MICREL MIC863BM5

MIC863
Micrel
MIC863
Dual Ultra Low Power Op Amp in SOT23-8
Final Information
General Description
Features
The MIC863 is a dual low power operational amplifier in
SOT23-8 package. It is designed to operate in the 2V to 5V
range, rail-to-rail output, with input common-mode to ground.
The MIC863 provides 450kHz gain-bandwidth product while
consuming only a 4.2µA supply current.
With low supply voltage and SOT23-8 packaging, MIC863
provides two channels as general-purpose amplifiers for
portable and battery-powered applications. Its package provides the maximum performance available while maintaining
an extremely slim form factor. The minimal power consumption of this IC maximizes the battery life potential.
•
•
•
•
•
•
•
•
SOT23-8 packaging
450kHz gain-bandwidth product
800kHz, –3dB bandwidth
4.2µA supply current/channel
Rail-to-rail output
Ground sensing at input (common mode to GND)
Drives large capactive loads (0.02µF)
Unity gain stable
Applications
•
•
•
•
•
•
Portable equipment
Medical instrument
PDAs
Pagers
Cordless phones
Consumer electronics
Ordering Information
Part Number
Standard
Marking
Pb-Free
Marking
Ambient Temp. Range
Package
A35
MIC863YM8
A35
–40°C to +85°C
SOT23-8
MIC863BM8
Typical Application
V+
10µF
0.1µF
510Ω
1/ MIC863
2
VOUT
1/ MIC863
2
RF
50Ω
100pF
Peak Detector Circuit for AM Radio
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
January 2005
1
MIC863
MIC863
Micrel
Pin Configuration
OUTA 1
8 V+
INA– 2
7 OUTB
INA+ 3
6 INB–
V– 4
5 INB+
SOT23-8 (M8)
Pin Description
Pin Number
Pin Name
1
OUTA
Output: Amplifier A Output
2
INA–
Amplifier A Inverting (Input)
3
INA+
Amplifier A Non-Inverting (Input)
4
V–
5
INB+
Amplifier B Non-Inverting (Input)
6
INB–
Amplifier B Inverting (Input)
7
OUTB
Output: Amplifier B Output
8
V+
MIC863
Pin Function
Negative Supply
Positive Supply
2
January 2005
MIC863
Micrel
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Supply Voltage (VV+ – V–) ......................................... +6.0V
Differential Input Voltage (VIN+ – VIN–), Note 4 ...... +6.0V
Input Voltage (VIN+ – VIN–) .................. V+ + 0.3V, V– –0.3V
Lead Temperature (soldering, 5 sec.) ....................... 260°C
Output Short Circuit Current Duration .................. Indefinite
Storage Temperature (TS) ........................................ 150°C
ESD Rating, Note 3
Supply Voltage (V+ – V–) .......................... +2.0V to +5.25V
Ambient Temperature Range ..................... –40°C to +85°C
Package Thermal Resistance
θJA (Using 4 layer PCB) ................................. 100°C/W
θCA(Using 4 layer PCB) ................................... 70°C/W
Electrical Characteristics
V+ = +2V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
Symbol
Parameter
Condition
Min
Typ
Max
Units
VOS
Input Offset Voltage
–6
–5
Differential Offset Voltage
0.1
6
5
mV
0.5
mV
Input Offset Voltage Temp Coefficient
6
µV/°C
IB
Input Bias Current
10
pA
IOS
Input Offset Current
5
pA
VCM
Input Voltage Range
CMRR > 50dB
0.5
1
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 1V
