MICREL MIC916BQS

MIC916
Micrel
MIC916
Triple 135MHz Low-Power Op Amp
General Description
Features
The MIC916 is a high-speed, unity-gain stable operational
amplifier. It provides a gain-bandwidth product of 135MHz
with a very low, 2.4mA supply current per op amp.
Supply voltage range is from ±2.5V to ±9V, allowing the
MIC916 to be used in low-voltage circuits or applications
requiring large dynamic range.
The MIC916 is stable driving any capacitative load and
achieves excellent PSRR, making it much easier to use than
most conventional high-speed devices. Low supply voltage ,
low power consumption, and small packing make the MIC916
ideal for portable equipment. The ability to drive capacitative
loads also makes it possible to drive long coaxial cables.
•
•
•
•
•
135MHz gain bandwidth product
2.4mA supply current per op amp
QSOP-16 package
270V/µs slew rate
drives any capacitive load
Applications
•
•
•
•
Video
Imaging
Ultrasound
Portable equipment
Ordering Information
Part Number
Junction Temp. Range
Package
MIC916BQS
–40°C to +85°C
QSOP-16
Pin Configuration
INA-
1
16
V–(A)*
V+(A)
2
15
OUTA
INA+
3
14
V–(B)*
INB-
4
13
OUTB
INB+
5
12
V+(B)
INC-
6
11
V–(C)*
NC
7
10
OUTC
INC+
8
9
V+(C)
QSOP-16
* V– pins must be externally shorted together
September 2000
1
MIC916
MIC916
Micrel
Pin Description
Pin Number
Pin Name
1
INA–
Inverting Input A
2
V+(A)
Positive Supply Input (Op Amp A)
3
INA+
Noninverting Input A
4
INB–
Inverting Input B
5
INB+
Noninverting Input B
6
INC–
Inverting Input C
7
NC
8
INC+
Noninverting Input C
9
V+(C)
Positive Supply Input (Op Amp C)
10
OUTC
Output C
11
V–(C)
Negative Supply Input (Op Amp C)
12
V+(B)
Positive Supply Input(Op Amp B)
13
OUTB
Output B
14
V–(B)
Negative Supply Input (Op Amp B)
15
OUTA
Output A
16
V–(A)
Negative Supply Input (Op Amp A)
MIC916
Pin Function
Not Connected
2
September 2000
MIC916
Micrel
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Supply Voltage (VV+ – VV–) ........................................... 20V
Differentail Input Voltage (VIN+ – VIN–) .......... 8V, Note 4
Input Common-Mode Range (VIN+, VIN–) .......... VV+ to VV–
Lead Temperature (soldering, 5 sec.) ....................... 260°C
Storage Temperature (TS) ........................................ 150°C
ESD Rating, Note 3 ................................................... 1.5kV
Supply Voltage (VS) ....................................... ±2.5V to ±9V
Junction Temperature (TJ) ......................... –40°C to +85°C
Package Thermal Resistance ............................... 260°C/W
Electrical Characteristics (±5V)
VV+ = +5V, VV– = –5V, VCM = 0V, VOUT = 0V; RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted.
