MIC913 Micrel MIC913 350MHz Low-Power SOT-23-5 Op Amp General Description Features The MIC913 is a high-speed, operational amplifier. It provides a gain-bandwidth product of 350MHz with a very low, 4.2mA supply current, and features the tiny SOT-23-5 package. Supply voltage range is from ±2.5V to ±9V, allowing the MIC913 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC913 requires a minimum gain of +2 or –1 but is stable driving any capacitative load and achieves excellent PSRR, making it much easier to use than most conventional highspeed devices. Low supply voltage, low power consumption, and small packing make the MIC913 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables. • • • • • • • 350MHz gain bandwidth product 4.2mA supply current SOT-23-5 package 500V/µs slew rate Drives any capacitive load Low distortion Stable with gain of +2 or –1 Applications • • • • • • Video Imaging Ultrasound Portable equipment Line drivers XDSL Ordering Information Pin Configuration IN+ 3 Part Number Junction Temp. Range Package MIC913BM5 –40°C to +85°C SOT-23-5 Functional Pinout V+ OUT 2 1 IN+ Part Identification 3 V+ OUT 2 1 A24 4 5 4 5 IN– V– IN– V– SOT-23-5 SOT-23-5 Pin Description Pin Number Pin Name Pin Function 1 OUT 2 V+ Positive Supply (Input) 3 IN+ Noninverting Input 4 IN– Inverting Input 5 V– Negative Supply (Input) Output: Amplifier Output Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com August 2000 1 MIC913 MIC913 Micrel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Voltage (VV+ – VV–) ........................................... 20V Differential Input Voltage (VIN+ – VIN–) .......... 4V, Note 3 Input Common-Mode Range (VIN+, VIN–) .......... VV+ to VV– Lead Temperature (soldering, 5 sec.) ....................... 260°C Storage Temperature (TS) ........................................ 150°C ESD Rating, Note 4 ................................................... 1.5kV Supply Voltage (VS) ....................................... ±2.5V to ±9V Junction Temperature (TJ) ......................... –40°C to +85°C Package Thermal Resistance ............................... 260°C/W Electrical Characteristics (±5V) VV+ = +5V, VV– = –5V, VCM = 0V, VOUT = 0V; RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted. Symbol Parameter VOS Typ Max Units Input Offset Voltage 1 16 mV VOS Input Offset Voltage Temperature Coefficient 4 IB Input Bias Current 5.5 9 15 µA µA IOS Input Offset Current 0.05 3 µA VCM Input Common-Mode Range CMRR > 60dB +3.25 V CMRR Common-Mode Rejection Ratio –2.0V < VCM < +2.0V 70 85 dB PSRR Power Supply Rejection Ratio ±5V < VS < ±9V 70 65 81 dB dB AVOL Large-Signal Voltage Gain RL = 2k, VOUT = ±2V 60 71 dB RL = 200Ω, VOUT = ±2V 60 71 dB +3.3 +3.0 3.5 V V VOUT Maximum Output Voltage Swing Condition Min positive, RL = 2kΩ –3.25 negative, RL = 2kΩ positive, RL = 200Ω –3.5 +3.0 +2.75 µV/°C –3.3 –3.0 3.2 negative, RL = 200Ω –2.8 V V V V –2.45 –2.2 V V GBW Gain-Bandwidth Product f = 80MHz, RL = 1kΩ 300 MHz