FREESCALE MPC5644A

Freescale Semiconductor
Data Sheet: Advance Information
Document Number: MPC5644A
Rev. 7, Jan 2012
MPC5644A
MPC5644A Microcontroller
Data Sheet
176 (24 x 24 mm)
•
•
•
•
•
•
•
150 MHz e200z4 Power Architecture core
— Variable length instruction encoding (VLE)
— Superscalar architecture with 2 execution units
— Up to 2 integer or floating point instructions per cycle
— Up to 4 multiply and accumulate operations per cycle
Memory organization
— 4 MB on-chip flash memory with ECC and Read
While Write (RWW)
— 192 KB on-chip SRAM with standby functionality
(32 KB) and ECC
— 8 KB instruction cache (with line locking),
configurable as 2- or 4-way
— 14 + 3 KB eTPU code and data RAM
— 5  4 crossbar switch (XBAR)
— 24-entry MMU
— External Bus Interface (EBI) with slave and master
port
Fail Safe Protection
— 16-entry Memory Protection Unit (MPU)
— CRC unit with 3 sub-modules
— Junction temperature sensor
Interrupts
— Configurable interrupt controller (with NMI)
— 64-channel DMA
Serial channels
— 3  eSCI
— 3  DSPI (2 of which support downstream Micro
Second Channel [MSC])
— 3  FlexCAN with 64 messages each
— 1  FlexRay module (V2.1) up to 10 Mbit/s with dual
or single channel and 128 message objects and ECC
1  eMIOS: 24 unified channels
1  eTPU2 (second generation eTPU)
— 32 standard channels
— 1  reaction module (6 channels with three outputs
per channel)
208 (17 x 17 mm)
•
2 enhanced queued analog-to-digital converters
(eQADCs)
— Forty 12-bit input channels (multiplexed on 2 ADCs);
expandable to 56 channels with external multiplexers
— 6 command queues
— Trigger and DMA support
— 688 ns minimum conversion time
•
On-chip CAN/SCI/FlexRay Bootstrap loader with Boot
Assist Module (BAM)
•
Nexus
— Class 3+ for the e200z4 core
— Class 1 for the eTPU
•
JTAG (5-pin)
•
Development Trigger Semaphore (DTS)
— Register of semaphores (32-bits) and an identification
register
— Used as part of a triggered data acquisition protocol
— EVTO pin is used to communicate to the external tool
•
Clock generation
— On-chip 4–40 MHz main oscillator
— On-chip FMPLL (frequency-modulated phase-locked
loop)
•
Up to 120 general purpose I/O lines
— Individually programmable as input, output or special
function
— Programmable threshold (hysteresis)
•
Power reduction mode: slow, stop and stand-by modes
•
Flexible supply scheme
— 5 V single supply with external ballast
— Multiple external supply: 5 V, 3.3 V and 1.2 V
•
Packages
— 176 LQFP
— 208 MAPBGA
— 324 TEPBGA
496-pin CSP (calibration tool only)
This document contains information on a product under development. Freescale reserves
the right to change or discontinue this product without notice.
© Freescale Semiconductor, Inc., 2009–2012. All rights reserved.
324 (23 x 23 mm)
Table of Contents
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.1 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.4 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.4.1 e200z4 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.4.2 Crossbar Switch (XBAR) . . . . . . . . . . . . . . . . . . .6
1.4.3 eDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.4.4 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . .7
1.4.5 Memory protection unit (MPU). . . . . . . . . . . . . . .8
1.4.6 FMPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
1.4.7 SIU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.4.8 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.4.9 BAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
1.4.10 eMIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.11 eTPU2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.12 Reaction module . . . . . . . . . . . . . . . . . . . . . . . .13
1.4.13 eQADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1.4.14 DSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.4.15 eSCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
1.4.16 FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
1.4.17 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
1.4.18 System timers . . . . . . . . . . . . . . . . . . . . . . . . . .17
1.4.19 Software watchdog timer (SWT) . . . . . . . . . . . .17
1.4.20 Cyclic redundancy check (CRC) module . . . . . .18
1.4.21 Error correction status module (ECSM). . . . . . .18
1.4.22 External bus interface (EBI). . . . . . . . . . . . . . . .18
1.4.23 Calibration EBI. . . . . . . . . . . . . . . . . . . . . . . . . .19
1.4.24 Power management controller (PMC) . . . . . . . .19
1.4.25 Nexus port controller . . . . . . . . . . . . . . . . . . . . .19
1.4.26 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
1.4.27 Development Trigger Semaphore (DTS) . . . . . .20
1.5 MPC5644A series architecture . . . . . . . . . . . . . . . . . . .20
1.5.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . .20
1.5.2 Block summary . . . . . . . . . . . . . . . . . . . . . . . . .22
Pinout and signal description . . . . . . . . . . . . . . . . . . . . . . . . .24
2.1 176 LQFP pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.2 208 MAP BGA ballmap . . . . . . . . . . . . . . . . . . . . . . . . .26
2.3 324 TEPBGA ballmap. . . . . . . . . . . . . . . . . . . . . . . . . .27
2.4 Signal summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
2.5 Signal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
3.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .65
3.2 Maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
3.3
4
5
6
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.1 General notes for specifications at maximum
junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 EMI (electromagnetic interference) characteristics . . . 71
3.5 Electrostatic discharge (ESD) characteristics . . . . . . . 71
3.6 Power management control (PMC) and power on reset
(POR) electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.1 Voltage regulator controller (VRC)
electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6.2 Regulator Example. . . . . . . . . . . . . . . . . . . . . . 76
3.6.3 Recommended power transistors . . . . . . . . . . 77
3.7 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . 77
3.8 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . 78
3.9 I/O pad current specifications . . . . . . . . . . . . . . . . . . . 85
3.9.1 I/O pad VRC33 current specifications . . . . . . . . 86
3.9.2 LVDS pad specifications. . . . . . . . . . . . . . . . . . 87
3.10 Oscillator and PLLMRFM electrical characteristics . . . 88
3.11 Temperature sensor electrical characteristics . . . . . . . 90
3.12 eQADC electrical characteristics . . . . . . . . . . . . . . . . . 90
3.13 Configuring SRAM wait states . . . . . . . . . . . . . . . . . . . 93
3.14 Platform flash controller electrical characteristics . . . . 93
3.15 Flash memory electrical characteristics. . . . . . . . . . . . 93
3.16 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.16.1 Pad AC specifications . . . . . . . . . . . . . . . . . . . 95
3.17 AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.17.1 Reset and configuration pin timing . . . . . . . . . . 98
3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . 99
3.17.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.17.4 External Bus Interface (EBI) and calibration
bus interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.17.5 External interrupt timing (IRQ pin) . . . . . . . . . 110
3.17.6 eTPU timing . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.17.7 eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . .111
3.17.8 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . .111
3.17.9 eQADC SSI timing . . . . . . . . . . . . . . . . . . . . . 118
3.17.10FlexCAN system clock source. . . . . . . . . . . . 119
Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . 120
4.1.1 176 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.1.2 208 MAPBGA. . . . . . . . . . . . . . . . . . . . . . . . . 123
4.1.3 324 TEPBGA . . . . . . . . . . . . . . . . . . . . . . . . . 125
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . 128
MPC5644A Microcontroller Data Sheet, Rev. 7
2
Freescale Semiconductor
1
Introduction
1.1
Document Overview
This document provides electrical specifications, pin assignments, and package diagrams for the MPC5644A series of
microcontroller units (MCUs). For functional characteristics, refer to the MPC5644A Microcontroller Reference Manual.
1.2
Description
The microcontroller’s e200z4 host processor core is built on Power Architecture® technology and designed specifically for
embedded applications. In addition to the Power Architecture technology, this core supports instructions for digital signal
processing (DSP).
The MPC5644A has two levels of memory hierarchy consisting of 8 KB of instruction cache, backed by 192 KB on-chip SRAM
and 4 MB of internal flash memory. The MPC5644A includes an external bus interface, and also a calibration bus that is only
accessible when using the Freescale VertiCal Calibration System.
This document describes the features of the MPC5644A and highlights important electrical and physical characteristics of the
device.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
3
1.3
Device comparison
Table 1 summarizes the MPC5644A and compares it to the MPC5634M.
Table 1. MPC5644A, MPC5634M and MPC5642A comparison
Feature
MPC5644A
Process
Core
MPC5634M
90 nm
e200z4
e200z3
SIMD
Yes
VLE
Yes
Cache
MPC5642A
8 KB instruction
Non-Maskable Interrupt (NMI)
e200z4
No
8 KB instruction
NMI & Critical Interrupt
MMU
24 entry
16 entry
24 entry
MPU
16 entry
No
16 entry
54
34
44
0–150 MHz
0–80 MHz
0–150 MHz
Crossbar switch
Core performance
Windowing software watchdog
Core Nexus
Yes
Class 3+
Class 2+
Class 3+
SRAM
192 KB
94 KB
128 KB
Flash
4 MB
1.5 MB
2 MB
4  256-bit
4  128-bit
External bus
16-bit (incl 32-bit muxed)
None
Calibration bus
16-bit (incl 32-bit muxed)
16-bit
16-bit (incl 32-bit muxed)
64 ch.
32 ch.
64 ch.
Flash fetch accelerator
DMA
DMA Nexus
Serial
None
3
eSCI_A
Yes (MSC Uplink)
eSCI_B
Yes (MSC Uplink)
eSCI_C
CAN
3
Yes
No
Yes
3
2
3
CAN_A
SPI
2
64 buf
CAN_B
64 buf
No
64 buf
CAN_C
64 buf
32 buf
64 buf
3
2
3
MPC5644A Microcontroller Data Sheet, Rev. 7
4
Freescale Semiconductor
Table 1. MPC5644A, MPC5634M and MPC5642A comparison (continued)
Feature
MPC5644A
MPC5634M
Micro Second Channel (MSC) bus
downlink
Yes
DSPI_A
No
DSPI_B
Yes (with LVDS)
DSPI_C
Yes (with LVDS)
DSPI_D
FlexRay
Yes
No
Yes
Yes
No
Yes
System timers
eMIOS
5 PIT channels
4 STM channels
1 Software Watchdog
24 ch.
16 ch.
eTPU
14 KB
Data memory
Interrupt controller
ADC
3 KB
486 ch.
1
40 ch.
307 ch.
486 ch.1
34 ch.
40 ch.
ADC_A
Yes
ADC_B
Yes
Temp sensor
Yes
Variable gain amp.
Yes
Decimation filter
2
Sensor diagnostics
CRC
1
Yes
No
Yes
VRC
Yes
Supplies
5 V, 3.3 V2
Low-power modes
Packages
1
199 interrupt vectors are reserved.
2
5 V single supply only for 176 LQFP.
5
6
7
2
Yes
FMPLL
4
24 ch.
32 ch. eTPU2
Code memory
3
MPC5642A
5 V, 3.3 V3
Yes
5 V, 3.3 V2
Stop Mode
Slow Mode
176 LQFP4
208 MAPBGA4,5
324 TEPBGA3246
496-pin CSP7
144 LQFP
176 LQFP
208 MAPBGA
496-pin CSP7
176 LQFP4
208 MAPBGA4,5
324 TEPBGA3246
496-pin CSP7
5 V single supply only for 144 LQFP.
Pinout compatible with Freescale’s MPC5634M devices.
Pinout compatible with Freescale’s MPC5534.
Ballmap upwardly compatible with the standardized package ballmap used for various Freescale MPC5xxx family members, including
MPC5554, MPC5567 and MPC5666.
For Freescale VertiCal Calibration System only.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
5
1.4
1.4.1
Feature details
e200z4 core
MPC5644A devices have a high performance e200z448n3 core processor:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
1.4.2
Dual issue, 32-bit Power Architecture embedded category CPU
Variable Length Encoding Enhancements
8 KB instruction cache: 2- or 4- way set associative instruction cache
Thirty-two 64-bit general purpose registers (GPRs)
Memory management unit (MMU) with 24-entry fully-associative translation look-aside buffer (TLB)
Harvard Architecture: Separate instruction bus and load/store bus
Vectored interrupt support
Non-maskable interrupt input
Critical Interrupt input
New ‘Wait for Interrupt’ instruction, to be used with new low power modes
Reservation instructions for implementing read-modify-write accesses
Signal processing extension (SPE) APU
Single Precision Floating point (scalar and vector)
Nexus Class 3+ debug
Process ID manipulation for the MMU using an external tool
Crossbar Switch (XBAR)
The XBAR multiport crossbar switch supports simultaneous connections between five master ports and four slave ports. The
crossbar supports a 32-bit address bus width and a 64-bit data bus width.
The crossbar allows three concurrent transactions to occur from the master ports to any slave port but each master must access
a different slave. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher
priority master and grants it ownership of the slave port. All other masters requesting that slave port are stalled until the higher
priority master completes its transactions. Requesting masters are treated with equal priority and are granted access to a slave
port in round-robin fashion, based upon the ID of the last master to be granted access. The crossbar provides the following
features:
•
•
•
5 master ports
— CPU instruction bus
— CPU data bus
— eDMA
— FlexRay
— External Bus Interface
4 slave ports
— Flash
— Calibration and EBI bus
— SRAM
— Peripheral bridge
32-bit internal address, 64-bit internal data paths
MPC5644A Microcontroller Data Sheet, Rev. 7
6
Freescale Semiconductor
1.4.3
eDMA
The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data
movements via 64 programmable channels, with minimal intervention from the host processor. The hardware
micro-architecture includes a DMA engine which performs source and destination address calculations, and the actual data
movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels.
This implementation is utilized to minimize the overall block size. The eDMA module provides the following features:
•
•
•
•
•
•
•
•
•
•
•
•
1.4.4
All data movement via dual-address transfers: read from source, write to destination
Programmable source and destination addresses, transfer size, plus support for enhanced addressing modes
Transfer control descriptor organized to support two-deep, nested transfer operations
An inner data transfer loop defined by a “minor” byte transfer count
An outer data transfer loop defined by a “major” iteration count
Channel activation via one of three methods:
— Explicit software initiation
— Initiation via a channel-to-channel linking mechanism for continuous transfers
— Peripheral-paced hardware requests (one per channel)
Support for fixed-priority and round-robin channel arbitration
Channel completion reported via optional interrupt requests
One interrupt per channel, optionally asserted at completion of major iteration count
Error termination interrupts optionally enabled
Support for scatter/gather DMA processing
Ability to suspend channel transfers by a higher priority channel
Interrupt controller
The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt requests, suitable for statically
scheduled hard real-time systems.
For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor
is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt
request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that
lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of
interrupt request, the priority of each interrupt request is software configurable.
When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority
ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that
all tasks which share the resource cannot preempt each other.
The INTC provides the following features:
•
•
•
•
•
•
•
•
•
9-bit vector addresses
Unique vector for each interrupt request source
Hardware connection to processor or read from register
Each interrupt source can assigned a specific priority by software
Preemptive prioritized interrupt requests to processor
ISR at a higher priority preempts executing ISRs or tasks at lower priorities
Automatic pushing or popping of preempted priority to or from a LIFO
Ability to modify the ISR or task priority to implement the priority ceiling protocol for accessing shared resources
Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to processor
This device also includes a non-maskable interrupt (NMI) pin that bypasses the INTC and multiplexing logic.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
7
1.4.5
Memory protection unit (MPU)
The Memory Protection Unit (MPU) provides hardware access control for all memory references generated in a device. Using
preprogrammed region descriptors, which define memory spaces and their associated access rights, the MPU concurrently
monitors all system bus transactions and evaluates the appropriateness of each transfer. Memory references with sufficient
access control rights are allowed to complete; references that are not mapped to any region descriptor or have insufficient rights
are terminated with a protection error response.
The MPU has these major features:
•
•
1.4.6
Support for 16 memory region descriptors, each 128 bits in size
— Specification of start and end addresses provide granularity for region sizes from 32 bytes to 4 GB
— MPU is invalid at reset, thus no access restrictions are enforced
— Two types of access control definitions: processor core bus master supports the traditional {read, write, execute}
permissions with independent definitions for supervisor and user mode accesses; the remaining non-core bus
masters (eDMA, FlexRay, and EBI1) support {read, write} attributes
— Automatic hardware maintenance of the region descriptor valid bit removes issues associated with maintaining a
coherent image of the descriptor
— Alternate memory view of the access control word for each descriptor provides an efficient mechanism to
dynamically alter the access rights of a descriptor only1
— For overlapping region descriptors, priority is given to permission granting over access denying as this approach
provides more flexibility to system software
Support for two XBAR slave port connections (SRAM and PBRIDGE)
— For each connected XBAR slave port (SRAM and PBRIDGE), MPU hardware monitors every port access using
the pre-programmed memory region descriptors
— An access protection error is detected if a memory reference does not hit in any memory region or the reference
is flagged as illegal in all memory regions where it does hit. In the event of an access error, the XBAR reference
is terminated with an error response and the MPU inhibits the bus cycle being sent to the targeted slave device
— 64-bit error registers, one for each XBAR slave port, capture the last faulting address, attributes, and detail
information
FMPLL
The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 40 MHz crystal oscillator or external clock
generator. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication
factor, output clock divider ratio are all software configurable. The PLL has the following major features:
•
•
•
•
•
Input clock frequency from 4 MHz to 40 MHz
Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock
Three modes of operation
— Bypass mode with PLL off
— Bypass mode with PLL running (default mode out of reset)
— PLL normal mode
Each of the three modes may be run with a crystal oscillator or an external clock reference
Programmable frequency modulation
— Modulation enabled/disabled through software
— Triangle wave modulation up to 100 kHz modulation frequency
— Programmable modulation depth (0% to 2% modulation depth)
— Programmable modulation frequency dependent on reference frequency
1. EBI not available on all packages and is not available, as a master, for customer.
MPC5644A Microcontroller Data Sheet, Rev. 7
8
Freescale Semiconductor
•
•
•
•
1.4.7
Lock detect circuitry reports when the PLL has achieved frequency lock and continuously monitors lock status to
report loss of lock conditions
Clock Quality Module
— Detects the quality of the crystal clock and causes interrupt request or system reset if error is detected
— Detects the quality of the PLL output clock; if error detected, causes system reset or switches system clock to
crystal clock and causes interrupt request
Programmable interrupt request or system reset on loss of lock
Self-clocked mode (SCM) operation
SIU
The MPC5644A SIU controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO),
internal peripheral multiplexing, and the system reset operation. The reset configuration block contains the external pin boot
configuration logic. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block
provides uniform and discrete input/output control of the I/O pins of the MCU. The reset controller performs reset monitoring
of internal and external reset sources, and drives the RSTOUT pin. Communication between the SIU and the e200z4 CPU core
is via the crossbar switch. The SIU provides the following features:
•
•
•
•
•
1.4.8
System configuration
— MCU reset configuration via external pins
— Pad configuration control for each pad
— Pad configuration control for virtual I/O via DSPI serialization
System reset monitoring and generation
— Power-on reset support
— Reset status register provides last reset source to software
— Glitch detection on reset input
— Software controlled reset assertion
External interrupt
— Rising or falling edge event detection
— Programmable digital filter for glitch rejection
— Critical Interrupt request
— Non-Maskable Interrupt request
GPIO
— Centralized control of I/O and bus pins
— Virtual GPIO via DSPI serialization (requires external deserialization device)
— Dedicated input and output registers for setting each GPIO and Virtual GPIO pin
Internal multiplexing
— Allows serial and parallel chaining of DSPIs
— Allows flexible selection of eQADC trigger inputs
— Allows selection of interrupt requests between external pins and DSPI
Flash memory
The MPC5644A provides up to 4 MB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be
used to store instructions or data, or both. The flash module includes a Fetch Accelerator that optimizes the performance of the
flash array to match the CPU architecture. The flash module interfaces the system bus to a dedicated flash memory array
controller. For CPU ‘loads’, DMA transfers and CPU instruction fetch, it supports a 64-bit data bus width at the system bus port,
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
9
and 128- and 256-bit read data interfaces to flash memory. The module contains a prefetch controller which prefetches
sequential lines of data from the flash array into the buffers. Prefetch buffer hits allow no-wait responses.
The flash memory provides the following features:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
1.4.9
Supports a 64-bit data bus for instruction fetch, CPU loads and DMA access. Byte, halfword, word and doubleword
reads are supported. Only aligned word and doubleword writes are supported.
Fetch Accelerator
— Architected to optimize the performance of the flash
— Configurable read buffering and line prefetch support
— Four-entry 256-bit wide line read buffer
— Prefetch controller
Hardware and software configurable read and write access protections on a per-master basis
Interface to the flash array controller pipelined with a depth of one, allowing overlapped accesses to proceed in parallel
for interleaved or pipelined flash array designs
Configurable access timing usable in a wide range of system frequencies
Multiple-mapping support and mapping-based block access timing (0-31 additional cycles) usable for emulation of
other memory types
Software programmable block program/erase restriction control
Erase of selected block(s)
Read page size of 128 bits (four words)
ECC with single-bit correction, double-bit detection
Program page size of 128 bits (four words) to accelerate programming
ECC single-bit error corrections are visible to software
Minimum program size is two consecutive 32-bit words, aligned on a 0-modulo-8 byte address, due to ECC
Embedded hardware program and erase algorithm
Erase suspend, program suspend and erase-suspended program
Shadow information stored in non-volatile shadow block
Independent program/erase of the shadow block
BAM
The BAM (Boot Assist Module) is a block of read-only memory that is programmed once by Freescale and is identical for all
MPC5644A MCUs. The BAM program is executed every time the MCU is powered-on or reset in normal mode. The BAM
supports different modes of booting. They are:
•
•
•
Booting from internal flash memory
Serial boot loading (A program is downloaded into RAM via eSCI or the FlexCAN and then executed)
Booting from external memory on external bus
The BAM also reads the reset configuration half word (RCHW) from internal flash memory and configures the MPC5644A
hardware accordingly. The BAM provides the following features:
•
•
•
•
•
•
Sets up MMU to cover all resources and mapping of all physical addresses to logical addresses with minimum address
translation
Sets up MMU to allow user boot code to execute as either Power Architecture embedded category (default) or as
Freescale VLE code
Location and detection of user boot code
Automatic switch to serial boot mode if internal flash is blank or invalid
Supports user programmable 64-bit password protection for serial boot mode
Supports serial bootloading via FlexCAN bus and eSCI using Freescale protocol
MPC5644A Microcontroller Data Sheet, Rev. 7
10
Freescale Semiconductor
•
•
•
•
•
•
Supports serial bootloading via FlexCAN bus and eSCI with auto baud rate sensing
Supports serial bootloading of either Power Architecture code (default) or Freescale VLE code
Supports booting from calibration bus interface
Supports censorship protection for internal flash memory
Provides an option to enable the core watchdog timer
Provides an option to disable the system watchdog timer
1.4.10
eMIOS
The eMIOS timer module provides the capability to generate or measure events in hardware.
The eMIOS module features include:
•
•
•
•
•
Twenty-four 24-bit wide channels
3 channels’ internal timebases can be shared between channels
1 Timebase from eTPU2 can be imported and used by the channels
Global enable feature for all eMIOS and eTPU timebases
Dedicated pin for each channel (not available on all package types)
Each channel (0–23) supports the following functions:
•
•
•
•
•
•
•
•
•
General-purpose input/output (GPIO)
Single-action input capture (SAIC)
Single-action output compare (SAOC)
Output pulse-width modulation buffered (OPWMB)
Input period measurement (IPM)
Input pulse-width measurement (IPWM)
Double-action output compare (DAOC)
Modulus counter buffered (MCB)
Output pulse width and frequency modulation buffered (OPWFMB)
1.4.11
eTPU2
The eTPU2 is an enhanced co-processor designed for timing control. Operating in parallel with the host CPU, the eTPU2
processes instructions and real-time input events, performs output waveform generation, and accesses shared data without host
intervention. Consequently, for each timer event, the host CPU setup and service times are minimized or eliminated. A powerful
timer subsystem is formed by combining the eTPU2 with its own instruction and data RAM. High-level assembler/compiler
and documentation allows customers to develop their own functions on the eTPU2.
MPC5644A devices feature the second generation of the eTPU, called eTPU2. Enhancements of the eTPU2 over the standard
eTPU include:
•
•
•
•
•
•
The Timer Counter (TCR1), channel logic and digital filters (both channel and the external timer clock input
[TCRCLK]) now have an option to run at full system clock speed or system clock / 2.
Channels support unordered transitions: transition 2 can now be detected before transition 1. Related to this
enhancement, the transition detection latches (TDL1 and TDL2) can now be independently negated by microcode.
A new User Programmable Channel Mode has been added: the blocking, enabling, service request and capture
characteristics of this channel mode can be programmed via microcode.
Microinstructions now provide an option to issue Interrupt and Data Transfer requests selected by channel. They can
also be requested simultaneously at the same instruction.
Channel Flags 0 and 1 can now be tested for branching, in addition to selecting the entry point.
Channel digital filters can be bypassed.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
11
The eTPU2 includes these distinctive features:
•
•
•
•
•
32 channels; each channel associated with one input and one output signal
— Enhanced input digital filters on the input pins for improved noise immunity
— Identical, orthogonal channels: each channel can perform any time function. Each time function can be assigned
to more than one channel at a given time, so each signal can have any functionality.
— Each channel has an event mechanism which supports single and double action functionality in various
combinations. It includes two 24-bit capture registers, two 24-bit match registers, 24-bit greater-equal and
equal-only comparators.
— Input and output signal states visible from the host
2 independent 24-bit time bases for channel synchronization:
— First time base clocked by system clock with programmable prescale division from 2 to 512 (in steps of 2), or by
output of second time base prescaler
— Second time base counter can work as a continuous angle counter, enabling angle based applications to match
angle instead of time
— Both time bases can be exported to the eMIOS timer module
— Both time bases visible from the host
Event-triggered microengine:
— Fixed-length instruction execution in two-system-clock microcycle
— 14 KB of code memory (SCM)
— 3 KB of parameter (data) RAM (SPRAM)
— Parallel execution of data memory, ALU, channel control and flow control sub-instructions in selected
combinations
— 32-bit microengine registers and 24-bit wide ALU, with 1 microcycle addition and subtraction, absolute value,
bitwise logical operations on 24-bit, 16-bit, or byte operands, single-bit manipulation, shift operations, sign
extension and conditional execution
— Additional 24-bit Multiply/MAC/Divide unit which supports all signed/unsigned Multiply/MAC combinations,
and unsigned 24-bit divide. The MAC/Divide unit works in parallel with the regular microcode commands.
Resource sharing features support channel use of common channel registers, memory and microengine time:
— Hardware scheduler works as a “task management” unit, dispatching event service routines by predefined,
host-configured priority
— Automatic channel context switch when a “task switch” occurs, that is, one function thread ends and another
begins to service a request from other channel: channel-specific registers, flags and parameter base address are
automatically loaded for the next serviced channel
— SPRAM shared between host CPU and eTPU2, supporting communication either between channels and host or
inter-channel
— Hardware implementation of four semaphores support coherent parameter sharing between both eTPU engines
— Dual-parameter coherency hardware support allows atomic access to two parameters by host
Test and development support features:
— Nexus Class 1 debug, supporting single-step execution, arbitrary microinstruction execution, hardware
breakpoints and watchpoints on several conditions
— Software breakpoints
— SCM continuous signature-check built-in self test (MISC - multiple input signature calculator), runs concurrently
with eTPU2 normal operation
MPC5644A Microcontroller Data Sheet, Rev. 7
12
Freescale Semiconductor
1.4.12
Reaction module
The reaction module provides the ability to modulate output signals to manage closed loop control without CPU assistance. It
works in conjunction with the eQADC and eTPU2 to increase system performance by removing the CPU from the current
control loop.
The reaction module has the following features:
•
•
•
Six reaction channels
Each channel output is a bus of three signals, providing ability to control 3 inputs.
Each channel can implement a peak and hold waveform, making it possible to implement up to six independent peak
and hold control channels
Target applications include solenoid control for direct injection systems and valve control in automatic transmissions
1.4.13
eQADC
The enhanced queued analog to digital converter (eQADC) block provides accurate and fast conversions for a wide range of
applications. The eQADC provides a parallel interface to two on-chip analog to digital converters (ADC), and a single master
to single slave serial interface to an off-chip external device. Both on-chip ADCs have access to all the analog channels.
The eQADC prioritizes and transfers commands from six command conversion command ‘queues’ to the on-chip ADCs or to
the external device. The block can also receive data from the on-chip ADCs or from an off-chip external device into the six
result queues, in parallel, independently of the command queues. The six command queues are prioritized with Queue_0 having
the highest priority and Queue_5 the lowest. Queue_0 also has the added ability to bypass all buffering and queuing and abort
a currently running conversion on either ADC and start a Queue_0 conversion. This means that Queue_0 will always have a
deterministic time from trigger to start of conversion, irrespective of what tasks the ADCs were performing when the trigger
occurred. The eQADC supports software and external hardware triggers from other blocks to initiate transfers of commands
from the queues to the on-chip ADCs or to the external device. It also monitors the fullness of command queues and result
queues, and accordingly generates DMA or interrupt requests to control data movement between the queues and the system
memory, which is external to the eQADC.
The ADCs also support features designed to allow the direct connection of high impedance acoustic sensors that might be used
in a system for detecting engine knock. These features include differential inputs; integrated variable gain amplifiers for
increasing the dynamic range; programmable pull-up and pull-down resistors for biasing and sensor diagnostics.
The eQADC also integrates a programmable decimation filter capable of taking in ADC conversion results at a high rate,
passing them through a hardware low pass filter, then down-sampling the output of the filter and feeding the lower sample rate
results to the result FIFOs. This allows the ADCs to sample the sensor at a rate high enough to avoid aliasing of out-of-band
noise; while providing a reduced sample rate output to minimize the amount DSP processing bandwidth required to fully
process the digitized waveform.
