3.00 2.60 10° 0° 1.95REF 3.00 2.80 1.45 0.90 1.75 1.50 0.20 0.09 1.30 0.90 0.15 0.00 SOT23-8 (M8) MIC863 14 January 2005 MIC863 January 2005 Micrel 15 MIC863 MIC863 Micrel MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel, Inc. © 2005 Micrel, Incorporated MIC863 16 January 2005