ONSEMI MJD243_11

MJD243 (NPN),
MJD253 (PNP)
Complementary Silicon
Plastic Power Transistor
DPAK−3 for Surface Mount Applications
Designed for low voltage, low−power, high−gain audio amplifier
applications.
Features
• Collector−Emitter Sustaining Voltage −
•
•
•
•
•
•
•
•
•
VCEO(sus) = 100 Vdc (Min) @ IC
= 10 mAdc
High DC Current Gain −
hFE = 40 (Min) @ IC
= 200 mAdc
= 15 (Min) @ IC = 1.0 Adc
Lead Formed for Surface Mount Applications in Plastic Sleeves
(No Suffix)
Straight Lead Version in Plastic Sleeves (“−1” Suffix)
Low Collector−Emitter Saturation Voltage −
VCE(sat) = 0.3 Vdc (Max) @ IC
= 500 mAdc
= 0.6 Vdc (Max) @ IC = 1.0 Adc
High Current−Gain − Bandwidth Product −
fT = 40 MHz (Min) @ IC
= 100 mAdc
Annular Construction for Low Leakage −
ICBO = 100 nAdc @ Rated VCB
Epoxy Meets UL 94 V−0 @ 0.125 in
ESD Ratings: Human Body Model, 3B u 8000 V
Machine Model, C u 400 V
These are Pb−Free Packages
http://onsemi.com
4.0 A, 100 V, 12.5 W
POWER TRANSISTOR
4
4
1 2
Base 1
Collector 2
Emitter 3
DPAK−3
CASE 369D
STYLE 1
3
DPAK−3
CASE 369C
STYLE 1
MARKING DIAGRAMS
AYWW
J253G
A
Y
WW
x
G
AYWW
J2x3G
= Assembly Location
= Year
= Work Week
= 4 or 5
= Pb−Free Package
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
© Semiconductor Components Industries, LLC, 2011
January, 2011 − Rev. 12
1
Publication Order Number:
MJD243/D
MJD243 (NPN), MJD253 (PNP)
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
Symbol
Value
Unit
VCB
100
Vdc
VCEO
100
Vdc
VEB
7.0
Vdc
IC
4.0
8.0
Adc
Base Current
IB
1.0
Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
12.5
0.1
W
W/°C
Total Device Dissipation @ TA = 25°C (Note 1)
Derate above 25°C
PD
1.4
0.011
W
W/°C
TJ, Tstg
−65 to + 150
°C
Symbol
Value
Unit
RqJC
RqJA
10
89.3
°C/W
Collector−Base Voltage
Collector−Emitter Voltage
Emitter−Base Voltage
Collector Current
−Continuous
−Peak
Operating and Storage Junction Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance,
Junction−to−Case
Junction−to−Ambient (Note 2)
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. When surface mounted on minimum pad sizes recommended.
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
100
−
−
−
100
100
−
100
40
15
180
−
−
−
0.3
0.6
−
1.8
−
1.5
40
−
−
50
Unit
OFF CHARACTERISTICS
Collector−Emitter Sustaining Voltage (Note 3)
(IC = 10 mAdc, IB = 0)
VCEO(sus)
Collector Cutoff Current
(VCB = 100 Vdc, IE = 0)
(VCB = 100 Vdc, IE = 0, TJ = 125°C)
ICBO
Emitter Cutoff Current
(VBE = 7.0 Vdc, IC = 0)
IEBO
DC Current Gain (Note 3)
(IC = 200 mAdc, VCE = 1.0 Vdc)
(IC = 1.0 Adc, VCE = 1.0 Vdc)
hFE
Collector−Emitter Saturation Voltage (Note 3)
(IC = 500 mAdc, IB = 50 mAdc)
(IC = 1.0 Adc, IB = 100 mAdc)
VCE(sat)
Base−Emitter Saturation Voltage (Note 3)
(IC = 2.0 Adc, IB = 200 mAdc)
VBE(sat)
Base−Emitter On Voltage (Note 3)
(IC = 500 mAdc, VCE = 1.0 Vdc)
VBE(on)
Vdc
nAdc
mAdc
nAdc
−
Vdc
Vdc
Vdc
DYNAMIC CHARACTERISTICS
Current−Gain − Bandwidth Product (Note 4)
(IC = 100 mAdc, VCE = 10 Vdc, ftest = 10 MHz)
fT
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
Cob
2. When surface mounted on minimum pad sizes recommended.
3. Pulse Test: Pulse Width = 300 ms, Duty Cycle [ 2%.
4. fT = ⎪hFE⎪• ftest.
http://onsemi.com
2
MHz
pF
MJD243 (NPN), MJD253 (PNP)
10
IC, COLLECTOR CURRENT (AMPS)
PD, POWER DISSIPATION (WATTS)
TA TC
2.5 25
2 20
1.5 15
TA (SURFACE MOUNT)
1 10
TC
0.5
500ms
5
100ms
1ms
2
1
5ms
0.5
0.2
BONDING WIRE LIMITED
THERMALLY LIMITED @ TC = 25°C
(SINGLE PULSE)
SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW
RATED VCEO
0.1
0.05
5
0.02
0
0
0.01
25
50
75
100
125
150
dc
1
2
5
10
20
50
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
T, TEMPERATURE (°C)
100
Figure 2. Active Region Maximum
Safe Operating Area
Figure 1. Power Derating
r(t), TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown.
