MICREL MIC913BM5

MIC913
Micrel
MIC913
350MHz Low-Power SOT-23-5 Op Amp
General Description
Features
The MIC913 is a high-speed, operational amplifier. It provides a gain-bandwidth product of 350MHz with a very low,
4.2mA supply current, and features the tiny SOT-23-5 package.
Supply voltage range is from ±2.5V to ±9V, allowing the
MIC913 to be used in low-voltage circuits or applications
requiring large dynamic range.
The MIC913 requires a minimum gain of +2 or –1 but is stable
driving any capacitative load and achieves excellent PSRR,
making it much easier to use than most conventional highspeed devices. Low supply voltage, low power consumption,
and small packing make the MIC913 ideal for portable
equipment. The ability to drive capacitative loads also makes
it possible to drive long coaxial cables.
•
•
•
•
•
•
•
350MHz gain bandwidth product
4.2mA supply current
SOT-23-5 package
500V/µs slew rate
Drives any capacitive load
Low distortion
Stable with gain of +2 or –1
Applications
•
•
•
•
•
•
Video
Imaging
Ultrasound
Portable equipment
Line drivers
XDSL
Ordering Information
Pin Configuration
IN+
3
Part Number
Junction Temp. Range
Package
MIC913BM5
–40°C to +85°C
SOT-23-5
Functional Pinout
V+ OUT
2
1
IN+
Part
Identification
3
V+ OUT
2
1
A24
4
5
4
5
IN–
V–
IN–
V–
SOT-23-5
SOT-23-5
Pin Description
Pin Number
Pin Name
Pin Function
1
OUT
2
V+
Positive Supply (Input)
3
IN+
Noninverting Input
4
IN–
Inverting Input
5
V–
Negative Supply (Input)
Output: Amplifier Output
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
August 2000
1
MIC913
MIC913
Micrel
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Supply Voltage (VV+ – VV–) ........................................... 20V
Differential Input Voltage (VIN+ – VIN–) .......... 4V, Note 3
Input Common-Mode Range (VIN+, VIN–) .......... VV+ to VV–
Lead Temperature (soldering, 5 sec.) ....................... 260°C
Storage Temperature (TS) ........................................ 150°C
ESD Rating, Note 4 ................................................... 1.5kV
Supply Voltage (VS) ....................................... ±2.5V to ±9V
Junction Temperature (TJ) ......................... –40°C to +85°C
Package Thermal Resistance ............................... 260°C/W
Electrical Characteristics (±5V)
VV+ = +5V, VV– = –5V, VCM = 0V, VOUT = 0V; RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted.
Symbol
Parameter
VOS
Typ
Max
Units
Input Offset Voltage
1
16
mV
VOS
Input Offset Voltage
Temperature Coefficient
4
IB
Input Bias Current
5.5
9
15
µA
µA
IOS
Input Offset Current
0.05
3
µA
VCM
Input Common-Mode Range
CMRR > 60dB
+3.25
V
CMRR
Common-Mode Rejection Ratio
–2.0V < VCM < +2.0V
70
85
dB
PSRR
Power Supply Rejection Ratio
±5V < VS < ±9V
70
65
81
dB
dB
AVOL
Large-Signal Voltage Gain
RL = 2k, VOUT = ±2V
60
71
dB
RL = 200Ω, VOUT = ±2V
60
71
dB
+3.3
+3.0
3.5
V
V
VOUT
Maximum Output Voltage Swing
Condition
Min
positive, RL = 2kΩ
–3.25
negative, RL = 2kΩ
positive, RL = 200Ω
–3.5
+3.0
+2.75
µV/°C
–3.3
–3.0
3.2
negative, RL = 200Ω
–2.8
V
V
V
V
–2.45
–2.2
V
V
GBW
Gain-Bandwidth Product
f = 80MHz, RL = 1kΩ
300
MHz
BW
–3dB Bandwidth
AV = 2, RL = 150Ω
213
MHz