Symbol
Parameter
VOS
Typ
Max
Units
Input Offset Voltage
1
15
mV
VOS
Input Offset Voltage
Temperature Coefficient
4
IB
Input Bias Current
3.5
5.5
9
µA
µA
IOS
Input Offset Current
0.05
3
µA
VCM
Input Common-Mode Range
CMRR > 60dB
+3.25
V
CMRR
Common-Mode Rejection Ratio
–2.5V < VCM < +2.5V
70
60
90
dB
dB
PSRR
Power Supply Rejection Ratio
±5V < VS < ±9V
74
70
81
dB
dB
AVOL
Large-Signal Voltage Gain
RL = 2k, VOUT = ±2V
60
71
dB
RL = 200Ω, VOUT = ±2V
60
71
dB
+3.3
+3.0
3.5
V
V
VOUT
Maximum Output Voltage Swing
Condition
Min
positive, RL = 2kΩ
–3.25
negative, RL = 2kΩ
positive, RL = 200Ω
–3.5
+3.0
+2.75
µV/°C
–3.3
–3.0
3.2
negative, RL = 200Ω
–2.8
V
V
V
V
–2.45
–2.2
V
V
GBW
Gain-Bandwidth Product
RL = 1kΩ
125
MHz
BW
–3dB Bandwidth
AV = 1, RL = 100Ω
192
MHz
SR
Slew Rate
230
V/µs
f = 1MHz, between op amp A and B or B and C
56
dB
f = 1 MHz, between op amp A and C
72
dB
source
72
mA
sink
25
mA
Crosstalk
IGND
IGND
Short-Circuit Output Current
Supply Current per Op Amp
2.4
3.5
4.1
mA
mA
Electrical Characteristics
VV+ = +9V, VV– = –9V, VCM = 0V, VOUT = 0V; RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
Symbol
Parameter
VOS
VOS
Typ
Max
Units
Input Offset Voltage
1
15
mV
Input Offset Voltage
Temperature Coefficient
4
September 2000
Condition
Min
3
µV/°C
MIC916
MIC916
Micrel
Symbol
Parameter
IB
Condition
Typ
Max
Units
Input Bias Current
3.5
5.5
9
µA
µA
IOS
Input Offset Current
0.05
3
µA
VCM
Input Common-Mode Range
CMRR > 60dB
+7.25
V
CMRR
Common-Mode Rejection Ratio
–6.5V < VCM < 6.5V
70
60
98
dB
dB
AVOL
Large-Signal Voltage Gain
RL = 2kΩ, VOUT = ±6V
60
73
dB
VOUT
Maximum Output Voltage Swing
positive, RL = 2kΩ
+7.2
+6.8
+7.4
V
V
GBW
Gain-Bandwidth Product
SR
Slew Rate
Crosstalk
IGND
Short-Circuit Output Current
IGND
Min
–7.25
negative, RL = 2kΩ
–7.4
RL = 1kΩ
135
MHz
270
V/µs
f = 1MHz, between op amp A and B or B and C
56
dB
f = 1 MHz, between op amp A and C
72
dB
source
90
mA
sink
32
mA
Supply Current per Op Amp
–7.2
–6.8
2.5
V
V
3.7
4.3
mA
mA
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
Note 4.
Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to increase.
Test Circuits
VCC
R2
VCC
5k
10µF
BNC
50Ω
Input
0.1µF
BNC
R1 5k
0.1µF
BNC
R3
200k
Output
All resistors 1%
50Ω
0.1µF
All resistors:
1% metal film
R5
5k
10µF
VEE
R4
250Ω
 R2 R2 + R 5 + R4 
VOUT = VERROR 1 +
+

 R1

R7
Input
50Ω
0.1µF
5k
BNC
10k
Output
R6
2k
10k
BNC
0.1µF
R7c 2k
R7b 200Ω
R7a 100Ω
Input
10k
10µF
0.1µF
CMRR vs. Frequency
10µF
VEE
PSRR vs. Frequency
MIC916
4
September 2000
MIC916
Micrel
100pF
10pF
R1
20Ω
VCC
R2 4k
10µF
R3 27k
0.1µF
BNC
S1
S2
R5
20Ω
To
Dynamic
Analyzer
0.1µF
R4 27k
10pF
10µF
VEE
Noise Measurement
September 2000
5
MIC916
MIC916
Micrel
Electrical Characteristics
Supply Current
vs. Temperature
Supply Current
vs. Supply Voltage
SUPPLY CURRENT (mA)
+25°C
2.5
2.0
2
-40°C
3 4 5 6 7 8 9
SUPPLY VOLTAGE (±V)
3.5
3.0
2.0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
10
2.0
1.0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Offset Voltage
vs. Common-Mode Voltage
5
OFFSET VOLTGE (mV)
6
4
VSUPPLY = ±5V
3
VSUPPLY = ±9V
VSUPPLY = ±9V
1.5
Offset Voltage
vs. Common-Mode Voltage
5
BIAS CURRENT (µA)
VSUPPLY = ±5V
2.5
Bias Current
