ONSEMI MJD122G

MJD122 (NPN)
MJD127 (PNP)
Preferred Device
Complementary Darlington
Power Transistor
DPAK For Surface Mount Applications
http://onsemi.com
Designed for general purpose amplifier and low speed switching
applications.
Features
• Lead Formed for Surface Mount Applications in Plastic Sleeves
• Surface Mount Replacements for 2N6040−2N6045 Series,
•
•
•
•
•
SILICON
POWER TRANSISTOR
8 AMPERES
100 VOLTS, 20 WATTS
TIP120−TIP122 Series, and TIP125−TIP127 Series
Monolithic Construction With Built−in Base−Emitter Shunt Resistors
High DC Current Gain: hFE = 2500 (Typ) @ IC = 4.0 Adc
Epoxy Meets UL 94 V−0 @ 0.125 in
ESD Ratings: Human Body Model, 3B u 8000 V
Machine Model, C u 400 V
Pb−Free Packages are Available
4
1 2
3
MARKING DIAGRAM
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
100
Vdc
Collector−Base Voltage
VCB
100
Vdc
Emitter−Base Voltage
VEB
5
Vdc
IC
8
16
Adc
Base Current
IB
120
mAdc
Total Power Dissipation @ TC = 25°C
Derate above 25°C
PD
20
0.16
W
W/°C
Total Power Dissipation (Note 1)
@ TA = 25°C
Derate above 25°C
PD
1.75
0.014
W
W/°C
Operating and Storage Junction
Temperature Range
TJ, Tstg
−65 to +150
°C
Collector−Emitter Voltage
Collector Current
− Continuous
− Peak
YWW
J12xG
Y
WW
x
G
= Year
= Work Week
= 2 or 7
= Pb−Free Package
ORDERING INFORMATION
Package
Shipping †
DPAK
75 Units/Rail
MJD122G
DPAK
(Pb−Free)
75 Units/Rail
MJD122T4
DPAK
2500/Tape & Reel
DPAK
(Pb−Free)
2500/Tape & Reel
Device
MJD122
MJD122T4G
THERMAL CHARACTERISTICS
Characteristic
DPAK
CASE 369C
STYLE 1
Symbol
Max
Unit
MJD127
DPAK
75 Units/Rail
Thermal Resistance
Junction−to−Case
RqJC
6.25
°C/W
MJD127G
DPAK
(Pb−Free)
75 Units/Rail
Thermal Resistance
Junction−to−Ambient (Note1)
RqJA
71.4
°C/W
MJD127T4
DPAK
2500/Tape & Reel
DPAK
(Pb−Free)
2500/Tape & Reel
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
1. These ratings are applicable when surface mounted on the minimum pad
sizes recommended.
MJD127T4G
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
Preferred devices are recommended choices for future use
and best overall value.
© Semiconductor Components Industries, LLC, 2005
December, 2005 − Rev. 7
1
Publication Order Number:
MJD122/D
MJD122 (NPN)
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
Characteristic
Symbol
Min
Max
Unit
VCEO(sus)
100
−
Vdc
Collector Cutoff Current
(VCE = 50 Vdc, IB = 0)
ICEO
−
10
mAdc
Collector Cutoff Current
(VCB = 100 Vdc, IE = 0)
ICBO
−
10
mAdc
Emitter Cutoff Current
(VBE = 5 Vdc, IC = 0)
IEBO
−
2
mAdc
1000
100
12,000
−
−
−
2
4
OFF CHARACTERISTICS
Collector−Emitter Sustaining Voltage
(IC = 30 mAdc, IB = 0)
ON CHARACTERISTICS
DC Current Gain
(IC = 4 Adc, VCE = 4 Vdc)
(IC = 8 Adc, VCE = 4 Vdc)
hFE
−
Collector−Emitter Saturation Voltage
(IC = 4 Adc, IB = 16 mAdc)
(IC = 8 Adc, IB = 80 mAdc)
VCE(sat)
Vdc
Base−Emitter Saturation Voltage (Note 2)
(IC = 8 Adc, IB = 80 mAdc)
VBE(sat)
−
4.5
Vdc
Base−Emitter On Voltage
(IC = 4 Adc, VCE = 4 Vdc)
VBE(on)
−
2.8
Vdc
|hfe|
4
−
MHz
−
−
300
200
300
−
DYNAMIC CHARACTERISTICS
Current−Gain−Bandwidth Product
(IC = 3 Adc, VCE = 4 Vdc, f = 1 MHz)
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
Cob
pF
MJD127
MJD122
Small−Signal Current Gain
(IC = 3 Adc, VCE = 4 Vdc, f = 1 kHz)