AV = 4 or AV = –3, RL = 400Ω-
104
MHz
RF = RG = 470Ω, AV = 2, VOUT = 2Vpp,
f = 2MHz
0.01
%
AV = 2, VOUT = 2Vpp, f = 2MHz, RL = 500Ω
0.05
%
350
V/µs
source
72
mA
sink
25
mA
THD
Total Harmonic Distortion
SR
Slew Rate
IGND
Short-Circuit Output Current
IGND
MIC913
Supply Current
4.1
2
4.9
5.4
mA
mA
August 2000
MIC913
Micrel
Electrical Characteristics
VV+ = +9V, VV– = –9V, VCM = 0V, VOUT = 0V; RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
Symbol
Parameter
VOS
Condition
Min
Typ
Max
Units
Input Offset Voltage
1
16
mV
VOS
Input Offset Voltage
Temperature Coefficient
4
IB
Input Bias Current
5.5
9
15
µA
µA
IOS
Input Offset Current
0.05
3
µA
VCM
Input Common-Mode Range
CMRR > 60dB
+7.25
V
CMRR
Common-Mode Rejection Ratio
–6.0V < VCM < 6.0V
70
88
dB
AVOL
Large-Signal Voltage Gain
RL = 2kΩ, VOUT = ±6V
60
73
dB
VOUT
Maximum Output Voltage Swing
positive, RL = 2kΩ
+7.2
+6.8
+7.4
V
V
–7.25
negative, RL = 2kΩ
–7.4
µV/°C
–7.2
–6.8
V
V
GBW
Gain-Bandwidth Product
RL = 1kΩ, f = 80MHz
350
MHz
BW
–3dB Bandwidth
AV = 2 or AV = –1, RL = 150Ω
240
MHz
AV = 4 or AV = –3
140
MHz
RF = RG = 470Ω, AV = 2, VOUT = 2Vpp,
f = 2MHz
0.01
%
AV = 2, VOUT = 2Vpp, f = 2MHz, RL = 500Ω
0.04
%
500
V/µs
source
90
mA
sink
32
mA
THD
Total Harmonic Distortion
SR
Slew Rate
IGND
Short-Circuit Output Current
IGND
Supply Current
4.2
5.0
5.5
mA
mA
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to increase).
Note 4.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
August 2000
3
MIC913
MIC913
Micrel
Test Circuits
VCC
10µF
VCC
0.1µF
50Ω
R2
BNC
5k
Input
10µF
0.1µF
10k
10k
10k
2k
4
BNC
MIC913
BNC
1
R1 5k
Input
2
R7c 2k
R7b 200Ω
Output
3
5
2
0.1µF
MIC913
1
BNC
Output
3
5
R7a 100Ω
50Ω
BNC
4
0.1µF
R6
0.1µF
5k
R3
200k
Input
50Ω
All resistors:
1% metal film
CMRR vs. Frequency
PSRR vs. Frequency
100pF
10pF
R3 27k
S1
S2
R5
20Ω
R4
250Ω
 R2 R2 + R 5 + R4 
VOUT = VERROR 1 +
+


 R1
R7
10µF
VEE
R1
20Ω
10µF
VEE
All resistors 1%
0.1µF
R5
5k
VCC
R2 4k
4
10µF
0.1µF
2
MIC913
1
3
5
BNC
To
Dynamic
Analyzer
0.1µF
R4 27k
10pF
10µF
VEE
Noise Measurement
MIC913
4
August 2000
MIC913
Micrel
Electrical Characteristics
Supply Current
vs. Temperature
Supply Current
vs. Supply Voltage
4.5
+25°C
3.5
-40°C
3.0
2
3 4 5 6 7 8 9
SUPPLY VOLTAGE (±V)
4.5
-0.5
VSUPPLY = ±9V
-1.0
-1.5
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Offset Voltage
vs. Common-Mode Voltage
6
VSUPPLY = ±9V
VSUPPLY = ±5V
4
8
+85°C
VSUPPLY = ±9V
6
4
2
-40°C
0
OFFSET VOLTGE (mV)
OFFSET VOLTGE (mV)
+25°C
-2
-8 -6 -4 -2 0 2 4 6 8
COMMON-MODE VOLTAGE (V)
Short-Circuit Current
vs. Temperature
Short-Circuit Current
vs. Supply Voltage
-20
VSUPPLY = ±9V
80
SOURCING
CURRENT
70
65
VSUPPLY = ±5V
60
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
-25
-30
-35
-40°C
+85°C
-30
SINKING
CURRENT
August 2000
+25°C
3 4 5 6 7 8 9
SUPPLY VOLTAGE (±V)
10
OUTPUT VOLTAGE (V)
-15
-35
2
VSUPPLY = ±9V
-40°C
80
+25°C
60
10
9
8
7
6
5
VSUPPLY = ±9V
+85°C
4
3
+25°C
-40°C
2
SOURCING
1
CURRENT
0
0
20
40
60
80
100
OUTPUT CURRENT (mA)
5
+85°C
40
SOURCING
CURRENT
20
2
Output Voltage
vs. Output Current
-10
-25
SINKING
CURRENT
-40
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Short-Circuit Current
vs. Supply Voltage
-20