The eQADC provides the following features:
•
Dual on-chip ADCs
— 2  12-bit ADC resolution
— Programmable resolution for increased conversion speed (12-bit, 10-bit, 8-bit)
– 12-bit conversion time: 938 ns (1 M sample/sec)
– 10-bit conversion time: 813 ns (1.2 M sample/second)
– 8-bit conversion time: 688 ns (1.4 M sample/second)
— Up to 10-bit accuracy at 500 KSample/s and 8-bit accuracy at 1 MSample/s
— Differential conversions
— Single-ended signal range from 0 to 5 V
— Variable gain amplifiers on differential inputs (1, 2, 4)
— Sample times of 2 (default), 8, 64 or 128 ADC clock cycles
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
13
•
•
•
•
•
•
•
•
•
•
•
— Provides time stamp information when requested
— Allows time stamp information relative to eTPU clock sources, such as an angle clock
— Parallel interface to eQADC CFIFOs and RFIFOs
— Supports both right-justified unsigned and signed formats for conversion results
40 single-ended input channels, expandable to 56 channels with external multiplexers (supports four external 8-to-1
muxes)
8 channels can be used as 4 pairs of differential analog input channels
Differential channels include variable gain amplifier for improved dynamic range
Differential channels include programmable pull-up and pull-down resistors for biasing and sensor diagnostics
(200 k100 k5 k
Additional internal channels for monitoring voltages (such as core voltage, I/O voltage, LVI voltages, etc.) inside the
device
An internal bandgap reference to allow absolute voltage measurements
Silicon die temperature sensor
— Provides temperature of silicon as an analog value
— Read using an internal ADC analog channel
— May be read with either ADC
2 Decimation Filters
— Programmable decimation factor (1 to 16)
— Selectable IIR or FIR filter
— Up to 4th order IIR or 8th order FIR
— Programmable coefficients
— Saturated or non-saturated modes
— Programmable Rounding (Convergent; Two’s Complement; Truncated)
— Prefill mode to precondition the filter before the sample window opens
— Supports Multiple Cascading Decimation Filters to implement more complex filter designs
— Optional Absolute Integrators on the output of Decimation Filters
Full duplex synchronous serial interface to an external device
— Free-running clock for use by an external device
— Supports a 26-bit message length
Priority based queues
— Supports six queues with fixed priority. When commands of distinct queues are bound for the same ADC, the
higher priority queue is always served first
— Queue_0 can bypass all prioritization, buffering and abort current conversions to start a Queue_0 conversion a
deterministic time after the queue trigger
— Supports software and hardware trigger modes to arm a particular queue
— Generates interrupt when command coherency is not achieved
External hardware triggers
— Supports rising edge, falling edge, high level and low level triggers
— Supports configurable digital filter
1.4.14
DSPI
The deserial serial peripheral interface (DSPI) block provides a synchronous serial interface for communication between the
MPC5644A MCU and external devices. The DSPI supports pin count reduction through serialization and deserialization of
eTPU and eMIOS channels and memory-mapped registers. The channels and register content are transmitted using a SPI-like
protocol. This SPI-like protocol is completely configurable for baud rate, polarity and phase, frame length, chip select assertion,
MPC5644A Microcontroller Data Sheet, Rev. 7
14
Freescale Semiconductor
etc. Each bit in the frame may be configured to serialize either eTPU channels, eMIOS channels or GPIO signals. The DSPI
can be configured to serialize data to an external device that implements the Microsecond Bus protocol. There are three identical
DSPI blocks on the MPC5644A MCU. The DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS)
to improve high speed operation.
DSPI module features include:
•
•
•
•
•
Selectable LVDS pads working at 40 MHZ for SOUT and SCK pins for DSPI_B and DSPI_C
3 sources of serialized data: eTPU_A, eMIOS output channels and memory-mapped register in the DSPI
4 destinations for deserialized data: eTPU_A and eMIOS input channels, SIU external Interrupt input request,
memory-mapped register in the DSPI
32-bit DSI and TSB modes require 32 PCR registers, 32 GPO and GPI registers in the SIU to select either GPIO, eTPU
or eMIOS bits for serialization
The DSPI Module can generate and check parity in a serial frame
1.4.15
eSCI
Three enhanced serial communications interface (eSCI) modules provide asynchronous serial communications with peripheral
devices and other MCUs, and include support to interface to Local Interconnect Network (LIN) slave devices. Each eSCI block
provides the following features:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Full-duplex operation
Standard mark/space non-return-to-zero (NRZ) format
13-bit baud rate selection
Programmable 8-bit or 9-bit, data format
Programmable 12-bit or 13-bit data format for Timed Serial Bus (TSB) configuration to support the Microsecond bus
standard
Automatic parity generation
LIN support
— Autonomous transmission of entire frames
— Configurable to support all revisions of the LIN standard
— Automatic parity bit generation
— Double stop bit after bit error
— 10- or 13-bit break support
Separately enabled transmitter and receiver
Programmable transmitter output parity
2 receiver wake-up methods:
— Idle line wake-up
— Address mark wake-up
Interrupt-driven operation with flags
Receiver framing error detection
Hardware parity checking
1/16 bit-time noise detection
DMA support for both transmit and receive data
— Global error bit stored with receive data in system RAM to allow post processing of errors
1.4.16
FlexCAN
The MPC5644A MCU includes three controller area network (FlexCAN) blocks. The FlexCAN module is a communication
controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
15
be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable
operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. Each FlexCAN module contains 64
message buffers.
The FlexCAN modules provide the following features:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Based on and including all existing features of the Freescale TouCAN module
Full Implementation of the CAN protocol specification, Version 2.0B
— Standard data and remote frames
— Extended data and remote frames
— Zero to eight bytes data length
— Programmable bit rate up to 1 Mbit/s
Content-related addressing
64 message buffers of zero to eight bytes data length
Individual Rx Mask Register per message buffer
Each message buffer configurable as Rx or Tx, all supporting standard and extended messages
Includes 1088 bytes of embedded memory for message buffer storage
Includes 256-byte memory for storing individual Rx mask registers
Full featured Rx FIFO with storage capacity for six frames and internal pointer handling
Powerful Rx FIFO ID filtering, capable of matching incoming IDs against 8 extended, 16 standard or 32 partial (8 bits)
IDs, with individual masking capability
Selectable backwards compatibility with previous FlexCAN versions
Programmable clock source to the CAN Protocol Interface, either system clock or oscillator clock
Listen only mode capability
Programmable loop-back mode supporting self-test operation
3 programmable Mask Registers
Programmable transmit-first scheme: lowest ID, lowest buffer number or highest priority
Time Stamp based on 16-bit free-running timer
Global network time, synchronized by a specific message
Maskable interrupts
Warning interrupts when the Rx and Tx Error Counters reach 96
Independent of the transmission medium (an external transceiver is assumed)
Multi-master concept
High immunity to EMI
Short latency time due to an arbitration scheme for high-priority messages
Low power mode, with programmable wake-up on bus activity
1.4.17
FlexRay
The MPC5644A includes one dual-channel FlexRay module that implements the FlexRay Communications System Protocol
Specification, Version 2.1 Rev A. Features include:
•
•
•
•
Single channel support
FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported
128 message buffers, each configurable as:
— Receive message buffer
— Single buffered transmit message buffer
— Double buffered transmit message buffer (combines two single buffered message buffer)
2 independent receive FIFOs
MPC5644A Microcontroller Data Sheet, Rev. 7
16
Freescale Semiconductor
•
— 1 receive FIFO per channel
— Up to 255 entries for each FIFO
ECC support
1.4.18
System timers
The system timers include two distinct types of system timer:
•
•
Periodic interrupts/triggers using the Periodic Interrupt Timer (PIT)
Operating system task monitors using the System Timer Module (STM)
1.4.18.1
Periodic interrupt timer (PIT)
The PIT provides five independent timer channels, capable of producing periodic interrupts and periodic triggers. The PIT has
no external input or output pins and is intended to provide system ‘tick’ signals to the operating system, as well as periodic
triggers for eQADC queues. Of the five channels in the PIT, four are clocked by the system clock and one is clocked by the
crystal clock. This one channel is also referred to as Real-Time Interrupt (RTI) and is used to wake up the device from low power
stop mode.
The following features are implemented in the PIT:
•
•
•
•
•
•
5 independent timer channels
Each channel includes 32-bit wide down counter with automatic reload
4 channels clocked from system clock
1 channel clocked from crystal clock (wake-up timer)
Wake-up timer remains active when System STOP mode is entered; used to restart system clock after predefined
time-out period
Each channel optionally able to generate an interrupt request or a trigger event (to trigger eQADC queues) when timer
reaches zero
1.4.18.2
System timer module (STM)
The System Timer Module (STM) is designed to implement the software task monitor as defined by AUTOSAR1. It consists
of a single 32-bit counter, clocked by the system clock, and four independent timer comparators. These comparators produce a
CPU interrupt when the timer exceeds the programmed value.
The following features are implemented in the STM:
•
•
•
•
One 32-bit up counter with 8-bit prescaler
Four 32-bit compare channels
Independent interrupt source for each channel
Counter can be stopped in debug mode
1.4.19
Software watchdog timer (SWT)
The Software Watchdog Timer (SWT) is a second watchdog module to complement the standard Power Architecture watchdog
integrated in the CPU core. The SWT is a 32-bit modulus counter, clocked by the system clock or the crystal clock, that can
provide a system reset or interrupt request when the correct software key is not written within the required time window.
The following features are implemented:
•
•
32-bit modulus counter
Clocked by system clock or crystal clock
1.AUTOSAR: AUTomotive Open System ARchitecture (see http://www.autosar.org)
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
17
•
•
•
•
•
Optional programmable watchdog window mode
Can optionally cause system reset or interrupt request on timeout
Reset by writing a software key to memory mapped register
Enabled out of reset
Configuration is protected by a software key or a write-once register
1.4.20
Cyclic redundancy check (CRC) module
The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC features:
•
•
•
Support for CRC-16-CCITT (x25 protocol):
— X16 + X12 + X5 + 1
Support for CRC-32 (Ethernet protocol):
— X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1
Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency
1.4.21
Error correction status module (ECSM)
The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform
configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes,
and information on platform memory errors reported by error-correcting codes and/or generic access error information for
certain processor cores.
The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes
these features:
•
•
Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented
For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the
MPC5644A.
The sources of the ECC errors are:
•
•
•
Flash
SRAM
Peripheral RAM (FlexRay, CAN, eTPU2 Parameter RAM)
1.4.22
External bus interface (EBI)
The MPC5644A device features an external bus interface that is available in 324 TEPBGA and calibration packages.
The EBI supports operation at frequencies of system clock /1, /2 and /4, with a maximum frequency support of 80 MHz.
Customers running the device at 120 MHz or 132 MHz will use the /2 divider, giving an EBI frequency of 60 MHz or 66 MHz.
Customers running the device at 80 MHz will be able to use the /1 divider to have the EBI run at the full 80 MHz frequency.
Features include:
•
•
•
•
•
•
•
•
1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V)
Memory controller with support for various memory types
16-bit data bus, up to 22-bit address bus
Pin muxing included to support 32-bit muxed bus
Selectable drive strength
Configurable bus speed modes
Bus monitor
Configurable wait states
MPC5644A Microcontroller Data Sheet, Rev. 7
18
Freescale Semiconductor
1.4.23
Calibration EBI
The Calibration EBI controls data transfer across the crossbar switch to/from memories or peripherals attached to the VertiCal
connector in the calibration address space. The Calibration EBI is only available in the VertiCal Calibration System.
Features include:
•
•
•
•
•
•
•
•
1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V)
Memory controller supports various memory types
16-bit data bus, up to 22-bit address bus
Pin muxing supports 32-bit muxed bus
Selectable drive strength
Configurable bus speed modes
Bus monitor
Configurable wait states
1.4.24
Power management controller (PMC)
The power management controller contains circuitry to generate the internal 3.3 V supply and to control the regulation of 1.2 V
supply with an external NPN ballast transistor. It also contains low voltage inhibit (LVI) and power-on reset (POR) circuits for
the 1.2 V supply, the 3.3 V supply, the 3.3 V/5 V supply of the closest I/O segment (VDDEH1) and the 5 V supply of the
regulators (VDDREG).
1.4.25
Nexus port controller
The NPC (Nexus Port Controller) block provides real-time Nexus Class3+ development support capabilities for the MPC5644A
Power Architecture-based MCU in compliance with the IEEE-ISTO 5001-2003 and 2010 standards. MDO port widths of 4 pins
and 12 pins are available in all packages.
1.4.26
JTAG
The JTAGC (JTAG Controller) block provides the means to test chip functionality and connectivity while remaining transparent
to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001
standard. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant
with the IEEE 1149.1-2001 standard and supports the following features:
•
•
•
•
•
•
IEEE 1149.1-2001 Test Access Port (TAP) interface 4 pins (TDI, TMS, TCK, and TDO)
A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:
— BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD, HIGHZ, CLAMP
A 5-bit instruction register that supports the additional following public instructions:
— ACCESS_AUX_TAP_NPC
— ACCESS_AUX_TAP_ONCE
— ACCESS_AUX_TAP_eTPU
— ACCESS_CENSOR
3 test data registers to support JTAG Boundary Scan mode
— Bypass register
— Boundary scan register
— Device identification register
A TAP controller state machine that controls the operation of the data registers, instruction register and associated
circuitry
Censorship Inhibit Register
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
19
— 64-bit Censorship password register
— If the external tool writes a 64-bit password that matches the Serial Boot password stored in the internal flash
shadow row, Censorship is disabled until the next system reset.
1.4.27
Development Trigger Semaphore (DTS)
MPC5644A devices include a system development feature, the Development Trigger Semaphore (DTS) module, that enables
software to signal an external tool by driving a persistent (affected only by reset or an external tool) signal on an external device
pin. There is a variety of ways this module can be used, including as a component of an external real-time data acquisition
system
1.5
1.5.1
MPC5644A series architecture
Block diagram
Figure 1 shows a top-level block diagram of the MPC5644A series.
MPC5644A Microcontroller Data Sheet, Rev. 7
20
Freescale Semiconductor
Power ArchitectureTM
e200z4
JTAG
Nexus Class 3+
SPE
Nexus
VLE
MMU
eDMA
64 Channel
8 KB I-cache
M4
M0
FlexRay
M6
M1
Crossbar Switch
MPU
S0
S2
4 MB
Flash
IEEE-ISTO
5001-2003/2010
M7
S1
S7
Analog PLL
192 KB
SRAM
Voltage Regulator
RCOSC
Standby
Regulator
with Switch
XOSC
ECSM
Cal Bus Interface Ext. Bus Interface
Interrupt
Controller
ADCi DEC
x2
Temp Sens
ADC
ADC
eSCI3
DSPI3
FlexCAN3
PIT
SWT
SIU
STM
BAM
PMC
FMPLL
CRC
DTS
3 KB Data eTPU2
eMIOS
32
RAM
Channel
24
14 KB Code Nexus
Channel
RAM
Class 1
REACM
I/O Bridge
AMux
VGA
LEGEND
ADC
– Analog to Digital Converter
ADCi
– ADC interface
AMux – Analog Multiplexer
BAM
– Boot Assist Module
CRC
– Cyclic Redundancy Check unit
DEC
– Decimation Filter
DTS
– Development Trigger Semaphore
DSPI
– Deserial/Serial Peripheral Interface
EBI
– External Bus Interface
ECSM – Error Correction Status Module
eDMA – Enhanced Direct Memory Access
eMIOS – Enhanced Modular Input Output System
eSCI
– Enhanced Serial Communications Interface
eTPU2 – Second gen. Enhanced Time Processing Unit
FlexCAN– Controller Area Network (FlexCAN)
FMPLL – Frequency-Modulated Phase Locked Loop
JTAG
MMU
MPU
PMC
PIT
RCOSC
REACM
SIU
SPE
SRAM
STM
SWT
VGA
VLE
XOSC
– IEEE 1149.1 test controller
– Memory Management Unit
– Memory Protection Unit
– Power Management Controller
– Periodic Interrupt Timer
– low-speed RC oscillator
– Reaction module
– System Integration Unit
– Signal Processing Extension
– Static RAM
– System Timer Module
– Software Watchdog Timer
– Variable Gain Amplifier
– Variable Length (instruction) Encoding
– XTAL Oscillator
Figure 1. MPC5644A series block diagram
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
21
1.5.2
Block summary
Table 2 summarizes the functions of the blocks present on the MPC5644A series microcontrollers.
Table 2. MPC5644A series block summary
Block
Function
Boot assist module (BAM)
Block of read-only memory containing executable code that searches
for user-supplied boot code and, if none is found, executes the BAM
boot code resident in device ROM.
Calibration Bus interface
Transfers data across the crossbar switch to/from peripherals attached
to the calibration system connector.
Controller area network (FlexCAN)
Supports the standard CAN communications protocol.
Crossbar switch (XBAR)
Internal busmaster.
Cyclic redundancy check (CRC)
CRC checksum generator.
Deserial serial peripheral interface (DSPI)
Provides a synchronous serial interface for communication with
external devices.
e200z4 core
Executes programs and interrupt handlers.
Enhanced direct memory access (eDMA)
Performs complex data movements with minimal intervention from the
core.
Enhanced modular input-output system
(eMIOS)
Provides the functionality to generate or measure events.
Enhanced queued analog-to-digital
converter (eQADC)
Provides accurate and fast conversions for a wide range of
applications.
Enhanced serial communication interface
(eSCI)
Provides asynchronous serial communication capability with
peripheral devices and other microcontroller units.
Enhanced time processor unit (eTPU2)
Second-generation co-processor processes real-time input events,
performs output waveform generation, and accesses shared data
without host intervention.
Error Correction Status Module (ECSM)
The Error Correction Status Module supports a number of
miscellaneous control functions for the platform, and includes registers
for capturing information on platform memory errors if error-correcting
codes (ECC) are implemented
External bus interface (EBI)
Enables expansion of internal bus to enable connection of external
memory or peripherals.
Flash memory
Provides storage for program code, constants, and variables.
FlexRay
Provides high-speed distributed control for advanced automotive
applications.
Interrupt controller (INTC)
Provides priority-based preemptive scheduling of interrupt requests.
JTAG controller
Provides the means to test chip functionality and connectivity while
remaining transparent to system logic when not in test mode.
Memory protection unit (MPU)
Provides hardware access control for all memory references
generated.
Nexus port controller (NPC)
Provides real-time development support capabilities in compliance
with the IEEE-ISTO 5001-2003 standard.
MPC5644A Microcontroller Data Sheet, Rev. 7
22
Freescale Semiconductor
Table 2. MPC5644A series block summary (continued)
Block
Function
Reaction Module (REACM)
Works in conjunction with the eQADC and eTPU2 to increase system
performance by removing the CPU from the current control loop.
System Integration Unit (SIU)
Controls MCU reset configuration, pad configuration, external
interrupt, general purpose I/O (GPIO), internal peripheral multiplexing,
and the system reset operation.
Static random-access memory (SRAM)
Provides storage for program code, constants, and variables.
System timers
Includes periodic interrupt timer with real-time interrupt; output
compare timer and system watchdog timer.
Temperature sensor
Provides the temperature of the device as an analog value.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
23
2
Pinout and signal description
This section contains the pinouts for all production packages for the MPC5644A family of devices.
CAUTION
Any pins labeled “NC” are to be left unconnected. Any connection to an external circuit or
voltage may cause unpredictable device behavior or damage.
MPC5644A Microcontroller Data Sheet, Rev. 7
24
Freescale Semiconductor
176 LQFP pinout
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
VDD
AN[37]
AN[36]
AN[21]
AN[0] (DAN0+)
AN[1] (DAN0-)
AN[2] (DAN1+)
AN[3] (DAN1-)
AN[4] (DAN2+)
AN[5] (DAN2-)
AN[6] (DAN3+)
AN[7] (DAN3-)
REFBYPC
VRH
VRL
AN[22]
AN[23]
AN[24]
AN[25]
AN[27]
AN[28]
AN[30]
AN[31]
AN[32]
AN[33]
AN[34]
AN[35]
VDD
AN[12] / MA[0] / ETPUA19_O /SDS
AN[13] / MA[1] / ETPUA21_O / SDO
AN[14] / MA[2] / ETPUA27_O / SDI
AN[15] / FCK / ETPUA29_O
GPIO[207] ETRIG1
GPIO[206] ETRIG0
DSPI_D_SIN / GPIO[99]
DSPI_D_SCK / GPIO[98]
VSS
MDO9 / ETPUA25_O / GPIO[80]
VDDEH7B
MDO8 / ETPUA21_O / GPIO[79]
MDO7 / ETPUA19_O / GPIO[78]
MDO6 / ETPUA13_O / GPIO[77]
MDO10 / ETPUA27_O / GPIO[81]
VSS
2.1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
176-Pin
LQFP
signal details:
pin 21: ETPUA31 / DSPI_C_PCS[4] / ETPUA13_O / GPIO[145]
pin 22: ETPUA30 / DSPI_C_PCS[3] / ETPUA11_O / GPIO[144]
pin 23: ETPUA29 / DSPI_C_PCS[2] / RCH5_C / GPIO[143]
pin 24: ETPUA28 / DSPI_C_PCS[1] / RCH5_B / GPIO[142]
pin 25: ETPUA27 / IRQ[15] / DSPI_C_SOUT_LVDS+ / SOUTB / GPIO[141]
pin 26: ETPUA26 / IRQ[14] / DSPI_C_SOUT_LVDS- / GPIO[140]
pin 27: ETPUA25 / IRQ[13] / DSPI_C_SCK_LVDS+ / GPIO[139]
pin 28: ETPUA24 / IRQ[12] / DSPI_C_SCK_LVDS- / GPIO[138]
pin 30: ETPUA23 / IRQ[11] / ETPUA21_O / FR_A_TX_EN / GPIO[137]
pin 32: ETPUA22 / IRQ[10] / ETPUA17_O / GPIO[136]
pin 34: ETPUA21 / IRQ[9] / RCH0_C / FR_A_RX / GPIO[135]
pin 35: ETPUA20 / IRQ[8] / RCH0_B / FR_A_TX / GPIO[134]
pin 36: ETPUA19 / DSPI_D_PCS[4] / RCH5_A / GPIO[133]
pin 37: ETPUA18 / DSPI_D_PCS[3] / RCH4_A / GPIO[132]
pin 38: ETPUA17 / DSPI_D_PCS[2] / RCH3_A / GPIO[131]
pin 39: ETPUA16 / DSPI_D_PCS[1] / RCH2_A / GPIO[130]
pin 40: ETPUA15 / DSPI_B_PCS[5] / RCH1_A / GPIO[129]
pin 42: ETPUA14 / DSPI_B_PCS[4] / ETPUA9_O / RCH0_A / GPIO[128]
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
VDD
TMS
TDI
MDO5 / ETPUA4_O / GPIO[76]
TCK
VSS
MDO4 / ETPUA2_O / GPIO[75]
VDDEH7A
MDO11 / ETPUA29_O / GPIO[82]
TDO
GPIO[219]
JCOMP
EVTO
NC
MSEO[0]
MSEO[1]
EVTI
VSS
DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108]
DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104]
DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103]
DSPI_B_PCS[0] / DSPI_D_PCS[2] / GPIO[105]
VDDEH6B
DSPI_B_PCS[1] / DSPI_D_PCS[0] / GPIO[106]
VSS
DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107]
DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102]
DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109]
DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110]
VDD
RSTOUT
CAN_C_TX / DSPI_D_PCS3 / GPIO[87]
SCI_A_TX / EMIOS13 / GPIO[89]
SCI_A_RX / EMIOS15 / GPIO[90]
CAN_C_RX / DSPI_D_PCS4 / GPIO[88]
RESET
VSS
VDDEH6A
VSS
XTAL
EXTAL / EXTCLK
VDDPLL
VSS
CAN_B_RX / DSPI_C_PCS[4] / SCI_C_RX / GPIO[86]
VDD
ETPUA13 / DSPI_B_PCS[3] / GPIO[127]
ETPUA12 / DSPI_B_PCS[1] / RCH4_C / GPIO[126]
ETPUA11 / ETPUA23_O / RCH4_B / GPIO[125]
ETPUA10 / ETPUA22_O / RCH1_C /GPIO[124]
ETPUA9 / ETPUA21_O / RCH1_B / GPIO[123]
ETPUA8 / ETPUA20_O / DSPI_B_SOUT_LVDS+ / GPIO[122]
ETPUA7 / ETPUA19_O / DSPI_B_SOUT_LVDS- / ETPUA6_O / GPIO[121]
ETPUA6 / ETPUA18_O / DSPI_B_SCK_LVDS+ / FR_B_RX / GPIO[120]
ETPUA5 / ETPUA17_O / DSPI_B_SCK_LVDS- / FR_B_TX_EN/ GPIO[119]
VDDEH4A
ETPUA4 / ETPUA16_O / FR_B_TX / GPIO[118]
VSS
ETPUA3 / ETPUA15_O / GPIO[117]
ETPUA2 / ETPUA14_O / GPIO[116]
ETPUA1 / ETPUA13_O / GPIO[115]
ETPUA0 / ETPUA12_O / ETPUA19_O / GPIO[114]
VDD
EMIOS0 / ETPUA0 / ETPUA25_O / GPIO[179]
EMIOS1 / ETPUA1_O / GPIO[180]
EMIOS2 / ETPUA2_O / RCH2_B / GPIO[181]
EMIOS3 / ETPUA3_O /GPIO[182]
EMIOS4 / ETPUA4_O / RCH2_C / GPIO[183]
EMIOS6 / ETPUA6_O / GPIO[185]
EMIOS7 / ETPUA7_O / GPIO[186]
EMIOS8 / ETPUA8_O / SCI_B_TX / GPIO[187]
EMIOS9 / ETPUA9_O / SCI_B_RX / GPIO[188]
VSS
EMIOS10 / DSPI_D_PCS3 / RCH3_B / GPIO[189]
VDDEH4B
EMIOS11 / DSPI_D_PCS4 / RCH3_C / GPIO[190]
EMIOS12 / DSPI_C_SOUT / ETPUA27_O / GPIO[191]
EMIOS13 / DSPI_D_SOUT / GPIO[192]
EMIOS14 / IRQ[0] / ETPUA29_O / GPIO[193]
EMIOS15 / IRQ[1] / GPIO[194]
EMIOS23 / GPIO[202]
CAN_A_TX / SCI_A_TX / GPIO[83]
CAN_A_RX / SCI_A_RX / GPIO[84]
PLLREF / IRQ[4]/ETRIG[2] / GPIO[208]
SCI_B_RX / DSPI_D_PCS5 / GPIO[92]
BOOTCFG1 / IRQ[3] / ETRIG[3] / GPIO[212]
WKPCFG / NMI / DSPI_B_SOUT / GPIO[213]
SCI_B_TX / DSPI_D_PCS1 / GPIO[91]
CAN_B_TX / DSPI_C_PCS3 / SCI_C_TX / GPIO[85]
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
AN[18]
AN[17]
AN[16]
AN[11] / ANZ
AN[9] / ANX
VDDA
VSSA
AN[39]
AN[8] / ANW
VDDREG
VRCCTL
VSTBY
VRC33
MCKO
VSS
NC
MDO[0]
MDO[1]
MDO[2]
MDO[3]
(see signal details, pin 21)
(see signal details, pin 22)
(see signal details, pin 23)
(see signal details, pin 24)
(see signal details, pin 25)
(see signal details, pin 26)
(see signal details, pin 27)
(see signal details, pin 28)
VSS
(see signal details, pin 30)
VDDEH1A
(see signal details, pin 32)
VDD
(see signal details, pin 34)
(see signal details, pin 35)
(see signal details, pin 36)
(see signal details, pin 37)
(see signal details, pin 38)
(see signal details, pin 39)
(see signal details, pin 40)
VDDEH1B
(see signal details, pin 42)
VSS
NIC
Note: Pin 96 (VSS) should be tied low.
Figure 2. 176-pin LQFP pinout (top view)
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
25
26
2.2
208 MAP BGA ballmap
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
VSS
AN9
AN11
VDDA1
VSSA1
AN1
AN5
VRH
VRL
AN27
VSSA0
AN12-SDS
MDO2
MDO0
VRC33
VSS
A
B
VDD
VSS
AN8
AN21
AN0
AN4
REFBYPC
AN22
AN25
AN28
VDDA0
AN13-SDO
MDO3
MDO1
VSS
VDD
B
C
VSTBY
VDD
VSS
AN17
AN34
AN16
AN3
AN7
AN23
AN32
AN33
AN14-SDI
AN15-FCK
VSS
MSEO0
TCK
C
D
VRC33
AN39
VDD
VSS
AN18
AN2
AN6
AN24
AN30
AN31
AN35
VDDEH7
VSS
TMS
EVTO
NC
D
E
ETPUA30
ETPUA31
AN37
VDD
NC
TDI
EVTI
MSEO1
E
F
ETPUA28
ETPUA29
ETPUA26
AN36
VDDEH6AB
TDO
MCKO
JCOMP
F
G
ETPUA24
ETPUA27
ETPUA25
ETPUA21
VSS
VSS
VSS
VSS
DSPI_B_
SOUT
DSPI_B_
PCS3
DSPI_B_
SIN
DSPI_B_
PCS0
G
H
ETPUA23
ETPUA22
ETPUA17
ETPUA18
VSS
VSS
VSS
VSS
GPIO99
DSPI_B_
PCS4
DSPI_B_
PCS2
DSPI_B_
PCS1
H
J
ETPUA20
ETPUA19
ETPUA14
ETPUA13
VSS
VSS
VSS
VSS
DSPI_B_
PCS5
SCI_A_TX
GPIO98
DSPI_B_
SCK
J
K
ETPUA16
ETPUA15
ETPUA7
VDDEH1AB
VSS
VSS
VSS
VSS
CAN_C_TX
SCI_A_RX
RSTOUT
VDDREG
K
L
ETPUA12
ETPUA11
ETPUA6
TCRCLKA
SCI_B_TX
CAN_C_
RX
WKPCFG
RESET
L
M
ETPUA10
ETPUA9
ETPUA1
ETPUA5
SCI_B_RX
PLLREF
BOOTCFG1
VSS
M
N
ETPUA8
ETPUA4
ETPUA0
VSS
VDD
VRC33
EMIOS2
EMIOS10
VDDEH4AB
EMIOS12
MDO7_
ETPUA19_O
VRC33
VSS1
VRCCTL
NC
EXTAL
N
P
ETPUA3
ETPUA2
VSS
VDD
GPIO207
NC
EMIOS6
EMIOS8
MDO11_
ETPUA29_O
MDO4_
ETPUA2_O
MDO8_
ETPUA21_O
CAN_A_TX
VDD
VSS
NC
XTAL
P
R
NC
VSS
VDD
GPIO206
EMIOS4
EMIOS3
EMIOS9
EMIOS11
EMIOS14
MDO10_
ETPUA27_O
EMIOS23
CAN_A_RX
CAN_B_RX
VDD
VSS
VDDPLL
R
T
VSS
VDD
NC
EMIOS0
EMIOS1
GPIO219
MDO9_
ETPUA25_O
EMIOS13
EMIOS15
MDO5_
ETPUA4_O
MDO6_
ETPUA13_O
CAN_B_TX
VDDE5
ENGCLK
VDD
VSS
T
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
This pin (N13) should be tied low.