vs. Temperature
2
VSUPPLY = ±9V
VSUPPLY = ±5V
VSUPPLY = ±9V
5
VSUPPLY = ±5V
OFFSET VOLTGE (mV)
SUPPLY CURRENT (mA)
+85°C
2.5
OFFSET VOLTAGE (mV)
4.0
3.5
3.0
Offset Voltage
vs. Temperature
4
+85°C
3
-40°C
2
1
4
3
2
1
+25°C
0
-5 -4 -3 -2 -1 0 1 2 3 4 5
COMMON-MODE VOLTAGE (V)
Short-Circuit Current
vs. Temperature
Short-Circuit Current
vs. Temperature
Short-Circuit Current
vs. Supply Voltage
-20
85
80
75
SOURCING
CURRENT
70
65
VSUPPLY = ±5V
60
-25
VSUPPLY = ±5V
-30
SINKING
CURRENT
-35
VSUPPLY = ±9V
-40
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Short-Circuit Current
vs. Supply Voltage
OUTPUT VOLTAGE (V)
10
9
-20
-40°C
-25
+85°C
-30
-35
SINKING
CURRENT
+25°C
3 4 5 6 7 8 9
SUPPLY VOLTAGE (±V)
80
10
VSUPPLY = ±9V
8
7
6
5
+25°C
4
3
2
1
0
0
-40°C
SOURCING
CURRENT
+85°C
20
40
60
80
100
OUTPUT CURRENT (mA)
6
-40°C
+25°C
60
+85°C
40
SOURCING
CURRENT
20
2
Output Voltage
vs. Output Current
-15
-40
2
100
OUTPUT CURRENT (mA)
VSUPPLY = ±9V
3 4 5 6 7 8 9
SUPPLY VOLTAGE (±V)
10
Output Voltage
vs. Output Current
0
-1
OUTPUT VOLTAGE (V)
90
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
+25°C
0
-8 -6 -4 -2 0 2 4 6 8
COMMON-MODE VOLTAGE (V)
55
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
OUTPUT CURRENT (mA)
-40°C
1
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
95
MIC916
+85°C
-40°C
-2
-3
-4
-5
SINKING
CURRENT
+85°C
+25°C
-6
-7
-8
-9
-10
-40
VSUPPLY = ±9V
-30
-20
-10
OUTPUT CURRENT (mA)
0
September 2000
MIC916
Micrel
+85°C
-25 -20 -15 -10 -5
OUTPUT CURRENT (mA)
40
50
38
25
36
0
0
0
125
44
42
VSUPPLY = ±9V
75
40
50
38
25
36
GAIN BANDWIDTH (MHz)
46
54
120
125
52
100
100
50
75
48
50
46
25
44
20
42
10
0
3 4 5 6 7 8 9
SUPPLY VOLTAGE (±V)
34
200 400 600 800 1000
CAPACITIVE LOAD (pF)
Common-Mode
Rejection Ratio
150
0
2
34
200 400 600 800 1000
CAPACITIVE LOAD (pF)
42
75
Gain Bandwidth and
Phase Margin vs. Supply Voltage
150
100
VSUPPLY = ±5V
VSUPPLY = ±5V
80
60
40
VSUPPLY = ±9V
1x107
-4.5
-30
20
40
60
80
OUTPUT CURRENT (mA)
PHASE MARGIN (°)
GAIN BANDWIDTH (MHz)
-3.5
-4.0
Gain Bandwidth and
Phase Margin vs. Load
0
0
-3.0
100
1x102
0
0
SOURCING
CURRENT
+25°C
44
1x106
-40°C
-2.5
CMRR (dB)
+85°C
1.0
-2.0
PHASE MARGIN (°)
1.5
-1.5
125
1x105
2.0
-40°C
46
1x104
+25°C
2.5
-1.0
150
1x103
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
3.5
3.0
SINKING
CURRENT
-0.5
GAIN BANDWIDTH (MHz)
VSUPPLY = ±5V
4.0
PHASE MARGIN (°)
0.0
4.5
0.5
Gain Bandwidth and
Phase Margin vs. Load
Output Voltage
vs. Output Current
Output Voltage
vs. Output Current
FREQUENCY (Hz)
40
VSUPPLY = ±9V
VSUPPLY = ±9V
1x102
1x107
1x106
1x105
1x104
1x102
FREQUENCY (Hz)
40
0
1x103
1x107
1x106
1x105
1x104
0
60
20
20
1x103
1x102
0
60
1x107
20
80
1x106
VSUPPLY = ±5V
80
1x105
60
100
1x104
80
+PSRR (dB)
CMRR (dB)
100
100
–PSRR (dB)
120
40
Negative Power Supply
Rejection Ratio
Positive Power Supply
Rejection Ratio
1x103
Common-Mode
Rejection Ratio
FREQUENCY (Hz)
FREQUENCY (Hz)
100
VSUPPLY = ±5V
20
40
VSUPPLY = ±5V
-50
-60
-70
-80
-90
7
1x107
1x106
1x105
1x104
FREQUENCY (Hz)
September 2000
-40
-100
1x103
0
1x102
FREQUENCY (Hz)
1x107
1x106
1x105
1x104
1x103
20
-30
1x108
40
60
-20
1x107
–PSRR (dB)
80
60
1x102
-10
CROSS TALK (dB)
80
+PSRR (dB)
0
1x106