100
VSUPPLY = ±5V
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
90
75
10
VSUPPLY = ±5V
9
8
7
6
+85°C
5
4
3
2 -40°C
1
0
+25°C
-1
-5 -4 -3 -2 -1 0 1 2 3 4 5
COMMON-MODE VOLTAGE (V)
Short-Circuit Current
vs. Temperature
3 4 5 6 7 8 9
SUPPLY VOLTAGE (±V)
10
Output Voltage
vs. Output Current
OUTPUT VOLTAGE (V)
BIAS CURRENT (µA)
0.0
10
8
VSUPPLY = ±5V
0.5
Offset Voltage
vs. Common-Mode Voltage
2
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
OUTPUT CURRENT (mA)
VSUPPLY = ±5V
3.5
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
10
10
OUTPUT CURRENT (mA)
VSUPPLY = ±9V
4.0
Bias Current
vs. Temperature
85
1.0
OFFSET VOLTAGE (mV)
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
+85°C
4.0
Offset Voltage
vs. Temperature
5.0
5.0
0
-1
-2
-3
-4
-5
-40°C
SINKING
CURRENT
+85°C
-6
+25°C
-7
-8
-9 VSUPPLY = ±9V
-10
-35 -30 -25 -20 -15 -10 -5
OUTPUT CURRENT (mA)
0
MIC913
MIC913
Micrel
VSUPPLY = ±9V
30
20
Gain
Bandwidth
10
GAIN BANDWIDTH (MHz)
40
40
0
0
225
PHASE MARGIN (°)
GAIN BANDWIDTH (MHz)
Phase
Margin
80
-25 -20 -15 -10 -5
OUTPUT CURRENT (mA)
0
0
0
200
175
150
120
15
100
10
Phase
Margin
0
3 4 5 6 7 8 9
SUPPLY VOLTAGE (±V)
10
0
200 400 600 800 1000
CAPACITIVE LOAD (pF)
Common-Mode
Rejection Ratio
20
5
125
100
2
0
200 400 600 800 1000
CAPACITIVE LOAD (pF)
Gain
Bandwidth
Gain
Bandwidth
40
Gain Bandwidth and
Phase Margin vs. Supply Voltage
50
120
VSUPPLY = ±5V
20
80
60
40
VSUPPLY = ±5V
20
-5
10
0
1x107
Gain Bandwidth and
Phase Margin vs. Load
160
-3.5
-4.0
-30
20
40
60
80
OUTPUT CURRENT (mA)
200
-3.0
30
VSUPPLY = ±5V
80
1x102
0
0
SOURCING
CURRENT
+85°C
CMRR (dB)
0.5
-2.5
120
40
1x106
1.0
+25°C
-2.0
Phase
Margin
160
1x105
1.5
-1.5
PHASE MARGIN (°)
2.0
+25°C
-40°C
1x104
2.5 -40°C
-1.0
50
1x103
3.0
200
SINKING
CURRENT
-0.5
GAIN BANDWIDTH (MHz)
VSUPPLY = ±5V
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
+85°C
PHASE MARGIN (°)
0
4.0
3.5
Gain Bandwidth and
Phase Margin vs. Load
Output Voltage
vs. Output Current
Output Voltage
vs. Output Current
FREQUENCY (Hz)
Negative Power Supply
Rejection Ratio
80
80
100
VSUPPLY = ±5V
80
1x102
0
1x107
0
1x106
20
1x107
1x106
1x105
1x104
1x103
1x102
1x107
1x107
VSUPPLY = ±9V
20
1x105
Closed-Loop
Frequency Response
40
1x106
VSUPPLY = ±9V
1x105
40
1x104
FREQUENCY (Hz)
60
1x104
60
1x103
–PSRR (dB)
80
1x103
0
Negative Power Supply
Rejection Ratio
100
1x102
40
VSUPPLY = ±9V
GAIN (dB)
Positive Power Supply
Rejection Ratio
+PSRR (dB)
60
FREQUENCY (Hz)
100
FREQUENCY (Hz)
80
20
1x106
1x102
1x107
1x106
0
1x105
0
1x104
20
1x103
20
1x105
VSUPPLY = ±5V
40
1x104
40
60
1x103
60
CMRR (dB)
120
–PSRR (dB)
100
FREQUENCY (Hz)
MIC913
Common-Mode
Rejection Ratio
100
1x102
+PSRR (dB)
Positive Power Supply
Rejection Ratio
50
40
30
20
10
0
-10
-20
-30
-40
-50
1
RL = 150Ω
GAIN = -1
±9V
±2.5V
±5V
10
100
FREQUENCY (MHz)
500
FREQUENCY (Hz)
6
August 2000
MIC913
Micrel
Closed-Loop
Frequency Response
-10
GAIN
No Load
RL = 100Ω
-30
-40 VSUPPLY = ±9V
-50
1
10
100
FREQUENCY (MHz)
-360
400
50
40
100pF
30
50pF
20
0pF
10
0 1000pF
471pF
-10
-20
200pF
-30
VSUPPLY = ±9V
-40 R = 1k
L
-50
1
10
100
500
FREQUENCY (MHz)
-200
-250
-300
500
50
VSUPPLY = ±5V
40
RL = 470Ω
30
GAIN = -1
20
10
0
-10 C = 1000pF
L
