MIC916 Micrel MIC916 Triple 135MHz Low-Power Op Amp General Description Features The MIC916 is a high-speed, unity-gain stable operational amplifier. It provides a gain-bandwidth product of 135MHz with a very low, 2.4mA supply current per op amp. Supply voltage range is from ±2.5V to ±9V, allowing the MIC916 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC916 is stable driving any capacitative load and achieves excellent PSRR, making it much easier to use than most conventional high-speed devices. Low supply voltage , low power consumption, and small packing make the MIC916 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables. • • • • • 135MHz gain bandwidth product 2.4mA supply current per op amp QSOP-16 package 270V/µs slew rate drives any capacitive load Applications • • • • Video Imaging Ultrasound Portable equipment Ordering Information Part Number Junction Temp. Range Package MIC916BQS –40°C to +85°C QSOP-16 Pin Configuration INA- 1 16 V–(A)* V+(A) 2 15 OUTA INA+ 3 14 V–(B)* INB- 4 13 OUTB INB+ 5 12 V+(B) INC- 6 11 V–(C)* NC 7 10 OUTC INC+ 8 9 V+(C) QSOP-16 * V– pins must be externally shorted together September 2000 1 MIC916 MIC916 Micrel Pin Description Pin Number Pin Name 1 INA– Inverting Input A 2 V+(A) Positive Supply Input (Op Amp A) 3 INA+ Noninverting Input A 4 INB– Inverting Input B 5 INB+ Noninverting Input B 6 INC– Inverting Input C 7 NC 8 INC+ Noninverting Input C 9 V+(C) Positive Supply Input (Op Amp C) 10 OUTC Output C 11 V–(C) Negative Supply Input (Op Amp C) 12 V+(B) Positive Supply Input(Op Amp B) 13 OUTB Output B 14 V–(B) Negative Supply Input (Op Amp B) 15 OUTA Output A 16 V–(A) Negative Supply Input (Op Amp A) MIC916 Pin Function Not Connected 2 September 2000 MIC916 Micrel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Voltage (VV+ – VV–) ........................................... 20V Differentail Input Voltage (VIN+ – VIN–) .......... 8V, Note 4 Input Common-Mode Range (VIN+, VIN–) .......... VV+ to VV– Lead Temperature (soldering, 5 sec.) ....................... 260°C Storage Temperature (TS) ........................................ 150°C ESD Rating, Note 3 ................................................... 1.5kV Supply Voltage (VS) ....................................... ±2.5V to ±9V Junction Temperature (TJ) ......................... –40°C to +85°C Package Thermal Resistance ............................... 260°C/W Electrical Characteristics (±5V) VV+ = +5V, VV– = –5V, VCM = 0V, VOUT = 0V; RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted. Symbol Parameter VOS Typ Max Units Input Offset Voltage 1 15 mV VOS Input Offset Voltage Temperature Coefficient 4 IB Input Bias Current 3.5 5.5 9 µA µA IOS Input Offset Current 0.05 3 µA VCM Input Common-Mode Range CMRR > 60dB +3.25 V CMRR Common-Mode Rejection Ratio –2.5V < VCM < +2.5V 70 60 90 dB dB PSRR Power Supply Rejection Ratio ±5V < VS < ±9V 74 70 81 dB dB AVOL Large-Signal Voltage Gain RL = 2k, VOUT = ±2V 60 71 dB RL = 200Ω, VOUT = ±2V 60 71 dB +3.3 +3.0 3.5 V V VOUT Maximum Output Voltage Swing Condition Min positive, RL = 2kΩ –3.25 negative, RL = 2kΩ positive, RL = 200Ω –3.5 +3.0 +2.75 µV/°C –3.3 –3.0 3.2 negative, RL = 200Ω –2.8 V V V V –2.45 –2.2 V V GBW Gain-Bandwidth Product RL = 1kΩ 125 MHz BW –3dB Bandwidth AV = 1, RL = 100Ω 192 MHz SR Slew Rate 230 V/µs f = 1MHz, between op amp A and B or B and C 56 dB f = 1 MHz, between op amp A and C 72 dB source 72 mA sink 25 mA Crosstalk IGND IGND Short-Circuit Output Current Supply Current per Op Amp 2.4 3.5 4.1 mA mA Electrical Characteristics VV+ = +9V, VV– = –9V, VCM = 0V, VOUT = 0V; RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted Symbol Parameter VOS VOS Typ Max Units Input Offset Voltage 1 15 mV Input Offset Voltage Temperature Coefficient 4 September 2000 Condition Min 3 µV/°C MIC916 MIC916 Micrel Symbol Parameter IB Condition Typ Max Units Input Bias Current 3.5 5.5 9 µA µA IOS Input Offset Current 0.05 3 µA VCM Input Common-Mode Range CMRR > 60dB +7.25 V CMRR Common-Mode Rejection Ratio –6.5V < VCM < 6.5V 70 60 98 dB dB AVOL Large-Signal Voltage Gain RL = 2kΩ, VOUT = ±6V 60 73 dB VOUT Maximum Output Voltage Swing positive, RL = 2kΩ +7.2 +6.8 +7.4 V V GBW Gain-Bandwidth Product SR Slew Rate Crosstalk IGND Short-Circuit Output Current IGND Min –7.25 negative, RL = 2kΩ –7.4 RL = 1kΩ 135 MHz 270 V/µs f = 1MHz, between op amp A and B or B and C 56 dB f = 1 MHz, between op amp A and C 72 dB source 90 mA sink 32 mA Supply Current per Op Amp –7.2 –6.8 2.5 V V 3.7 4.3 mA mA Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Note 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to increase. Test Circuits VCC R2 VCC 5k 10µF BNC 50Ω Input 0.1µF BNC R1 5k 0.1µF BNC R3 200k Output All resistors 1% 50Ω 0.1µF All resistors: 1% metal film R5 5k 10µF VEE R4 250Ω R2 R2 + R 5 + R4 VOUT = VERROR 1 + + R1 R7 Input 50Ω 0.1µF 5k BNC 10k Output R6 2k 10k BNC 0.1µF R7c 2k R7b 200Ω R7a 100Ω Input 10k 10µF 0.1µF CMRR vs. Frequency 10µF VEE PSRR vs. Frequency MIC916 4 September 2000 MIC916 Micrel 100pF 10pF R1 20Ω VCC R2 4k 10µF R3 27k 0.1µF BNC S1 S2 R5 20Ω To Dynamic Analyzer 0.1µF R4 27k 10pF 10µF VEE Noise Measurement September 2000 5 MIC916 MIC916 Micrel Electrical Characteristics Supply Current vs. Temperature Supply Current vs. Supply Voltage SUPPLY CURRENT (mA) +25°C 2.5 2.0 2 -40°C 3 4 5 6 7 8 9 SUPPLY VOLTAGE (±V) 3.5 3.0 2.0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 10 2.0 1.0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Offset Voltage vs. Common-Mode Voltage 5 OFFSET VOLTGE (mV) 6 4 VSUPPLY = ±5V 3 VSUPPLY = ±9V VSUPPLY = ±9V 1.5 Offset Voltage vs. Common-Mode Voltage 5 BIAS CURRENT (µA) VSUPPLY = ±5V 2.5 Bias Current vs. Temperature 2 VSUPPLY = ±9V VSUPPLY = ±5V VSUPPLY = ±9V 5 VSUPPLY = ±5V OFFSET VOLTGE (mV) SUPPLY CURRENT (mA) +85°C 2.5 OFFSET VOLTAGE (mV) 4.0 3.5 3.0 Offset Voltage vs. Temperature 4 +85°C 3 -40°C 2 1 4 3 2 1 +25°C 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 COMMON-MODE VOLTAGE (V) Short-Circuit Current vs. Temperature Short-Circuit Current vs. Temperature Short-Circuit Current vs. Supply Voltage -20 85 80 75 SOURCING CURRENT 70 65 VSUPPLY = ±5V 60 -25 VSUPPLY = ±5V -30 SINKING CURRENT -35 VSUPPLY = ±9V -40 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Short-Circuit Current vs. Supply Voltage OUTPUT VOLTAGE (V) 10 9 -20 -40°C -25 +85°C -30 -35 SINKING CURRENT +25°C 3 4 5 6 7 8 9 SUPPLY VOLTAGE (±V) 80 10 VSUPPLY = ±9V 8 7 6 5 +25°C 4 3 2 1 0 0 -40°C SOURCING CURRENT +85°C 20 40 60 80 100 OUTPUT CURRENT (mA) 6 -40°C +25°C 60 +85°C 40 SOURCING CURRENT 20 2 Output Voltage vs. Output Current -15 -40 2 100 OUTPUT CURRENT (mA) VSUPPLY = ±9V 3 4 5 6 7 8 9 SUPPLY VOLTAGE (±V) 10 Output Voltage vs. Output Current 0 -1 OUTPUT VOLTAGE (V) 90 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) +25°C 0 -8 -6 -4 -2 0 2 4 6 8 COMMON-MODE VOLTAGE (V) 55 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) OUTPUT CURRENT (mA) -40°C 1 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 95 MIC916 +85°C -40°C -2 -3 -4 -5 SINKING CURRENT +85°C +25°C -6 -7 -8 -9 -10 -40 VSUPPLY = ±9V -30 -20 -10 OUTPUT CURRENT (mA) 0 September 2000 MIC916 Micrel +85°C -25 -20 -15 -10 -5 OUTPUT CURRENT (mA) 40 50 38 25 36 0 0 0 125 44 42 VSUPPLY = ±9V 75 40 50 38 25 36 GAIN BANDWIDTH (MHz) 46 54 120 125 52 100 100 50 75 48 50 46 25 44 20 42 10 0 3 4 5 6 7 8 9 SUPPLY VOLTAGE (±V) 34 200 400 600 800 1000 CAPACITIVE LOAD (pF) Common-Mode Rejection Ratio 150 0 2 34 200 400 600 800 1000 CAPACITIVE LOAD (pF) 42 75 Gain Bandwidth and Phase Margin vs. Supply Voltage 150 100 VSUPPLY = ±5V VSUPPLY = ±5V 80 60 40 VSUPPLY = ±9V 1x107 -4.5 -30 20 40 60 80 OUTPUT CURRENT (mA) PHASE MARGIN (°) GAIN BANDWIDTH (MHz) -3.5 -4.0 Gain Bandwidth and Phase Margin vs. Load 0 0 -3.0 100 1x102 0 0 SOURCING CURRENT +25°C 44 1x106 -40°C -2.5 CMRR (dB) +85°C 1.0 -2.0 PHASE MARGIN (°) 1.5 -1.5 125 1x105 2.0 -40°C 46 1x104 +25°C 2.5 -1.0 150 1x103 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.5 3.0 SINKING CURRENT -0.5 GAIN BANDWIDTH (MHz) VSUPPLY = ±5V 4.0 PHASE MARGIN (°) 0.0 4.5 0.5 Gain Bandwidth and Phase Margin vs. Load Output Voltage vs. Output Current Output Voltage vs. Output Current FREQUENCY (Hz) 40 VSUPPLY = ±9V VSUPPLY = ±9V 1x102 1x107 1x106 1x105 1x104 1x102 FREQUENCY (Hz) 40 0 1x103 1x107 1x106 1x105 1x104 0 60 20 20 1x103 1x102 0 60 1x107 20 80 1x106 VSUPPLY = ±5V 80 1x105 60 100 1x104 80 +PSRR (dB) CMRR (dB) 100 100 –PSRR (dB) 120 40 Negative Power Supply Rejection Ratio Positive Power Supply Rejection Ratio 1x103 Common-Mode Rejection Ratio FREQUENCY (Hz) FREQUENCY (Hz) 100 VSUPPLY = ±5V 20 40 VSUPPLY = ±5V -50 -60 -70 -80 -90 7 1x107 1x106 1x105 1x104 FREQUENCY (Hz) September 2000 -40 -100 1x103 0 1x102 FREQUENCY (Hz) 1x107 1x106 1x105 1x104 1x103 20 -30 1x108 40 60 -20 1x107 –PSRR (dB) 80 60 1x102 -10 CROSS TALK (dB) 80 +PSRR (dB) 0 1x106 100 0 Distant Channel Cross Talk Negative Power Supply Rejection Ratio 1x105 Positive Power Supply Rejection Ratio FREQUENCY (Hz) MIC916 MIC916 Micrel Closed-Loop Frequency Response Test Circuit Adjacent Channel Cross Talk VCC Closed-Loop Frequency Response 0 GAIN (dB) -40 -50 -60 -70 10 0 -10 -20 -30 -40 -90 -50 1 10µF VEE 1x108 -80 1x105 50Ω 30 20 -30 1x107 CL RF -20 1x106 FET probe MIC916 CROSS TALK (dB) 0.1µF 0p 50 40 -10 1000pF 500pF 200pF 100pF 50pF 10µF VCC = ±2.5V 10 100 200 FREQUENCY (MHz) FREQUENCY (Hz) -30 -40 -135 -180 VCC = ±5V -10 -20 -50 1 -225 10 100 200 FREQUENCY (MHz) Voltage Noise SLEW RATE (V/µs) 100 80 60 40 No Load 45 0 -45 -90 -135 -180 VCC = ±9V -225 10 100 200 FREQUENCY (MHz) Negative Slew Rate 250 VCC = ±5V 200 150 100 50 0 0 1x105 1x104 1x103 20 1x101 -50 1 10 100 200 FREQUENCY (MHz) 250 1x102 nV Hz NOISE VOLTAGE -30 -40 VCC = ±5V 135 90 -10 -20 Positive Slew Rate 120 0 10 0 225 180 PHASE (°) -45 -90 10 0 RL=100Ω 30 20 SLEW RATE (V/µs) -50 1 30 20 45 0 No Load -10 -20 -30 -40 135 90 50 40 GAIN (dB) 10 0 50 40 Open-Loop Frequency Response 0p GAIN (dB) 30 20 225 180 GAIN (dB) RL=100Ω PHASE (°) 50 40 Closed-Loop Frequency Response 1000pF 500pF 200pF 100pF 50pF Open-Loop Frequency Response 200 150 100 50 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) VCC = ±5V 200 400 600 800 1000 LOAD CAPACITANCE (pF) FREQUENCY (Hz) Current Noise Positive Slew Rate 2 1 200 150 100 1x105 1x104 50 1x103 1x101 VCC = ±9V 0 0 250 SLEW RATE (V/µs) SLEW RATE (V/µs) 3 1x102 NOISE CURRENT pA Hz 300 250 4 0 Negative Slew Rate 300 5 VCC = ±9V 200 150 100 50 200 400 600 800 1000 LOAD CAPACITANCE (pF) 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) FREQUENCY (Hz) MIC916 8 September 2000 MIC916 Micrel INPUT Small-Signal Pulse Response INPUT Small-Signal Pulse Response Small-Signal Pulse Response INPUT Small-Signal Pulse Response VCC = ±5V AV = 1 CL = 1000pF