hfe
2. Pulse Test: Pulse Width v 300 ms, Duty Cycle v 2%.
PD, POWER DISSIPATION (WATTS)
TA TC
2.5 25
2 20
TC
1.5 15
TA
SURFACE
MOUNT
1 10
0.5
5
0
0
25
50
75
100
T, TEMPERATURE (°C)
Figure 1. Power Derating
http://onsemi.com
2
125
150
−
MJD122 (NPN)
TYPICAL ELECTRICAL CHARACTERISTICS
PNP MJD127
NPN MJD122
20,000
20,000
VCE = 4 V
VCE = 4 V
10,000
hFE , DC CURRENT GAIN
hFE , DC CURRENT GAIN
10,000
7000
5000
TJ = 150°C
3000
2000
25°C
1000
700
500
300
200
0.1
−55 °C
0.2
5000
TJ = 150°C
3000
2000
25°C
1000
−55 °C
500
0.3
0.5 0.7
1
2
3
5
7
300
200
0.1
10
0.2
0.5 0.7
0.3
IC, COLLECTOR CURRENT (AMP)
1
2
3
5
7
10
IC, COLLECTOR CURRENT (AMP)
VCE , COLLECTOR−EMITTER VOLTAGE (VOLTS)
VCE , COLLECTOR−EMITTER VOLTAGE (VOLTS)
Figure 2. DC Current Gain
3
TJ = 25°C
2.6
IC = 2 A
4A
6A
2.2
1.8
1.4
1
0.3
0.5 0.7
1
2
3
5
7
10
20
30
3
TJ = 25°C
2.6
IC = 2 A
4A
6A
2.2
1.8
1.4
1
0.3
0.5 0.7
1
2
3
5
7
10
20 30
IB, BASE CURRENT (mA)
IB, BASE CURRENT (mA)
Figure 3. Collector Saturation Region
3
3
TJ = 25°C
TJ = 25°C
2.5
V, VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
2.5
2
1.5
1
VBE @ VCE = 4 V
VBE(sat) @ IC/IB = 250
2
1.5
VBE @ VCE = 4 V
1
VCE(sat) @ IC/IB = 250
VCE(sat) @ IC/IB = 250
0.5
0.1
0.2 0.3
0.5 0.7
VBE(sat) @ IC/IB = 250
1
2
3
5
7
0.5
0.1
10
IC, COLLECTOR CURRENT (AMP)
0.2 0.3
0.5 0.7
1
2
3
IC, COLLECTOR CURRENT (AMP)
Figure 4. “On” Voltages
http://onsemi.com
3
5
7
10
MJD122 (NPN)
TYPICAL ELECTRICAL CHARACTERISTICS
NPN MJD122
+5
θV, TEMPERATURE COEFFICIENTS (mV/°C)
θV, TEMPERATURE COEFFICIENTS (mV/°C)
PNP MJD127
*IC/IB ≤ hFE/3
+4
+3
+2
+1
0
25°C to 150°C
qVC for VCE(sat)
−1
−55 °C to 25°C
25°C to 150°C
−2
−3
qVB for VBE
−55 °C to 25°C
−4
−5
0.1
0.2 0.3
0.5
1
2 3
IC, COLLECTOR CURRENT (AMP)
5
7
+5
+4
*IC/IB ≤ hFE/3
+3
25°C to 150°C
+2
−55 °C to 25°C
+1
0
*qVC for VCE(sat)
−1
−2
−3
−4
−5
0.1
10
25°C to 150°C
qVB for VBE
−55 °C to 25°C
0.2 0.3
0.5 0.7 1
2 3
IC, COLLECTOR CURRENT (AMP)
5
7
10
Figure 5. Temperature Coefficients
105
105
REVERSE
FORWARD
IC, COLLECTOR CURRENT (A)
μ
IC, COLLECTOR CURRENT (A)
μ
REVERSE
104
VCE = 30 V
103
102
TJ = 150°C
101
100°C
100
25°C
10−1
+0.6 +0.4
+0.2
0 −0.2 −0.4 −0.6 −0.8 −1
VBE, BASE−EMITTER VOLTAGE (VOLTS)
FORWARD
104
VCE = 30 V
103
102
TJ = 150°C
101
100
100°C
25°C
10−1
−0.6 −0.4 −0.2
0 +0.2 +0.4 +0.6 +0.8 +1
VBE, BASE−EMITTER VOLTAGE (VOLTS)
−1.2 −1.4
+1.2 +1.4
Figure 6. Collector Cut−Off Region
300
5000
3000
2000
200
TJ = 25°C
C, CAPACITANCE (pF)
hfe , SMALL−SIGNAL CURRENT GAIN
10,000
1000
500
300
200
TC = 25°C
VCE = 4 Vdc
IC = 3 Adc
100
50
30
20
10
2
5
100
70
Cib
50
PNP
NPN
1
Cob
10
20
50 100
f, FREQUENCY (kHz)
200
500 1000
30
0.1
PNP
NPN
0.2
0.5
1
2
5
10
VR, REVERSE VOLTAGE (VOLTS)
Figure 8. Capacitance
Figure 7. Small−Signal Current Gain
http://onsemi.com
4
20
50
100
MJD122 (NPN)
5
RB & RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
D1, MUST BE FAST RECOVERY TYPE, e.g.:
1N5825 USED ABOVE IB ≈ 100 mA
MSD6100 USED BELOW IB ≈ 100 mA
VCC
−30 V
RC SCOPE
RB
51
≈ 8 k ≈ 120
D1
+4V
25 ms
tf
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.1
FOR td AND tr, D1 IS DISCONNECTED
AND V2 = 0
tr, tf ≤ 10 ns
DUTY CYCLE = 1%
PNP
NPN
ts
1
t, TIME (s)
μ
TUT
V2
APPROX
+8 V
0
V1
APPROX
−12 V
3
2
0.2
FOR NPN TEST CIRCUIT REVERSE ALL POLARITIES.