100
0
Distant Channel
Cross Talk
Negative Power Supply
Rejection Ratio
1x105
Positive Power Supply
Rejection Ratio
FREQUENCY (Hz)
MIC916
MIC916
Micrel
Closed-Loop
Frequency Response
Test Circuit
Adjacent Channel
Cross Talk
VCC
Closed-Loop
Frequency Response
0
GAIN (dB)
-40
-50
-60
-70
10
0
-10
-20
-30
-40
-90
-50
1
10µF
VEE
1x108
-80
1x105
50Ω
30
20
-30
1x107
CL
RF
-20
1x106
FET probe
MIC916
CROSS TALK (dB)
0.1µF
0p
50
40
-10
1000pF
500pF
200pF
100pF
50pF
10µF
VCC = ±2.5V
10
100 200
FREQUENCY (MHz)
FREQUENCY (Hz)
-30
-40
-135
-180
VCC = ±5V
-10
-20
-50
1
-225
10
100 200
FREQUENCY (MHz)
Voltage
Noise
SLEW RATE (V/µs)
100
80
60
40
No Load
45
0
-45
-90
-135
-180
VCC = ±9V
-225
10
100 200
FREQUENCY (MHz)
Negative
Slew Rate
250
VCC = ±5V
200
150
100
50
0
0
1x105
1x104
1x103
20
1x101
-50
1
10
100 200
FREQUENCY (MHz)
250
1x102
 nV


Hz 
NOISE VOLTAGE
-30
-40
VCC = ±5V
135
90
-10
-20
Positive
Slew Rate
120
0
10
0
225
180
PHASE (°)
-45
-90
10
0
RL=100Ω
30
20
SLEW RATE (V/µs)
-50
1
30
20
45
0
No Load
-10
-20
-30
-40
135
90
50
40
GAIN (dB)
10
0
50
40
Open-Loop
Frequency Response
0p
GAIN (dB)
30
20
225
180
GAIN (dB)
RL=100Ω
PHASE (°)
50
40
Closed-Loop
Frequency Response
1000pF
500pF
200pF
100pF
50pF
Open-Loop
Frequency Response
200
150
100
50
0
0
200 400 600 800 1000
LOAD CAPACITANCE (pF)
VCC = ±5V
200 400 600 800 1000
LOAD CAPACITANCE (pF)
FREQUENCY (Hz)
Current
Noise
Positive
Slew Rate
2
1
200
150
100
1x105
1x104
50
1x103
1x101
VCC = ±9V
0
0
250
SLEW RATE (V/µs)
SLEW RATE (V/µs)
3
1x102


NOISE CURRENT pA

Hz 
300
250
4
0
Negative
Slew Rate
300
5
VCC = ±9V
200
150
100
50
200 400 600 800 1000
LOAD CAPACITANCE (pF)
0
0
200 400 600 800 1000
LOAD CAPACITANCE (pF)
FREQUENCY (Hz)
MIC916
8
September 2000
MIC916
Micrel
INPUT
Small-Signal
Pulse Response
INPUT
Small-Signal
Pulse Response
Small-Signal
Pulse Response
INPUT
Small-Signal
Pulse Response
VCC = ±5V
AV = 1
CL = 1000pF
RL = 10MΩ
OUTPUT
VCC = ±9V
AV = 1
CL = 1000pF
RL = 10MΩ
OUTPUT
INPUT
VCC = ±5V
AV = 1
CL = 100pF
RL = 10MΩ
OUTPUT
VCC = ±9V
AV = 1
CL = 100pF
RL = 10MΩ
OUTPUT
INPUT
Small-Signal
Pulse Response
September 2000
VCC = ±5V
AV = 1
CL = 1.7pF
RL = 10MΩ
OUTPUT
VCC = ±9V
AV = 1
CL = 1.7pF
RL = 10MΩ
OUTPUT
INPUT
Small-Signal
Pulse Response
9
MIC916
MIC916
Micrel
Large-Signal
Pulse Response
Large-Signal
Pulse Response
VCC = ±5V
AV = 1
CL = 1.7pF
OUTPUT
OUTPUT
VCC = ±9V
AV = 1
CL = 1.7pF
∆V = 5.64V
∆t = 21ns
Large-Signal
Pulse Response
VCC = ±5V
AV = 1
CL = 100pF
∆V = 5.84V
∆t = 22.5ns
OUTPUT
OUTPUT
Large-Signal
Pulse Response
∆V = 5.68V
∆t = 24.5ns
VCC = ±9V
AV = 1
CL = 100pF
Large-Signal
Pulse Response
∆V = 5.84V
∆t = 26ns
Large-Signal
Pulse Response
∆V = 5.88V
∆t = 70ns
OUTPUT
OUTPUT
VCC = ±5V
AV = 1
CL = 1000pF
VCC = ±9V
AV = 1
CL = 1000pF
MIC916
10
∆V = 5.48V
∆t = 95ns
September 2000
MIC916
Micrel
Power Supply Bypassing
Regular supply bypassing techniques are recommended. A
10µF capacitor in parallel with a 0.1µF capacitor on both the
positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to
the op amp as possible and all capacitors should be low ESL
(equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. All V–
pins must be externally shorted together.