Figure 3. 208-pin MAPBGA package ballmap (viewed from above)
Freescale Semiconductor
2.3
324 TEPBGA ballmap
MPC5644A Microcontroller Data Sheet, Rev. 7
1
2
3
4
5
6
7
8
9
10
11
A
VSS
VDD
AN16
AN17
AN37
VDDA1
VSSA1
AN23
AN25
VRH
VRL
B
VRC33
VSS
VDD
AN18
AN36
AN21
AN4
AN5
AN24
REFBYPC
AN30
C
AN11
AN9
ANX
VSS
VDD
AN20
AN0
AN1
AN6
AN7
AN27
AN29
D
AN10
ANY
AN39
AN38
VSS
VDD
AN19
AN2
AN3
AN22
AN26
AN28
E
AN8
ANW
VSSA0
VDDA0
VSTBY
F
MCKO
VRCCTL
MDO0
VDDREG
G
CS0
MDO1
MDO2
MDO3
H
CS1
CS2
OE
CS3
J
WE1
WE0
BDIP
RD_WR
VSS
VSS
VSS
K
ETPUA31
TA
TS
VDDEH1AB
VSS
VSS
VSS
L
ETPUA27
ETPUA26
ETPUA29
ETPUA30
VSS
VSS
VSS
Figure 4. 324-pin TEPBGA package ballmap (northwest, viewed from above)
27
28
MPC5644A Microcontroller Data Sheet, Rev. 7
M
ETPUA23
ETPUA24
ETPUA25
ETPUA28
VDDE2
VDDE2
VSS
N
ADDR13
ADDR12
ETPUA22
ETPUA21
VSS
VSS
VDDE5
P
ADDR14
ADDR15
ADDR16
ADDR17
VSS
VSS
VRC33
R
ADDR18
ADDR19
VDDE-EH
ADDR20
T
ADDR21
ADDR22
ADDR23
ADDR24
U
ADDR25
ADDR26
ADDR27
ADDR28
V
ADDR29
VDDE-EH
ADDR30
ADDR31
W
ETPUA20
ETPUA19
ETPUA18
VSS
VDDE5
DATA6
DATA10
VDDE5
DATA14
ENGCLK
ETPUA4
Y
ETPUA17
ETPUA16
VSS
VDD
DATA0
DATA5
DATA9
DATA13
DATA15
ETPUA8
ETPUA3
AA
ETPUA15
ETPUA14
VDD
ETPUA10
DATA1
DATA4
DATA8
DATA12
ETPUA9
ETPUA7
ETPUA2
AB
VSS
ETPUA13
ETPUA12
ETPUA11
DATA2
DATA3
DATA7
DATA11
CLKOUT
ETPUA6
ETPUA5
1
2
3
4
5
6
7
8
9
10
11
Figure 5. 324-pin TEPBGA package ballmap (southwest, viewed from above)
Freescale Semiconductor
29
12
13
14
15
16
17
18
19
MPC5644A Microcontroller Data Sheet, Rev. 7
20
21
22
AN34
AN14-SDI
AN15-FCK
GPIO203
DSPI_A_
PCS5
DSPI_A_
SOUT
VDD
VDD
VSS
A
AN33
AN13-SDO
GPIO207
GPIO99
DSPI_A_
PCS4
DSPI_A_SIN
MDO7_
ETPUA19_O
MDO5_
ETPUA4_O
VSS
VDDEH7
B
AN32
AN12-SDS
GPIO206
GPIO98
DSPI_A_
PCS1
DSPI_A_SCK
MDO6_
MDO11_
ETPUA13_O ETPUA29_O
VSS
VDDEH7
VDD
C
AN31
AN35
GPIO204
VDDEH7
DSPI_A_
PCS0
VSS
VSS
VDDEH7
TCK
TDI
D
VDDEH7
TMS
TDO
NC
E
VDDEH7
JCOMP
VSS
NC
F
RDY
EVTO
MSEO0
MSEO1
G
VDDEH7
EVTI
VSS
DSPI_B_SIN
H
MDO8_
MDO10_
ETPUA21_O ETPUA27_O
MDO9_
ETPUA25_O
MDO4_
ETPUA2_O
VSS
VSS
VDDEH7
DSPI_B_
SOUT
DSPI_B_
PCS3
DSPI_B_
PCS0
DSPI_B_
PCS1
J
VSS
VSS
VSS
NC
DSPI_B_
PCS4
DSPI_B_SCK
DSPI_B_
PCS2
K
VSS
VSS
VSS
DSPI_B_
PCS5
NC
VSS
NC
L
Figure 6. 324-pin TEPBGA package ballmap (northeast, viewed from above)
Freescale Semiconductor
30
MPC5644A Microcontroller Data Sheet, Rev. 7
1
VSS
VSS
VSS
VRC33
NC
NC
VDDEH6AB
M
VSS
VSS
VSS
NC
SCI_A_TX
VSS
NC
N
VSS
VSS
VSS
CAN_C_TX
SCI_A_RX
RSTOUT
RSTCFG
P
NC
NC
NC
RESET
R
VSS
BOOTCFG0
VSS1
VSS
T
VDDEH6AB
PLLCFG1
BOOTCFG1
EXTAL
U
SCI_C_RX
CAN_C_RX
PLLREF
XTAL
V
ETPUA1
EMIOS1
VDDEH4AB
EMIOS8
EMIOS15
EMIOS16
EMIOS23
SCI_C_TX
VDD
CAN_B_RX
VDDPLL
W
ETPUA0
EMIOS2
EMIOS5
EMIOS9
EMIOS14
EMIOS17
EMIOS22
CAN_A_RX
VSS
VDD
CAN_B_TX
Y
EMIOS0
EMIOS3
EMIOS6
EMIOS10
EMIOS13
EMIOS18
EMIOS21
VDDEH4AB
WKPCFG
VSS
VDD
AA
TCRCLKA
EMIOS4
EMIOS7
EMIOS11
EMIOS12
EMIOS19
EMIOS20
CAN_A_TX
SCI_B_RX
SCI_B_TX
VSS
AB
12
13
14
15
16
17
18
19
20
21
22
This pin (T21) should be tied low.
Figure 7. 324-pin TEPBGA package ballmap (southeast, viewed from above)
Freescale Semiconductor
Freescale Semiconductor
2.4
Signal summary
Table 3. MPC5644A signal properties
Function1
Name
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
GPIO
MPC5644A Microcontroller Data Sheet, Rev. 7
EMIOS148
GPIO[203]
eMIOS channel
GPIO
P
G
01
00
203
O
I/O
VDDEH7
Slow
— / Up
— / Up
—
—
A15
EMIOS158
GPIO[204]
eMIOS channel
GPIO
P
G
01
00
204
O
I/O
VDDEH7
Slow
— / Up
—/ Up
—
—
D14
GPIO[206] ETRIG0 GPIO / eQADC Trigger Input
G
00
206
I/O9
VDDEH7
Slow10
— / Up
— / Up
143
R4
C14
GPIO[207] ETRIG1 GPIO / eQADC Trigger Input
G
00
207
I/O9
VDDEH7
Slow
— / Up
— / Up
144
P5
B14
GPIO[219]
G
—
21911
I/O
VDDEH7
MultiV12
— / Up
— / Up
122
T6
RESET / Up
97
L16
R22
K15
P21
M14
V21
GPIO
—
Reset / Configuration
RESET
External Reset Input
P
—
—
I
VDDEH6
Slow
RESET / Up
RSTOUT
External Reset Output
P
01
230
O
VDDEH6
Slow
RSTOUT /
Down
PLLREF
IRQ[4]
ETRIG2
GPIO[208]
FMPLL Mode Selection
External Interrupt Request
eQADC Trigger Input
GPIO
P
A1
A2
G
001
010
100
000
208
I
I
I
I/O
VDDEH6
Slow
— / Up
PLLREF / Up
PLLCFG113
IRQ[5]
DSPI_D_SOUT
GPIO[209]
—
External interrupt request
DSPI D data output
GPIO
—
A1
A2
G
—
010
100
000
209
—
I
O
I/O
VDDEH6
Medium
— / Up
— / Up
—
—
U20
RSTCFG
GPIO[210]
RSTCFG
GPIO
P
G
01
00
210
I
I/O
VDDEH6
Slow
— / Down
—
—
—
P22
BOOTCFG[0]
IRQ[2]
GPIO[211]
Boot Config. Input
External Interrupt Request
GPIO
P
A1
G
01
10
00
211
I
I
I/O
VDDEH6
Slow
— / Down
BOOTCFG[0] /
Down
—
—
T20
RSTOUT / Down 102
83
31
32
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
During Reset
Package pin #
After
Reset
176
208
324
BOOTCFG[1]
IRQ[3]
ETRIG3
GPIO[212]
Boot Config. Input
External Interrupt Request
eQADC Trigger Input
GPIO
P
A1
A2
G
001
010
100
000
212
I
I
I
I/O
VDDEH6
Slow
— / Down
BOOTCFG[1] /
Down
85
M15
U21
WKPCFG
NMI
DSPI_B_SOUT
GPIO[213]
Weak Pull Config. Input
Non-Maskable Interrupt
DSPI D data output
GPIO
P
A1
A2
G
001
010
100
000
213
I
I
O
I/O
VDDEH6
Medium
— / Up
WKPCFG / Up
86
L15
AA20
MPC5644A Microcontroller Data Sheet, Rev. 7
External Bus Interface
Freescale Semiconductor
CS[0]
ADDR[8]
GPIO[0]
External chip selects
External address bus
GPIO
P
A1
G
01
10
00
0
O
I/O
I/O
VDDE2
Fast
— / Up
— / Up
—
—
G1
CS[1]
ADDR9
GPIO[1]
External chip selects
External address bus
GPIO
P
A1
G
01
10
00
1
O
I/O
I/O
VDDE2
Fast
— / Up
— / Up
—
—
H1
CS[2]
ADDR10
WE[2]/BE[2]
CAL_WE[2]/BE[2]
GPIO[2]
External chip selects
External address bus
Write/byte enable
Cal. bus write/byte enable
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
2
O
I/O
O
O
I/O
VDDE2
Fast
— / Up
— / Up
—
—
H2
CS[3]
ADDR11
WE[3]/BE[3]
CAL_WE[3]/BE[3]
GPIO[3]
External chip selects
External address bus
Write/byte enable
Cal bus write/byte enable
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
3
O
I/O
O
O
I/O
VDDE2
Fast
— / Up
— / Up
—
—
H4
ADDR12
GPIO[8]
External address bus
GPIO
P
G
01
00
8
I/O
I/O
VDDE3
Fast
— / Up
— / Up
—
—
N2
ADDR13
WE[2]
GPIO[9]
External address bus
Write/byte enable
GPIO
P
A2
G
001
100
000
9
I/O
O
I/O
VDDE3
Fast
— / Up
— / Up
—
—
N1
ADDR14
WE[3]
GPIO[10]
External address bus
Write/byte enables
GPIO
P
A2
G
001
100
000
10
I/O
O
I/O
VDDE3
Fast
— / Up
— / Up
—
—
P1
ADDR15
GPIO[11]
External address bus
GPIO
P
G
01
00
11
I/O
I/O
VDDE3
Fast
— / Up
— / Up
—
—
P2
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
ADDR16
FR_A_TX
DATA16
GPIO[12]
External address bus
Flexray TX data channel A
External data bus
GPIO
P
A1
A2
G
001
010
100
000
12
I/O
O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
P3
ADDR17
FR_A_TX_EN
DATA17
GPIO[13]
External address bus
FlexRay ch. A TX data enable
External data bus
GPIO
P
A1
A2
G
001
010
100
000
13
I/O
O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
P4
ADDR18
FR_A_RX
DATA18
GPIO[14]
External address bus
Flexray RX data ch. A
External data bus
GPIO
P
A1
A2
G
001
010
100
000
14
I/O
I
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
R1
ADDR19
FR_B_TX
DATA19
GPIO[15]
External address bus
Flexray TX data ch. B
External data bus
GPIO
P
A1
A2
G
001
010
100
000
15
I/O
O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
R2
ADDR20
FR_B_TX_EN
DATA20
GPIO[16]
P
External address bus
Flexray TX data enable for ch. B A1
A2
External data bus
G
GPIO
001
010
100
000
16
I/O
O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
R4
ADDR21
FR_B_RX
DATA21
GPIO[17]
External address bus
Flexray RX data channel B
External data bus
GPIO
P
A1
A2
G
001
010
100
000
17
I/O
I
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
T1
ADDR22
DATA22
GPIO[18]
External address bus
External data bus
GPIO
P
A2
G
001
100
000
18
I/O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
T2
ADDR23
DATA23
GPIO[19]
External address bus
External data bus
GPIO
P
A2
G
001
100
000
19
I/O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
T3
ADDR24
DATA24
GPIO[20]
External address bus
External data bus
GPIO
P
A2
G
001
100
000
20
I/O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
T4
ADDR25
DATA25
GPIO[21]
External address bus
External data bus
GPIO
P
A2
G
001
100
000
21
I/O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
U1
33
34
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
ADDR26
DATA26
GPIO[22]
External address bus
External data bus
GPIO
P
A2
G
001
100
000
22
I/O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
U2
ADDR27
DATA27
GPIO[23]
External address bus
External data bus
GPIO
P
A2
G
001
100
000
23
I/O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
U3
ADDR28
DATA28
GPIO[24]
External address bus
External data bus
GPIO
P
A2
G
001
100
000
24
I/O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
U4
ADDR29
DATA29
GPIO[25]
External address bus
External data bus
GPIO
P
A2
G
001
100
000
25
I/O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
V1
ADDR30
ADDR68
DATA30
GPIO[26]
External address bus
External address bus
External data bus
GPIO
P
A1
A2
G
001
010
100
000
26
I/O
O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
V3
ADDR31
ADDR78
DATA31
GPIO[27]
External address bus
External address bus
External data bus
GPIO
P
A1
A2
G
001
010
100
000
27
I/O
O
I/O
I/O
VDDE-EH
Medium
— / Up
— / Up
—
—
V4
DATA0
ADDR16
GPIO[28]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
28
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
Y5
DATA1
ADDR17
GPIO[29]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
29
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
AA5
DATA2
ADDR18
GPIO[30]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
30
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
AB5
DATA3
ADDR19
GPIO[31]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
31
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
AB6
DATA4
ADDR20
GPIO[32]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
32
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
AA6
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
DATA5
ADDR21
GPIO[33]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
33
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
Y6
DATA6
ADDR22
GPIO[34]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
34
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
W6
DATA7
ADDR23
GPIO[35]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
35
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
AB7
DATA8
ADDR24
GPIO[36]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
36
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
AA7
DATA9
ADDR25
GPIO[37]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
37
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
Y7
DATA10
ADDR26
GPIO[38]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
38
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
W7
DATA11
ADDR27
GPIO[39]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
39
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
AB8
DATA12
ADDR28
GPIO[40]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
40
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
AA8
DATA13
ADDR29
GPIO[41]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
41
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
Y8
DATA14
ADDR30
GPIO[42]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
42
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
W9
DATA15
ADDR31
GPIO[43]
External data bus
External address bus
GPIO
P
A1
G
001
010
000
43
I/O
I/O
I/O
VDDE5
Fast
— / Up
— / Up
—
—
Y9
RD_WR
GPIO[62]
External read/write
GPIO
P
G
01
00
62
I/O
I/O
VDDE2
Fast
— / Up
— / Up
—
—
J4
35
36
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
BDIP
GPIO[63]
External burst data in progress
GPIO
P
G
01
00
63
O
I/O
VDDE2
Fast
— / Up
— / Up
—
—
J3
WE[0]/BE[0]
GPIO[64]
External write/byte enable
GPIO
P
G
01
00
64
O
I/O
VDDE2
Fast
— / Up
— / Up
—
—
J2
WE[1]/BE[1]
GPIO[65]
External write/byte enable
GPIO
P
G
01
00
65
O
I/O
VDDE2
Fast
— / Up
— / Up
—
—
J1
OE
GPIO[68]
External output enable
GPIO
P
G
01
00
68
O
I/O
VDDE2
Fast
— / Up
— / Up
—
—
H3
TS
ALE
GPIO[69]
External transfer start
Address latch enable
GPIO[69]
P
A1
G
001
010
000
69
I/O
O
I/O
VDDE2
Fast
— / Up
— / Up
—
—
K3
TA
TS8
GPIO[70]
External transfer acknowledge
External transfer start
GPIO
P
A1
G
001
010
000
70
I/O
O
I/O
VDDE2
Fast
— / Up
— / Up
—
—
K2
Calibration Bus
Freescale Semiconductor
CAL_CS0
Calibration chip select
P
01
336
O
VDDE12
Fast
—/—
—
—
—
CAL_CS2
CAL_ADDR[10]
CAL_WE[2]/BE[2]
Calibration chip select
Calibration address bus
Calibration write/byte enable
P
A
A2
001
010
100
338
O
I/O
O
VDDE12
Fast
—/—
—
—
—
CAL_CS3
CAL_ADDR[11]
CAL_WE[3]/BE[3]
Calibration chip select
Calibration address bus
Calibration write/byte enable
P
A
A2
001
010
100
339
O
I/O
O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[12]
CAL_WE[2]/BE[2]
Calibration address bus
Calibration write/byte enable
P
A
01
10
340
I/O
O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[13]
CAL_WE[3]/BE[3]
Calibration address bus
Calibration write/byte enable
P
A
01
10
340
I/O
O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[14]
CAL_DATA[31]
Calibration address bus
Calibration data bus
P
A
01
10
340
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[15]
CAL_ALE
Calibration address bus
P
Calibration address latch enable A1
01
10
340
I/O
O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[16]
CAL_DATA[16]
Calibration address bus
Calibration data bus
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
P
A
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
During Reset
Package pin #
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
CAL_ADDR[17]
CAL_DATA[17]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[18]
CAL_DATA[18]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[19]
CAL_DATA[19]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[20]
CAL_DATA[20]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[21]
CAL_DATA[21]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[22]
CAL_DATA[22]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[23]
CAL_DATA[23]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[24]
CAL_DATA[24]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[25]
CAL_DATA[25]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[26]
CAL_DATA[26]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[27]
CAL_DATA[27]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[28]
CAL_DATA[28]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[29]
CAL_DATA[29]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_ADDR[30]
CAL_DATA[30]
Calibration address bus
Calibration data bus
P
A
01
10
345
I/O
I/O
VDDE12
Fast
—/—
—
—
—
CAL_DATA[0]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[1]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
37
38
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
CAL_DATA[2]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[3]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[4]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[5]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[6]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[7]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[8]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[9]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[10]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[11]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[12]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[13]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[14]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_DATA[15]
Calibration data bus
P
01
341
I/O
VDDE12
Fast
— / Up
— / Up
—
—
—
CAL_RD_WR
Calibration read/write enable
P
01
342
O
VDDE12
Fast
—/—
—
—
—
CAL_WE[0]/BE[0]
Calibration write/byte enable
P
01
342
O
VDDE12
Fast
—/—
—
—
—
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
During Reset
Package pin #
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
CAL_WE[1]/BE[1]
Calibration write/byte enable
P
01
342
O
VDDE12
Fast
—/—
—
—
—
CAL_OE
Calibration output enable
P
01
342
O
VDDE12
Fast
—/—
—
—
—
CAL_TS
CAL_ALE
Calibration transfer start
Address Latch Enable
P
A
01
10
343
O
O
VDDE12
Fast
—/—
—
—
—
CAL_MDO[4]
Calibration Nexus Message
Data Out
P
01
—
O
VDDE12
Fast
—
CAL_MDO[4] / —
—
—
—
CAL_MDO[5]
Calibration Nexus Message
Data Out
P
01
—
O
VDDE12
Fast
—
CAL_MDO[5] / —
—
—
—
CAL_MDO[6]
Calibration Nexus Message
Data Out
P
01
—
O
VDDE12
Fast
—
CAL_MDO[6] / —
—
—
—
CAL_MDO[7]
Calibration Nexus Message
Data Out
P
01
—
O
VDDE12
Fast
—
CAL_MDO[7] / —
—
—
—
CAL_MDO[8]
Calibration Nexus Message
Data Out
P
01
—
O
VDDE12
Fast
—
CAL_MDO[8] / —
—
—
—
CAL_MDO[9]
Calibration Nexus Message
Data Out
P
01
—
O
VDDE12
Fast
—
CAL_MDO[9] / —
—
—
—
CAL_MDO[10]
Calibration Nexus Message
Data Out
P
01
—
O
VDDE12
Fast
—
CAL_MDO[10] /
—
—
—
—
CAL_MDO[11]
Calibration Nexus Message
Data Out
P
01
—
O
VDDE12
Fast
—
CAL_MDO[11] /
—
—
—
—
NEXUS
39
EVTI
Nexus event in
P
01
231
I
VDDEH7
MultiV12,14
— / Up
EVTI / Up
116
E15
H20
EVTO
Nexus event out
P
01
227
O
VDDEH7
MultiV12,14,15
—
EVTO / —
120
D15
G20
MCKO
Nexus message clock out
P
—
21911
O
VRC33
Fast
—
MCKO / —
14
F15
F1
MDO016
Nexus message data out
P
01
220
O
VRC33
Fast
—
MDO[0] / —
17
A14
F3
MDO116
Nexus message data out
P
01
221
O
VRC33
Fast
—
MDO[1] / —
18
B14
G2
40
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
MDO216
Nexus message data out
P
01
222
O
VRC33
Fast
—
MDO[2] / —
19
A13
G3
MDO316
Nexus message data out
P
01
223
O
VRC33
Fast
—
MDO[3] / —
20
B13
G4
MDO416
ETPUA2_O8
GPIO[75]
Nexus message data out
eTPU A channel (output only)
GPIO[
P
A1
G
01
10
00
75
O
O
I/O
VDDEH7
MultiV12,14
—
—/—
126
P10
B19
MDO516
ETPUA4_O8
GPIO[76]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
76
O
O
I/O
VDDEH7
MultiV12,14
—
—/—
129
T10
B20
MDO616
ETPUA13_O8
GPIO[77]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
77
O
O
I/O
VDDEH7
MultiV12,14
—
—/—
135
T11
C18
MDO716
ETPUA19_O8
GPIO[78]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
78
O
O
I/O
VDDEH7
MultiV12,14
—
—/—
136
N11
B18
MDO816
ETPUA21_O8
GPIO[79]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
79
O
O
I/O
VDDEH7
MultiV12,14
—
—/—
137
P11
A18
MDO916
ETPUA25_O8
GPIO[80]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
80
O
O
I/O
VDDEH7
MultiV12,14
—
—/—
139
T7
D18
MDO1016
ETPUA27_O8
GPIO[81]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
81
O
O
I/O
VDDEH7
MultiV12,14
—
—/—
134
R10
A19
MDO1116
ETPUA29_O8
GPIO[82]
Nexus message data out
eTPU A channel (output only)
GPIO[82]
P
A1
G
01
10
00
82
O
O
I/O
VDDEH7
MultiV12,14
—
—/—
124
P9
C19
MSEO[0]16
Nexus message start/end out
P
01
224
O
VDDEH7
MultiV12,14
—
MSEO[0] / —
118
C15
G21
MSEO[1]16
Nexus message start/end out
P
01
225
O
VDDEH7
MultiV12,14
—
MSEO[1] / —
117
E16
G22
RDY
Nexus ready output
P
01
226
O
VDDEH7
MultiV12,14
—
—
JTAG
—
—
G19
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
TCK
JTAG test clock input
P
01
—
I
VDDEH7
MultiV12
TCK / Down
TCK / Down
128
C16
D21
TDI
JTAG test data input
P
01
232
I
VDDEH7
MultiV12
TDI / Up
TDI / Up
130
E14
D22
TDO
JTAG test data output
P
01
228
O
VDDEH7
MultiV12
TDO / Up
TDO / Up
123
F14
E21
TMS
JTAG test mode select input
P
01
—
I
VDDEH7
MultiV12
TMS / Up
TMS / Up
131
D14
E20
JCOMP
JTAG TAP controller enable
P
01
—
I
VDDEH7
MultiV12
JCOMP / Down
JCOMP / Down
121
F16
F20
FlexCAN
CAN_A_TX
SCI_A_TX
GPIO[83]
FlexCAN A TX
eSCI A TX
GPIO
P
A1
G
01
10
00
83
O
O
I/O
VDDEH6
Slow
— / Up
— / Up
81
P12
AB19
CAN_A_RX
SCI_A_RX
GPIO[84]
FlexCAN A RX
eSCI A RX
GPIO
P
A1
G
01
10
00
84
I
I
I/O
VDDEH6
Slow
— / Up
— / Up
82
R12
Y19
CAN_B_TX
DSPI_C_PCS[3]
SCI_C_TX
GPIO[85]
FlexCAN B TX
DSPI C peripheral chip select
eSCI C TX
GPIO
P
A1
A2
G
001
010
100
000
85
O
O
O
I/O
VDDEH6
Slow
— / Up
— / Up
88
T12
Y22
CAN_B_RX
DSPI_C_PCS[4]
SCI_C_RX
GPIO[86]
FlexCAN B RX
DSPI C peripheral chip select
eSCI C RX
GPIO
P
A1
A2
G
001
010
100
000
86
I
O
I
I/O
VDDEH6
Slow
— / Up
— / Up
89
R13
W21
CAN_C_TX
DSPI_D_PCS[3]
GPIO[87]
FlexCAN C TX
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
87
O
O
I/O
VDDEH6
Medium
— / Up
— / Up
101
K13
P19
CAN_C_RX
DSPI_D_PCS[4]
GPIO[88]
FlexCAN C RX
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
88
I
O
I/O
VDDEH6
Slow
— / Up
— / Up
98
L14
V20
eSCI
41
42
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
SCI_A_TX
EMIOS138
GPIO[89]
eSCI A TX
eMIOS channel
GPIO
P
A1
G
01
10
00
89
O
O
I/O
VDDEH6
Medium
— / Up
— / Up
100
J14
N20
SCI_A_RX
EMIOS158
GPIO[90]
eSCI A RX
eMIOS channel
GPIO
P
A1
G
01
10
00
90
I
O
I/O
VDDEH6
Medium
— / Up
— / Up
99
K14
P20
SCI_B_TX
DSPI_D_PCS[1]
GPIO[91]
eSCI B TX
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
91
O
O
I/O
VDDEH6
Medium
— / Up
— / Up
87
L13
AB21
SCI_B_RX
DSPI_D_PCS[5]
GPIO[92]
eSCI B RX
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
92
I
O
I/O
VDDEH6
Medium
— / Up
— / Up
84
M13
AB20
SCI_C_TX
GPIO[244]
eSCI C TX
GPIO
P
G
01
00
244
O
I/O
VDDEH6
Medium
— / Up
— / Up
—
—
W19
SCI_C_RX
GPIO[245]
eSCI C RX
GPIO
P
G
01
00
245
I
I/O
VDDEH6
Medium
— / Up
— / Up
—
—
V19
DSPI
Freescale Semiconductor
DSPI_A_SCK17
DSPI_C_PCS[1]
GPIO[93]
—
DSPI C peripheral chip select
GPIO
—
A1
G
—
10
00
93
—
O
I/O
VDDEH7
Medium
— / Up
— / Up
—
—
C17
DSPI_A_SIN17
DSPI_C_PCS[2]
GPIO[94]
—
DSPI C peripheral chip select
GPIO
—
A1
G
—
10
00
94
—
O
I/O
VDDEH7
Medium
— / Up
— / Up
—
—
B17
DSPI_A_SOUT17
DSPI_C_PCS[5]
GPIO[95]
—
DSPI C peripheral chip select
GPIO
—
A1
G
—
10
00
95
—
O
I/O
VDDEH7
Medium
— / Up
— / Up
—
—
A17
DSPI_A_PCS[0]17 —
DSPI D peripheral chip select
DSPI_D_PCS[2]
GPIO
GPIO[96]
—
A1
G
—
10
00
96
—
O
I/O
VDDEH7
Medium
— / Up
— / Up
—
—
D16
DSPI_A_PCS[1]17 —
DSPI B peripheral chip select
DSPI_B_PCS[2]
GPIO
GPIO[97]
—
A1
G
—
10
00
97
—
O
I/O
VDDEH7
Medium
— / Up
— / Up
—
—
C16
—
A1
G
—
10
00
98
—
I/O
I/O
VDDEH7
Medium
— / Up
— / Up
141
CS[2]
DSPI_D_SCK
GPIO[98]
—
SPI clock pin for DSPI module
GPIO
J15
C15
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