Safe operating area curves indicate IC − VCE limits of the transistor that must be observed for reliable operation; i.e., the
transistor must not be subjected to greater dissipation than the curves indicate.
The data of Figure 2 is based on TJ(pk) = 150°C; TC is variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(pk) v 150°C. TJ(pk) may be calculated from the data in Figure 3. At high case
temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by
second breakdown.
1
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
0.1
0.07
0.05
0.03
0.02
0.01
0.02
RqJC(t) = r(t) qJC
RqJC = 10°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) qJC(t)
0.05
0.02
0.01
0 (SINGLE PULSE)
0.05
0.1
0.2
0.5
1
2
t, TIME (ms)
5
Figure 3. Thermal Response
http://onsemi.com
3
10
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
20
50
100
200
MJD243 (NPN), MJD253 (PNP)
NPN
MJD243
PNP
MJD253
500
VCE = 1.0 V
VCE = 2.0 V
hFE, DC CURRENT GAIN
hFE, DC CURRENT GAIN
300
200
200
TJ = 150°C
25°C
100
70
50
-55°C
30
20
10
7.0
5.0
0.04 0.06
0.1
0.2
0.4 0.6
1.0
IC, COLLECTOR CURRENT (AMP)
2.0
25°C
-55°C
30
20
10
7.0
5.0
3.0
2.0
0.04 0.06
4.0
VCE = 1.0 V
VCE = 2.0 V
TJ = 150°C
100
70
50
0.1
0.2
0.4 0.6
1.0
IC, COLLECTOR CURRENT (AMP)
2.0
4.0
Figure 4. DC Current Gain
1.4
1.4
TJ = 25°C
1.2
1.2
1.0
1.0
0.8
0.6
V, VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
TJ = 25°C
VBE(sat) @ IC/IB = 10
VBE @ VCE = 1.0 V
IC/IB = 10
0.4
VBE(sat) @ IC/IB = 10
0.8
VBE @ VCE = 1.0 V
0.6
IC/IB = 10
0.4
5.0
5.0
0.2
0.2
VCE(sat)
0
0.04 0.06
0.1
VCE(sat)
0.2
0.4 0.6
1.0
2.0
0
0.04 0.06
4.0
0.1
IC, COLLECTOR CURRENT (AMP)
0.2
0.4
0.6
1.0
2.0
4.0
2.0
4.0
IC, COLLECTOR CURRENT (AMP)
-1.0
θV, TEMPERATURE COEFFICIENTS (mV/ °C)
θV, TEMPERATURE COEFFICIENTS (mV/ °C)
Figure 5. “On” Voltages
25°C to 150°C
-1.5
-2.0
qVB FOR VBE
-2.5
0.04 0.06
0.1
-55°C to 25°C
0.2
0.4 0.6
1.0
IC, COLLECTOR CURRENT (AMP)
2.0
+2.5
+2.0
*APPLIES FOR IC/IB ≤ hFE/3
+1.5
+1.0
+0.5
25°C to 150°C
*qVC FOR VCE(sat)
0
-55°C to 25°C
-0.5
-1.0
-1.5
25°C to 150°C
qVB FOR VBE
-2.5
0.04 0.06
4.0
-55°C to 25°C
-2.0
0.1
0.2
0.4
0.6
1.0
IC, COLLECTOR CURRENT (AMP)
Figure 6. Temperature Coefficients
http://onsemi.com
4
MJD243 (NPN), MJD253 (PNP)
VCC
+30 V
1K
RC
25 ms
+11 V
SCOPE
RB
t, TIME (ns)
D1
51
tr, tf ≤ 10 ns
DUTY CYCLE = 1.0%
tr
100
0
-9.0 V
500
300
200
-4 V
50
30
20
td
10
5
3
2
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
D1 MUST BE FAST RECOVERY TYPE, e.g.:
1N5825 USED ABOVE IB ≈ 100 mA
MSD6100 USED BELOW IB ≈ 100 mA
FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES
1
0.01
NPN MJD243
PNP MJD253
0.02 0.03 0.05 0.1
1
2
0.2 0.3 0.5
IC, COLLECTOR CURRENT (AMPS)
10K
VCC = 30 V
IC/IB = 10
IB1 = IB2
TJ = 25°C
10
TJ = 25°C
100
C, CAPACITANCE (pF)
ts
1K
500
300
200
100
Cib