BW –3dB Bandwidth AV = 2, RL = 150Ω 213 MHz AV = 4 or AV = –3, RL = 400Ω- 104 MHz RF = RG = 470Ω, AV = 2, VOUT = 2Vpp, f = 2MHz 0.01 % AV = 2, VOUT = 2Vpp, f = 2MHz, RL = 500Ω 0.05 % 350 V/µs source 72 mA sink 25 mA THD Total Harmonic Distortion SR Slew Rate IGND Short-Circuit Output Current IGND MIC913 Supply Current 4.1 2 4.9 5.4 mA mA August 2000 MIC913 Micrel Electrical Characteristics VV+ = +9V, VV– = –9V, VCM = 0V, VOUT = 0V; RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted Symbol Parameter VOS Condition Min Typ Max Units Input Offset Voltage 1 16 mV VOS Input Offset Voltage Temperature Coefficient 4 IB Input Bias Current 5.5 9 15 µA µA IOS Input Offset Current 0.05 3 µA VCM Input Common-Mode Range CMRR > 60dB +7.25 V CMRR Common-Mode Rejection Ratio –6.0V < VCM < 6.0V 70 88 dB AVOL Large-Signal Voltage Gain RL = 2kΩ, VOUT = ±6V 60 73 dB VOUT Maximum Output Voltage Swing positive, RL = 2kΩ +7.2 +6.8 +7.4 V V –7.25 negative, RL = 2kΩ –7.4 µV/°C –7.2 –6.8 V V GBW Gain-Bandwidth Product RL = 1kΩ, f = 80MHz 350 MHz BW –3dB Bandwidth AV = 2 or AV = –1, RL = 150Ω 240 MHz AV = 4 or AV = –3 140 MHz RF = RG = 470Ω, AV = 2, VOUT = 2Vpp, f = 2MHz 0.01 % AV = 2, VOUT = 2Vpp, f = 2MHz, RL = 500Ω 0.04 % 500 V/µs source 90 mA sink 32 mA THD Total Harmonic Distortion SR Slew Rate IGND Short-Circuit Output Current IGND Supply Current 4.2 5.0 5.5 mA mA Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to increase). Note 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. August 2000 3 MIC913 MIC913 Micrel Test Circuits VCC 10µF VCC 0.1µF 50Ω R2 BNC 5k Input 10µF 0.1µF 10k 10k 10k 2k 4 BNC MIC913 BNC 1 R1 5k Input 2 R7c 2k R7b 200Ω Output 3 5 2 0.1µF MIC913 1 BNC Output 3 5 R7a 100Ω 50Ω BNC 4 0.1µF R6 0.1µF 5k R3 200k Input 50Ω All resistors: 1% metal film CMRR vs. Frequency PSRR vs. Frequency 100pF 10pF R3 27k S1 S2 R5 20Ω R4 250Ω R2 R2 + R 5 + R4 VOUT = VERROR 1 + + R1 R7 10µF VEE R1 20Ω 10µF VEE All resistors 1% 0.1µF R5 5k VCC R2 4k 4 10µF 0.1µF 2 MIC913 1 3 5 BNC To Dynamic Analyzer 0.1µF R4 27k 10pF 10µF VEE Noise Measurement MIC913 4 August 2000 MIC913 Micrel Electrical Characteristics Supply Current vs. Temperature Supply Current vs. Supply Voltage 4.5 +25°C 3.5 -40°C 3.0 2 3 4 5 6 7 8 9 SUPPLY VOLTAGE (±V) 4.5 -0.5 VSUPPLY = ±9V -1.0 -1.5 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Offset Voltage vs. Common-Mode Voltage 6 VSUPPLY = ±9V VSUPPLY = ±5V 4 8 +85°C VSUPPLY = ±9V 6 4 2 -40°C 0 OFFSET VOLTGE (mV) OFFSET VOLTGE (mV) +25°C -2 -8 -6 -4 -2 0 2 4 6 8 COMMON-MODE VOLTAGE (V) Short-Circuit Current vs. Temperature Short-Circuit Current vs. Supply Voltage -20 VSUPPLY = ±9V 80 SOURCING CURRENT 70 65 VSUPPLY = ±5V 60 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) -25 -30 -35 -40°C +85°C -30 SINKING CURRENT August 2000 +25°C 3 4 5 6 7 8 9 SUPPLY VOLTAGE (±V) 10 OUTPUT VOLTAGE (V) -15 -35 2 VSUPPLY = ±9V -40°C 80 +25°C 60 10 9 8 7 6 5 VSUPPLY = ±9V +85°C 4 3 +25°C -40°C 2 SOURCING 1 CURRENT 0 0 20 40 60 