-20
CL = 470pF
-30
CL = 100pF
-40
CL = 1.7pF
-50
1
10
100
500
FREQUENCY (MHz)
Closed-Loop
Frequency Response
Test Circuit
FET probe
SLEW RATE (V/µs)
0.1µF
-90
-270
-20
1
50
40
30
20
10
0
-10
-20
10
100
FREQUENCY (MHz)
Open-Loop
Frequency Response
PHASE
GAIN
No Load
RL = 100Ω
-30
-40 VSUPPLY = ±5V
-50
1
10
100
FREQUENCY (MHz)
-360
400
200
150
100
50
0
-50
-100
-150
-200
-250
-300
500
Closed-Loop
Frequency Response
50
VSUPPLY = ±9V
40
RL = 470Ω
30
GAIN = -1
20
10
0
-10
CL = 1000pF
-20
CL = 470pF
-30
CL = 100pF
-40
CL = 1.7pF
-50
1
10
100
500
FREQUENCY (MHz)
Negative
Slew Rate
400
10µF
0
-180
-10
Positive
Slew Rate
VCC
MIC913
GAIN
0 VSUPPLY = ±9V
AV = 4
Closed-Loop
Frequency Response
GAIN (dB)
PHASE
200
150
100
50
0
-50
-100
-150
GAIN (dB)
50
40
100pF
30
50pF
20
0pF
10
0 1000pF
471pF
-10
-20
200pF
-30
VSUPPLY = ±5V
-40 R = 1k
L
-50
1
10
100
500
FREQUENCY (MHz)
50
40
30
20
10
0
-10
-20
10
100
FREQUENCY (MHz)
10
Open-Loop
Frequency Response
PHASE (°)
GAIN (dB)
GAIN (dB)
Open-Loop
Frequency Response
Open-Loop
Frequency Response
-180
-270
-20
1
-360
400
10
100
FREQUENCY (MHz)
0 VSUPPLY = ±5V
AV = 4
-10
-270
-20
1
-90
GAIN
PHASE
PHASE (°)
-180
20
GAIN (dB)
0 VSUPPLY = ±2.5V
AV = 4
10
0
90
PHASE (°)
-90
GAIN
PHASE
GAIN (dB)
20
30
400
300
VCC = ±5V
200
100
SLEW RATE (V/µs)
10
0
90
GAIN (dB)
PHASE
30
GAIN (dB)
GAIN (dB)
20
90
PHASE (°)
30
Closed-Loop
Frequency Response
PHASE (°)
Closed-Loop
Frequency Response
300
VCC = ±5V
200
100
CL
RF
0
0
50Ω
200 400 600 800 1000
LOAD CAPACITANCE (pF)
0
0
200 400 600 800 1000
LOAD CAPACITANCE (pF)
10µF
VEE
August 2000
7
MIC913
MIC913
Micrel
Negative
Slew Rate
600
600
500
500
400
SLEW RATE (V/µs)
SLEW RATE (V/µs)
Positive
Slew Rate
VCC = ±9V
300
200
100
0
0
MIC913
400
VCC = ±9V
300
200
100
0
0
200 400 600 800 1000
LOAD CAPACITANCE (pF)
8
200 400 600 800 1000
LOAD CAPACITANCE (pF)
August 2000
MIC913
Micrel
Functional Characteristics
INPUT
Small-Signal
Pulse Response
INPUT
Small-Signal
Pulse Response
VCC = ±5V
AV = 2
CL = 1.7pF
R1 = R2 = 470Ω
OUTPUT
OUTPUT
VCC = ±9V
AV = 1
CL = 1.7pF
R1 = R2 = 470Ω
INPUT
Small-Signal
Pulse Response
INPUT
Small-Signal
Pulse Response
VCC = ±5V
AV = 2
CL = 100pF
R1 = R2 = 470Ω
OUTPUT
OUTPUT
VCC = ±9V
AV = 1
CL = 100pF
R1 = R2 = 470Ω
INPUT
Small-Signal
Pulse Response
INPUT
Small-Signal
Pulse Response
VCC = ±9V
AV = 1
CL = 1000pF
R1 = R2 = 470Ω
August 2000
OUTPUT
OUTPUT
VCC = ±5V
AV = 1
CL = 1000pF
R1 = R2 = 470Ω
9
MIC913
MIC913
Micrel
Large-Signal
Pulse Response
Large-Signal
Pulse Response
VCC = ±5V
AV = –1
CL = 1.7pF
OUTPUT
OUTPUT
VCC = ±9V
AV = –1
CL = 1.7pF
Large-Signal
Pulse Response
Large-Signal
Pulse Response
VCC = ±9V
AV = –1
CL = 100pF
OUTPUT
OUTPUT
VCC = ±5V
AV = –1
CL = 100pF
Large-Signal
Pulse Response
Large-Signal
Pulse Response
VCC = ±5V
AV = –1
CL = 1000pF
OUTPUT
OUTPUT
VCC = ±9V
AV = –1
CL = 1000pF
MIC913
10
August 2000
MIC913
Micrel
Power Supply Bypassing
Regular supply bypassing techniques are recommended. A
10µF capacitor in parallel with a 0.1µF capacitor on both the
positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to
the op amp as possible and all capacitors should be low ESL
(equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal.