r(t), EFFECTIVE TRANSIENT
THERMAL RESISTANCE (NORMALIZED)
Figure 9. Switching Times Test Circuit
1
0.7
0.5
td @ VBE(off) = 0 V
0.3
0.5 0.7 1
3
2
IC, COLLECTOR CURRENT (AMP)
5
7
10
Figure 10. Switching Times
D = 0.5
0.2
0.3
0.2
0.1
0.07
0.05
tr
VCC = 30 V
IC/IB = 250
IB1 = IB2
TJ = 25°C
0.1
RqJC(t) = r(t) RqJC
RqJC = 6.25°C/W
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) − TC = P(pk) qJC(t)
0.05
0.01
0.03
SINGLE PULSE
0.02
0.01
0.01
0.02 0.03
0.05
0.1
0.2 0.3
0.5
1
2
3
5
10
t, TIME OR PULSE WIDTH (ms)
20
30
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
50
100
200 300
500
1000
IC, COLLECTOR CURRENT (AMP)
Figure 11. Thermal Response
20
15
10
500m
σ
5
3
2
0.5
0.3
0.2
5ms
BONDING WIRE LIMIT
THERMAL LIMIT
TC = 25°C (SINGLE PULSE)
SECOND BREAKDOWN LIMIT
CURVES APPLY BELOW RATED VCEO
0.1
0.05
0.03
0.02
100m
σ
1ms
TJ = 150°C
1
1
2
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC − VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 12 is based on T J(pk) = 150_C; TC is
variable depending on conditions. Second breakdown pulse
limits are valid for duty cycles to 10% provided T J(pk)
< 150_C. T J(pk) may be calculated from the data in
Figure 11. At high case temperatures, thermal limitations
will reduce the power that can be handled to values less than
the limitations imposed by second breakdown.
3
5
7
10
20
dc
30
50 70 100
VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)
Figure 12. Maximum Forward Bias
Safe Operating rea
http://onsemi.com
5
MJD122 (NPN)
COLLECTOR
PNP
COLLECTOR
NPN
BASE
BASE
≈8k
≈ 120
≈8k
EMITTER
≈ 120
EMITTER
Figure 13. Darlington Schematic
http://onsemi.com
6
MJD122 (NPN)
PACKAGE DIMENSIONS
DPAK
CASE 369C
ISSUE O
C
B
V
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
SEATING
PLANE
−T−
E
R
4
Z
A
S
1
2
DIM
A
B
C
D
E
F
G
H
J
K
L
R
S
U
V
Z
3
U
K
F
J
L
H
D 2 PL
G
0.13 (0.005)
M
T
INCHES
MIN
MAX
0.235 0.245
0.250 0.265
0.086 0.094
0.027 0.035
0.018 0.023
0.037 0.045
0.180 BSC
0.034 0.040
0.018 0.023
0.102 0.114
0.090 BSC
0.180 0.215
0.025 0.040
0.020
−−−
0.035 0.050
0.155
−−−
MILLIMETERS
MIN
MAX
5.97
6.22
6.35
6.73
2.19
2.38
0.69
0.88
0.46
0.58
0.94
1.14
4.58 BSC
0.87
1.01
0.46
0.58
2.60
2.89
2.29 BSC
4.57
5.45
0.63
1.01
0.51
−−−
0.89
1.27
3.93
−−−
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
SOLDERING FOOTPRINT*
6.20
0.244
3.0
0.118
2.58
0.101
5.80
0.228
1.6
0.063
6.172
0.243
SCALE 3:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
7
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
MJD122/D