70
50
30
Cob
20
tf
MJD243 (NPN)
MJD253 (PNP)
NPN MJD243
PNP MJD253
0.2 0.3 0.5
1
2
0.02 0.03 0.05 0.1
IC, COLLECTOR CURRENT (AMPS)
3
5
10
1.0
10
2.0
3.0
5.0 7.0 10
20 30
VR, REVERSE VOLTAGE (VOLTS)
Figure 9. Turn−Off Time
Figure 10. Capacitance
200
TJ = 25°C
100
C, CAPACITANCE (pF)
t, TIME (ns)
5
200
5K
3K
2K
10
0.01
3
Figure 8. Turn−On Time
Figure 7. Switching Time Test Circuit
50
30
20
VCC = 30 V
IC/IB = 10
TJ = 25°C
Cib
70
50
30
20
10
Cob
1
2
3
5
7 10
20 30
VR, REVERSE VOLTAGE (VOLTS)
Figure 11. Capacitance
http://onsemi.com
5
50
70 100
50 70 100
MJD243 (NPN), MJD253 (PNP)
ORDERING INFORMATION
Package Type
Package
Shipping†
MJD243G
DPAK−3
(Pb−Free)
369C
75 Units / Rail
MJD243T4G
DPAK−3
(Pb−Free)
369C
2500 / Tape & Reel
MJD253−1G
DPAK−3
(Pb−Free)
369D
75 Units / Rail
MJD253T4G
DPAK−3
(Pb−Free)
369C
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
6
MJD243 (NPN), MJD253 (PNP)
PACKAGE DIMENSIONS
DPAK−3
CASE 369C−01
ISSUE D
A
E
b3
c2
B
Z
D
1
L4
A
4
L3
b2
e
2
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR BURRS. MOLD
FLASH, PROTRUSIONS, OR GATE BURRS SHALL
NOT EXCEED 0.006 INCHES PER SIDE.
5. DIMENSIONS D AND E ARE DETERMINED AT THE
OUTERMOST EXTREMES OF THE PLASTIC BODY.
6. DATUMS A AND B ARE DETERMINED AT DATUM
PLANE H.
C
H
DETAIL A
3
c
b
0.005 (0.13)
M
H
C
L2
GAUGE
PLANE
C
L
SEATING
PLANE
A1
L1
DETAIL A
ROTATED 905 CW
2.58
0.101
5.80
0.228
3.0
0.118
1.6
0.063
INCHES
MIN
MAX
0.086 0.094
0.000 0.005
0.025 0.035
0.030 0.045
0.180 0.215
0.018 0.024
0.018 0.024
0.235 0.245
0.250 0.265
0.090 BSC
0.370 0.410
0.055 0.070
0.108 REF
0.020 BSC
0.035 0.050
−−− 0.040
0.155
−−−
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
SOLDERING FOOTPRINT*
6.20
0.244
DIM
A
A1
b
b2
b3
c
c2
D
E
e
H
L
L1
L2
L3
L4
Z
6.172
0.243
SCALE 3:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
7
MILLIMETERS
MIN
MAX
2.18
2.38
0.00
0.13
0.63
0.89
0.76
1.14
4.57
5.46
0.46
0.61
0.46
0.61
5.97
6.22
6.35
6.73
2.29 BSC
9.40 10.41
1.40
1.78
2.74 REF
0.51 BSC
0.89
1.27
−−−
1.01
3.93
−−−
MJD243 (NPN), MJD253 (PNP)
PACKAGE DIMENSIONS
DPAK−3 (SINGLE GAUGE)
CASE 369D−01
ISSUE B
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
C
B
E
R
4
Z
A
S
1
2
3
−T−
SEATING
PLANE
K
J
F
D
G
H
M
INCHES
MIN
MAX
0.235 0.245
0.250 0.265
0.086 0.094
0.027 0.035
0.018 0.023
0.037 0.045
0.090 BSC
0.034 0.040
0.018 0.023
0.350 0.380
0.180 0.215
0.025 0.040
0.035 0.050
0.155
−−−
MILLIMETERS
MIN
MAX
5.97
6.35
6.35
6.73
2.19
2.38
0.69
0.88
0.46
0.58
0.94
1.14
2.29 BSC
0.87
1.01
0.46
0.58
8.89
9.65
4.45
5.45
0.63
1.01
0.89
1.27
3.93
−−−
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
3 PL
0.13 (0.005)
DIM
A
B
C
D
E
F
G
H
J
K
R
S
V
Z
T
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
8
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MJD243/D