—
A1
G
—
10
00
99
—
I
I/O
VDDEH7
Medium
— / Up
— / Up
142
DSPI_A_PCS[4]17 —
DSPI D data output
DSPI_D_SOUT
GPIO
GPIO[100]
—
A1
G
—
10
00
100
O
I/O
VDDEH7
Medium
— / Up
— / Up
—
—
B16
DSPI_A_PCS[5]17 —
DSPI B peripheral chip select
DSPI_B_PCS[3]
GPIO
GPIO[101]
—
A1
G
—
10
00
101
O
I/O
VDDEH7
Medium
— / Up
— / Up
—
—
A16
CS[3]
DSPI_D_SIN
GPIO[99]
—
DSPI D data input
GPIO
H13
324
B15
MPC5644A Microcontroller Data Sheet, Rev. 7
DSPI_B_SCK
DSPI_C_PCS[1]
GPIO[102]
SPI clock pin for DSPI module
DSPI C peripheral chip select
GPIO
P
A1
G
01
10
00
102
I/O
O
I/O
VDDEH6
Medium
— / Up
— / Up
106
J16
K21
DSPI_B_SIN
DSPI_C_PCS[2]
GPIO[103]
DSPI B data input
DSPI C peripheral chip select
GPIO
P
A1
G
01
10
00
103
I
O
I/O
VDDEH6
Medium
— / Up
— / Up
112
G15
H22
DSPI_B_SOUT
DSPI_C_PCS[5]
GPIO[104]
DSPI B data output
DSPI C peripheral chip select
GPIO
P
A1
G
01
10
00
104
O
O
I/O
VDDEH6
Medium
— / Up
— / Up
113
G13
J19
DSPI_B_PCS[0]
DSPI_D_PCS[2]
GPIO[105]
DSPI B peripheral chip select
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
105
I/O
O
I/O
VDDEH6
Medium
— / Up
— / Up
111
G16
J21
DSPI_B_PCS[1]
DSPI_D_PCS[0]
GPIO[106]
DSPI B peripheral chip select
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
106
O
I/O
I/O
VDDEH6
Medium
— / Up
— / Up
109
H16
J22
DSPI_B_PCS[2]
DSPI_C_SOUT
GPIO[107]
DSPI B peripheral chip select
DSPI C data output
GPIO
P
A1
G
01
10
00
107
O
O
I/O
VDDEH6
Medium
— / Up
— / Up
107
H15
K22
DSPI_B_PCS[3]
DSPI_C_SIN
GPIO[108]
DSPI B peripheral chip select
DSPI C data input
GPIO
P
A1
G
01
10
00
108
O
I
I/O
VDDEH6
Medium
— / Up
— / Up
114
G14
J20
DSPI_B_PCS[4]
DSPI_C_SCK
GPIO[109]
DSPI B peripheral chip select
SPI clock pin for DSPI module
GPIO
P
A1
G
01
10
00
109
O
I/O
I/O
VDDEH6
Medium
— / Up
— / Up
105
H14
K20
DSPI_B_PCS[5]
DSPI_C_PCS[0]
GPIO[110]
DSPI B peripheral chip select
DSPI C peripheral chip select
GPIO
P
A1
G
01
10
00
110
O
I/O
I/O
VDDEH6
Medium
— / Up
— / Up
104
J13
L19
43
44
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
eQADC
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
AN018
DAN0+
Single Ended Analog Input
Positive Terminal Diff. Input
P
—
—
I
I
VDDA
Analog
I/—
AN[0] / —
172
B5
C6
AN118
DAN0-
Single Ended Analog Input
Negative Terminal Diff. Input
P
—
—
I
I
VDDA
Analog
I/—
AN[1] / —
171
A6
C7
AN218
DAN1+
Single Ended Analog Input
Positive Terminal Diff. Input
P
—
—
I
I
VDDA
Analog
I/—
AN[2] / —
170
D6
D7
AN318
DAN1-
Single Ended Analog Input
Negative Terminal Diff. Input
P
—
—
I
I
VDDA
Analog
I/—
AN[3] / —
169
C7
D8
AN418
DAN2+
Single Ended Analog Input
Positive Terminal Diff. Input
P
—
—
I
I
VDDA
Analog
I/—
AN[4] / —
168
B6
B7
AN518
DAN2-
Single Ended Analog Input
Negative Terminal Diff. Input
P
—
—
I
I
VDDA
Analog
I/—
AN[5] / —
167
A7
B8
AN618
DAN3+
Single Ended Analog Input
Positive Terminal Diff. Input
P
—
—
I
I
VDDA
Analog
I/—
AN[6] / —
166
D7
C8
AN718
DAN3-
Single Ended Analog Input
Negative Terminal Diff. Input
P
—
—
I
I
VDDA
Analog
I/—
AN[7] / —
165
C8
C9
AN8
ANW
Single-ended Analog Input
Multiplexed Analog Input
P
01
—
I
VDDA
Analog
I/—
AN[8] / —
9
B3
E1
AN9
ANX
Single-ended Analog Input
External Multiplexed Analog
Input
P
01
—
I
I
VDDA
Analog
I/—
AN[9] / —
5
A2
C2
AN10
ANY
Single-ended Analog Input
Multiplexed Analog Input
P
01
—
I
VDDA
Analog
I/—
AN[10] / —
AN11
ANZ
Single-ended Analog Input
Multiplexed Analog Input
P
01
—
I
VDDA
Analog
I/—
AN[11] / —
4
A3
C1
AN12 - SDS
MA0
ETPUA19_O8
SDS
Single-ended Analog Input
MUX Address 0
eTPU A channel (output only)
eQADC Serial Data Select
P
A1
A2
G
001
010
100
000
215
I
O
O
I/O
VDDEH719
Medium
I/—
AN[12] / —
148
A12
C13
AN13 - SDO
MA1
ETPUA21_O8
SDO
Single-ended Analog Input
MUX Address 1
eTPU A channel (output only)
eQADC Serial Data Out
P
A1
A2
G
001
010
100
000
216
I
O
O
O
VDDEH719
Medium
I/—
AN[13] / —
147
B12
B13
—
—
D1
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
AN14 - SDI
MA2
ETPUA27_O8
SDI
Single-ended Analog Input
MUX Address 2
eTPU A channel (output only)
eQADC Serial Data In
P
A1
A2
G
001
010
100
000
217
I
O
O
I
VDDEH719
Medium
I/—
AN[14] / —
146
C12
A13
AN15 - FCK
FCK
ETPUA29_O8
Single-ended Analog Input
eQADC Free Running Clock
eTPU A channel (output only)
P
A1
A2
001
010
100
218
I
O
O
VDDEH719
Medium
I/—
AN[15] / —
145
C13
A14
AN16
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[16] / —
3
C6
A3
AN17
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[17] / —
2
C4
A4
AN18
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[18] / —
1
D5
B4
AN19
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[19] / —
—
—
D6
AN20
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[20] / —
—
—
C5
AN21
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[21] / —
173
B4
B6
AN22
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[22] / —
161
B8
D9
AN23
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[23] / —
160
C9
A8
AN24
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[24] / —
159
D8
B9
AN25
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[25] / —
158
B9
A9
AN26
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[26] / —
—
AN27
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[27] / —
157
A10
C10
AN28
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[28] / —
156
B10
D11
—
D10
45
46
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
—
324
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
AN29
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[29] / —
—
C11
AN30
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[30] / —
155
D9
B11
AN31
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[31] / —
154
D10
D12
AN32
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[32] / —
153
C10
C12
AN33
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[33] / —
152
C11
B12
AN34
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[34] / —
151
C5
A12
AN35
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[35] / —
150
D11
D13
AN36
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[36] / —
174
F4
B5
AN37
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[37] / —
175
E3
A5
AN38
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[38] / —
—
—
D3
AN39
Single-ended Analog Input
P
—
—
I
VDDA
Analog
I/—
AN[39] / —
8
D2
D2
VRH
Voltage Reference High
P
—
—
I
VDDA
—
I/—
VRH
163
A8
A10
VRL
Voltage Reference Low
P
—
—
I
VDDA
—
I/—
VRL
162
A9
A11
REFBYBC
Reference Bypass Capacitor
Input
P
—
—
I
VDDA
Analog
I/—
REFBYPC
164
B7
B10
— / Up
— / Up
—
L4
AB12
eTPU2
TCRCLKA
IRQ[7]
GPIO[113]
eTPU A TCR clock
External interrupt request
GPIO
P
A1
G
01
10
00
113
I
I
I/O
VDDEH4
Slow
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
ETPUA0
ETPUA12_O8
ETPUA19_O8
GPIO[114]
eTPU A channel
eTPU A channel (output only)
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
114
I/O
O
O
I/O
VDDEH4
Slow
—/
WKPCFG
—/
WKPCFG
61
N3
Y12
ETPUA1
ETPUA13_O8
GPIO[115]
eTPU A channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
115
I/O
O
I/O
VDDEH4
Slow
—/
WKPCFG
—/
WKPCFG
60
M3
W12
ETPUA2
ETPUA14_O8
GPIO[116]
eTPU A channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
116
I/O
O
I/O
VDDEH4
Slow
—/
WKPCFG
—/
WKPCFG
59
P2
AA11
ETPUA3
ETPUA15_O8
GPIO[117]
eTPU A channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
117
I/O
O
I/O
VDDEH4
Slow
— / WKPCFG
GPIO / WKPCFG 58
P1
Y11
ETPUA4
ETPUA16_O8
FR_B_TX
GPIO[118]
eTPU A channel
eTPU A channel (output only)
Flexray TX data channel B
GPIO
P
A1
A3
G
0001
0010
1000
0000
118
I/O
O
O
I/O
VDDEH4
Slow
—/
WKPCFG
—/
WKPCFG
56
N2
W11
ETPUA5
ETPUA17_O8
DSPI_B_SCK_LV
DSFR_B_TX_EN
GPIO[119]
P
eTPU A channel
A1
eTPU A channel (output only)
A2
LVDS negative DSPI clock
Flexray TX data enable for ch. B A3
G
GPIO
0001
0010
0100
1000
0000
119
I/O
O
O
O
I/O
VDDEH4
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
54
M4
AB11
ETPUA6
ETPUA18_O8
DSPI_B_SCK_LV
DS+
FR_B_RX
GPIO[120]
eTPU A channel
eTPU A channel (output only)
LVDS positive DSPI clock
Flexray RX data channel B
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
120
I/O
O
O
I
I/O
VDDEH4
Medium +
LVDS
—/
WKPCFG
—/
WKPCFG
53
L3
AB10
ETPUA7
ETPUA19_O8
DSPI_B_SOUT_L
VDSETPUA6_O8
GPIO[121]
eTPU A channel
eTPU A channel (output only)
LVDS negative DSPI data out
eTPU A channel (output only)
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
121
I/O
O
O
O
I/O
VDDEH4
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
52
K3
AA10
47
48
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
ETPUA8
ETPUA20_O8
DSPI_B_SOUT_L
VDS+
GPIO[122]
eTPU A channel
eTPU A channel (output only)
LVDS positive DSPI data out
GPIO
P
A1
A2
G
001
010
100
000
122
I/O
O
O
I/O
VDDEH4
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
51
N1
Y10
ETPUA9
ETPUA21_O8
RCH1_B
GPIO[123]
eTPU A channel
eTPU A channel (output only)
Reaction channel 1B
GPIO
P
A1
A2
G
001
010
100
000
123
I/O
O
O
I/O
VDDEH4
Slow
—/
WKPCFG
—/
WKPCFG
50
M2
AA9
ETPUA10
ETPUA22_O8
RCH1_C
GPIO[124]
eTPU A channel
eTPU A channel (output only)
Reaction channel 1C
GPIO
P
A1
A2
G
001
010
100
000
124
I/O
O
O
I/O
VDDEH1
Slow
—/
WKPCFG
—/
WKPCFG
49
M1
AA4
ETPUA11
ETPUA23_O8
RCH4_B
GPIO[125]
eTPU A channel
eTPU A channel (output only)
Reaction channel 4B
GPIO
P
A1
A2
G
001
010
100
000
125
I/O
O
O
I/O
VDDEH1
Slow
—/
WKPCFG
—/
WKPCFG
48
L2
AB4
ETPUA12
DSPI_B_PCS[1]
RCH4_C
GPIO[126]
eTPU A channel
DSPI B peripheral chip select
Reaction channel 4C
GPIO
P
A1
A2
G
001
010
100
000
126
I/O
O
O
I/O
VDDEH1
Medium
—/
WKPCFG
—/
WKPCFG
47
L1
AB3
ETPUA13
DSPI_B_PCS[3]
GPIO[127]
eTPU A channel
DSPI B peripheral chip select
GPIO
P
A1
G
01
10
00
127
I/O
O
I/O
VDDEH1
Medium
—/
WKPCFG
—/
WKPCFG
46
J4
AB2
ETPUA14
DSPI_B_PCS[4]
ETPUA9_O8
RCH0_A
GPIO[128]
eTPU A channel
DSPI B peripheral chip select
eTPU A channel (output only)
Reaction channel 0A
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
128
I/O
O
O
O
I/O
VDDEH1
Medium
—/
WKPCFG
—/
WKPCFG
42
J3
AA2
ETPUA15
DSPI_B_PCS[5]
RCH1_A
GPIO[129]
eTPU A channel
DSPI B peripheral chip select
Reaction channel 1A
GPIO
P
A1
A2
G
001
010
100
000
129
I/O
O
O
I/O
VDDEH1
Medium
—/
WKPCFG
—/
WKPCFG
40
K2
AA1
ETPUA16
DSPI_D_PCS[1]
RCH2_A
GPIO[130]
eTPU A channel
DSPI D peripheral chip select
Reaction channel 2A
GPIO
P
A1
A2
G
001
010
100
000
130
I/O
O
O
I/O
VDDEH1
Slow
—/
WKPCFG
—/
WKPCFG
39
K1
Y2
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
ETPUA17
DSPI_D_PCS[2]
RCH3_A
GPIO[131]
eTPU A channel
DSPI D peripheral chip select
Reaction channel 3A
GPIO
P
A1
A2
G
001
010
100
000
131
I/O
O
O
I/O
VDDEH1
Slow
—/
WKPCFG
—/
WKPCFG
38
H3
Y1
ETPUA18
DSPI_D_PCS[3]
RCH4_A
GPIO[132]
eTPU A channel
DSPI D peripheral chip select
Reaction channel 4A
GPIO
P
A1
A2
G
001
010
100
000
132
I/O
O
O
I/O
VDDEH1
Slow
—/
WKPCFG
—/
WKPCFG
37
H4
W3
ETPUA19
DSPI_D_PCS[4]
RCH5_A
GPIO[133]
eTPU A channel
DSPI D peripheral chip select
Reaction channel 5A
GPIO
P
A1
A2
G
001
010
100
000
133
I/O
O
O
I/O
VDDEH1
Slow
—/
WKPCFG
—/
WKPCFG
36
J2
W2
ETPUA20
IRQ[8]
RCH0_B
FR_A_TX
GPIO[134]
eTPU A channel
External interrupt request
Reaction channel 0B
Flexray TX data channel A
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
134
I/O
I
O
O
I/O
VDDEH1
Slow
—/
WKPCFG
—/
WKPCFG
35
J1
W1
ETPUA21
IRQ[9]
RCH0_C
FR_A_RX
GPIO[135]
eTPU A channel
External interrupt request
Reaction channel 0C
Flexray RX channel A
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
135
I/O
I
O
I
I/O
VDDEH1
Slow
—/
WKPCFG
—/
WKPCFG
34
G4
N4
ETPUA22
IRQ[10]
ETPUA17_O8
GPIO[136]
eTPU A channel
External interrupt request
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
136
I/O
I
O
I/O
VDDEH1
Slow
—/
WKPCFG
—/
WKPCFG
32
H2
N3
ETPUA23
IRQ[11]
ETPUA21_O8
FR_A_TX_EN
GPIO[137]
eTPU A channel
External interrupt request
eTPU A channel (output only)
Flexray ch. A TX enable
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
137
I/O
I
O
O
I/O
VDDEH1
Slow
—/
WKPCFG
—/
WKPCFG
30
H1
M1
ETPUA24
IRQ[12]
DSPI_C_SCK_LV
DSGPIO[138]
eTPU A channel
External interrupt request
LVDS negative DSPI clock
GPIO
P
A1
A2
G
001
010
100
000
138
I/O
I
O
I/O
VDDEH1
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
28
G1
M2
49
50
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
ETPUA25
IRQ[13]
DSPI_C_SCK_LV
DS+
GPIO[139]
eTPU A channel
External interrupt request
LVDS positive DSPI clock
GPIO
P
A1
A2
G
001
010
100
000
139
I/O
I
O
I/O
VDDEH1
Medium +
LVDS
—/
WKPCFG
—/
WKPCFG
27
G3
M3
ETPUA26
IRQ[14]
DSPI_C_SOUT_L
VDSGPIO[140]
eTPU A channel
External interrupt request
LVDS negative DSPI data out
GPIO
P
A1
A2
G
001
010
100
000
140
I/O
I
O
I/O
VDDEH1
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
26
F3
L2
ETPUA27
IRQ[15]
DSPI_C_SOUT_L
VDS+
DSPI_B_SOUT
GPIO[141]
eTPU A channel
External interrupt request
LVDS positive DSPI data out
DSPI data out
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
141
I/O
I
O
O
I/O
VDDEH1
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
25
G2
L1
ETPUA28
DSPI_C_PCS[1]
RCH5_B
GPIO[142]
eTPU A channel
DSPI C peripheral chip select
Reaction channel 5B
GPIO
P
A1
A2
G
001
010
100
000
142
I/O
O
O
I/O
VDDEH1
Medium
—/
WKPCFG
—/
WKPCFG
24
F1
M4
ETPUA29
DSPI_C_PCS[2]
RCH5_C
GPIO[143]
eTPU A channel
DSPI C peripheral chip select
Reaction channel 5C
GPIO
P
A1
A2
G
001
010
100
000
143
I/O
O
O
I/O
VDDEH1
Medium
—/
WKPCFG
—/
WKPCFG
23
F2
L3
ETPUA30
DSPI_C_PCS[3]
ETPUA11_O8
GPIO[144]
eTPU A channel
DSPI C peripheral chip select
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
144
I/O
O
O
I/O
VDDEH1
Medium
—/
WKPCFG
—/
WKPCFG
22
E1
L4
ETPUA31
DSPI_C_PCS[4]
ETPUA13_O8
GPIO[145]
eTPU A channel
DSPI C peripheral chip select
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
145
I/O
O
O
I/O
VDDEH1
Medium
—/
WKPCFG
—/
WKPCFG
21
E2
K1
— / Up
— / Up
63
T4
AA12
eMIOS
EMIOS0
ETPUA0_O8
ETPUA25_O8
GPIO[179]
eMIOS channel
eTPU A channel (output only)
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
179
I/O
O
O
I/O
VDDEH4
Slow
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
EMIOS1
ETPUA1_O8
GPIO[180]
eMIOS channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
180
I/O
O
I/O
VDDEH4
Slow
— / Up
— / Up
64
T5
W13
EMIOS2
ETPUA2_O8
RCH2_B
GPIO[181]
eMIOS channel
eTPU A channel (output only)
Reaction channel 2B
GPIO
P
A1
A2
G
001
010
100
000
181
I/O
O
O
I/O
VDDEH4
Slow
— / Up
— / Up
65
N7
Y13
EMIOS3
ETPUA3_O8
GPIO[182]
eMIOS channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
182
I/O
O
I/O
VDDEH4
Slow
—/
WKPCFG
—/
WKPCFG
66
R6
AA13
EMIOS4
ETPUA4_O8
RCH2_C
GPIO[183]
eMIOS channel
eTPU A channel (output only)
Reaction channel 2C
GPIO
P
A1
A2
G
001
010
100
000
183
I/O
O
O
I/O
VDDEH4
Slow
—/
WKPCFG
—/
WKPCFG
67
R5
AB13
EMIOS5
ETPUA5_O8
GPIO[184]
eMIOS channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
184
I/O
O
I/O
VDDEH4
Slow
—/
WKPCFG
—/
WKPCFG
EMIOS6
ETPUA6_O8
GPIO[185]
eMIOS channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
185
I/O
O
I/O
VDDEH4
Slow
— / Down
— / Down
68
EMIOS7
ETPUA7_O8
GPIO[186]
eMIOS channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
186
I/O
O
I/O
VDDEH4
Slow
— / Down
— / Down
69
EMIOS8
ETPUA8_O8
SCI_B_TX
GPIO[187]
eMIOS channel
eTPU A channel (output only)
eSCI B TX
GPIO
P
A1
A2
G
001
010
100
000
187
I/O
O
O
I/O
VDDEH4
Slow
— / Up
— / Up
70
P8
W15
EMIOS9
ETPUA9_O8
SCI_B_RX
GPIO[188]
eMIOS channel
eTPU A channel (output only)
eSCI B RX
GPIO
P
A1
A2
G
001
010
100
000
188
I/O
O
I
I/O
VDDEH4
Slow
— / Up
— / Up
71
R7
Y15
EMIOS10
DSPI_D_PCS[3]
RCH3_B
GPIO[189]
eMIOS channel
DSPI D peripheral chip select
Reaction channel 3B
GPIO
P
A1
A2
G
001
010
100
000
189
I/O
O
O
I/O
VDDEH4
Medium
—/
WKPCFG
—/
WKPCFG
73
N8
AA15
—
—
P7
Y14
AA14
—
AB14
51
52
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
EMIOS11
DSPI_D_PCS[4]
RCH3_C
GPIO[190]
eMIOS channel
DSPI D peripheral chip select
Reaction channel 3C
GPIO
P
A1
A2
G
001
010
100
000
190
I/O
O
O
I/O
VDDEH4
Medium
—/
WKPCFG
—/
WKPCFG
75
R8
AB15
EMIOS12
DSPI_C_SOUT
ETPUA27_O8
GPIO[191]
eMIOS channel
DSPI C data output
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
191
I/O
O
O
I/O
VDDEH4
Medium
—/
WKPCFG
—/
WKPCFG
76
N10
AB16
EMIOS13
DSPI_D_SOUT
GPIO[192]
eMIOS channel
DSPI D data output
GPIO
P
A1
G
01
10
00
192
I/O
O
I/O
VDDEH4
Medium
—/
WKPCFG
—/
WKPCFG
77
T8
AA16
EMIOS14
IRQ[0]
ETPUA29_O8
GPIO[193]
eMIOS channel
External interrupt request
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
193
I/O
I
O
I/O
VDDEH4
Slow
— / Down
— / Down
78
R9
Y16
EMIOS15
IRQ[1]
GPIO[194]
eMIOS channel
External interrupt request
GPIO
P
A1
G
01
10
00
194
I/O
I
I/O
VDDEH4
Slow
— / Down
— / Down
79
T9
W16
EMIOS16
GPIO[195]
eMIOS channel
GPIO
P
G
01
00
195
I/O
I/O
VDDEH4
Slow
— / Up
— / Up
—
—
W17
EMIOS17
GPIO[196]
eMIOS channel
GPIO
P
G
01
00
196
I/O
I/O
VDDEH4
Slow
— / Up
— / Up
—
—
Y17
EMIOS18
GPIO[197]
eMIOS channel
GPIO
P
G
01
00
197
I/O
I/O
VDDEH4
Slow
— / Up
— / Up
—
—
AA17
EMIOS19
GPIO[198]
eMIOS channel
GPIO
P
G
01
00
198
I/O
I/O
VDDEH4
Slow
—/
WKPCFG
—/
WKPCFG
—
—
AB17
EMIOS20
GPIO[199]
eMIOS channel
GPIO
P
G
01
00
199
I/O
I/O
VDDEH4
Slow
—/
WKPCFG
—/
WKPCFG
—
—
AB18
EMIOS21
GPIO[200]
eMIOS channel
GPIO
P
G
01
00
200
I/O
I/O
VDDEH4
Slow
—/
WKPCFG
—/
WKPCFG
—
—
AA18
EMIOS22
GPIO[201]
eMIOS channel
GPIO
P
G
01
00
201
I/O
I/O
VDDEH4
Slow
— / Down
— / Down
—
—
Y18
EMIOS23
GPIO[202]
eMIOS channel
GPIO
P
G
01
00
202
I/O
I/O
VDDEH4
Slow
— / Down
— / Down
Clock Synthesizer
80
R11
W18
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
XTAL
Crystal oscillator output
P
01
—
O
VDDEH6
Analog
—
—
93
P16
V22
EXTAL
EXTCLK
Crystal oscillator input
External clock input
P
A
01
10
—
I
VDDEH6
Analog
—
—
92
N16
U22
CLKOUT
System clock output
P
01
229
O
VDDE5
Fast
—
CLKOUT
—
ENGCLK
Engineering clock output
P
01
214
O
VDDE5
Fast
—
ENGCLK
—
—
AB9
T14
W10
Power / Ground
VDDREG
Voltage Regulator Supply
—
—
I
5V
I/—
VDDREG
10
K16
F4
VRCCTL
Voltage Regulator Control
Output
—
—
O
—
O/—
VRCCTL
11
N14
F2
VRC3320
Internal regulator output
—
—
O
3.3 V
I/O / —
VRC33
13
Input for external 3.3 V supply
—
—
A15, D1, B1,
N6, N12 M19, P11
VDDA
eQADC high reference voltage
—
—
I
5V
I/—
VDDA
6
—
—
VSSA
eQADC ground/low reference
voltage
—
—
I
—
I/—
VSSA
7
—
—
VDDA021
eQADC high reference voltage
—
—
I
5V
I/—
VDDA0
—
B11
E3
VSSA022
eQADC ground/low reference
voltage
—
—
I
—
I/—
VSSA0
—
A11
E2
VDDA121
eQADC high reference voltage
—
—
I
5V
I/—
VDDA1
—
A4
A6
VSSA122
eQADC ground/low reference
voltage
—
—
I
—
I/—
VSSA1
—
A5
A7
VDDPLL
FMPLL Supply Voltage
—
—
I
1.2
I/—
VDDPLL
91
R16
W22
VSTBY
Power Supply for Standby RAM
—
—
I
0.9 V - 6 V
I/—
VSTBY
12
C1
E4
VDD
Core supply for input or
decoupling
—
—
I
1.2 V
I/—
VDD
33,
45,
62,
103,
132,
149,
176
B1, B16,
C2, D3,
E4, N5,
P4, P13,
R3, R14,
T2, T15
A2, A20, A21,
B3, C4, C22,
D5, W20, Y4,
Y21, AA3,
AA22
3.3 V
53
54
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
208
324
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
VDDE12
External supply input for
calibration bus interfaces
—
—
I
1.8 V - 3.3 V
I/—
VDDE12
—
—
—
VDDE223
External supply input for EBI
interfaces
—
—
I
1.8 V - 3.3 V
I/—
VDDE224
—
—
M9, M10
VDDE5
External supply input for
ENGCLK, CLKOUT and EBI
signals DATA[0:15]
—
—
I
1.8 V - 3.3 V
I/—
VDDE5
—
VDDE-EH
External supply for EBI
interfaces
—
—
I
3.0 V - 5 V
I/—
VDDE-EH
—
—
VDDEH1A25
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH1A25
31
—
—
VDDEH1B25
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH1B25
41
—
—
VDDEH1AB25
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH1AB25
—
VDDEH426
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH426
—
—
—
VDDEH4A26
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH4A26
55
—
—
VDDEH4B26
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH4B26
74
—
—
VDDEH4AB26
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH4AB26
—
VDDEH627
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH627
VDDEH6A27
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH6A27
VDDEH6B27
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH6B27
VDDEH6AB27
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH6AB27
—
T13
K4
N11, W5, W8
R3, V2
K4
N9
W14, AA19
—
—
95
—
—
110
—
—
—
F13
M22, U19
Freescale Semiconductor
Table 3. MPC5644A signal properties (continued)
Name
Function
1
P
PCR
A
PA PCR4
G2 Field3
I/O
Type
Voltage5 /
Pad Type6
Status7
Package pin #
During Reset
After
Reset
176
D12
324
MPC5644A Microcontroller Data Sheet, Rev. 7
VDDEH7
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH7
VDDEH7A
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH7A
125
—
—
VDDEH7B
I/O Supply Input
—
—
I
3.3 V - 5.0 V
I/—
VDDEH7B
138
—
—
VSS
Ground
—
—
I
—
I/—
VSS
15,
29,
43,
57,
72,
90,
94,
96,
108,
115,
127,
133,
140
A1, A16,
B2, B15,
C3, C14,
D4, D13,
G7, G8,
G9,
G10,
H7, H8,
H9, H10,
J7, J8,
J9, J10,
K7,
K8, K9,
K10,
M16,
N4, N13,
P3, P14,
R2, R15,
T1, T16
A1, A22, B2,
B21, C3, C20,
D4, D17, D19,
F21, H21, J9,
J10, J11, J12,
J13, K9, K10,
K11, K12,
K13, K14, L9,
L10, L11, L12,
L13, L14, L21,
M11, M12,
M13, M14,
N9, N10, N12,
N13, N14,
N21, P9, P10,
P12, P13,
P14, T19,
T21, T22, W4,
Y3, Y20,
AA21, AB1,
AB22
1
—
208
B22, C21,
D15, D20,
E19, F19,
H19, J14
For each pin in the table, each line in the Function column is a separate function of the pin. For all I/O pins the selection of primary pin function or
secondary function or GPIO is done in the SIU except where explicitly noted. See the Signal details table for a description of each signal.
2 The P/A/G column indicates the position a signal occupies in the muxing order for a pin—Primary, Alternate 1, Alternate 2, Alternate 3, or GPIO.
Signals are selected by setting the PA field value in the appropriate PCR register in the SIU module. The PA field values are as follows: P - 0b0001,
A1 - 0b0010, A2 - 0b0100, A3 - 0b1000, or G - 0b0000. Depending on the register, the PA field size can vary in length. For PA fields having fewer
than four bits, remove the appropriate number of leading zeroes from these values.