45
75
dB
PSRR
Power Supply Rejection Ratio
Supply voltage change of 2V to 2.7V
50
85
dB
AVOL
Large-Signal Voltage Gain
RL = 100kΩ, VOUT 1.4VPP
66
81
dB
RL = 500kΩ, VOUT 1.4VPP
73
90
dB
VOUT
Maximum Output Voltage Swing
RL = 500kΩ
VOUT
Minimum Output Voltage Swing
RL = 500kΩ
GBW
Gain-Bandwidth Product
RL = 200kΩ, CL = 2pF, Av = 11
320
kHz
PM
Phase Margin
RL = 200kΩ, CL = 2pF, Av = 11
69
°
BW
–3dB Bandwidth
AV = 1, CL = 2pF, RL = 1MΩ
600
kHz
SR
Slew Rate
AV = 1, CL = 2pF, RL = 1MΩ,
Positive Slew Rate = 0.17V/µs
0.33
V/µs
ISC
Short-Circuit Output Current
Source
1.8
2.6
mA
Sink
1.5
2.2
mA
IS
Supply Current (per Op Amp)
No Load
Channel to Channel Crosstalk
Note 5
V+–3mV V+–1.4mV
V
V–+0.5mV V–+ 3mV
3.5
-100
7
V
µA
dB
V+ = +2.7V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
VOS
Input Offset Voltage
–6
0.1
6
mV
–5
5
Differential Offset Voltage
0.5
mV
Input Offset Voltage Temp Coefficient
6
µV/°C
IB
Input Bias Current
10
pA
IOS
Input Offset Current
5
pA
VCM
Input Voltage Range
CMRR > 60dB
1
1.8
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 1.35V
60
83
dB
PSRR
Power Supply Rejection Ratio
Supply voltage change from 2.7V to 3V
55
85
dB
AVOL
Large-Signal Voltage Gain
RL = 100k, VOUT 2VPP
70
83
dB
RL = 500k, VOUT 2VPP
78
91
dB
January 2005
3
MIC863
MIC863
Micrel
Symbol
Parameter
Condition
GBW
Gain-Bandwidth Product
RL = 200kΩ, CL = 2pF, Av = 11
350
kHz
PM
Phase Margin
RL = 200kΩ, CL = 2pF, Av = 11
65
°
BW
–3dB Bandwidth
AV = 1, CL = 2pF, RL = 1MΩ
600
kHz
SR
Slew Rate
AV = 1, CL = 2pF, RL = 1MΩ
Positive Slew Rate = 0.17V/µs
0.35
V/µs
ISC
Short-Circuit Output Current
Source
4.5
6.3
mA
Sink
4.5
6.2
mA
IS
Supply Current (per Op Amp)
No Load
Channel to Channel Crosstalk
Note 5
Min
Typ
3.6
Max
7
–120
Units
µA
dB
V+= +5V, V–= 0V, VCM= V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
VOS
Input Offset Voltage
–6
–5
Differential Offset Voltage
0.1
6
5
mV
0.5
mV
Input Offset Voltage Temp Coefficient
6
µV/°C
IB
Input Bias Current
10
pA
IOS
Input Offset Current
5
pA
VCM
Input Voltage Range (from V–)
CMRR > 60dB
3.5
4.1
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 3.5V
60
85
dB
PSRR
Power Supply Rejection Ratio
Supply voltage change from 3V to 5V
60
86
dB
AVOL
Large-Signal Voltage Gain
RL = 100kΩ, VOUT 4.0VPP
73
81
dB
RL = 500kΩ, VOUT 4.0VPP
78
88
dB
VOUT
Maximum Output Voltage Swing
RL = 500kΩ
VOUT
Minimum Output Voltage Swing
RL = 500kΩ
GBW
Gain-Bandwidth Product
RL = 200kΩ, CL = 2pF, Av = 11
PM
Phase Margin
BW
–3dB Bandwidth
SR
ISC
IS
V+–3mV V+–1.3mV
V
V–+0.7mV V–+3mV
V
450
kHz
63
°
AV = 1, CL = 2pF, RL = 1MΩ
800
kHz
Slew Rate
AV = 1, CL = 2pF, RL = 1MΩ
Positive Slew Rate = 0.2V/µs
0.35
V/µs
Short-Circuit Output Current
Source
17
23
mA
Sink
18
27
mA
Supply Current (per Op Amp)
No Load
Channel to Channel Crosstalk
Note 5
4.2
8
–120
µA
dB
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensitive
Note 4.
Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to increase.
Note 5.
DC signal referenced to input. Refer to Typical Characteristics graphs for AC performance.