RL = 10MΩ OUTPUT VCC = ±9V AV = 1 CL = 1000pF RL = 10MΩ OUTPUT INPUT VCC = ±5V AV = 1 CL = 100pF RL = 10MΩ OUTPUT VCC = ±9V AV = 1 CL = 100pF RL = 10MΩ OUTPUT INPUT Small-Signal Pulse Response September 2000 VCC = ±5V AV = 1 CL = 1.7pF RL = 10MΩ OUTPUT VCC = ±9V AV = 1 CL = 1.7pF RL = 10MΩ OUTPUT INPUT Small-Signal Pulse Response 9 MIC916 MIC916 Micrel Large-Signal Pulse Response Large-Signal Pulse Response VCC = ±5V AV = 1 CL = 1.7pF OUTPUT OUTPUT VCC = ±9V AV = 1 CL = 1.7pF ∆V = 5.64V ∆t = 21ns Large-Signal Pulse Response VCC = ±5V AV = 1 CL = 100pF ∆V = 5.84V ∆t = 22.5ns OUTPUT OUTPUT Large-Signal Pulse Response ∆V = 5.68V ∆t = 24.5ns VCC = ±9V AV = 1 CL = 100pF Large-Signal Pulse Response ∆V = 5.84V ∆t = 26ns Large-Signal Pulse Response ∆V = 5.88V ∆t = 70ns OUTPUT OUTPUT VCC = ±5V AV = 1 CL = 1000pF VCC = ±9V AV = 1 CL = 1000pF MIC916 10 ∆V = 5.48V ∆t = 95ns September 2000 MIC916 Micrel Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. All V– pins must be externally shorted together. Thermal Considerations It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85°C. The part can be operated up to the absolute maximum temperature rating of 125°C, but between 85°C and 125°C performance will degrade, in particular CMRR will reduce. A MIC916 with no load, dissipates power equal to the quiescent supply current * supply voltage Applications Information The MIC916 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable and capable of driving high capacitance loads. Driving High Capacitance The MIC916 is stable when driving any capacitance (see “Typical Characteristics: Gain Bandwidth and Phase Margin vs. Load Capacitance”) making it ideal for driving long coaxial cables or other high-capacitance loads. Phase margin remains constant as load capacitance is increased. Most high-speed op amps are only able to drive limited capacitance. Note: increasing load capacitance does reduce the speed of the device (see “Typical Characteristics: Gain Bandwidth and Phase Margin vs. Load”). In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (<100Ω) in series with the output. Feedback Resistor Selection Conventional op amp gain configurations and resistor selection apply, the MIC916 is NOT a current feedback device. Resistor values in the range of 1k to 10k are recommended. Layout Considerations All high speed devices require careful PCB layout. The high stability and high PSRR of the MIC916 make this op amp easier to use than most, but the following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane. It is important to ensure adequate supply bypassing capacitors are located close to the device. September 2000 ( ) PD(no load) = VV + − VV − IS When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current. ( ) PD(output stage) = VV + − VOUT IOUT Total Power Dissipation = PD(no load) + PD(output stage) Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The QSOP-16 package has a thermal resistance of 260°C/W. Max . Allowable Power Dissipation = 11 TJ (max) − TA(max) TBD W MIC916 MIC916 Micrel Package Information PIN 1 DIMENSIONS: INCHES (MM) 0.157 (3.99) 0.150 (3.81) 0.009 (0.2286) REF 0.025 (0.635) BSC 0.0098 (0.249) 0.0040 (0.102) SEATING 0.0688 (1.748) PLANE 0.0532 (1.351) 0.012 (0.30) 0.008 (0.20) 0.196 (4.98) 0.189 (4.80) 0.0098 (0.249) 0.0075 (0.190) 45° 8° 0° 0.050 (1.27) 0.016 (0.40) 0.2284 (5.801) 0.2240 (5.690) QSOP-16 MIC916 12 September 2000 MIC916 Micrel MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB USA http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 2000 Micrel Incorporated September 2000 13 MIC916