3 The Pad Configuration Register (PCR) PA field is used by software to select pin function.
4
Values in the PCR No. column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR
number. For example, PCR[190] refers to the SIU register named SIU_PCR190.
55
56
5
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
The VDDE and VDDEH supply inputs are broken into segments. Each segment of slow I/O pins (VDDEH) may have a separate supply in the 3.3
V to 5.0 V range (-10%/+5%). Each segment of fast I/O (VDDE) may have a separate supply in the 1.8 V to 3.3 V range (+/- 10%).
6 See Table 4 for details on pad types.
7 The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. Terminology is
O - output, I - input, Up - weak pull up enabled, Down - weak pull down enabled, Low - output driven low, High - output driven high. A dash for the
function in this column denotes that both the input and output buffer are turned off. The signal name to the left or right of the slash indicates the
pin is enabled.
8 Output only.
9 When used as ETRIG, this pin must be configured as an input. For GPIO it can be configured either as an input or output.
10 Maximum frequency is 50 kHz.
11 The SIU_PCR219 register is unusual in that it controls pads for two separate device pins: GPIO[219] and MCKO. See the MPC5644A
Microcontroller Reference Manual (SIU chapter) for details.
12 Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function is selected, otherwise they are high swing.
13 On 176 LQFP and 208 MAPBGA packages, this pin is tied low internally.
14 Nexus multivoltage pads default to 5 V operation until the Nexus module is enabled.
15 EVTO should be clamped to 3.3 V to prevent possible damage to external tools that only support 3.3 V.
16 Do not connect pin directly to a power supply or ground.
17 This signal name is used to support legacy naming.
18 During and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors are
disabled when the system clock propagates through the device.
19 For pins AN12-AN15, if the analog features are used the VDDEH7 input pins should be tied to VDDA because that segment must meet the VDDA
specification to support analog input function.
20 Do not use VRC33 to drive external circuits.
21 VDDA0 and VDDA1 are shorted together internally in BGA packages. In the QFP package the two pads are double bonded on one pin called
VDDA.
22 VSSA0 and VSSA1 are shorted together internally in BGA packages. In the QFP package the two pads are double bonded on one pin called VSSA.
23 VDDE2 and VDDE3 are shorted together in all production packages.
24 VDDE2 and VDDE3 are shorted together in all production packages.
25 VDDEH1A, VDDEH1B, and VDDEH1AB are shorted together in all production packages. The separation of the signal names is present to support
legacy naming, however they should be considered as the same signal in this document.
26 VDDEH4, VDDEH4A, VDDEH4B, and VDDEH4AB are shorted together in all production packages. The separation of the signal names is present
to support legacy naming, however they should be considered as the same signal in this document.
27 VDDEH6, VDDEH6A, VDDEH6B, and VDDEH6AB are shorted together in all production packages. The separation of the signal names is present
to support legacy naming, however they should be considered as the same signal in this document.
Table 4. Pad types
Pad Type
Name
I/O Voltage Range
Slow
pad_ssr_hv
3.0V - 5.5 V
Medium
pad_msr_hv
3.0 V - 5.5 V
Fast
pad_fc
3.0 V - 3.6 V
pad_multv_hv
3.0 V - 5.5 V (high swing mode)
3.0 V - 3.6 V (low swing mode)
Analog
pad_ae_hv
0.0 - 5.5 V
LVDS
pad_lo_lv
—
MultiV
1,2
1
Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function
is selected, otherwise they are high swing.
2
VDDEH7 supply cannot be below 4.5 V when in low-swing mode.
2.5
Signal details
Table 5. Signal details
Signal
Module or Function
Description
CLKOUT
Clock Generation
MPC5644A clock output for the external/calibration bus interface
ENGCLK
Clock Generation
Clock for external ASIC devices
EXTAL
Clock Generation
Input pin for an external crystal oscillator or an external clock
source based on the value driven on the PLLREF pin at reset.
PLLREF
Clock Generation
Reset/Configuration
PLLREF is used to select whether the oscillator operates in xtal
mode or external reference mode from reset. PLLREF=0 selects
external reference mode. On the 324BGA package, PLLREF is
bonded to the ball used for PLLCFG[0] for compatibility with
MPC55xx devices .
For the 176-pin QFP and 208-ball BGA packages:
0: External reference clock is selected.
1: XTAL oscillator mode is selected
For the 324 ball BGA package:
If RSTCFG is 0:
0: External reference clock is selected.
1: XTAL oscillator mode is selected.
If RSTCFG is 1, XTAL oscillator mode is selected.
XTAL
Clock Generation
Crystal oscillator input
DSPI_B_SCK_LVDSDSPI_B_SCK_LVDS+
DSPI
LVDS pair used for DSPI_B TSB mode transmission
DSPI_B_SOUT_LVDSDSPI_B_SOUT_LVDS+
DSPI
LVDS pair used for DSPI_B TSB mode transmission
DSPI_C_SCK_LVDSDSPI_C_SCK_LVDS+
DSPI
LVDS pair used for DSPI_C TSB mode transmission
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
57
Table 5. Signal details (continued)
Signal
Module or Function
Description
DSPI_C_SOUT_LVDSDSPI_C_SOUT_LVDS+
DSPI
LVDS pair used for DSPI_C TSB mode transmission
PCS_B[0]
PCS_C[0]
PCS_D[0]
DSPI_B - DSPI_D
Peripheral chip select when device is in master mode—slave
select when used in slave mode
PCS_B[1:5]
PCS_C[1:5]
PCS_D[1:5]
DSPI_B - DSPI_D
Peripheral chip select when device is in master mode—not used
in slave mode
SCK_B
SCK_C
SCK_D
DSPI_B - DSPI_D
DSPI clock—output when device is in master mode; input when
in slave mode
SIN_B
SIN_C
SIN_D
DSPI_B - DSPI_D
DSPI data in
SOUT_B
SOUT_C
SOUT_D
DSPI_B - DSPI_D
DSPI data out
ADDR[10:31]
EBI
The ADDR[10:31] signals specify the physical address of the
bus transaction.
The 26 address lines correspond to bits 3-31 of the EBI’s 32-bit
internal address bus.
ADDR[15:31] can be used as Address and Data signals when
configured appropriately for a multiplexed external bus. This
allows 32-bit data operations, or 16-bit data operations without
using DATA[0:15] signals.
ALE
EBI
The Address Latch Enable (ALE) signal is used to demultiplex
the address from the data bus. It is asserted while the least
significant 16 bits of the address are present in the multiplexed
address/data bus.
BDIP
EBI
BDIP is asserted to indicate that the master is requesting
another data beat following the current one.
CS[0:3]
EBI
CSx is asserted by the master to indicate that this transaction is
targeted for a particular memory bank on the Primary external
bus.
DATA[0:31]
EBI
The DATA[0:31] signals contain the data to be transferred for the
current transaction.
OE
EBI
OE is used to indicate when an external memory is permitted to
drive back read data. External memories must have their data
output buffers off when OE is negated. OE is only asserted for
chip-select accesses.
RD_WR
EBI
RD_WR indicates whether the current transaction is a read
access or a write access.
MPC5644A Microcontroller Data Sheet, Rev. 7
58
Freescale Semiconductor
Table 5. Signal details (continued)
Signal
Module or Function
Description
TA
EBI
TA is asserted to indicate that the slave has received the data
(and completed the access) for a write cycle, or returned data for
a read cycle. If the transaction is a burst read, TA is asserted for
each one of the transaction beats. For write transactions, TA is
only asserted once at access completion, even if more than one
write data beat is transferred.
TS
EBI
The Transfer Start signal (TS) is asserted by the MPC5644A to
indicate the start of a transfer.
WE[2:3]
EBI
Write enables are used to enable program operations to a
particular memory. WE[2:3] are only asserted for write accesses
WE[0:3]/BE[0:3]
EBI
Write enables are used to enable program operations to a
particular memory. These signals can also be used as byte
enables for read and write operation by setting the WEBS bit in
the appropriate EBI Base Register (EBI_BRn). WE[0:3] are only
asserted for write accesses. BE[0:3] are asserted for both read
and write accesses
eMIOS[0:23]
eMIOS
eMIOS I/O channels
AN[0:39]
eQADC
Single-ended analog inputs for analog-to-digital converter
FCK
eQADC
eQADC free running clock for eQADC SSI.
MA[0:2]
eQADC
These three control bits are output to enable the selection for an
external Analog Mux for expansion channels.
REFBYPC
eQADC
Bypass capacitor input
SDI
eQADC
Serial data in
SDO
eQADC
Serial data out
SDS
eQADC
Serial data select
VRH
eQADC
Voltage reference high input
VRL
eQADC
Voltage reference low input
SCI_A_RX
SCI_B_RX
SCI_C_RX
eSCI_A - eSCI_C
eSCI receive
SCI_A_TX
SCI_B_TX
SCI_C_TX
eSCI_A - eSCI_C
eSCI transmit
ETPU_A[0:31]
eTPU
eTPU I/O channel
RCH0_[A:C]
RCH1_[A:C]
RCH2_[A:C]
RCH3_[A:C]
RCH4_[A:C]
RCH5_[A:C]
eTPU2
Reaction Module
eTPU2 reaction channels. Used to control external actuators,
e.g., solenoid control for direct injection systems and valve
control in automatic transmissions
TCRCLKA
eTPU2
Input clock for TCR time base
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
59
Table 5. Signal details (continued)
Signal
Module or Function
Description
CAN_A_TX
CAN_B_TX
CAN_C_TX
FlexCan_A FlexCAN_C
FlexCAN transmit
CAN_A_RX
CAN_B_RX
CAN_C_RX
FlexCAN_A FlexCAN_C
FlexCAN receive
FR_A_RX
FR_B_RX
FlexRay
FlexRay receive (Channels A, B)
FR_A_TX_EN
FR_B_TX_EN
FlexRay
FlexRay transmit enable (Channels A, B)
FR_A_TX
FR_B_TX
FlexRay
Flexray transmit (Channels A, B)
JCOMP
JTAG
Enables the JTAG TAP controller.
TCK
JTAG
Clock input for the on-chip test logic.
TDI
JTAG
Serial test instruction and data input for the on-chip test logic.
TDO
JTAG
Serial test data output for the on-chip test logic.
TMS
JTAG
Controls test mode operations for the on-chip test logic.
EVTI
Nexus
EVTI is an input that is read on the negation of RESET to enable
or disable the Nexus Debug port. After reset, the EVTI pin is
used to initiate program synchronization messages or generate
a breakpoint.
EVTO
Nexus
Output that provides timing to a development tool for a single
watchpoint or breakpoint occurrence.
MCKO
Nexus
MCKO is a free running clock output to the development tools
which is used for timing of the MDO and MSEO signals.
MDO[0:11]1
Nexus
Trace message output to development tools. This pin also
indicates the status of the crystal oscillator clock following a
power-on reset, when MDO[0] is driven high until the crystal
oscillator clock achieves stability and is then negated.
MSEO[0:1]1
Nexus
Output pin—Indicates the start or end of the variable length
message on the MDO pins
RDY
Nexus
Nexus Ready Output (RDY) is an output that indicates to the
development tools the data is ready to be read from or written to
the Nexus read/write access registers.
MPC5644A Microcontroller Data Sheet, Rev. 7
60
Freescale Semiconductor
Table 5. Signal details (continued)
Signal
BOOTCFG[0:1]
Module or Function
SIU - Configuration
Description
Two BOOTCFG signals are implemented in MPC5644A MCUs.
The BAM program uses the BOOTCFG0 bit to determine where
to read the reset configuration word, and whether to initiate a
FlexCAN or eSCI boot.
The BOOTCFG1 pin is sampled during the assertion of the
RSTOUT signal, and the value is used to update the RSR and
the BAM boot mode
See the MPC5644A Microcontroller Reference Manual for more
information.
The following values are for BOOTCFG[0:1}:
00:Boot from internal flash memory
01:FlexCAN/eSCI boot
10:Boot from external memory using EBI
11:Reserved
Note: For the 176-pin QFP and 208-ball BGA packages
BOOTCFG[0] is always 0 since the EBI interface is not available.
WKPCFG
SIU - Configuration
The WKPCFG pin is applied at the assertion of the internal reset
signal (assertion of RSTOUT), and is sampled 4 clock cycles
before the negation of the RSTOUT pin.
The value is used to configure whether the eTPU and eMIOS
pins are connected to internal weak pull up or weak pull down
devices after reset. The value latched on the WKPCFG pin at
reset is stored in the Reset Status Register (RSR), and is
updated for all reset sources except the Debug Port Reset and
Software External Reset.
0: Weak pulldown applied to eTPU and eMIOS pins at reset
1: Weak pullup applied to eTPU and eMIOS pins at reset.
ETRIG[2:3]
SIU - eQADC Triggers
External signal eTRIGx triggers eQADC CFIFOx
GPIO[206] ETRIG0
(Input)
SIU - eQADC Triggers
External signal eTRIGx triggers eQADC CFIFOx
GPIO[207] ETRIG1
(Input)
SIU - eQADC Triggers
External signal eTRIGx triggers eQADC CFIFOx
IRQ[0:5]
IRQ[7:15]
SIU - External Interrupts The IRQ[0:15] pins connect to the SIU IRQ inputs. IMUX Select
Register 1 is used to select the IRQ[0:15] pins as inputs to the
IRQs.
See the MPC5644A Microcontroller Reference Manual for more
information.
NMI
SIU - External Interrupts Non-Maskable Interrupt
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
61
Table 5. Signal details (continued)
Signal
Module or Function
GPIO[0:3]
GPIO[8:43]
GPIO[62:65]
GPIO[68:70]
GPIO[75:145]
GPIO[179:204]
GPIO[208:213]
GPIO[219]
GPIO[244:245]
SIU - GPIO
RESET
SIU - Reset
Description
Configurable general purpose I/O pins. Each GPIO input and
output is separately controlled by an 8-bit input (GPDI) or output
(GPDO) register. Additionally, each GPIO pins is configured
using a dedicated SIU_PCR register.
The GPIO pins are generally multiplexed with other I/O pin
functions.
See The MPC5644A Microcontroller Reference Manual for more
information.
•
The RESET pin is an active low input. The RESET pin is
asserted by an external device during a power-on or external
reset. The internal reset signal asserts only if the RESET pin
asserts for 10 clock cycles. Assertion of the RESET pin while the
device is in reset causes the reset cycle to start over.
The RESET pin has a glitch detector which detects spikes
greater than two clock cycles in duration that fall below the
switch point of the input buffer logic of the VDDEH input pins.
The switch point lies between the maximum VIL and minimum
VIH specifications for the VDDEH input pins.
RSTCFG
SIU - Reset
Used to enable or disable the PLLREF and the BOOTCFG[0:1]
configuration signals.
0: Get configuration information from BOOTCFG[0:1] and
PLLREF
1: Use default configuration of booting from internal flash with
crystal clock source
Note: For the 176-pin QFP and 208-ball BGA packages
RSTCFG is always 0, so PLLREF and BOOTCFG signals
are used.
RSTOUT
1
SIU - Reset
The RSTOUT pin is an active low output that uses a push/pull
configuration. The RSTOUT pin is driven to the low state by the
MCU for all internal and external reset sources. There is a delay
between initiation of the reset and the assertion of the RSTOUT
pin.
Do not connect pin directly to a power supply or ground.
MPC5644A Microcontroller Data Sheet, Rev. 7
62
Freescale Semiconductor
Table 6. Power/ground segmentation
Power Segment
Voltage
I/O Pins Powered by Segment
VDDE2
1.8 V - 3.3 V
CS0, CS1, CS2, CS3,RD_WR, BDIP, WE0, WE1, OE, TS, TA
VDDE3
1.8 V - 3.3 V
ADDR12, ADDR13, ADDR14, ADDR15
VDDE5
1.8 V - 3.3 V
DATA0, DATA1, DATA2, DATA3, DATA4, DATA5, DATA6,
DATA7, DATA8, DATA9, DATA10, DATA11, DATA12, DATA13,
DATA14, DATA15, CLKOUT, ENGCLK
VDDE12
1.8 V - 3.3 V
CAL_CS0, CAL_CS2, CAL_CS3 CAL_ADDR12,
CAL_ADDR13, CAL_ADDR14, CAL_ADDR15,
CAL_ADDR16, CAL_ADDR17, CAL_ADDR18,
CAL_ADDR19, CAL_ADDR20, CAL_ADDR21,
CAL_ADDR22, CAL_ADDR23, CAL_ADDR24,
CAL_ADDR25, CAL_ADDR26, CAL_ADDR27,
CAL_ADDR28, CAL_ADDR29, CAL_ADDR30, CAL_DATA0,
CAL_DATA1, CAL_DATA2, CAL_DATA3, CAL_DATA4,
CAL_DATA5, CAL_DATA6, CAL_DATA7, CAL_DATA8,
CAL_DATA9, CAL_DATA10, CAL_DATA11, CAL_DATA12,
CAL_DATA13, CAL_DATA14, CAL_DATA15, CAL_RD_WR,
CAL_WE0, CAL_WE1, CAL_OE, CAL_TS
VDDE-EH
3.0 V - 5 V
ADDR16, ADDR17, ADDR18, ADDR19, ADDR20, ADDR21,
ADDR22, ADDR23, ADDR24, ADDR25, ADDR26, ADDR27,
ADDR28, ADDR29, ADDR30, ADDR31
VDDEH1
3.3 V - 5.0 V
ETPUA10, ETPUA11, ETPUA12, ETPUA13, ETPUA14,
ETPUA15, ETPUA16, ETPUA17, ETPUA18, ETPUA19,
ETPUA20, ETPUA21, ETPUA22, ETPUA23, ETPUA24,
ETPUA25, ETPUA26, ETPUA27, ETPUA28, ETPUA29,
ETPUA30, ETPUA31
VDDEH4
3.3 V - 5.0 V
EMIOS0, EMIOS1, EMIOS2, EMIOS3, EMIOS4, EMIOS5,
EMIOS6, EMIOS7, EMIOS8, EMIOS9, EMIOS10, EMIOS11,
EMIOS12, EMIOS13, EMIOS14, EMIOS15, EMIOS16,
EMIOS17, EMIOS18, EMIOS19, EMIOS20, EMIOS21,
EMIOS22, EMIOS23, TCRCLKA, ETPUA0, ETPUA1,
ETPUA2, ETPUA3, ETPUA4, ETPUA5, ETPUA6, ETPUA7,
ETPUA8, ETPUA9, ETPUA0
VDDEH6
3.3 V - 5.0 V
RESET, RSTOUT, PLLREF, PLLCFG1, RSTCFG,
BOOTCFG0, BOOTCFG1, WKPCFG, CAN_A_TX,
CAN_A_RX, CAN_B_TX, CAN_B_RX, CAN_C_TX,
CAN_C_RX, SCI_A_TX, SCI_A_RX, SCI_B_TX, SCI_C_RX,
DSPI_B_SCK, DSPI_B_SIN, DSPI_B_SOUT,
DSPI_B_PCS[0], DSPI_B_PCS[1], DSPI_B_PCS[2],
DSPI_B_PCS[3], DSPI_B_PCS[4], DSPI_B_PCS[5],
SCI_B_RX, SCI_C_TX, EXTAL, XTAL
VDDEH7
3.3 V - 5.0 V
EMIOS14, EMIOS 15, GPIO98, GPIO99, GPIO203, GPIO204,
GPIO206, GPIO207, GPIO219, EVTI, EVTO, MDO4, MDO5,
MDO6, MDO7, MDO8, MDO9, MDO10, MDO11, MSEO0,
MSEO1, RDY, TCK, TDI, TDO, TMS, JCOMP, DSPI_A_SCK,
DSPI_A_SIN, DSPI_A_SOUT, DSPI_A_PCS[0],
DSPI_A_PCS[1], DSPI_A_PCS[4], DSPI_A_PCS[5],
AN12-SDS, AN13-SDO, AN14-SDI, AN15-FCK
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
63
Table 6. Power/ground segmentation
Power Segment
Voltage
I/O Pins Powered by Segment
VDDA
5V
AN0, AN1, AN2, AN3, AN4, AN5, AN6, AN7, AN8, AN9, AN10,
AN11, AN16, AN17, AN18, AN19, AN20, AN21, AN22, AN23,
AN24, AN25, AN26, AN27, AN28, AN29, AN30, AN31, AN32,
AN33, AN34, AN35, AN36, AN37, AN38, AN39, VRH, VRL,
REFBYBC
VRC331
3.3 V
MCKO, MDO0, MDO1, MDO2, MDO3
Other Power Segments
VDDREG
5V
—
VRCCTL
—
—
VDDPLL
1.2 V
—
VSTBY
0.95–1.2 V
(unregulated mode)
—
2.0–5.5 V
(regulated mode)
—
—
—
VSS
1
Do not use VRC33 to drive external circuits.
MPC5644A Microcontroller Data Sheet, Rev. 7
64
Freescale Semiconductor
3
Electrical characteristics
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing
specifications for the MPC5644A series of MCUs.
The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon
these specifications will be met. Finalized specifications will be published after complete characterization and device
qualifications have been completed.
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller
Characteristics is included in the Symbol column.
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol
“SR” for System Requirement is included in the Symbol column.
3.1
Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better
understanding, the classifications listed in Table 7 are used and the parameters are tagged accordingly in the tables where
appropriate.
Table 7. Parameter classifications
Classification tag
Tag description
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values shown in the typical column
are within this category.
D
Those parameters are derived mainly from simulations.
NOTE
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
3.2
Maximum ratings
Table 8. Absolute maximum ratings1
Value
Symbol
Parameter
Conditions
Unit
min
max
VDD
SR
1.2 V core supply voltage2
–0.3
1.32
V
VFLASH
SR
Flash core voltage3,4
–0.3
3.6
V
VSTBY
SR
SRAM standby voltage5
–0.3
6
V
VDDPLL
SR
Clock synthesizer voltage
–0.3
1.32
V
VRC33
SR
Voltage regulator control
input voltage4
–0.3
3.6
V
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
65
Table 8. Absolute maximum ratings1 (continued)
Value
Symbol
1
2
3
4
5
Parameter
Conditions
Unit
min
max
–0.3
5.5
V
VDDA
SR
Analog supply voltage5
VDDE
SR
I/O supply voltage4,6
–0.3
3.6
V
VDDEH
SR
I/O supply voltage5
–0.3
5.5
V
VIN
SR
DC input voltage7
VDDEH powered I/O pads
–1.08
VDDEH
+ 0.3 V9
V
VDDE powered I/O pads
–1.010
VDDE +
0.3 V10
VDDA powered I/O pads
–1.0
5.5
–0.3
5.5
V
–0.3
5.5
V
Reference to VSSA
VDDREG
SR
Voltage regulator supply
voltage
VRH
SR
Analog reference high
voltage
VSS – VSSA
SR
VSS differential voltage
–0.1
0.1
V
VRH – VRL
SR
VREF differential voltage
–0.3
5.5
V
VRL – VSSA
SR
VRL to VSSA differential
voltage
–0.3
0.3
V
VSSPLL – VSS
SR
VSSPLL to VSS differential
voltage
–0.1
0.1
V
IMAXD
SR
Maximum DC digital input
current11
Per pin, applies to all
digital pins
–3
3
mA
IMAXA
SR
Maximum DC analog input
current12
Per pin, applies to all
analog pins
—
5
mA
TJ
SR
Maximum operating
temperature range - die
junction temperature
–40.0
150.0
oC
TSTG
SR
Storage temperature range
–55.0
150.0
oC
TSDR
SR
Maximum solder
temperature13
—
260.0
oC
MSL
SR
Moisture sensitivity level14
—
3
Reference to VRL
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are
stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima
may affect device reliability or cause permanent damage to the device.
Allowed 2 V for 10 hours cumulative time, remaining time at 1.2 V +10%.
The VFLASH supply is connected to VRC33 in the package substrate. This specification applies to calibration
package devices only.
Allowed 5.3 V for 10 hours cumulative time, remaining time at 3.3 V +10%.
Allowed 5.9 V for 10 hours cumulative time, remaining time at 5 V +10%.
MPC5644A Microcontroller Data Sheet, Rev. 7
66
Freescale Semiconductor
6
All functional non-supply I/O pins are clamped to VSS and VDDE, or VDDEH.
AC signal overshoot and undershoot of up to 2.0 V of the input voltages is permitted for an accumulative
duration of 60 hours over the complete lifetime of the device (injection current not limited for this duration).
8
Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met.
9
Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDEH
supplies, if the maximum injection current specification is met (2 mA for all pins) and VDDEH is within the
operating voltage specifications.
10
Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies,
if the maximum injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage
specifications.
11
Total injection current for all pins (including both digital and analog) must not exceed 25 mA.
12
Total injection current for all analog input pins must not exceed 15 mA.
13
Solder profile per IPC/JEDEC J-STD-020D.
14
Moisture sensitivity per JEDEC test method A112.
7
3.3
Thermal characteristics
Table 9. Thermal characteristics for 176-pin QFP1
Symbol
RJA
RJA
C
Parameter
Conditions
CC
D Junction-to-Ambient, Natural Convection2
CC
Convection2
D Junction-to-Ambient, Natural
Value
Unit
Single layer board - 1s
38
°C/W
Four layer board - 2s2p
31
°C/W
Ambient2
200 ft./min., single layer
board - 1s
30
°C/W
at 200 ft./min., four layer
board - 2s2p
25
°C/W
20
°C/W
5
°C/W
2
°C/W
RJMA
CC
D Junction-to-Moving-Air,
RJMA
CC
D Junction-to-Moving-Air, Ambient2
RJB
CC
D Junction-to-Board3
Junction-to-Case4
RJCtop
CC
D
JT
CC
D Junction-to-Package Top, Natural
Convection5
1
Thermal characteristics are targets based on simulation that are subject to change per device characterization.
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board
meets JEDEC specification for this package.
3 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC
specification for the specified package.
4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
5
Thermal characterization parameter indicating the temperature difference between the package top and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization
parameter is written as Psi-JT.
2
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
67
Table 10. Thermal characteristics for 208-pin MAPBGA1
Symbol
3
4
5
6
7
Conditions
2,3
CC
D Junction-to-Ambient, Natural Convection
RJA
CC
D Junction-to-Ambient, Natural Convection2,4 Four layer board - 2s2p
One layer board - 1s
Value
Unit
39
°C/W
24
°C/W
2,4
at 200 ft./min., one layer
board
31
°C/W
RJMA
CC
D Junction-to-Moving-Air, Ambient
RJMA
CC
D Junction-to-Moving-Air, Ambient2,4
at 200 ft./min., four layer
board 2s2p
20
°C/W
RJB
CC
D Junction-to-board5
Four layer board - 2s2p
13
°C/W
6
°C/W
2
°C/W
JT
1
Parameter
RJA
RJC
2
C
CC
CC
D Junction-to-case
6
D Junction-to-package top natural convection
7
Thermal characteristics are targets based on simulation that are subject to change per device characterization.
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
Per JEDEC JESD51-6 with the board horizontal.
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is
measured on the top surface of the board near the package.
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.
Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter
is written as Psi-JT.
Table 11. Thermal characteristics for 324-pin TEPBGA1
Symbol
RJA
RJA
C
Parameter
Conditions
CC
D Junction-to-Ambient, Natural Convection2
CC
Convection2
D Junction-to-Ambient, Natural
Ambient2
Value
Unit
Single layer board - 1s
29
°C/W
Four layer board - 2s2p
19
°C/W
at 200 ft./min., single layer
board
23
°C/W
at 200 ft./min., four layer
board 2s2p
16
°C/W
RJMA
CC
D Junction-to-Moving-Air,
RJMA
CC
D Junction-to-Moving-Air, Ambient2
RJB
CC
D Junction-to-Board3
10
°C/W
RJCtop
CC
D Junction-to-Case4
7
°C/W
JT
CC
D Junction-to-Package Top, Natural
Convection5
2
°C/W
1
Thermal characteristics are targets based on simulation that are subject to change per device characterization.
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board
meets JEDEC specification for this package.
3
Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC
specification for the specified package.
4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
2
MPC5644A Microcontroller Data Sheet, Rev. 7
68
Freescale Semiconductor
5
3.3.1
Thermal characterization parameter indicating the temperature difference between the package top and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization
parameter is written as Psi-JT.
General notes for specifications at maximum junction temperature
An estimation of the chip junction temperature, TJ, can be obtained from the equation:
TJ = TA + (RJA * PD)
Eqn. 1
where:
TA = ambient temperature for the package (oC)
RJA = junction-to-ambient thermal resistance (oC/W)
PD = power dissipation in the package (W)
The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for
estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a
four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance
is not a constant. The thermal resistance depends on the:
•
•
•
•
Construction of the application board (number of planes)
Effective size of the board which cools the component
Quality of the thermal and electrical connections to the planes
Power dissipated by adjacent components
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package
to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance
between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.
As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit
board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:
•
•
•
One oz. (35 micron nominal thickness) internal planes
Components are well separated
Overall power dissipation on the board is less than 0.02 W/cm2
The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the
ambient temperature varies widely within the application. For many natural convection and especially closed box applications,
the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the
device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the
local ambient conditions that determine the temperature of the device.
At a known board temperature, the junction temperature is estimated using the following equation:
TJ = TB + (RJB * PD)
Eqn. 2
where:
TB = board temperature for the package perimeter (oC)
RJB = junction-to-board thermal resistance (oC/W) per JESD51-8S
PD = power dissipation in the package (W)
When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction
temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to
a board with internal planes.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
69
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal
resistance:
RJA = RJC + RCA
Eqn. 3
where:
RJA = junction-to-ambient thermal resistance (oC/W)
RJC = junction-to-case thermal resistance (oC/W)
RCA = case to ambient thermal resistance (oC/W)
RJC is device related and is not affected by other factors. The thermal environment can be controlled to change the
case-to-ambient thermal resistance, RCA. For example, change the air flow around the device, add a heat sink, change the
mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding
the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat
sink to ambient. For most packages, a better model is required.