MIC863
4
January 2005
MIC863
Micrel
DC Performance Characteristics
4
V± = ±1.35V
-1
Sinking
-6
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
January 2005
OFFSET VOLTAGE (mV)
1.08
0.81
0.54
0
1.35
OUTPUT VOLTAGE (V)
2.5
2.34
2.18
2.02
1.86
1.7
1.54
1.38
1.22
0.9
85°C
OUTPUT VOLTAGE (V)
Output Voltage
vs. Output Current
0.25
25°C
0
85°C
-0.25
-0.5
-0.75
-1
–40°C
-1.25
-1.5
-1.75
-2
Sinking
-2.25
V± = ±2.5V
-2.5
0 4 8 12 16 20 24 28 32 36 40
OUTPUT CURRENT (mA)
Short Circuit Current
vs. Temperature
35
Sinking
30
25
20
V± = 2.5V
15
10
V± = ±1.35V
5
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
5
Short Circuit Current
vs. Temperature
SHORT CIRCUIT CURRENT (mA)
9
25°C
0.135
25°C
0 Sinking
V± = ±1.35V
-0.135
85°C
-0.270
-0.405
-0.540
–40°C
-0.675
-0.810
-0.945
-1.080
-1.215
-1.350
0 1 2 3 4 5 6 7 8 9 10
OUTPTU CURRENT (mA)
SHORT CIRCUIT CURRENT (mA)
14
-40°C
1.35
Sourcing
V± = ±1.35V
1.215
1.08
0.945
0.81
0.675
0.54
0.405
25°C
-40°C
0.27
0.135
85°C
0
0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
OUTPUT CURRENT (mA)
Output Voltage
vs. Output Current
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
SHORT-CIRCUIT CURRENT (mA)
19
Output Voltage
vs. Output Current
SUPPLY VOLTAGE (±V)
Short Circuit Current
vs. Temperature
V± = ±2.5V
1.06
SHORT-CIRCUIT CURRENT (mA)
SHORT-CIRCUIT CURRENT (mA)
44
40 Sinking
36
32
28
24
20
16
12
8
4
0
Output Voltage
vs. Output Current
24
0.27
Short Circuit Current vs.
Supply Voltage
Short Circuit Current
vs. Supply Voltage
29
1.2
1.0
0.8
0.6 -40°C
0.4 25°C
0.2
85°C
0
-0.2
-0.4
-0.6
-0.8
V± = ±2.5V
-1.0
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
COMMON-MODE VOLTAGE (V)
COMMON-MODE VOLTAGE (V)
33
30 Sourcing
-40°C
27
24
21
18
25°C
15
85°C
12
9
6
3
0
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
SUPPPLY VOLTAGE (V)
2.75
2.50 Sourcing
2.25
2.00
1.75
1.50
1.25
1.00
–40°C
0.75
25°C
0.50
0.25
85°C
0
0 -3 -6 -9 -12-15-18-21-24-27-30
OUTPUT CURRENT (mA)
-0.27
-1.35
SUPPLY VOLTAGE (V)
Offset Voltage
vs. Common-Mode Voltage
V± = ±1.35V
-0.54
-45°C
-0.81
25°C
1.2
1.0
0.8 -40°C
0.6
0.4 25°C
0.2 85°C
0
-0.2
-0.4
-0.6
-0.8
-1.0
-1.08
85°C
OFFSET VOLTAGE (mV)
5.4
5.0
4.6
4.2
3.8
3.4
3.0
2.6
2.2
1.8
1.4
1.0
Offset Voltage
vs. Common-Mode Voltage
0.90
1.06
1.22
1.38
1.54
1.70
1.86
2.02
2.18
2.34
2.50
SUPPLY CURRENT (µA)
Supply Current
vs. Supply Voltage
30
Sourcing
25
2.5V
20
15
10
1.35V
5
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
MIC863
MIC863
Micrel
Supply Current per Channel
vs. Temperature
Offset Voltage
vs. Temperature
0.8
V± = ± 2.5V
5
4
3
V± = ± 1.35V
2
1
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
MIC863
OFFSET VOLTAGE (mV)
SUPPLY CURRENT/CH (µA)
6