80 100 OUTPUT CURRENT (mA) 5 +85°C 40 SOURCING CURRENT 20 2 Output Voltage vs. Output Current -10 -25 SINKING CURRENT -40 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Short-Circuit Current vs. Supply Voltage -20 100 VSUPPLY = ±5V OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) 90 75 10 VSUPPLY = ±5V 9 8 7 6 +85°C 5 4 3 2 -40°C 1 0 +25°C -1 -5 -4 -3 -2 -1 0 1 2 3 4 5 COMMON-MODE VOLTAGE (V) Short-Circuit Current vs. Temperature 3 4 5 6 7 8 9 SUPPLY VOLTAGE (±V) 10 Output Voltage vs. Output Current OUTPUT VOLTAGE (V) BIAS CURRENT (µA) 0.0 10 8 VSUPPLY = ±5V 0.5 Offset Voltage vs. Common-Mode Voltage 2 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) OUTPUT CURRENT (mA) VSUPPLY = ±5V 3.5 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 10 10 OUTPUT CURRENT (mA) VSUPPLY = ±9V 4.0 Bias Current vs. Temperature 85 1.0 OFFSET VOLTAGE (mV) SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) +85°C 4.0 Offset Voltage vs. Temperature 5.0 5.0 0 -1 -2 -3 -4 -5 -40°C SINKING CURRENT +85°C -6 +25°C -7 -8 -9 VSUPPLY = ±9V -10 -35 -30 -25 -20 -15 -10 -5 OUTPUT CURRENT (mA) 0 MIC913 MIC913 Micrel VSUPPLY = ±9V 30 20 Gain Bandwidth 10 GAIN BANDWIDTH (MHz) 40 40 0 0 225 PHASE MARGIN (°) GAIN BANDWIDTH (MHz) Phase Margin 80 -25 -20 -15 -10 -5 OUTPUT CURRENT (mA) 0 0 0 200 175 150 120 15 100 10 Phase Margin 0 3 4 5 6 7 8 9 SUPPLY VOLTAGE (±V) 10 0 200 400 600 800 1000 CAPACITIVE LOAD (pF) Common-Mode Rejection Ratio 20 5 125 100 2 0 200 400 600 800 1000 CAPACITIVE LOAD (pF) Gain Bandwidth Gain Bandwidth 40 Gain Bandwidth and Phase Margin vs. Supply Voltage 50 120 VSUPPLY = ±5V 20 80 60 40 VSUPPLY = ±5V 20 -5 10 0 1x107 Gain Bandwidth and Phase Margin vs. Load 160 -3.5 -4.0 -30 20 40 60 80 OUTPUT CURRENT (mA) 200 -3.0 30 VSUPPLY = ±5V 80 1x102 0 0 SOURCING CURRENT +85°C CMRR (dB) 0.5 -2.5 120 40 1x106 1.0 +25°C -2.0 Phase Margin 160 1x105 1.5 -1.5 PHASE MARGIN (°) 2.0 +25°C -40°C 1x104 2.5 -40°C -1.0 50 1x103 3.0 200 SINKING CURRENT -0.5 GAIN BANDWIDTH (MHz) VSUPPLY = ±5V OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) +85°C PHASE MARGIN (°) 0 4.0 3.5 Gain Bandwidth and Phase Margin vs. Load Output Voltage vs. Output Current Output Voltage vs. Output Current FREQUENCY (Hz) Negative Power Supply Rejection Ratio 80 80 100 VSUPPLY = ±5V 80 1x102 0 1x107 0 1x106 20 1x107 1x106 1x105 1x104 1x103 1x102 1x107 1x107 VSUPPLY = ±9V 20 1x105 Closed-Loop Frequency Response 40 1x106 VSUPPLY = ±9V 1x105 40 1x104 FREQUENCY (Hz) 60 1x104 60 1x103 –PSRR (dB) 80 1x103 0 Negative Power Supply Rejection Ratio 100 1x102 40 VSUPPLY = ±9V GAIN (dB) Positive Power Supply Rejection Ratio +PSRR (dB) 60 FREQUENCY (Hz) 100 FREQUENCY (Hz) 80 20 1x106 1x102 1x107 1x106 0 1x105 0 1x104 20 1x103 20 1x105 VSUPPLY = ±5V 40 1x104 40 60 1x103 60 CMRR (dB) 120 –PSRR (dB) 100 FREQUENCY (Hz) MIC913 Common-Mode Rejection Ratio 100 1x102 +PSRR (dB) Positive Power Supply Rejection Ratio 50 40 30 20 10 0 -10 -20 -30 -40 -50 1 RL = 150Ω GAIN = -1 ±9V ±2.5V ±5V 10 100 FREQUENCY (MHz) 500 FREQUENCY (Hz) 6 August 2000 MIC913 Micrel Closed-Loop Frequency Response -10 GAIN No Load RL = 100Ω -30 -40 VSUPPLY = ±9V -50 1 10 100 FREQUENCY (MHz) -360 400 50 40 100pF 30 50pF 20 0pF 10 0 1000pF 471pF -10 -20 200pF -30 VSUPPLY = ±9V -40 R = 1k L -50 1 10 100 500 FREQUENCY (MHz) -200 -250 -300 500 50 VSUPPLY = ±5V 40 RL = 470Ω 30 GAIN = -1 20 10 0 -10 C = 1000pF L -20 CL = 470pF -30 CL = 100pF -40 CL = 1.7pF -50 1 10 100 500 FREQUENCY (MHz) Closed-Loop Frequency Response Test Circuit FET probe SLEW RATE (V/µs) 0.1µF -90 -270 -20 1 50 40 30 20 10 0 -10 -20 10 100 FREQUENCY (MHz) Open-Loop Frequency Response PHASE GAIN No Load RL = 100Ω -30 -40 VSUPPLY = ±5V -50 1 10 100 FREQUENCY (MHz) -360 400 200 150 100 50 0 -50 -100 -150 -200 -250 -300 500 Closed-Loop Frequency Response 50 VSUPPLY = ±9V 40 RL = 470Ω 30 GAIN = -1 20 10 0 -10 CL = 1000pF -20 CL = 470pF -30 CL = 100pF -40 CL = 1.7pF -50 1 10 100 500 FREQUENCY (MHz) Negative Slew Rate 400 10µF 0 -180 -10 Positive Slew Rate VCC MIC913 GAIN 0 VSUPPLY = ±9V AV = 4 Closed-Loop Frequency Response GAIN (dB) PHASE 200 150 100 50 0 -50 -100 -150 GAIN (dB) 50 40 100pF 30 50pF 20 0pF 10 0 1000pF 471pF -10 -20 200pF -30 VSUPPLY = ±5V -40 R = 1k L -50 1 10 100 500 FREQUENCY (MHz) 50 40 30 20 10 0 -10 -20 10 100 FREQUENCY (MHz) 10 Open-Loop Frequency Response PHASE (°) GAIN (dB) GAIN (dB) Open-Loop Frequency Response Open-Loop Frequency Response -180 -270 -20 1 -360 400 10 100 FREQUENCY (MHz) 0 VSUPPLY = ±5V AV = 4 -10 -270 -20 1 -90 GAIN PHASE PHASE (°) -180 20 GAIN (dB) 0 VSUPPLY = ±2.5V AV = 4 10 0 90 PHASE (°) -90 GAIN PHASE GAIN (dB) 20 30 400 300 VCC = ±5V 200 100 SLEW RATE (V/µs) 10 0 90 GAIN (dB) PHASE 30 GAIN (dB) GAIN (dB) 20 90 PHASE (°) 30 Closed-Loop Frequency Response PHASE (°) Closed-Loop Frequency Response 300 VCC = ±5V 200 100 CL RF 0 0 50Ω 200 400 600 800 1000 LOAD CAPACITANCE (pF) 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) 10µF VEE August 2000 7 MIC913 MIC913 Micrel Negative Slew Rate 600 600 500 500 400 SLEW RATE (V/µs) SLEW RATE (V/µs) Positive Slew Rate VCC = ±9V 300 200 100 0 0 MIC913 400 VCC = ±9V 300 200 100 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) 8 200 400 600 800 1000 LOAD CAPACITANCE (pF) August 2000 MIC913 Micrel Functional Characteristics INPUT Small-Signal Pulse Response INPUT Small-Signal Pulse Response VCC = ±5V AV = 2 CL = 1.7pF R1 = R2 = 470Ω OUTPUT OUTPUT VCC = ±9V AV = 1 CL = 1.7pF R1 = R2 = 470Ω INPUT Small-Signal Pulse Response INPUT Small-Signal Pulse Response VCC = ±5V AV = 2 CL = 100pF R1 = R2 = 470Ω OUTPUT OUTPUT VCC = ±9V AV = 1 CL = 100pF R1 = R2 = 470Ω INPUT Small-Signal Pulse Response INPUT Small-Signal Pulse Response VCC = ±9V AV = 1 CL = 1000pF R1 = R2 = 470Ω August 2000 OUTPUT OUTPUT VCC = ±5V AV = 1 CL = 1000pF R1 = R2 = 470Ω 9 MIC913 MIC913 Micrel Large-Signal Pulse Response Large-Signal Pulse Response VCC = ±5V AV = –1 CL = 1.7pF OUTPUT OUTPUT VCC = ±9V AV = –1 CL = 1.7pF