A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the
junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a
substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the
thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple
estimations and for computational fluid dynamics (CFD) thermal models.
To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization
parameter (JT) to determine the junction temperature by measuring the temperature at the top center of the package case using
the following equation:
TJ = TT + (JT x PD)
Eqn. 4
where:
TT = thermocouple temperature on top of the package (oC)
JT = thermal characterization parameter (oC/W)
PD = power dissipation in the package (W)
The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T
thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests
on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from
the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling
effects of the thermocouple wire.
References:
Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134
USA
(408) 943-6900
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or
303-397-7956.
JEDEC specifications are available on the WEB at http://www.jedec.org.
•
•
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications”, Electronic
Packaging and Production, pp. 53-58, March 1998.
MPC5644A Microcontroller Data Sheet, Rev. 7
70
Freescale Semiconductor
•
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application
in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.
3.4
EMI (electromagnetic interference) characteristics
Table 12. EMI Testing Specifications1
Symbol
Radiated
emissions,
electric field
Parameter
VRE_TEM
Conditions
VDDREG = 5.25 V;
TA = 25 °C
150 kHz – 30 MHz
RBW 9 kHz, Step
Size 5 kHz
30 MHz – 1 GHz RBW 120 kHz, Step
Size 80 kHz
1
3.5
Frequency
Range
Clocks
16 MHz crystal 150 kHz – 50 MHz
40 MHz bus
50 – 150 MHz
No PLL frequency
modulation
150 – 500 MHz
16 MHz crystal
40 MHz bus
±2% PLL
frequency
modulation
Level
(Max)
Unit
20
dBV
20
26
500 – 1000 MHz
26
IEC Level
K
—
SAE Level
3
—
150 kHz– 50 MHz
13
dBV
50 – 150 MHz
13
150 – 500 MHz
11
500 – 1000 MHz
13
IEC Level
L
—
SAE Level
2
—
Conditions
Value
Unit
EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03 and IEC 61967-2.
Electrostatic discharge (ESD) characteristics
Table 13. ESD ratings1,2
Symbol
—
SR
ESD for Human Body Model (HBM)
—
2000
V
R1
SR
HBM circuit description
—
1500

C
SR
—
100
pF
—
SR
V
—
—
1
Parameter
SR
SR
ESD for field induced charge Model
(FDCM)
All pins
500
Corner pins
750
Number of pulses per pin
Positive pulses (HBM)
1
—
Negative pulses (HBM)
1
—
1
—
Number of pulses
—
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated
Circuits.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
71
2
Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification
requirements, which includes the complete DC parametric and functional testing at room temperature and hot
temperature.”
3.6
Power management control (PMC) and power on reset (POR)
electrical specifications
Table 14. PMC Operating Conditions and External Regulators Supply Voltage
ID
Name
Parameter
Min
Typ
Max
Unit
1
Jtemp
SR
— Junction temperature
–40
27
150
°C
2
Vddreg
SR
— PMC 5 V supply voltage VDDREG
4.75
5
5.25
V
1.3
1.32
V
3
Vdd
SR
— Core supply voltage 1.2 V VDD when external
regulator is used without disabling the internal
regulator (PMC unit turned on, LVI monitor
active)1
1.262
3a
—
SR
— Core supply voltage 1.2 V VDD when external
regulator is used with a disabled internal
regulator (PMC unit turned-off, LVI monitor
disabled)
1.14
1.2
1.32
V
4
Ivdd
SR
— Voltage regulator core supply maximum
required DC output current
400
—
—
mA
5
Vdd33
SR
— Regulated 3.3 V supply voltage when external
regulator is used without disabling the internal
regulator (PMC unit turned-on, internal 3.3V
regulator enabled, LVI
monitor active)3
3.3
3.45
3.6
V
5a
—
SR
— Regulated 3.3 V supply voltage when external
regulator is used with a disabled internal
regulator (PMC unit turned-off, LVI monitor
disabled)
3
3.3
3.6
V
6
—
SR
— Voltage regulator 3.3 V supply maximum
required DC output current
80
—
—
mA
1
An internal regulator controller can be used to regulate core supply.
The minimum supply required for the part to exit reset and enter in normal run mode is 1.28 V.
3 An internal regulator can be used to regulate 3.3 V supply.
2
MPC5644A Microcontroller Data Sheet, Rev. 7
72
Freescale Semiconductor
Table 15. PMC Electrical Characteristics
ID
Name
Parameter
Typ
Max
Unit
—
1.219
—
V
VBG - 7%
VBG
Vbg + 6%
V
Notes
1
VBG
1a
—
CC P Untrimmed bandgap
reference voltage
1b
—
CC P Trimmed bandgap
reference voltage (5 V,
27 °C)
VBG
-10mV
VBG
VBG +
10mV
V
1c
—
CC C Bandgap reference
temperature variation
—
100
—
ppm
/°C
1d
—
CC C Bandgap reference supply
voltage variation
—
3000
—
ppm
/V
2
Vdd
CC C Nominal VDD core supply
internal regulator target DC
output voltage1
—
1.28
—
V
2a
—
CC P Nominal VDD core supply
internal regulator target DC
output voltage variation at
power-on reset
Vdd - 6%
Vdd
Vdd + 10%
V
2b
—
CC P Nominal VDD core supply
Vdd - 10%2
internal regulator target DC
output voltage variation
after power-on reset
Vdd
Vdd + 3%
V
2c
—
CC C Trimming step Vdd
—
20
—
mV
2d
Ivrcctl
CC C Voltage regulator controller
for core supply maximum
DC output current
20
—
—
mA
3
Lvi1p2
CC C Nominal LVI for rising core
supply3
—
1.160
—
V
3a
—
CC C Variation of LVI for rising
core supply at power-on
reset
1.120
1.200
1.280
V
See note 4
3b
—
CC C Variation of LVI for rising
core supply after power-on
reset
Lvi1p2 3%
Lvi1p2
Lvi1p2 +
3%
V
See note 4
3c
—
CC C Trimming step LVI core
supply
—
20
—
mV
3d
Lvi1p2_h
CC C LVI core supply hysteresis
—
40
—
mV
4
Por1.2V_r CC C POR 1.2 V rising
—
0.709
—
V
4a
—
4b
Por1.2V_f
4c
—
CC C Nominal bandgap voltage
reference
Min
CC C POR 1.2 V rising variation
CC C POR 1.2 V falling
Por1.2V_r - Por1.2V_r Por1.2V_r
35%
+ 35%
—
0.638
—
CC C POR 1.2 V falling variation Por1.2V_f - Por1.2V_f Por1.2V_f +
35%
35%
V
V
V
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
73
Table 15. PMC Electrical Characteristics (continued)
ID
Name
Parameter
Min
Typ
Max
—
Unit
Notes
5
Vdd33
CC C Nominal 3.3 V supply
internal regulator DC output
voltage
—
3.39
5a
—
CC P Nominal 3.3 V supply
internal regulator DC output
voltage variation at
power-on reset
Vdd33 8.5%
Vdd33
5b
—
CC P Nominal 3.3 V supply
internal regulator DC output
voltage variation power-on
reset
Vdd33 7.5%
Vdd33
Vdd33 +
7%
V
5c
—
CC D Voltage regulator 3.3 V
output impedance at
maximum DC load
—
—
2

5d
Idd3p3
CC P Voltage regulator 3.3 V
maximum DC output
current (internal regulator
enabled)6
807
—
—
mA
—
130
—
mA
—
3.090
—
V
The Lvi3p3
specs are also
valid for the
Vddeh LVI
5e
Vdd33 ILim CC C Voltage regulator 3.3 V DC
current limit
See note 5
Vdd3 + 7% V
With internal
load up
to Idd3p3
6
Lvi3p3
6a
—
CC C Variation of LVI for rising
3.3 V supply at power-on
reset
Lvi3p3 6%
Lvi3p3
Lvi3p3 +
6%
V
See note 8
6b
—
CC C Variation of LVI for rising
3.3 V supply after power-on
reset
Lvi3p3 3%
Lvi3p3
Lvi3p3 +
3%
V
See note 8
6c
—
CC C Trimming step LVI 3.3 V
—
20
—
mV
6d
Lvi3p3_h
CC C LVI 3.3 V hysteresis
—
60
—
mV
7
Por3.3V_r CC C Nominal POR for rising
3.3 V supply
—
2.07
—
V
7a
—
7b
Por3.3V_f
7c
—
8
Lvi5p0
CC C Nominal LVI for rising 3.3 V
supply
V
CC C Variation of POR for rising
3.3 V supply
CC C Nominal POR for falling
3.3 V supply
Por3.3V_r- Por3.3V_r Por3.3V_r
35%
+ 35%
—
1.95
—
V
V
CC C Variation of POR for falling Por3.3V_f - Por3.3V_f Por3.3V_f +
3.3 V supply
35%
35%
V
CC C Nominal LVI for rising 5 V
VDDREG supply
V
—
4.290
—
The 3.3V POR
specs are also
valid for the
VDDEH POR
MPC5644A Microcontroller Data Sheet, Rev. 7
74
Freescale Semiconductor
Table 15. PMC Electrical Characteristics (continued)
ID
Name
Parameter
Min
Typ
Max
Unit
8a
—
CC C Variation of LVI for rising
5 V VDDREG supply at
power-on reset
Lvi5p0 6%
Lvi5p0
Lvi5p0 +
6%
V
8b
—
CC C Variation of LVI for rising
5 V VDDREG supply
power-on reset
Lvi5p0 3%
Lvi5p0
Lvi5p0 +
3%
V
8c
—
CC C Trimming step LVI 5 V
—
20
—
mV
8d
Lvi5p0_h
CC C LVI 5 V hysteresis
—
60
—
mV
9
Por5V_r
CC C Nominal POR for rising 5 V
VDDREG supply
—
2.67
—
V
9a
—
CC C Variation of POR for rising
5 V VDDREG supply
Por5V_r
- 35%
Por5V_r
Por5V_r
+ 50%
V
9b
Por5V_f
CC C Nominal POR for falling 5 V
VDDREG supply
—
2.47
—
V
9c
—
CC C Variation of POR for falling
5 V VDDREG supply
Por5V_f
- 35%
Por5V_f
Por5V_f
+ 50%
V
1
Notes
Using external ballast transistor.
Min range is extended to 10% since Lvi1p2 is reprogrammed from 1.2 V to 1.16 V after power-on reset.
LVI for falling supply is calculated as LVI rising – LVI hysteresis.
Lvi1p2 tracks DC target variation of internal Vdd regulator. Minimum and maximum Lvi1p2 correspond to minimum
and maximum Vdd DC target respectively.
Minimum loading (<10 mA) for reading trim values from flash, powering internal RC oscillator, and IO consumption
during POR.
No external load is allowed, except for use as a reference for an external tool.
This value is valid only when the internal regulator is bypassed. When the internal regulator is enabled, the
maximum external load allowed on the Nexus pads is 30 pF at 40 MHz.
Lvi3p3 tracks DC target variation of internal Vdd33 regulator. Minimum and maximum Lvi3p3 correspond to
minimum and maximum Vdd33 DC target respectively.
2
3
4
5
6
7
8
3.6.1
Voltage regulator controller (VRC) electrical specifications
Table 16. VRC electrical specifications
Symbol
IVRCCTL1
BETA 2
1
Parameter
Current can be sourced by VRCCTL at Tj:
Required gain at Tj:
IDD  IVRCCTL (fsys = fMAX) 1,3,4
25 oC
Min.
Max.
Units
TBD
—
mA
150
oC
TBD
—
mA
– 40
oC
TBD
—
—
25 oC
TBD
—
—
150 oC
TBD
TBD
—
IVRCCTL is measured at the following conditions: VDD = 1.35 V, VRC33 = 3.1 V, VVRCCTL = 2.2 V.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
75
2
BETA represents the worst-case external transistor. It is measured on a per-part basis and calculated as
(IDD  IVRCCTL).
3
Refer to Table 52 for the maximum operating frequency.
4
Values are based on IDD from high-use applications as explained in the IDD Electrical Specification.
3.6.2
Regulator Example
In designs where the MPC5644A microcontroller’s internal regulators are used, a ballast is required for generation of the 1.2 V
internal supply. No ballast is required when an external 1.2 V supply is used.
The resistor may or may not be
required. This depends on the
allowable power dissipation of
the npn bypass transistor
device. The resistor may be
used to limit the in-rush current
at power on.
VDDREG
Creg
Rc
The bypass transistor
MUST be operated out
of saturation region.
Cc
VRCCTL
Keep parasitic inductance
under 20nH
Re
Mandatory decoupling
capacitor network
MCU
Rb
VDD
Cb
VSS
Ce
Cd
VRCCTL capacitor and resistor is required
Figure 8. Core voltage regulator controller external components preferred configuration
Table 17. MPC5644A External network specification
External Network
Parameter
Min
Typ
Max
T1
Comment
NJD2873 or BCP68
only
Cb
1.1 F
Ce
3*2.35F+5F
Equivalent ESR of
Ce capacitors
5m 
Cd
4*50nF
Rb
9
2.2F
2.97F
X7R,-50%/+35%
3*4.7F+10F
3*6.35F+13.5F
X7R, -50%/+35%
50m 
4*100nF
4*135nF
X7R, -50%/+35%
10 
11 
+/-10%
MPC5644A Microcontroller Data Sheet, Rev. 7
76
Freescale Semiconductor
Table 17. MPC5644A External network specification
External Network
Parameter
Min
0.252 
Re
Typ
Max
Comment
0.280 
0.308 
+/-10%
Creg
3.6.3
10F
Cc
5F
Rc
1.1 
10F
It depends on
external Vreg.
13.5F
X7R, -50%/+35%
5.6 
May or may not be
required. It depends
on the allowable
power dissipation of
T1.
Recommended power transistors
The following NPN transistors are recommended for use with the on-chip voltage regulator controller: ON SemiconductorTM
BCP68T1 or NJD2873 as well as Philips SemiconductorTM BCP68. The collector of the external transistor is preferably
connected to the same voltage supply source as the output stage of the regulator.
Table 18. Recommended operating characteristics
Symbol
hFE ()
PD
Parameter
DC current gain (Beta)
Absolute minimum power dissipation
Value
Unit
60 – 550
—
>1.0
(1.5 preferred)
W
1.0
A
200 – 6001
mV
0.4 – 1.0
V
ICMaxDC Minimum peak collector current
VCESAT Collector-to-emitter saturation voltage
VBE
1
3.7
Base-to-emitter voltage
Adjust resistor at bipolar transistor collector for 3.3 V/5.0 V to avoid VCE < VCESAT.
Power up/down sequencing
There is no power sequencing required among power sources during power up and power down, in order to operate within
specification.
Although there are no power up/down sequencing requirements to prevent issues such as latch-up or excessive current spikes
the state of the I/O pins during power up/down varies according to Table 19 for all pins with fast pads, and Table 20 for all pins
with medium, slow, and multi-voltage pads.
Table 19. Power sequence pin states (fast pads)
VDDE
VRC33
VDD
Pad State
LOW
X
X
LOW
VDDE
LOW
X
HIGH
VDDE
VRC33
LOW
HIGH IMPEDANCE
VDDE
VRC33
VDD
FUNCTIONAL
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
77
Table 20. Power sequence pin states (medium, slow, and multi-voltage pads)
3.8
VDDEH
VDD
Pad State
LOW
X
LOW
VDDEH
LOW
HIGH IMPEDANCE
VDDEH
VDD
FUNCTIONAL
DC electrical specifications
Table 21. DC electrical specifications
Value
Symbol
C
Parameter
Conditions
Unit
min
typ
max
VDD
SR
— Core supply voltage
—
1.14
1.32
V
VDDE
SR
— I/O supply voltage
—
1.62
3.6
V
VDDEH
SR
— I/O supply voltage
—
3.0
5.25
V
VDDE-EH
SR
— I/O supply voltage
—
3.0
5.25
V
VRC33
SR
— 3.3 V regulated
voltage1
—
3.0
—
3.6
V
VDDA
SR
— Analog supply voltage
—
4.752
—
5.25
V
VINDC
SR
— Analog input voltage
—
VSSA-0.3
—
VDDA+0.3
V
VSS – VSSA
SR
— VSS differential
voltage
—
–100
—
100
mV
VRL
SR
— Analog reference low
voltage
—
VSSA
—
VSSA+0.1
V
VRL – VSSA
SR
— VRL differential
voltage
—
–100
—
100
mV
VRH
SR
— Analog reference high
voltage
—
VDDA-0.1
—
VDDA
V
VRH – VRL
SR
— VREF differential
voltage
—
4.75
—
5.25
V
VDDF
SR
— Flash operating
voltage3
—
1.14
—
1.32
V
VFLASH4
SR
— Flash read voltage
—
3.0
—
3.6
V
VSTBY
SR
— SRAM standby
voltage
Unregulated
mode
0.95
—
1.2
V
Regulated
mode
2.0
—
5.5
Keep-out Range:
1.2V–2V
MPC5644A Microcontroller Data Sheet, Rev. 7
78
Freescale Semiconductor
Table 21. DC electrical specifications (continued)
Value
Symbol
C
Parameter
Conditions
Unit
min
typ
max
VDDREG
SR
— Voltage regulator
supply voltage
—
4.75
—
5.25
V
VDDPLL
SR
— Clock synthesizer
operating voltage
—
1.14
—
1.32
V
VSSPLL –
VSS
SR
— VSSPLL to VSS
differential voltage
—
–100
—
100
mV
VIL_S
CC
C
Hysteresis
enabled
VSS-0.3
—
0.35*VDDEH
V
Hysteresis
disabled
VSS-0.3
—
0.40*VDDEH
Hysteresis
enabled
VSS-0.3
—
0.35*VDDE
Hysteresis
disabled
VSS-0.3
—
0.40*VDDE
Multi-voltage I/O pad
input low voltage in
Low-swing-mode5,6,7,
Hysteresis
enabled
VSS-0.3
—
0.8
8
Hysteresis
disabled
VSS-0.3
—
1.1
Multi-voltage pad I/O
input low voltage in
high-swing-mode
Hysteresis
enabled
VSS-0.3
—
0.35 VDDEH
Hysteresis
disabled
VSS-0.3
—
0.4 VDDEH
Slow/medium pad I/O
input high voltage9
Hysteresis
enabled
0.65 VDDEH
—
VDDEH+0.3
Hysteresis
disabled
0.55 VDDEH
—
VDDEH+0.3
Hysteresis
enabled
0.65 VDDE
—
VDDE+0.3
Hysteresis
disabled
0.58 VDDE
—
VDDE+0.3
Hysteresis
enabled
2.5
—
VDDEH+0.3
Hysteresis
disabled
2.2
—
VDDEH+0.3
Hysteresis
enabled
0.65 VDDEH
—
VDDEH+0.3
Hysteresis
disabled
0.55 VDDEH
—
VDDEH+0.3
Slow/medium I/O pad
input low voltage
P
VIL_F
CC
C
Fast pad I/O input low
voltage
P
VIL_LS
CC
C
P
VIL_HS
CC
C
P
VIH_S
CC
C
P
VIH_F
CC
C
Fast I/O input high
voltage
P
VIH_LS
CC
C
P
VIH_HS
CC
C
P
Multi-voltage pad I/O
input high voltage in
low-swing-mode5,6,7,8
Multi-voltage I/O input
high voltage in
high-swing-mode
V
V
V
V
V
V
V
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
79
Table 21. DC electrical specifications (continued)
Value
Symbol
C
Parameter
Conditions
Unit
min
typ
max
VOL_S
CC
P
Slow/medium pad I/O
output low voltage9
—
—
0.2*VDDEH
V
VOL_F
CC
P
Fast I/O output low
voltage9
—
—
0.2*VDDE
V
VOL_LS
CC
P
Multi-voltage pad I/O
output low voltage in
low-swing
mode5,6,7,8,9
—
—
0.6
V
VOL_HS
CC
P
Multi-voltage pad I/O
output low voltage in
high-swing mode9
—
—
0.2*VDDEH
V
VOH_S
CC
P
Slow/medium pad I/O
output high voltage9
0.8 VDDEH
—
—
V
VOH_F
CC
P
Fast pad I/O output
high voltage9
0.8 VDDE
—
—
V
VOH_LS
CC
P
Multi-voltage pad I/O
output high voltage in
low-swing mode5,6,7,8
2.1
3.1
3.7
V
VOH_HS
CC
P
Multi-voltage pad I/O
output high voltage in
high-swing mode9
0.8 VDDEH
—
—
V
VHYS_S
CC
C
Slow/medium/multi-vo
ltage I/O input
hysteresis
—
0.1 * VDDEH
—
—
V
VHYS_F
CC
C
Fast I/O input
hysteresis
—
0.1 * VDDE
—
—
V
VHYS_LS
CC
C
Low-Swing-Mode
Multi-Voltage I/O Input
Hysteresis
hysteresis
enabled
0.25
—
—
v
IDD+IDDPLL
CC
P
Operating current
1.2 V supplies
VDD at
1.32 V at 80
MHz
—
380
mA
P
VDD at
1.32V
at 120 MHz
—
400
mA
P
VDD at
1.32V
at 150 MHz
—
400
mA
IOH_LS =
0.5 mA
MPC5644A Microcontroller Data Sheet, Rev. 7
80
Freescale Semiconductor
Table 21. DC electrical specifications (continued)
Value
Symbol
IDDSTBY
IDDSTBY27
IDDSTBY150
C
CC
CC
CC
Parameter
Conditions
Unit
min
typ
max
T
Operating current
0.95-1.2 V
VSTBY at
55 oC
—
35
100
A
T
Operating current
2–5.5 V
VSTBY at
55 oC
—
45
110
A
P
Operating current
0.95-1.2 V
VSTBY 27 oC
25
90
A
P
Operating current
2-5.5 V
VSTBY 27 oC
35
100
A
P
Operating current
0.95-1.2 V
VSTBY
150 oC
—
790
2000
A
P
Operating current
2–5.5 V
VSTBY at
150 oC
—
760
2000
A
IDDPLL
CC
P
Operating current
1.2 V supplies
VDDPLL,
80 MHz,
VDD=1.2 V
—
15
mA
IDDSLOW
IDDSTOP
CC
P
VDD low-power mode
operating current at
1.32 V
Slow
mode10
—
90
mA
Stop mode11
—
75
60
mA
mA
P
IDD33
CC
C
Operating current
3.3 V supplies
VRC331,12
—
IDDA
IREF
CC
P
Operating current
5.0 V supplies
VDDA
—
—
30.0
Analog
reference
supply
current
(transient)
—
—
1.0
VDDREG
—
—
7013
VDDEH1
—
—
See note 14
VDDEH4
—
—
D
VDDEH6
—
—
D
VDDEH7
—
—
D
VDDE7
—
—
D
VDDEH9
—
—
D
VDDE12
—
—
P
IDDREG
C
IDDH1
IDDH4
IDDH6
IDDH7
IDD7
IDDH9
IDD12
CC
D
D
Operating current
VDDE14 supplies
mA
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
81
Table 21. DC electrical specifications (continued)
Value
Symbol
IACT_S
C
CC
IACT_MV_PU
CC
CC
CC
Unit
typ
max
3.0 V –
3.6 V
15
—
95
4.75 V –
5.5 V
35
—
200
1.62 V –
1.98 V
36
—
120
D
2.25 V –
2.75 V
34
—
139
D
3.0 V –
3.6 V
42
—
158
VDDE=
3.0–3.6 V5,
MultiV pad,
high swing
mode only
10
—
75
4.75 V –
5.25 V
25
—
200
VDDE=
3.0–3.6 V5,
MultiV pad,
high swing
mode only
10
—
60
4.75 V –
5.25 V
25
—
200
C
D
C
Slow/medium I/O
weak pull up/down
current15
Fast I/O weak pull
up/down current15
Multi-voltage pad
weak pullup current
P
IACT_MV_PD
Conditions
min
P
IACT_F
Parameter
C
Multivoltage pad weak
pulldown current
P
A
A
A
A
IINACT_D
CC
P
I/O input leakage
current16
—
–2.5
—
2.5
A
IIC
SR
T
DC injection current
(per pin)
—
–1.0
—
1.0
mA
IINACT_A
SR
P
Analog input current,
channel off, AN[0:7]17
—
–250
—
250
nA
P
Analog input current,
channel off, all other
analog pins17
—
–150
—
150
MPC5644A Microcontroller Data Sheet, Rev. 7
82
Freescale Semiconductor
Table 21. DC electrical specifications (continued)
Value
Symbol
C
Parameter
Conditions
Unit
min
CL
CC
D
Load capacitance
(fast I/O)18
typ
max
DSC(PCR[8
:9]) = 0b00
—
10
D
DSC(PCR[8
:9]) = 0b01
—
20
D
DSC(PCR[8
:9]) = 0b10
—
30
D
DSC(PCR[8
:9]) = 0b11
—
50
pF
CIN
CC
D
Input capacitance
(digital pins)
—
—
7
pF
CIN_A
CC
D
Input capacitance
(analog pins)
—
—
10
pF
CIN_M
CC
D
Input capacitance
(digital and analog
pins19)
—
—
12
pF
RPUPD200K
SR
P
Weak Pull-Up/Down
Resistance20, 200 k
Option
—
130
—
280
k
RPUPD100K
SR
P
Weak Pull-Up/Down
Resistance20, 100 k
Option
—
65
—
140
k
RPUPD5K
SR
C
Weak Pull-Up/Down
Resistance20,
5 k Option
5 V ± 5%
supply
1.4
—
7.5
k
RPUPDMTCH
CC
C
Pull-up/Down
Resistance matching
ratios (100K/200K)
Pull-up and
pull-down
resistances
both
enabled and
settings are
equal.
–2.5
—
2.5
%
TA (TL to
TH)
SR
— Operating
temperature range ambient (packaged)
—
–40.0
125.0
C
—
SR
— Slew rate on power
supply pins
—
—
25
V/ms
1
These specifications apply when VRC33 is supplied externally, after disabling the internal regulator (VDDREG = 0).
ADC is functional with 4 V  VDDA  4.75 V but with derated accuracy. This means the ADC will continue to function
at full speed with no undesirable behavior, but the accuracy will be degraded.
3
The VDDF supply is connected to VDD in the package substrate. This specification applies to calibration package
devices only.
2
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
83
4
VFLASH is only available in the calibration package.
Power supply for multi-voltage pads cannot be below 4.5 V when in low-swing mode.
6
The slew rate (SRC) setting must be 0b11 when in low-swing mode.
7
While in low-swing mode there are no restrictions in transitioning to high-swing mode.
8 Pin in low-swing mode can accept a 5 V input.
9
All VOL/VOH values 100% tested with ± 2 mA load except where noted.
10
Bypass mode, system clock at 1 MHz (using system clock divider), PLL shut down, CPU running simple executive
code, 4 x ADC conversion every 10 ms, 2 x PWM channels 1 kHz, all other modules stopped.
11
Bypass mode, system clock at 1 MHz (using system clock divider), CPU stopped, PIT running, all other modules
stopped.
12
This current will be consumed for external regulation and internal regulation, when 3.3V regulator is switched off by
shadow flash
13
If 1.2V and 3.3V internal regulators are on,then iddreg=70mA
If supply is external that is 3.3V internal regulator is off, then iddreg=15mA
14
Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a
particular I/O segment, and the voltage of the I/O segment. See Table 22 for values to calculate power dissipation for
specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions
for each pin on the segment.
15 Absolute value of current, measured at V and V .
IL
IH
16 Weak pull up/down inactive. Measured at V
=
DDE 3.6 V and VDDEH = 5.25 V. Applies to fast, slow, and medium pads.
17 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half
for each 8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to analog pads.
18 Applies to CLKOUT, external bus pins, and Nexus pins.
19 Applies to the FCK, SDI, SDO, and SDS pins.
20 This programmable option applies only to eQADC differential input channels and is used for biasing and sensor
diagnostics.
5
MPC5644A Microcontroller Data Sheet, Rev. 7
84
Freescale Semiconductor
3.9
I/O pad current specifications
The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption
is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 22 based on
the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load
parameters that fall outside the values given in Table 22.
Table 22. I/O pad average IDDE specifications1
Pad
Type
Slow
Medium
Fast
MultiV
(High
Swing
Mode)
MultiV
(Low
Swing
Mode)
C
Period
(ns)
Load2
(pF)
VDDE
(V)
Drive/Slew
Rate Select
IDDE Avg
(mA)3
IDDE
RMS
(mA)
CC
D
37
50
5.5
11
9
—
CC
D
130
50
5.5
01
2.5
—
CC
D
650
50
5.5
00
0.5
—
CC
D
840
200
5.5
00
1.5
—
CC
D
24
50
5.5
11
14
—
CC
D
62
50
5.5
01
5.3
—
CC
D
317
50
5.5
00
1.1
—
CC
D
425
200
5.5
00
3
—
CC
D
10
50
3.6
11
22.7
68.3
CC
D
10
30
3.6
10
12.1
41.1
CC
D
10
20
3.6
01
8.3
27.7
CC
D
10
10
3.6
00
4.44
14.3
CC
D
10
50
1.98
11
12.5
31
CC
D
10
30
1.98
10
7.3
18.6
CC
D
10
20
1.98
01
5.42
12.6
CC
D
10
10
1.98
00
2.84
6.4
CC
D
20
50
5.5
11
9
—
CC
D
30
50
5.5
01
6.1
—
CC
D
117
50
5.5
00
2.3
—
CC
D
212
200
5.5
00
5.8
—
CC
D
30
30
5.5
11
3.4
—
Symbol
IDRV_SSR_HV
IDRV_MSR_HV
IDRV_FC
IDRV_MULTV_
HV
IDRV_MULTV_
HV
1
Numbers from simulations at best case process, 150 °C.
All loads are lumped.