0.7
0.6
0.5
0.4
V± = ± 1.35V
0.3
0.2
V± = ± 2.5V
0.1
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
6
January 2005
MIC863
Micrel
AC Perfomance Characteristics
20
225
180
15
180
10
135
10
135
5
90
5
90
0
45
0
45
-5
0
-5
0
-45
-90
GAIN (dB)
225
15
-135
-180
1M
-225
-10
-15 Av = 1
V± = ±2.5V
-20 C = 2pF
L
-25 R = 1MΩ
L
-30
100k
1k
10k
FREQUENCY (Hz)
Close Loop Unity Gain
Frequency Response
1000pF
12
1µF
100pF
6
3
0
-3
2pF
-6
-9 Av = 1
V± = ±1.35V
-12
100k
10k
1k
100
FREQUENCY (Hz)
January 2005
-45
-90
CL
-135
V—
-180
1M
9
0.01µF
0.1µF
1000pF
1µF
100pF
6
3
2pF
0
-3
-6
1M
PHASE (°)
GAIN (dB)
GAIN (dB)
FET Probe
RF
-225
Gain Bandwidth and Phase
Margin vs. Capacitive Load
-9 Av = 1
V± = ±2.5V
-12
100k
10k
1k
100
FREQUENCY (Hz)
7
1M
GAIN BANDWIDTH (kHz)
9
0.1µF
-180
-225
-270
1M
500
15
0.01µF
GAIN (dB)
12
180
135
90
45
0
-45
-90
-135
V+
18
15
20
15
10
5
0
-5
-10 Av = 1
-15 V+ = +1.5V
V– = –0.5V
-20 C = 1.7pF
L
-25 R = 1MΩ
L
-30
1k
10k
100k
FREQUENCY
Close Loop Unity Gain
Frequency Response
18
GAIN (dB)
1M
20
-10
-15 Av = 1
V± = ±1.35V
-20 C = 2pF
L
-25 R = 1MΩ
L
-30
100k
1k
10k
FREQUENCY (Hz)
1M
Unity Gain
Frequency Response
PHASE (°)
GAIN (dB)
Unity Gain
Frequency Response
225
180
135
90
45
0
-45
-90
-135
-180
-225
Unity Bandwidth
Frequency Response
225
180
135
90
45
0
-45
-90
-135
-180
-225
PHASE (°)
25
20
15
10
5
0
-5 Av = 2
V± = ±2.5V
-10
CL = 2pF
-15
RF = 20kΩ
-20 R = 1MΩ
L
-25
100k
1k
10k
FREQUENCY (Hz)
PHASE (°)
1M
GAIN (dB)
Gain Bandwidth
Frequency Response
225
180
135
90
45
0
-45
-90
-135
-180
-225
PHASE (°)
GAIN (dB)
Gain Bandwidth
Frequency Response
25
20
15
10
5
0
-5 Av = 2
V± = ±1.35V
-10
CL = 2pF
-15 R = 20kΩ
F
-20 R = 1MΩ
L
-25
100k
1k
10k
FREQUENCY (Hz)
1M
50
40
30
20
10
0
-10 Av = 11
V± = ±2.5V
-20
CL = 2pF
-30 R = 200kΩ
F
-40 R = 1MΩ
L
-50
100k
1k
10k
FREQUENCY (Hz)
80
450
V± = ±2.5V
400
Gain Bandwidth
60
350
50
300
250
200
150
100
50
0
1
70
40
Phase Margin
30
20
PHASE MARGIN (°)
1M
225
180
135
90
45
0
-45
-90
-135
-180
-225
PHASE MARGIN (°)
-135
-180
-225
50
40
30
20
10
0
-10 Av = 11
V± = ±1.35V
-20
CL = 2pF
-30
RF = 200kΩ
-40 R = 1MΩ
L
-50
100k
1k
10k
FREQUENCY (Hz)
PHASE (°)
225
180
135
90
45
0
-45
-90
GAIN (dB)
50
40
30
20
10
0
-10
-20 Av = 11
-30 V+ = +1.5V
V– = –0.5V RF = 200kΩ
-40 C = 2.0pF R = 1MΩ
L
L
-50
1k
10k
100k
FREQUENCY
Gain Bandwidth
and Phase Margin
Gain Bandwidth
and Phase Margin
PHASE MARGIN (°)
GAIN (dB)
Gain Bandwidth
and Phase Margin
10
0
10
100
1000
CAPACITIVE LOAD (pF)
MIC863
MIC863
Micrel
Gain Bandwidth and Phase
Margin vs. Capacitive Load
80
Gain Bandwidth
300
250
60
50
200
Phase Margin
40
150
30
100
20
50
10
0
1
200k
70
V+
20k
FET Probe
RF
V–
0
10
100
1000
CAPACITIVE LOAD (pF)
PSRR vs.