Thermal Considerations
It is important to ensure the IC does not exceed the maximum
operating junction (die) temperature of 85°C. The part can be
operated up to the absolute maximum temperature rating of
125°C, but between 85°C and 125°C performance will degrade, in particular CMRR will reduce.
A MIC916 with no load, dissipates power equal to the quiescent supply current * supply voltage
Applications Information
The MIC916 is a high-speed, voltage-feedback operational
amplifier featuring very low supply current and excellent
stability. This device is unity gain stable and capable of
driving high capacitance loads.
Driving High Capacitance
The MIC916 is stable when driving any capacitance (see
“Typical Characteristics: Gain Bandwidth and Phase Margin
vs. Load Capacitance”) making it ideal for driving long coaxial
cables or other high-capacitance loads.
Phase margin remains constant as load capacitance is
increased. Most high-speed op amps are only able to drive
limited capacitance.
Note: increasing load capacitance does reduce the
speed of the device (see “Typical Characteristics: Gain Bandwidth and Phase Margin vs.
Load”). In applications where the load capacitance reduces the speed of the op amp to an
unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor
(<100Ω) in series with the output.
Feedback Resistor Selection
Conventional op amp gain configurations and resistor selection apply, the MIC916 is NOT a current feedback device.
Resistor values in the range of 1k to 10k are recommended.
Layout Considerations
All high speed devices require careful PCB layout. The high
stability and high PSRR of the MIC916 make this op amp
easier to use than most, but the following guidelines should
be observed: Capacitance, particularly on the two inputs pins
will degrade performance; avoid large copper traces to the
inputs. Keep the output signal away from the inputs and use
a ground plane.
It is important to ensure adequate supply bypassing capacitors are located close to the device.
September 2000
(
)
PD(no load) = VV + − VV − IS
When a load is added, the additional power is dissipated in
the output stage of the op amp. The power dissipated in the
device is a function of supply voltage, output voltage and
output current.
(
)
PD(output stage) = VV + − VOUT IOUT
Total Power Dissipation = PD(no load) + PD(output stage)
Ensure the total power dissipated in the device is no greater
than the thermal capacity of the package. The QSOP-16
package has a thermal resistance of 260°C/W.
Max . Allowable Power Dissipation =
11
TJ (max) − TA(max)
TBD
W
MIC916
MIC916
Micrel
Package Information
PIN 1
DIMENSIONS:
INCHES (MM)
0.157 (3.99)
0.150 (3.81)
0.009 (0.2286)
REF
0.025 (0.635)
BSC
0.0098 (0.249)
0.0040 (0.102)
SEATING 0.0688 (1.748)
PLANE 0.0532 (1.351)
0.012 (0.30)
0.008 (0.20)
0.196 (4.98)
0.189 (4.80)
0.0098 (0.249)
0.0075 (0.190)
45°
8°
0°
0.050 (1.27)
0.016 (0.40)
0.2284 (5.801)
0.2240 (5.690)
QSOP-16
MIC916
12
September 2000
MIC916
Micrel
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2000 Micrel Incorporated
September 2000
13
MIC916