3 Average current is for pad configured as output only.
2
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
85
3.9.1
I/O pad VRC33 current specifications
The power consumption of the VRC33 supply is dependent on the usage of the pins on all I/O segments. The power consumption
is the sum of all input and output pin VRC33 currents for all I/O segments. The output pin VRC33 current can be calculated from
Table 23 based on the voltage, frequency, and load on all fast pad pins. The input pin VRC33 current can be calculated from
Table 23 based on the voltage, frequency, and load on all medium-speed pads. Use linear scaling to calculate pin currents for
voltage, frequency, and load parameters that fall outside the values given in Table 23.
Table 23. I/O pad VRC33 average IDDE specifications1
Pad Type
Slow
Medium
MultiV3 (High
Swing Mode)
MultiV4 (Low
Swing Mode)
C
Period
(ns)
Load2
(pF)
Drive Select
IDD33 Avg
(µA)
IDD33 RMS
(µA)
CC
D
100
50
11
0.8
235.7
CC
D
200
50
01
0.04
87.4
CC
D
800
50
00
0.06
47.4
CC
D
800
200
00
0.009
47
CC
D
40
50
11
2.75
258
CC
D
100
50
01
0.11
76.5
CC
D
500
50
00
0.02
56.2
CC
D
500
200
00
0.01
56.2
CC
D
20
50
11
33.4
35.4
CC
D
30
50
01
33.4
34.8
CC
D
117
50
00
33.4
33.8
CC
D
212
200
00
33.4
33.7
CC
D
30
30
11
33.4
34.9
Symbol
IDRV_SSR_HV
IDRV_MSR_HV
IDRV_MULTV_HV
IDRV_MULTV_HV
1
These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.
All loads are lumped.
3 Average current is for pad configured as output only.
4 In low swing mode, multi-voltage pads must operate in highest slew rate setting.
2
MPC5644A Microcontroller Data Sheet, Rev. 7
86
Freescale Semiconductor
Table 24. VRC33 pad average DC current1
Pad
Type
Fast
1
C
Period
(ns)
Load2
(pF)
VRC33
(V)
VDDE
(V)
Drive
Select
IDD33 Avg
(µA)
IDD33 RMS
(µA)
CC
D
10
50
3.6
3.6
11
2.35
6.12
CC
D
10
30
3.6
3.6
10
1.75
4.3
CC
D
10
20
3.6
3.6
01
1.41
3.43
CC
D
10
10
3.6
3.6
00
1.06
2.9
CC
D
10
50
3.6
1.98
11
1.75
4.56
CC
D
10
30
3.6
1.98
10
1.32
3.44
CC
D
10
20
3.6
1.98
01
1.14
2.95
CC
D
10
10
3.6
1.98
00
0.95
2.62
Symbol
IDRV_FC
These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.
All loads are lumped.
2
3.9.2
LVDS pad specifications
LVDS pads are implemented to support the MSC (Microsecond Channel) protocol which is an enhanced feature of the DSPI
module. The LVDS pads are compliant with LVDS specifications and support data rates up to 50 MHz.
Table 25. DSPI LVDS pad specification
#
Characteristic
Symbol
C
Condition
Min.
Value
Typ.
Value
Max.
Value
Unit
Data Rate
4
Data Frequency
fLVDSCLK
CC
D
—
50
MHz
Driver Specs
5
Differential output voltage
VOD
CC
P
SRC=0b00
or 0b11
150
400
CC
P
SRC=0b01
90
320
CC
P
SRC=0b10
160
480
6
Common mode voltage
(LVDS), VOS
VOD
CC
P
7
Rise/Fall time
TR/TF
CC
D
8
Propagation delay (Low to
High)
TPLH
CC
D
9
Propagation delay (High to
Low)
TPHL
CC
D
10
Delay (H/L), sync Mode
tPDSYNC
CC
D
1.06
—
—
1.2
1.39
mV
V
2
ns
4
ns
4
ns
4
ns
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
87
Table 25. DSPI LVDS pad specification (continued)
11
Delay, Z to Normal
(High/Low)
TDZ
CC
D
—
12
Diff Skew Itphla-tplhbI or
Itplhb-tphlaI
TSKEW
CC
D
—
500
ns
0.5
ns
105

150
C
Termination
13
Trans. Line (differential Zo)
CC
D
14
Temperature
CC
D
3.10
—
95
100
–40
Oscillator and PLLMRFM electrical characteristics
Table 26. PLLMRFM electrical specifications
(VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH)
Value
Symbol
fref_crystal
fref_ext
C
CC
D
Parameter
Conditions
PLL reference frequency range1
C
Unit
min
max
Crystal
reference
4
40
External
reference
4
80
MHz
fpll_in
CC
P
Phase detector input frequency range
(after pre-divider)
—
4
16
MHz
fvco
CC
P
VCO frequency range
—
256
512
MHz
fsys
CC
C
On-chip PLL frequency2
—
16
150
MHz
fsys
CC
T
System frequency in bypass mode2
Crystal
reference
4
40
MHz
External
reference
0
80
—
—
1 / fsys
ns
Lower limit
1.6
3.7
MHz
Upper limit
24
56
P
tCYC
CC
D
D
System clock period
fLORL
fLORH
CC
fSCM
CC
P
Self-clocked mode frequency 4,5
—
1.2
72.25
MHz
CJITTER
CC
T
CLKOUT
period
jitter6,7,8,9
fSYS maximum
–5
5
% fCLKOUT
–6
6
ns
—
10
ms
D
T
tcst
Loss of reference frequency
window3
CC
T
Peak-to-peak (clock
edge to clock edge)
Long-term jitter
(avg. over 2 ms
interval)
Crystal start-up time 10, 11
—
MPC5644A Microcontroller Data Sheet, Rev. 7
88
Freescale Semiconductor
Table 26. PLLMRFM electrical specifications
(VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) (continued)
Value
Symbol
VIHEXT
C
CC
T
Parameter
EXTAL input high voltage
T
VILEXT
CC
T
EXTAL input low voltage
T
—
1
2
3
4
5
6
7
CC
T
XTAL load capacitance10
Conditions
Unit
min
max
Crystal Mode12
Vxtal
+ 0.4
—
External
Reference12, 13
VRC33
/2 +
0.4
VRC33
Crystal Mode12
—
Vxtal 0.4
External
Reference12, 13
0
VRC33
/2 0.4
4 MHz
5
30
8 MHz
5
26
12 MHz
5
23
16 MHz
5
19
20 MHz
5
16
40 MHz
5
8
V
V
pF
tlpll
CC
P
PLL lock time 10, 14
—
—
200
s
tdc
CC
T
Duty cycle of reference
—
40
60
%
fLCK
CC
T
Frequency LOCK range
—
–6
6
% fsys
fUL
CC
T
Frequency un-LOCK range
—
–18
18
% fsys
fCS
fDS
CC
D
Modulation Depth
Center spread
±0.25
±4.0
% fsys
Down Spread
–0.5
–8.0
fMOD
CC
—
100
D
D
Modulation frequency15
—
kHz
Considering operation with PLL not bypassed.
All internal registers retain data at 0 Hz.
“Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked
mode.
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside
the fLOR window.
fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in
enhanced mode.
This value is determined by the crystal manufacturer and board design.
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum
fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock
signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency
increase the CJITTER percentage for a given interval.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
89
8
Proper PC board layout procedures must be followed to achieve specifications.
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and
either fCS or fDS (depending on whether center spread or down spread modulation is enabled).
10
This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals specified for
this PLL, load capacitors should not exceed these limits.
11 Proper PC board layout procedures must be followed to achieve specifications.
12
This parameter is guaranteed by design rather than 100% tested.
13
VIHEXT cannot exceed VRC33 in external reference mode.
14
This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits
in the synthesizer control register (SYNCR).
15
Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.
9
3.11
Temperature sensor electrical characteristics
Table 27. Temperature sensor electrical characteristics
Value
Symbol
3.12
C
Parameter
—
CC
C Temperature
monitoring range
—
CC
C Sensitivity
—
CC
P Accuracy
Conditions
Unit
TJ = –40 to 150 °C
min
typical
max
–40
—
150
°C
—
6.3
—
mV/°C
–10
—
10
°C
eQADC electrical characteristics
Table 28. eQADC conversion specifications (operating)
Value
Symbol
1
C
Unit
Parameter
fADCLK
SR
—
ADC clock (ADCLK) frequency
CC
CC
D
Conversion cycles
time1
TSR
CC
C
Stop mode recovery
fADCLK
SR
—
ADC clock (ADCLK) frequency
min
max
2
16
MHz
2+13
128+14
ADCLK cycles
—
10
s
2
16
mV
Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to
the time that the ADC is ready to perform conversions.Delay from power up to full accuracy = 8 ms.
MPC5644A Microcontroller Data Sheet, Rev. 7
90
Freescale Semiconductor
Table 29. eQADC single ended conversion specifications (operating)
Value
Symbol
1
2
3
4
5
6
C
Parameter
Unit
min
max
OFFNC
CC
C
Offset error without calibration
0
160
Counts
OFFWC
CC
C
Offset error with calibration
–4
4
Counts
GAINNC
CC
C
Full scale gain error without calibration
–160
0
Counts
GAINWC
CC
C
Full scale gain error with calibration
–4
4
Counts
–3
3
mA
–4
4
Counts
6
Counts
Counts
1, 2, 3, 4
IINJ
CC
T
Disruptive input injection current
EINJ
CC
T
Incremental error due to injection current5,6
TUE8
CC
C
Total unadjusted error (TUE) at 8 MHz
–4
4
TUE16
CC
C
Total unadjusted error at 16 MHz
–8
8
Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog
inputs greater then VRH and 0x0 for values less then VRL. Other channels are not affected by non-disruptive
conditions.
Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions
within the limit do not affect device reliability or cause permanent damage.
Input must be current limited to the value specified. To determine the value of the required current-limiting
resistor, calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = – 0.3 V, then use
the larger of the calculated values.
Condition applies to two adjacent pins at injection limits.
Performance expected with production silicon.
All channels have same 10 k < Rs < 100 k; Channel under test has Rs=10 k; IINJ=IINJMAX,IINJMIN
Table 30. eQADC differential ended conversion specifications (operating)
Value
Symbol
C
Parameter
Unit
min
GAINVGA11
CC
–
CC
C
CC
C
CC
C
CC
C
max
Variable gain amplifier accuracy (gain=1)2
INL
DNL
8 MHz
ADC
–4
4
Counts
16 MHz
ADC
–8
8
Counts
8 MHz
ADC
–34
34
Counts
16 MHz
ADC
–34
34
Counts
3
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
91
Table 30. eQADC differential ended conversion specifications (operating) (continued)
Value
Symbol
C
Parameter
Unit
min
GAINVGA21
CC
–
CC
D
CC
D
CC
D
CC
D
CC
–
CC
D
CC
D
CC
D
CC
D
DIFFmax
CC
C
DIFFmax2
CC
C
DIFFmax4
CC
C
DIFFcmv
CC
C
GAINVGA41
max
Variable gain amplifier accuracy (gain=2)2
INL
DNL
8 MHz
ADC
–5
5
Counts
16 MHz
ADC
–8
8
Counts
8 MHz
ADC
–3
3
Counts
16 MHz
ADC
–3
3
Counts
8 MHz
ADC
–7
7
Counts
16 MHz
ADC
–8
8
Counts
8 MHz
ADC
–4
4
Counts
16 MHz
ADC
–4
4
Counts
—
(VRH - VRL)/2
V
—
(VRH - VRL)/4
V
—
(VRH - VRL)/8
V
Variable gain amplifier accuracy (gain=4)2
INL
DNL
Maximum
PREGAIN
differential voltage set to 1X
(DANx+ - DANx-) or
setting
(DANx- - DANx+)5
PREGAIN
set to 2X
setting
PREGAIN
set to 4X
setting
Differential input
Common mode
voltage (DANx- +
DANx+)/25
—
(VRH + VRL)/2 - 5% (VRH + VRL)/2 + 5%
V
1
Applies only to differential channels.
Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of 1, 2, or 4.
Settings are for differential input only. Tested at 1 gain. Values for other settings are guaranteed by as indicated.
3 At V
RH – VRL = 5.12 V, one LSB = 1.25 mV.
4
Guaranteed 10-bit mono tonicity.
5 Voltages between VRL and VRH will not cause damage to the pins. However, they may not be converted accurately if the
differential voltage is above the maximum differential voltage. In addition, conversion errors may occur if the common mode
voltage of the differential signal violates the Differential Input common mode voltage specification.
2
MPC5644A Microcontroller Data Sheet, Rev. 7
92
Freescale Semiconductor
3.13
Configuring SRAM wait states
Use the SWSC field in the ECSM_MUDCR register to specify an additional wait state for the device SRAM. By default, no
wait state is added.
Table 31. Cutoff frequency for additional SRAM wait state
1
1
SWSC Value
98
0
153
1
Max frequencies including 2% PLL FM.
Please see the device reference manual for details.
3.14
Platform flash controller electrical characteristics
Table 32. APC, RWSC, WWSC settings vs. frequency of operation1,2
Max. Flash Operating
Frequency (MHz)3
APC4
RWSC4
WWSC
20 MHz
0b000
0b000
0b11
61 MHz
0b001
0b001
0b11
90 MHz
0b010
0b010
0b11
123 MHz
0b011
0b011
0b11
153 MHz
0b100
0b100
0b11
1
APC, RWSC and WWSC are fields in the flash memory BIUCR register used to
specify wait states for address pipelining and read/write accesses. Illegal
combinations exist—all entries must be taken from the same row.
2 TBD: To Be Defined.
3 Max frequencies including 2% PLL FM.
4 APC must be equal to RWSC.
3.15
Flash memory electrical characteristics
Table 33. Flash program and erase specifications1
#
1
Symbol
Tdwprogram
CC
C
Parameter
P
Double Word (64 bits) Program Time
Min. Typical
Value Value
—
Initial
Max2
Max3
Unit
38
—
500
s
500
s
CC
P
Page Program Time
—
45
1604
3
T16kpperase CC
P
16 KB Block Pre-program and Erase
Time
—
270
1000
5000
ms
5
T64kpperase CC
P
64 KB Block Pre-program and Erase
Time
—
800
1800
5000
ms
2
Tpprogram
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
93
Table 33. Flash program and erase specifications1
3
4
5
6
Max3
Unit
1500
2600
7500
ms
—
3000
5200
15000
ms
100
—
—
—
s
C
Parameter
6
T128kpperase CC
P
128 KB Block Pre-program and Erase
Time
—
7
T256kpperase CC
P
256 KB Block Pre-program and Erase
Time
Program suspend request rate5
Tpsrt
9
2
Initial
Max2
Symbol
8
1
Min. Typical
Value Value
#
Tesrt
SR —
SR —
Erase suspend request rate
6
10
ms
o
Typical program and erase times assume nominal supply values and operation at 25 C. All times are subject to
change pending device characterization.
Initial factory condition: < 100 program/erase cycles, 25 oC, typical supply voltage, 80 MHz minimum system
frequency.
The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is
characterized but not guaranteed.
Page size is 128 bits (4 words).
Time between program suspend resume and the next program suspend request.
Time between erase suspend resume and the next erase suspend request.
Table 34. Flash module life
Value
Symbol
1
C
Parameter
Conditions
Unit
min
typ
P/E
CC
C
Number of program/erase
cycles per block for 16 KB,
48 KB, and 64 Kbyte
blocks over the operating
temperature range (TJ)
—
100,000
—
P/E
cycles
P/E
CC
C
Number of program/erase
cycles per block for
128 Kbyte and 256 Kbyte
blocks over the operating
temperature range (TJ)
—
1,000
100,000
P/E
cycles
Data
Retention
CC
C
Minimum data retention at
85 C average ambient
temperature1
Blocks with 0 – 1,000
P/E cycles
20
—
years
Blocks with 1,001 –
10,000 P/E cycles
10
—
years
Blocks with 10,001 –
100,000 P/E cycles
5
—
years
Ambient temperature averaged over duration of application, not to exceed product operating temperature range.
MPC5644A Microcontroller Data Sheet, Rev. 7
94
Freescale Semiconductor
3.16
AC specifications
3.16.1
Pad AC specifications
Table 35. Pad AC specifications (5.0 V)1
Name
Medium5,6,7
C
CC
D
Output Delay (ns)2,3
Low-to-High /
High-to-Low
Rise/Fall Edge (ns)3,4
Min
Max
Min
Max
4.6/3.7
12/12
2.2/2.2
7/7
Drive Load
(pF)
MSB,LSB
50
CC
D
12/13
28/34
5.6/6
15/15
50
01
CC
D
69/71
152/165
34/35
74/74
50
00
CC
D
7.3/5.7
19/18
4.4/4.3
14/14
50
118
109
N/A
11
MultiV
(High Swing Mode)
MultiV
(Low Swing Mode)
118
109
N/A
Slow7,10
SRC/DSC
CC
D
26/27
61/69
13/13
34/34
50
01
CC
D
137/142
320/330
72/74
164/164
50
00
CC
D
4.1/3.6
10.3/8.9
3.28/2.98
8/8
50
118
109
N/A
CC
D
8.38/6.11
16/12.9
5.48/4.81
11/11
50
01
CC
D
61.7/10.4
92.2/24.3
42.0/12.2
63/63
50
00
CC
D
2.31/2.34
7.62/6.33
1.26/1.67
6.5/4.4
30
118
±1.5/1.5
0.5
N/A
5000/5000
50
N/A
Fast12
N/A
pad_i_hv13
CC
D
0.5/0.5
1.9/1.9
pull_hv
CC
D
NA
6000
0.3/0.3
1
These are worst case values that are estimated from simulation and not tested. The values in the table are
simulated at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH
2 This parameter is supplied for reference and is not guaranteed by design and not tested.
3 Delay and rise/fall are measured to 20% or 80% of the respective signal.
4 This parameter is guaranteed by characterization before qualification rather than 100% tested.
5 In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output
pads
6 Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.
7
Output delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect
to system clock.
8 Can be used on the tester.
9 This drive select value is not supported. If selected, it will be approximately equal to 11.
10 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.
11
Selectable high/low swing IO pad with selectable slew in high swing mode only.
12 Fast pads are 3.3 V pads.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
95
13
Stand alone input buffer. Also has weak pull-up/pull-down.
Table 36. Pad AC specifications (VDDE = 3.3 V)1
Pad Type
Medium5,6,7
C
Output Delay (ns)2,3
Low-to-High /
High-to-Low
Rise/Fall Edge (ns)3,4
Min
Max
Min
Max
Drive Load
(pF)
MSB,LSB
118
CC
D
5.8/4.4
18/17
2.7/2.1
10/10
50
CC
D
16/13
46/49
11.2/8.6
34/34
200
109
N/A
7,10
Slow
CC
D
14/16
37/45
6.5/6.7
19/19
50
01
CC
D
27/27
69/82
15/13
43/43
200
CC
D
83/86
200/210
38/38
86/86
50
CC
D
113/109
270/285
53/46
120/120
200
CC
D
9.2/6.9
27/28
5.5/4.1
20/20
50
CC
D
30/23
81/87
21/16
63/63
200
00
11
109
N/A
MultiV7,11
(High Swing Mode)
CC
D
31/31
80/90
15.4/15.4
42/42
50
CC
D
58/52
144/155
32/26
82/85
200
CC
D
162/168
415/415
80/82
190/190
50
CC
D
216/205
533/540
106/95
250/250
200
CC
D
3.7/3.1
10/10
30
CC
D
46/49
37/37
200
01
00
118
109
N/A
CC
D
32
15/15
50
CC
D
72
46/46
200
CC
D
210
100/100
50
CC
D
295
134/134
200
MultiV
(Low Swing Mode)
Fast
1
SRC/DSC
01
00
Not a valid operational mode
CC
D
2.5/2.5
1.2/1.2
10
00
CC
D
2.5/2.5
1.2/1.2
20
01
CC
D
2.5/2.5
1.2/1.2
30
10
CC
D
2.5/2.5
1.2/1.2
50
118
pad_i_hv12
CC
D
0.5/0.5
3/3
±1.5/1.5
0.5
N/A
pull_hv
CC
D
NA
6000
5000/5000
50
N/A
0.4/0.4
These are worst case values that are estimated from simulation and not tested. The values in the table are
simulated at VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V, VDDEH = 3 V to 3.6 V, TA = TL to TH.
MPC5644A Microcontroller Data Sheet, Rev. 7
96
Freescale Semiconductor
2
This parameter is supplied for reference and is not guaranteed by design and not tested.
Delay and rise/fall are measured to 20% or 80% of the respective signal.
4
This parameter is guaranteed by characterization before qualification rather than 100% tested.
5
In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output
pads
6
Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.
7 Output delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect
to system clock.
8
Can be used on the tester.
9
This drive select value is not supported. If selected, it will be approximately equal to 11.
10
Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.
11
Selectable high/low swing IO pad with selectable slew in high swing mode only.
12
Stand alone input buffer. Also has weak pull-up/pull-down.
3
VDDE/2
Pad
Data Input
Rising
Edge
Output
Delay
Falling
Edge
Output
Delay
Pad
Output
VOH
VOL
Figure 9. Pad output delay
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
97
3.17
AC timing
3.17.1
Reset and configuration pin timing
Table 37. Reset and Configuration Pin Timing1
#
1
2
Characteristic
Symbol
Min
Max
Unit
1
RESET Pulse Width2
tRPW
10
—
tcyc
2
RESET Glitch Detect Pulse Width
tGPW
2
—
tcyc
3
PLLREF, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid
tRCSU
10
—
tcyc
4
PLLREF, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid
tRCH
0
—
tcyc
Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.14 V to 1.32 V, TA = TL to TH.
RESET pulse width is measured from 50% of the falling edge to 50% of the rising edge.
2
RESET
1
RSTOUT
3
BOOTCFG
WKPCFG
4
Figure 10. Reset and Configuration Pin Timing
MPC5644A Microcontroller Data Sheet, Rev. 7
98
Freescale Semiconductor
3.17.2
IEEE 1149.1 interface timing
Table 38. JTAG pin AC electrical characteristics1
#
Symbol
C
Characteristic
Min.
Value
Max.
Value
Unit
1
tJCYC
CC
D
TCK Cycle Time
100
—
ns
2
tJDC
CC
D
TCK Clock Pulse Width
40
60
ns
3
tTCKRISE
CC
D
TCK Rise and Fall Times (40% - 70%)
—
3
ns
4
tTMSS, tTDIS
CC
D
TMS, TDI Data Setup Time
5
—
ns
5
tTMSH, tTDIH
CC
D
TMS, TDI Data Hold Time
25
—
ns
6
tTDOV
CC
D
TCK Low to TDO Data Valid
—
222
ns
7
tTDOI
CC
D
TCK Low to TDO Data Invalid
0
—
ns
8
tTDOHZ
CC
D
TCK Low to TDO High Impedance
—
22
ns
9
tJCMPPW
CC
D
JCOMP Assertion Time
100
—
ns
10
tJCMPS
CC
D
JCOMP Setup Time to TCK Low
40
—
ns
11
tBSDV
CC
D
TCK Falling Edge to Output Valid
—
50
ns
12
tBSDVZ
CC
D
TCK Falling Edge to Output Valid out
of High Impedance
—
50
ns
13
tBSDHZ
CC
D
TCK Falling Edge to Output High
Impedance
—
50
ns
14
tBSDST
CC
D
Boundary Scan Input Valid to TCK
Rising Edge
253
—
ns
15
tBSDHT
CC
D
TCK Rising Edge to Boundary Scan
Input Invalid
253
—
ns
1
JTAG timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to
Low-Swing mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10, SRC = 0b11. These specifications apply to JTAG
boundary scan only. See Table 39 for functional specifications.
2 Pad delay is 8–10 ns. Remainder includes TCK pad delay, clock tree delay logic delay and TDO output pad delay.
3 For 20 MHz TCK.
NOTE
The Nexus/JTAG Read/Write Access Control/Status Register (RWCS) write (to begin a
read access) or the write to the Read/Write Access Data Register (RWD) (to begin a write
access) does not actually begin its action until 1 JTAG clock (TCK) after leaving the JTAG
Update-DR state. This prevents the access from being performed and therefore will not
signal its completion via the READY (RDY) output unless the JTAG controller receives an
additional TCK. In addition, EVTI is not latched into the device unless there are clock
transitions on TCK.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
99
The tool/debugger must provide at least one TCK clock for the EVTI signal to be
recognized by the MCU. When using the RDY signal to indicate the end of a Nexus
read/write access, ensure that TCK continues to run for at least 1 TCK after leaving the
Update-DR state. This can be just a TCK with TMS low while in the Run-Test/Idle state or
by continuing with the next Nexus/JTAG command. Expect the affect of EVTI and RDY
to be delayed by edges of TCK. Note: RDY is not available in all packages of all devices.
TCK
2
3
2
1
3
Figure 11. JTAG test clock input timing
MPC5644A Microcontroller Data Sheet, Rev. 7
100
Freescale Semiconductor
TCK
4
5
TMS, TDI
6
8
7
TDO
Figure 12. JTAG test access port timing
TCK
10
JCOMP
9
Figure 13. JTAG JCOMP timing
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
101
TCK
11
13
Output
Signals
12
Output
Signals
14
15
Input
Signals
Figure 14. JTAG boundary scan timing
3.17.3
Nexus timing
Table 39. Nexus debug port timing1
#
Symbol
C
Characteristic
Min. Value Max. Value
Unit
1
tMCYC
CC
D
MCKO Cycle Time
22,3
1a
tMCYC
CC
D
Absolute Minimum MCKO Cycle Time
254
2
tMDC
CC
D
MCKO Duty Cycle
40
60
%
3
tMDOV
CC
D
MCKO Low to MDO Data Valid5
- 0.1
0.35
tMCYC
4
tMSEOV
CC
D
MCKO Low to MSEO Data Valid5
- 0.1
0.35
tMCYC
6
tEVTOV
CC
D
MCKO Low to EVTO Data Valid5
- 0.1
0.35
tMCYC
7
tEVTIPW
CC
D
EVTI Pulse Width
4.0
—
tTCYC
8
tEVTOPW
CC
D
EVTO Pulse Width
1
—
tMCYC
9
tTCYC
CC
D
TCK Cycle Time
46,7
—
tCYC
9a
tTCYC
CC
D
Absolute Minimum TCK Cycle Time
1008
—
ns
10
tTDC
CC
D
TCK Duty Cycle
40
60
%
8
tCYC
—
ns
MPC5644A Microcontroller Data Sheet, Rev. 7
102
Freescale Semiconductor
Table 39. Nexus debug port timing1 (continued)
#
1
2
3
4
5
6
7
8
Symbol
C
Characteristic
Min. Value Max. Value
Unit
11
tNTDIS
CC
D
TDI Data Setup Time
5
—
ns
12
tNTDIH
CC
D
TDI Data Hold Time
25
—
ns
13
tNTMSS
CC
D
TMS Data Setup Time
5
—
ns
14
tNTMSH
CC
D
TMS Data Hold Time
25
—
ns
15
—
CC
D
TDO propagation delay from falling
edge of TCK
—
19.5
ns
16
—
CC
D
TDO hold time with respect to TCK
falling edge (minimum TDO
propagation delay)
5.25
—
ns
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing
specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to Low-Swing
mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10.
Achieving the absolute minimum MCKO cycle time may require setting the MCKO divider to more than its minimum
setting (NPC_PCR[MCKO_DIV] depending on the actual system frequency being used.
This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the
Absolute minimum MCKO period specification.
This may require setting the MCO divider to more than its minimum setting (NPC_PCR[MCKO_DIV]) depending on
the actual system frequency being used.
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that
is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system
frequency being used.
This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the
Absolute minimum TCK period specification.
This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability
of the design (system frequency / 4) depending on the actual system frequency being used.
1
2
MCKO
3
4
6
MDO
MSEO
EVTO
Output Data Valid
Figure 15. Nexus output timing
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
103
TCK
EVTI
EVTO
9
7
7
8
8
Figure 16. Nexus event trigger and test clock timings
TCK
11
13
12
14
TMS, TDI
15
16
TDO
Figure 17. Nexus TDI, TMS, TDO timing
MPC5644A Microcontroller Data Sheet, Rev. 7
104
Freescale Semiconductor
N
Table 40. Nexus debug port operating frequency
Nexus Pin Usage
Package Nexus Width Nexus Routing
MDO[0:3]
MDO[4:11]
CAL_MDO[4:1
1]
176 LQFP Reduced port Route to MDO2 Nexus Data Out
GPIO
208 BGA mode1
[0:3]
324 BGA
Full port
Route to MDO2 Nexus Data Out Nexus Data Out
mode4
[0:3]
[4:11]
496 CSP
Reduced port Route to MDO2 Nexus Data Out
mode1
[0:3]
Full port
mode4
1
2
3
4
5
6
7
GPIO
40 MHz3
GPIO
40 MHz5,6
GPIO
40 MHz3
GPIO
40 MHz5,6
Cal Nexus Data
Out [4:11]
40 MHz3
GPIO
Route to MDO2 Nexus Data Out Nexus Data Out
[0:3]
[4:11]
Route to
CAL_MDO7
Cal Nexus Data
Out [0:3]
GPIO
Max. Operating
Frequency
NPC_PCR[FPM] = 0
NPC_PCR[NEXCFG] = 0
The Nexus AUX port runs up to 40 MHz. Set NPC_PCR[MCKO_DIV] to divide-by-two if the system frequency is
greater than 40 MHz.
NPC_PCR[FPM] = 1
Set the NPC_PCR[MCKO_DIV] to divide by two if the system frequency is between 40 MHz and 80 MHz inclusive.
Set the NPC_PCR[MCKO_DIV] to divide by four if the system frequency is greater than 80 MHz.