Frequency
60
40
20
0
V+ = 2.7V
-20
1
-40
10
100 1k 10k 100k 1M
FREQUENCY (Hz)
400
350
300
250
200
150
100
50 V± = ±1.35V
0
1
10
100
1000
1k
FREQUENCY (Hz)
10000
10k
90
80
70
60
50
40
30
20
10
0
V+ = 5V
-10
1
10 100 1k 10k 100k 1M
FREQUENCY (Hz)
MIC863 Input Voltage Noise
vs. Frequency
INPUT VOLTAGE NOISE (nV/rtHz)
80
INPUT VOLTAGE NOISE (nV/rtHz)
MIC863 Input Voltage Noise
vs. Frequency
100
PSRR (dB)
CL
50Ω
PSRR (dB)
V± = ±1.35V
350
PHASE MARGIN (°)
GAIN BANDWIDTH (kHz)
400
PSRR vs.
Frequency
400
350
300
250
200
150
100
50 V± = ± 2.5V
0
1
10
100
1000
1k
FREQUENCY (Hz)
10000
10k
Channel-to-Channel
Crosstalk
CROSSTALK (dB)
-45
-50
-55
-60
-65
-70
1k
MIC863
10k
FREQUENCY (Hz)
100k
8
January 2005
MIC863
Micrel
Functional Characteristics
Small Signal Pulse Response
Test Circuit 3: AV = 1
OUTPUT
50mV/div
AV = 1
V+ = +1.35V
V- = -1.35V
CL = 2pF
RL = 1MΩ
Small Signal Pulse Response
Test Circuit 3: AV = 1
Small Signal Pulse Response
Test Circuit 3: AV = 1
INPUT
50mV/div
TIME 10µs/div
OUTPUT
50mV/div
AV = 1
V+ = 2.5V
V- = -2.5V
CL = 50pF
RL = 1MΩ
TIME 10µs/div
TIME 10µs/div
Small Signal Pulse Response
Test Circuit 3: AV = 1
Small Signal Pulse Response
Test Circuit 3: AV = 1
INPUT
50mV/div
OUTPUT
50mV/div
AV = 1
V+ = 1.35V
V- = -1.35V
CL = 50pF
RL = 1MΩ
INPUT
50mV/div
AV = 1
V+ = 1.35V
V- = -1.35V
CL = 100pF
RL = 1MΩ
OUTPUT
50mV/div
OUTPUT
50mV/div
AV = 1
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 1MΩ
TIME 10µs/div
INPUT
50mV/div
OUTPUT
50mV/div
INPUT
50mV/div
INPUT
50mV/div
Small Signal Pulse Response
Test Circuit 3: AV = 1
TIME 10µs/div
January 2005
AV = 1
V+ = 2.5V
V- = -2.5V
CL = 100pF
RL = 1MΩ
TIME 10µs/div
9
MIC863
MIC863
Micrel
Small Signal Pulse Response
Test Circuit 4: AV = -1
INPUT
50mV/div
INPUT
50mV/div
Small Signal Pulse Response
Test Circuit 3: Av = 1
OUTPUT
50mV/div
Small Signal Pulse Response
Test Circuit 4: AV = -1
Small Signal Pulse Response
Test Circuit 4: AV = -1
INPUT
50mV/div
TIME 10µs/div
OUTPUT
50mV/div
AV = -1
V+ = 2.5V
V- = -2.5V
CL = 2pF
RF = 20kΩ
RL = 1MΩ
AV = -1
V+ = 1.35V
V- = -1.35V
CL = 50pF
RF = 20kΩ
RL = 1MΩ
TIME 10µs/div
Small Signal Pulse Response
Test Circuit 4: AV = -1
Large Signal Pulse Response
Test Circuit 3: Av = 1
INPUT
50mV/div
TIME 10µs/div
OUTPUT
50mV/div
OUTPUT
200mV/div
AV = -1
V+ = 2.5V
V- = -2.5V
CL = 50pF
RF = 20kΩ
RL = 1MΩ
TIME 10µs/div
MIC863
AV = -1
V+ = 1.35V
V- = -1.35V
CL = 2pF
RF = 20kΩ
RL = 1MΩ
TIME 10µs/div
OUTPUT
50mV/div
INPUT
50mV/div
OUTPUT
50mV/div
AV = 1
V+ = 1.5V
V– = –0.5V
CL = 2pF
RL = 1MΩ
AV = 1
V+ = 1.5V
V– = –0.5V
CL = 2pF
RL = 1MΩ
Positive Slew Rate = 0.17V/µs
Negative Slew Rate = 0.33V/µs
TIME 10µs/div
10
January 2005
MIC863
Micrel
Large Signal Pulse Response
Test Circuit 3: AV = 1
Large Signal Pulse Response
Test Circuit 3: AV = 1
AV = 1
V+ = 1.35V
V- = -1.35V
CL = 2pF
RL = 1MΩ
OUTPUT
1V/div
OUTPUT
500mV/div
AV = 1