Large-Signal Pulse Response Large-Signal Pulse Response VCC = ±9V AV = –1 CL = 100pF OUTPUT OUTPUT VCC = ±5V AV = –1 CL = 100pF Large-Signal Pulse Response Large-Signal Pulse Response VCC = ±5V AV = –1 CL = 1000pF OUTPUT OUTPUT VCC = ±9V AV = –1 CL = 1000pF MIC913 10 August 2000 MIC913 Micrel Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Thermal Considerations The SOT-23-5 package, like all small packages, has a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85°C. The part can be operated up to the absolute maximum temperature rating of 125°C, but between 85°C and 125°C performance will degrade, in particular CMRR will reduce. A MIC913 with no load, dissipates power equal to the quiescent supply current * supply voltage Applications Information The MIC913 is a high-speed, voltage-feedback operational amplifier featuring very low supply current. The MIC913 is not unity-gain stable, it requires a minimum gain of +2 or –1 to ensure stability. The device is however stable even when driving high capacitance loads. Driving High Capacitance The MIC913 is stable when driving any capacitance (see “Typical Characteristics: Gain Bandwidth and Phase Margin vs. Load Capacitance”) making it ideal for driving long coaxial cables or other high-capacitance loads. Phase margin remains constant as load capacitance is increased. Most high-speed op amps are only able to drive limited capacitance. Note: increasing load capacitance does reduce the speed of the device (see “Typical Characteristics: Gain Bandwidth and Phase Margin vs. Load”). In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (<100Ω) in series with the output. ( When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current. Feedback Resistor Selection Conventional op amp gain configurations and resistor selection apply, the MIC913 is NOT a current feedback device. Resistor values in the range of 1k to 10k are recommended. ( ) PD(output stage) = VV + − VOUT IOUT Total Power Dissipation = PD(no load) + PD(output stage) Layout Considerations All high speed devices require careful PCB layout. The high stability and high PSRR of the MIC913 make this op amp easier to use than most, but the following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane. It is important to ensure adequate supply bypassing capacitors are located close to the device. August 2000 ) PD(no load) = VV + − VV − IS Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The SOT23-5 package has a thermal resistance of 260°C/W. Max . Allowable Power Dissipation = 11 TJ (max) − TA(max) 260W MIC913 MIC913 Micrel Package Information 1.90 (0.075) REF 0.95 (0.037) REF 1.75 (0.069) 1.50 (0.059) 3.00 (0.118) 2.60 (0.102) DIMENSIONS: MM (INCH) 1.30 (0.051) 0.90 (0.035) 3.02 (0.119) 2.80 (0.110) 0.20 (0.008) 0.09 (0.004) 10° 0° 0.15 (0.006) 0.00 (0.000) 0.50 (0.020) 0.35 (0.014) 0.60 (0.024) 0.10 (0.004) SOT-23-5 (M5) MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 2000 Micrel Incorporated MIC913 12 August 2000