Thermal Considerations
The SOT-23-5 package, like all small packages, has a high
thermal resistance. It is important to ensure the IC does not
exceed the maximum operating junction (die) temperature of
85°C. The part can be operated up to the absolute maximum
temperature rating of 125°C, but between 85°C and 125°C
performance will degrade, in particular CMRR will reduce.
A MIC913 with no load, dissipates power equal to the quiescent supply current * supply voltage
Applications Information
The MIC913 is a high-speed, voltage-feedback operational
amplifier featuring very low supply current. The MIC913 is not
unity-gain stable, it requires a minimum gain of +2 or –1 to
ensure stability. The device is however stable even when
driving high capacitance loads.
Driving High Capacitance
The MIC913 is stable when driving any capacitance (see
“Typical Characteristics: Gain Bandwidth and Phase Margin
vs. Load Capacitance”) making it ideal for driving long coaxial
cables or other high-capacitance loads.
Phase margin remains constant as load capacitance is
increased. Most high-speed op amps are only able to drive
limited capacitance.
Note: increasing load capacitance does reduce the
speed of the device (see “Typical Characteristics: Gain Bandwidth and Phase Margin vs.
Load”). In applications where the load capacitance reduces the speed of the op amp to an
unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor
(<100Ω) in series with the output.
(
When a load is added, the additional power is dissipated in
the output stage of the op amp. The power dissipated in the
device is a function of supply voltage, output voltage and
output current.
Feedback Resistor Selection
Conventional op amp gain configurations and resistor selection apply, the MIC913 is NOT a current feedback device.
Resistor values in the range of 1k to 10k are recommended.
(
)
PD(output stage) = VV + − VOUT IOUT
Total Power Dissipation = PD(no load) + PD(output stage)
Layout Considerations
All high speed devices require careful PCB layout. The high
stability and high PSRR of the MIC913 make this op amp
easier to use than most, but the following guidelines should
be observed: Capacitance, particularly on the two inputs pins
will degrade performance; avoid large copper traces to the
inputs. Keep the output signal away from the inputs and use
a ground plane.
It is important to ensure adequate supply bypassing capacitors are located close to the device.
August 2000
)
PD(no load) = VV + − VV − IS
Ensure the total power dissipated in the device is no greater
than the thermal capacity of the package. The SOT23-5
package has a thermal resistance of 260°C/W.
Max . Allowable Power Dissipation =
11
TJ (max) − TA(max)
260W
MIC913
MIC913
Micrel
Package Information
1.90 (0.075) REF
0.95 (0.037) REF
1.75 (0.069)
1.50 (0.059)
3.00 (0.118)
2.60 (0.102)
DIMENSIONS:
MM (INCH)
1.30 (0.051)
0.90 (0.035)
3.02 (0.119)
2.80 (0.110)
0.20 (0.008)
0.09 (0.004)
10°
0°
0.15 (0.006)
0.00 (0.000)
0.50 (0.020)
0.35 (0.014)
0.60 (0.024)
0.10 (0.004)
SOT-23-5 (M5)
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2000 Micrel Incorporated
MIC913
12
August 2000