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 1MΩ
Positive Slew Rate = 0.17V/µs
Negative Slew Rate = 0.354V/µs
Positive Slew Rate = 0.197V/µs
Negative Slew Rate = 0.359V/µs
TIME 10µs/div
TIME 10µs/div
Large Signal Pulse Response
Test Circuit 3: AV = 1
Large Signal Pulse Response
Test Circuit 3: AV = 1
AV = 1
V+ = 1.35V
V- = -1.35V
CL = 50pF
RL = 1MΩ
OUTPUT
1V/div
OUTPUT
500mV/div
AV = 1
V+ = 2.5V
V- = -2.5V
CL = 50pF
RL = 1MΩ
Positive Slew Rate = 0.177V/µs
Negative Slew Rate = 0.34V/µs
Positive Slew Rate = 0.20V/µs
Negative Slew Rate = 0.355V/µs
TIME 10µs/div
TIME 10µs/div
Large Signal Pulse Response
Test Circuit 3: AV = 1
Large Signal Pulse Response
Test Circuit 3: AV = 1
AV = 1
V+ = 2.5V
V- = -2.5V
CL = 100pF
RL = 1MΩ
OUTPUT
1V/div
OUTPUT
500mV/div
AV = 1
V+ = 1.35V
V- = -1.35V
CL = 100pF
RL = 1MΩ
Positive Slew Rate = 0.197V/µs
Negative Slew Rate = 0.343V/µs
Positive Slew Rate = 0.175V/µs
Negative Slew Rate = 0.383V/µs
TIME 10µs/div
January 2005
TIME 10µs/div
11
MIC863
MIC863
Micrel
INPUT
1V/div
∆VPP = 2.62V
Rail-to-Rail Output Operation
Rail-to-Rail Output Operation
∆VPP = 2.7V
AV = 2
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 5kΩ
RF = 20kΩ
∆VPP = 5V
OUTPUT
2V/div
AV = 2
V+ = 1.35V
V- = -1.35V
CL = 2pF
RL = 5kΩ
RF = 20kΩ
INPUT
2V/div
TIME 250µs/div
OUTPUT
1V/div
INPUT
1V/div
∆VPP = 5V
TIME 250µs/div
TIME 250µs/div
MIC863
AV = 2
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 1MΩ
RF = 20kΩ
OUTPUT
1V/div
AV = 2
V+ = 1.35V
V- = -1.35V
CL = 2pF
RL = 1MΩ
RF = 20kΩ
Rail-to-Rail Output Operation
OUTPUT
1V/div
INPUT
1V/div
Rail-to-Rail Output Operation
TIME 250µs/div
12
January 2005
MIC863
Micrel
Supply and Loading Resistive Considerations
The MIC863 is intended for single supply applications configured with a grounded load. It is not advisable to operate the
MIC863 under either of the following conditions when the load
is less than 20kΩ and the output swing is greater than
1V(peak-to-peak):
1). A grounded load and split supplies (±V) or
2). A single supply where the load is terminated above
ground.
Under the above conditions, there may be some instability
when the output is sinking current.
Applications Information
Power Supply Bypassing
Regular supply bypassing techniques are recommended. A
10µF capacitor in parallel with a 0.1µF capacitor on both the
positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to
the op amp as possible and all capacitors should be low ESL
(equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal.
January 2005
13
MIC863
MIC863
Micrel
Package Information
0.20
0.38
0.22
0.38
0.22
0.65REF
3.00
2.60
10°
0°
1.95REF
3.00
2.80
1.45
0.90
1.75
1.50
0.20
0.09
1.30
0.90
0.15
0.00
SOT23-8 (M8)
MIC863
14
January 2005
MIC863
January 2005
Micrel
15
MIC863
MIC863
Micrel
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel, Inc.
© 2005 Micrel, Incorporated
MIC863
16
January 2005