Pad restrictions limit the Maximum Operation Frequency in these configurations
NPC_PCR[NEXCFG] = 1
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
105
3.17.4
External Bus Interface (EBI) and calibration bus interface timing
Table 41. External Bus Interface maximum operating frequency
Port
Width
Multiplexed
Mode
ADDR[12:15]
Pin Usage
ADDR[16:31]
Pin Usage
DATA[0:15]
Pin Usage
Max. Operating
Frequency
16-bit
Yes
ADDR[12:15]
GPIO
ADDR[16:31]
DATA[0:15]
66 MHz1
16-bit
No
ADDR[12:15]
ADDR[16:31]
DATA[0:15]
33 MHz2,3
32-bit
Yes
ADDR[12:15]
ADDR[16:31]
DATA[16:31]
DATA[0:15]
33 MHz2,3
1
Set SIU_ECCR[EBDF] to divide by two or divide by four if the system frequency is greater than 66 MHz.
System Frequency must be 132 MHz and SIU_ECCR[EBDF] set to divide by four.
3
Pad restrictions limit the maximum operating frequency.
2
Table 42. Calibration bus interface maximum operating frequency
1
Port
Width
Multiplexed
Mode
CAL_ADDR[12:15]
Pin Usage
CAL_ADDR[16:30]
Pin Usage
CAL_DATA[0:15]
Pin Usage
Max. Operating
Frequency
16-bit
Yes
GPIO
GPIO
CAL_ADDR[12:30]
CAL_DATA[0:15]
66 MHz1
16-bit
No
CAL_ADDR[12:15]
CAL_ADDR[16:30]
CAL_DATA[0:15]
66 MHz1
32-bit
Yes
CAL_WE[2:3]
CAL_DATA[31]
CAL_ADDR[16:30]
CAL_DATA[16:30]
CAL_ADDR[0:15]
CAL_DATA[0:15]
66 MHz1
Set SIU_ECCR[EBDF] to divide by two or divide by four if the system frequency is greater than 66 MHz
Table 43. External bus interface (EBI) and calibration bus operation timing 1
#
Symbol
C
1
TC
CC
P
2
tCDC
3
tCRT
Characteristic
66 MHz (ext. bus)2
Unit
Min
Max
CLKOUT Period
15.2
—
ns
CC
D CLKOUT duty cycle
45%
55%
TC
CC
D CLKOUT rise time
—
3
ns
ns
ns
4
tCFT
CC
D CLKOUT fall time
—
3
5
tCOH
CC
D CLKOUT Posedge to Output Signal
Invalid or High Z(Hold Time)
1.3
—
•
•
•
•
•
•
•
Notes
Signals are
measured at 50%
VDDE.
ADDR[8:31]
CS[0:3]
DATA[0:31]
OE
RD_WR
TS
WE[0:3]/BE[0:3]
MPC5644A Microcontroller Data Sheet, Rev. 7
106
Freescale Semiconductor
Table 43. External bus interface (EBI) and calibration bus operation timing 1 (continued)
#
Symbol
C
6
tCOV
D CLKOUT Posedge to Output Signal Valid
(Output Delay)
CC
Characteristic
66 MHz (ext. bus)2
Unit
Min
Max
—
9
ns
6.0
—
ns
1.0
—
ns
6.5
—
ns
1.55
—
ns
Notes
ADDR[8:31]
CS[0:3]
DATA[0:31]
OE
RD_WR
TS
WE[0:3]/BE[0:3]
7
tCIS
CC
D Input Signal Valid to CLKOUT Posedge
(Setup Time)
DATA[0:31]
8
tCIH
CC
D CLKOUT Posedge to Input Signal Invalid
(Hold Time)
9
tAPW
CC
D ALE Pulse Width4
DATA[0:31]
10
1
2
3
4
5
tAAI
CC
D ALE Negated to Address
Invalid4
External Bus and Calibration bus timing specified at fSYS = 150 MHz and 100 MHz, VDD = 1.14 V to 1.32 V,
VDDE = 3 V to 3.6 V (unless stated otherwise), TA = TL to TH, and CL = 30 pF with DSC = 0b10.
The external bus is limited to half the speed of the internal bus. The maximum external bus frequency is 66 MHz
for 16-bit muxed mode and 33 MHz for non-muxed mode. For The EBI division factor should be set accordingly
based on the internal frequency being used.
Refer to Fast Pad timing in Table 35 and Table 36 (different values for 1.8 V vs. 3.3 V).
Measured at 50% of ALE.
When CAL_TS pad is used for CAL_ALE function the hold time is 1 ns instead of 1.5 ns.
Voh_f
VDDE/2
CLKOUT
Vol_f
2
3
2
4
1
Figure 18. CLKOUT timing
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
107
VDDE/2
CLKOUT
6
5
VDDE/2
5
OUTPUT
BUS
VDDE/2
6
5
5
OUTPUT
SIGNAL
VDDE/2
6
OUTPUT
SIGNAL
VDDE/2
Figure 19. Synchronous output timing
MPC5644A Microcontroller Data Sheet, Rev. 7
108
Freescale Semiconductor
CLKOUT
VDDE/2
7
8
INPUT
BUS
VDDE/2
7
8
INPUT
SIGNAL
VDDE/2
Figure 20. Synchronous input timing
System Clock
CLKOUT
ALE
TS
A/D
DATA
ADDR
9
10
Figure 21. ALE signal timing
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
109
3.17.5
External interrupt timing (IRQ pin)
Table 44. External interrupt timing1
#
Characteristic
Symbol
Min
Max
Unit
1
IRQ Pulse Width Low
tIPWL
3
—
tcyc
2
IRQ Pulse Width High
tIPWH
3
—
tcyc
tICYC
6
—
tcyc
3
2
IRQ Edge to Edge Time
1
IRQ timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL
to TH.
2 Applies when IRQ pins are configured for rising edge or falling edge events, but not both.
IRQ
2
1
3
Figure 22. External Interrupt Timing
3.17.6
eTPU timing
Table 45. eTPU timing1
#
1
2
Characteristic
eTPU Input Channel Pulse Width
eTPU Output Channel Pulse Width
Symbol
Min
Max
Unit
tICPW
4
—
tcyc
tOCPW
22
—
tcyc
1
eTPU timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V,
TA = TL to TH, and CL = 200 pF with SRC = 0b00.
2 This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include
the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).
MPC5644A Microcontroller Data Sheet, Rev. 7
110
Freescale Semiconductor
3.17.7
eMIOS timing
Table 46. eMIOS timing1
#
1
Symbol
C
Characteristic
Min.
Value
Max.
Value
Unit
1
tMIPW
CC
D
eMIOS Input Pulse Width
4
—
tCYC
2
tMOPW
CC
D
eMIOS Output Pulse Width
1
—
tCYC
eMIOS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH, and CL =
50 pF with SRC = 0b00.
3.17.8
DSPI timing
DSPI channel frequency support for the MPC5644A MCU is shown in Table 47. Timing specifications are in Table 48.
Table 47. DSPI channel frequency support
System Clock
(MHz)
DSPI Use
Mode
Max. Usable
Frequency
(MHz)
150
LVDS
37.5
Use sysclock /4 divide ratio.
Non-LVDS
18.75
Use sysclock /8 divide ratio.
LVDS
40
Use sysclock /3 divide ratio. Gives 33/66 duty cycle. Use DSPI
configuration DBR=0b1 (double baud rate), BR=0b0000 (scaler
value 2) and PBR=0b01 (prescaler value 3).
Non-LVDS
20
Use sysclock /6 divide ratio.
LVDS
40
Use sysclock /2 divide ratio.
Non-LVDS
20
Use sysclock /4 divide ratio.
120
80
Notes
Table 48. DSPI timing1,2
#
Symbol
C
Characteristic
Condition
Min.
Max.
Unit
1
tSCK
CC
D
SCK Cycle Time3,4,5
24.4 ns
2.9 ms
—
2
tCSC
CC
D
PCS to SCK Delay6
227
—
ns
3
tASC
CC
D
After SCK Delay8
219
—
ns
4
tSDC
CC
D
SCK Duty Cycle
(½tSC)–2
(½tSC)+2
ns
5
tA
CC
D
Slave Access Time
(SS active to SOUT driven)
—
25
ns
6
tDIS
CC
D
Slave SOUT Disable Time
(SS inactive to SOUT High-Z or
invalid)
—
25
ns
7
tPCSC
CC
D
PCSx to PCSS time
410
—
ns
8
tPASC
CC
D
PCSS to PCSx time
511
—
ns
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
111
Table 48. DSPI timing1,2 (continued)
#
9
Symbol
tSUI
C
Characteristic
CC
Condition
Master (MTFE = 0)
D
11
tSUO
20
—
ns
VDDEH=3–3.6 V
23.5
—
2
—
D
Master (MTFE = 1, CPHA = 0)12
8
—
D
Master (MTFE = 1, CPHA = 1)
VDDEH=4.5–5.5 V
20
—
VDDEH=3–3.6 V
23.5
—
CC
Data Hold Time for Inputs
D
Master (MTFE = 0)
-4
—
D
Slave
7
—
D
Master (MTFE = 1, CPHA = 0)12
21
—
D
Master (MTFE = 1, CPHA = 1)
-4
—
VDDEH=4.5–5.5 V
—
5
VDDEH=3–3.6 V
—
6.3
VDDEH=4.5–5.5 V
—
25
VDDEH=3–3.6 V
—
27
—
21
VDDEH=4.5–5.5 V
—
5
VDDEH=3–3.6 V
—
6.3
VDDEH=4.5–5.5 V
–5
—
VDDEH=3 –3.6 V
–7.5
—
5.5
—
3
—
VDDEH=4.5–5.5 V
–5
—
VDDEH=3–3.6 V
–7.5
—
CC
ns
Data Valid (after SCK edge)
Master (MTFE = 0)
D
D
Slave
D
D
Master (MTFE = 1, CPHA = 0)
D
Master (MTFE = 1, CPHA = 1)
D
tHO
VDDEH=4.5–5.5 V
Slave
D
12
Unit
D
D
tHI
Max.
Data Setup Time for Inputs
D
10
Min.
CC
ns
Data Hold Time for Outputs
D
Master (MTFE = 0)
D
D
Slave
D
Master (MTFE = 1, CPHA = 0)
D
Master (MTFE = 1, CPHA = 1)
D
ns
1
All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on medium-speed pads. DSPI signals using
slow pads have an additional delay based on the slew rate. DSPI timing is specified at VDDEH = 3 to 3.6 V and
VDDEH = 4.5 to 5.5 V, TA = TL to TH, and CL = 50 pF with SRC = 0b11.
2
Data is verified at fSYS = 102 MHz and 153 MHz (100 MHz and 150 MHz + 2% frequency modulation).
3 The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are
calculated based on two MPC5644A devices communicating over a DSPI link.
MPC5644A Microcontroller Data Sheet, Rev. 7
112
Freescale Semiconductor
4
The actual minimum SCK cycle time is limited by pad performance.
For DSPI channels using LVDS output operation, up to 40 MHz SCK cycle time is supported. For non-LVDS output,
maximum SCK frequency is 20 MHz. Appropriate clock division must be applied.
6
The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK].
7
Timing met when pcssck = 3(01), and cssck =2 (0000).
8
The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC].
9 Timing met when ASC = 2 (0000), and PASC = 3 (01).
10
Timing met when pcssck = 3.
11
Timing met when ASC = 3.
12
This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10.
5
2
3
PCSx
1
4
SCK Output
(CPOL=0)
4
SCK Output
(CPOL=1)
9
10
First Data
SIN
Data
12
SOUT
First Data
Last Data
11
Data
Last Data
Note: Refer to Table 48 for the numbers.
Figure 23. DSPI classic SPI timing — master, CPHA = 0
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
113
PCSx
SCK Output
(CPOL=0)
10
SCK Output
(CPOL=1)
9
Data
First Data
SIN
Last Data
12
SOUT
First Data
11
Data
Last Data
Note: Refer to Table 48 for the numbers.
Figure 24. DSPI classic SPI timing — master, CPHA = 1
3
2
SS
1
4
SCK Input
(CPOL=0)
4
SCK Input
(CPOL=1)
5
SOUT
First Data
9
SIN
12
11
Data
Last Data
Data
Last Data
6
10
First Data
Note: Refer to Table 48 for the numbers.
Figure 25. DSPI classic SPI timing — slave, CPHA = 0
MPC5644A Microcontroller Data Sheet, Rev. 7
114
Freescale Semiconductor
SS
SCK Input
(CPOL=0)
SCK Input
(CPOL=1)
11
5
12
SOUT
First Data
9
SIN
Data
Last Data
Data
Last Data
6
10
First Data
Note: Refer to Table 48 for the numbers.
Figure 26. DSPI classic SPI timing — slave, CPHA = 1
3
PCSx
4
1
2
SCK Output
(CPOL=0)
4
SCK Output
(CPOL=1)
9
SIN
First Data
10
12
SOUT
First Data
Last Data
Data
11
Data
Last Data
Note: Refer to Table 48 for the numbers.
Figure 27. DSPI modified transfer format timing — master, CPHA = 0
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
115
PCSx
SCK Output
(CPOL=0)
SCK Output
(CPOL=1)
10
9
SIN
First Data
Last Data
Data
12
First Data
SOUT
11
Last Data
Data
Note: Refer to Table 48 for the numbers.
Figure 28. DSPI modified transfer format timing — master, CPHA = 1
3
2
SS
1
SCK Input
(CPOL=0)
4
4
SCK Input
(CPOL=1)
SOUT
First Data
Data
First Data
6
Last Data
10
9
SIN
12
11
5
Data
Last Data
Note: Refer to Table 48 for the numbers.
Figure 29. DSPI modified transfer format timing — slave, CPHA =0
MPC5644A Microcontroller Data Sheet, Rev. 7
116
Freescale Semiconductor
SS
SCK Input
(CPOL=0)
SCK Input
(CPOL=1)
11
5
12
First Data
SOUT
9
Last Data
Data
Last Data
10
First Data
SIN
Data
6
Note: Refer to Table 48 for the numbers.
Figure 30. DSPI modified transfer format timing — slave, CPHA =1
7
8
PCSS
PCSx
Note: Refer to Table 48 for the numbers.
Figure 31. DSPI PCS strobe (PCSS) timing
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
117
3.17.9
eQADC SSI timing
Table 49. eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)1
CLOAD = 25 pF on all outputs. Pad drive strength set to maximum.
#
Symbol
C
Rating
Min
Typ
Max
Unit
1/17
12
fSYS_CLK
2
17
tSYS_CLK
1
fFCK
CC
D
FCK Frequency 2, 3
1
tFCK
CC
D
FCK Period (tFCK = 1/ fFCK)
2
tFCKHT
CC
D
Clock (FCK) High Time
tSYS_CLK  6.5
9* tSYS_CLK 
6.5
ns
3
tFCKLT
CC
D
Clock (FCK) Low Time
tSYS_CLK  6.5
8* tSYS_CLK 
6.5
ns
4
tSDS_LL CC
D
SDS Lead/Lag Time
-7.5
7.5
ns
5
tSDO_LL CC
D
SDO Lead/Lag Time
-7.5
7.5
ns
6
tDVFE
CC
D
Data Valid from FCK Falling Edge
(tFCKLT+tSDO_LL)
1
ns
7
tEQ_SU
CC
D
eQADC Data Setup Time (Inputs)
22
ns
8
tEQ_HO CC
D
eQADC Data Hold Time (Inputs)
1
ns
1
SS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH, and CL = 50 pF with
SRC = 0b00.
2 Maximum operating frequency is highly dependent on track delays, master pad delays, and slave pad delays.
3 FCK duty is not 50% when it is generated through the division of the system clock by an odd number.
1
2
3
FCK
4
4
SDS
5
SDO
25th
6
1st (MSB)
5
2nd
26th
External Device Data Sample at
FCK Falling Edge
8
7
SDI
1st (MSB)
2nd
25th
26th
eQADC Data Sample at
FCK Rising Edge
Figure 32. eQADC SSI timing
MPC5644A Microcontroller Data Sheet, Rev. 7
118
Freescale Semiconductor
3.17.10 FlexCAN system clock source
Table 50. FlexCAN engine system clock divider threshold
#
Symbol
Characteristic
1
FCAN_TH
FlexCAN engine system clock threshold
Value
Unit
100
MHz
Table 51. FlexCAN engine system clock divider
System Frequency
Required SIU_SYSDIV[CAN_SRC] Value
<= FCAN_TH
01,2
> FCAN_TH
12,3
1
Divides system clock source for FlexCAN engine by 1.
System clock is only selected for FlexCAN when CAN_CR[CLK_SRC] = 1.
3 Divides system clock source for FlexCAN engine by 2.
2
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
119
4
Packages
4.1
Package mechanical data
4.1.1
176 LQFP
MPC5644A Microcontroller Data Sheet, Rev. 7
120
Freescale Semiconductor
Figure 33. 176 LQFP package mechanical drawing (part 1)
Figure 34. 176 LQFP package mechanical drawing (part 2)
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
121
Figure 35. 176 LQFP package mechanical drawing (part 3)
MPC5644A Microcontroller Data Sheet, Rev. 7
122
Freescale Semiconductor
4.1.2
208 MAPBGA
Figure 36. 208 MAPBGA package mechanical drawing (part 1)
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
123
Figure 37. 208 MAPBGA package mechanical drawing (part 2)
MPC5644A Microcontroller Data Sheet, Rev. 7
124
Freescale Semiconductor
4.1.3
324 TEPBGA
Figure 38. 324 BGA package mechanical drawing (part 1)
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
125
Figure 39. 324 BGA package mechanical drawing (part 2)
MPC5644A Microcontroller Data Sheet, Rev. 7
126
Freescale Semiconductor
5
Ordering information
Table 52 shows the orderable part numbers for the MPC5644A series.
Table 52. Orderable part number summary
Flash/SRAM
Package
Speed
(MHz)
SPC5643AF0MLU3
3 MB/192 KB
176LQFP (Pb free)
80
SPC5643AF0MMG3
3 MB/192 KB
208MAPBGA(Pb free)
80
SPC5643AF0MVZ3
3 MB/192 KB
324PBGA (Pb free)
80
SPC5643AF0MLU2
3 MB/192 KB
176LQFP (Pb free)
120
SPC5643AF0MMG2
3 MB/192 KB
208MAPBGA (Pb free)
120
SPC5643AF0MVZ2
3 MB/192 KB
324PBGA (Pb free)
120
SPC5643AF0MLU1
3 MB/192 KB
176LQFP (Pb free)
150
SPC5643AF0MMG1
3 MB/192 KB
208MAPBGA (Pb free)
150
SPC5643AF0MVZ1
3 MB/192 KB
324PBGA (Pb free)
150
SPC5644AF0MLU3
4 MB/192 KB
176 LQFP (Pb free)
80
SPC5644AF0MMG3
4 MB/192 KB
208 MAPBGA (Pb free)
80
SPC5644AF0MVZ3
4 MB/192 KB
324 TEPBGA (Pb free)
80
SPC5644AF0MLU2
4 MB/192 KB
176 LQFP (Pb free)
120
SPC5644AF0MMG2
4 MB/192 KB
208 MAPBGA (Pb free)
120
SPC5644AF0MVZ2
4 MB/192 KB
324 TEPBGA (Pb free)
120
SPC5644AF0MLU1
4 MB/192 KB
176 LQFP (Pb free)
150
SPC5644AF0MMG1
4 MB/192 KB
208 MAPBGA (Pb free)
150
SPC5644AF0MVZ1
4 MB/192 KB
324 TEPBGA (Pb free)
150
Part number
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
127
Figure 40. Product code structure
Example code:
SPC
5644A
F0
M
VZ
1
Qualification Status
Product Family
ATMC Fab and Mask Revision
Temperature Range
Package
Maximum Frequency
Qualification Status
MPC = Industrial qualified
SPC = Automotive qualified
PC = Prototype
Fab and Mask Revision
F = ATMC
0 = Revision
Temperature spec.
M = –40 °C to 125 °C
Product
5644A= MPC5644A family
6
Package Code
LU = 176 LQFP
MG = 208 MAPBGA
VZ = 324 TEPBGA
Maximum Frequency
1 = 150 MHz
2 = 120 MHz
3 = 80 MHz
Document revision history
Table 53 summarizes revisions to this document.
Table 53. Revision history
Revision
Date
Rev. 1
4/2008
Substantive changes
Initial release
MPC5644A Microcontroller Data Sheet, Rev. 7
128
Freescale Semiconductor
Table 53. Revision history (continued)
Revision
Date
Rev. 2
11/2009
Substantive changes
Maximum device speed is 145 MHz (was 150 MHz)
16-entry Memory Protection Unit (MPU). Was incorrectly listed as 8-entry.
Feature details section added
Changes to signal summary table:
• Added ANY function to AN[10]
• Added ANW function to AN[8]
Changes to 208 ball BGA ballmap:
• A12 is AN12-SDS (was AN12)
• A15 is VRC33 (was VDD33)
• B12 is AN13-SDO (was AN13)
• C12 is AN14SDI (was AN14)
• C13 is AN15-FCK (was AN15)
• D1 is VRC33 (was VDD33)
• F13 is VDDEH6AB (was VDDEH6)
• H13 is GPIO99 (was PCSA3)
• J15 is GPIO98 (was PCSA2)
• K4 is now VDDEH1AB (was VDDEH1)
• N6 is now VRC33 (was VDD33)
• N9 is VDDEH4AB (was VDDEH4)
• N12 is now VRC33 (was VDD33)
• P6 is now NC
• T13 is VDDE5 (was NC)
Rev. 2
11/2009
(cont.)
Recommended operating characteristics for power transistor updated
Pad current specifications updated
LVDS pad specifications updated. SRC does not apply to common mode voltage.
Temperature sensor electrical characteristics added
eQADC electrical characteristics updated with VGA gain specs
Pad AC specifications updated
Definition for RDY signal added to signal details
VSTBY maximum is 5.5 V (was listed incorrectly as 6.0 V)
IMAXA maximum is 5 mA (was TBD)
Analog differential input functions added to AN0–AN7 in signal summary
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
129
Table 53. Revision history (continued)
Revision
Date
Rev. 3
04/2010
Substantive changes
Changes to Signal Properties table (changes apply to Revision 2 and later devices:
EBI changes:
• WE_BE[2] (A2) and CAL_WE_BE[2] (A3) signals added to CS[2] (PCR 2)
• WE_BE[3] (A2) and CAL_WE_BE[3] (A3) signals added to CS[3] (PCR 3)
Calibration bus changes:
• CAL_WE[2]/BE[2] (A2) signal added to CAL_CS[2] (PCR 338)
• CAL_WE[3]/BE[3] (A2) signal added to CAL_CS[3] (PCR 339)
• CAL_ALE (A1) added to CAL_ADDR[15] (PCR 340)
eQADC changes:
• AN[8] and AN[38] pins swapped. AN[8] Is now on pins 9 (176-pin), B3 (208-ball) and
E1 (324-ball). AN[8] was on D3 (324-ball) on previous devices. AN[38] Is now on D3
(324-ball). AN[38] was on pins 9 (176-pin), B3 (208-ball) and E1 (324-ball) on previous
devices.
• ANZ function added to AN11 pin
Reaction channels added to eTPU2:
• RCH0_A (A3) added to ETPU_A[14] (PCR 128)
• RCH0_B (A2) added to ETPU_A[20] (PCR 134)
• RCH0_C (A2) added to ETPU_A[21] (PCR 135)
• RCH1_A (A2) added to ETPU_A[15] (PCR 129)
• RCH1_B (A2) added to ETPU_A[9] (PCR 123)
• RCH1_C (A2) added to ETPU_A[10] (PCR 124)
• RCH2_A (A2) added to ETPU_A[16] (PCR 130)
• RCH3_A (A2) added to ETPU_A[17] (PCR 131
• RCH4_A (A2) added to ETPU_A[18] (PCR 132))
• RCH4_B (A2) added to ETPU_A[11] (PCR 125)
• RCH4_C (A2) added to ETPU_A[12] (PCR 126)
• RCH5_A (A2) added to ETPU_A[19] (PCR 133)
• RCH5_B (A2) added to ETPU_A[28] (PCR 142)
• RCH5_C (A2) added to ETPU_A[29] (PCR 143)
Reaction channels added to eMIOS:
• RCH2_B (A2) added to EMIOS[2] (PCR 181)
• RCH2_C (A2) added to EMIOS[4] (PCR 183)
• RCH3_B (A2) added to EMIOS[10] (PCR 189)
• RCH3_C (A2) added to EMIOS[11] (PCR 190)
Pad changes:
• ETPUA16 (PCR 130) has Medium (was Slow) pad
• ETPUA17 (PCR 131) has Medium (was Slow) pad
• ETPUA18 (PCR 132) has Medium (was Slow) pad
• ETPUA19 (PCR 133) has Medium (was Slow) pad
• ETPUA25 (PCR 139) has Slow+LVDS (was Medium+LVDS) pads
Signal Details table updated:
• Added eTPU2 reaction channels
• Changed IRQ[0:15] to two ranges, excluding IRQ6, which does not exist on this device
• Changed TCR_A to TCRCLKA (TCR_A is the pin name, not the signal name)
• Changed WE_BE[0:1] to WE_BE[0:3] (2 new signals added to Rev. 2). Also changed
notation from “WE_BE[n]” to “WE[n]/BE[n]” to be consistent.
MPC5644A Microcontroller Data Sheet, Rev. 7
130
Freescale Semiconductor
Table 53. Revision history (continued)
Revision
Date
Rev. 3
(cont)
04/2010
Substantive changes
Changes to Power/ground segmentation table:
• ADDR[20:21] removed from VDDE2 segment; they are in VDDE-EH
• CAL_CS1 removed from VDDE12 segment (there is no CAL_CS1 on this device)
• CAL_EVTO and CAL_MCKO removed from VDDE12 segment. Those pins do not
exist
• VDDE-VDDEH renamed to VDDE-EH
• EMIOS24 removed from VDDEH segment. That pin does not exist.
• ETPUA[0:9] added to VDDEH4 segment
• Renamed TCR_A in VDDEH4 segment to TCRCLKA.
• EXTAL and XTAL added to VDDEH6 segment
• AN15-FCK added to VDDEH7 segment
• GPIO98, GPIO99, GPIO206, GPIO207 and GPIO219 added to VDDEH7 segment.
• MSEO1 added to VDDEH7 segment
• Power segment VDDEH1A renamed to VDDEH1
Changes to 176-pin package pinout:
• Changed pin 9 from AN38 to AN8.
• Added note that pin 96 (VSS) should be tied low.
Changes to 208-ball package ballmap:
• Changed ball B3 from AN38 to AN8.
• Added note that ball N13 (VSS) should be tied low.
324-ball package ballmap updated for Rev. 2 silicon:
• AN8 was on ball D3; it is now on E1
• AN38 was on ball E1; it is now on D3
Changes to features list:
• Correction: there are 6 reaction channels (was noted as 5)
• Development Trigger Semaphore (DTS) added to features list and feature details
• FlexRay module now has 128 message buffers (was 64) and ECC support
Added note after JTAG pin AC electrical characteristics table detailing JTAG EVTI and
RDY signal clocking with TCK. This affects debuggers.
Part numbers and part number decoder updated.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
131
Table 53. Revision history (continued)
Revision
Date
Substantive changes
Rev. 3
(cont)
04/2010
Added information to AC timings section:
• New section added: Reset and configuration pin timing
• New section added: External interrupt timing (IRQ pin)
• New section added: eTPU timing
• Added Nexus debug port operating frequency table to Nexus timings section
• Added external bus interface maximum operating frequency table and calibration bus
interface maximum operation frequency table
• Added FlexCAN system clock source section
Changes to Power management control (PMC) and power on reset (POR) electrical
specifications:
• Max value for parameter 2 (vddreg) is 5.25 V (was 5.5 V)
Updated “Core voltage regulator controller external components preferred configuration”
diagram.
Changes to DC electrical specifications table:
• Slew rate on power supply pins (system requirement) changed to 25 V/ms (was
50 V/ms)
Throughout the document the maximum frequency is now 150 MHz (was 145 MHz)
Changes to DC electrical specifications:
• Parameter classifications added
• VDDREG max value changed to 5.25 V (was 5.5 V)
• VOH_LS min value changed to 2.0 V (was 2.7 V) with a load current of 0.5 mA
• VOL_LS max value changed to 0.6 V (was 0.2*VDDEH) with load current of 2 mA
• VINDC min value changed to VSSA-0.3 (was VSSA-1.0)
• VINDC max value changed to VDDA+0.3 (was VDDA+1.0)
Added new section: Configuring SRAM wait states
VRCCTL external circuit updated.
MPC5644A Microcontroller Data Sheet, Rev. 7
132
Freescale Semiconductor
Table 53. Revision history (continued)
Revision
Date
Rev. 4
08/2010
Substantive changes
Updates to Nexus timings:
• tMDOV max value changed to 0.35 (was 0.2)
• tMSEOV max value changed to 0.35 (was 0.2)
• tEVTOV max value changed to 0.35 (was 0.2)
Updates to DC electrical specifications:
• VSTBY min value changed to 0.95 V (was 0.9 V)
• VSTBY has two ranges—for regulated mode and unregulated mode
Correction to PLLMRFM electrical specifications:
• VDDPLL range is from 1.08 V to 3.6 V (was 3.0 V to 3.6 V.
Updates to pad AC specifications:
• Specs with drive load = 200 pF deleted. DSC (drive strength control) values range from
10 – 50 pF.
• I/O pad average IDDE specifications updated (fast pad specs only)
• I/O pad VRC33 average IDDE specifications (fast pad specs only)
Updates to Reset and configuration pin timings:
• Footnote added: RESET pulse width is measured from 50% of the falling edge to 50%
of the rising edge.
• Timings are specified at VDD = 1.14 V to 1.32 V (was 1.08 V to 1.32 V).
Updates to EBI timings:
• Note added to tAAI: When CAL_TS is used as CAL_ALE the hold time is 1 ns instead
of 1.5 ns.
• Correction: maximum calibration bus interface operating frequency is 66 MHz for all
port configurations.
• VDDE range in footnote 1 corrected to read, “External Bus and Calibration bus timing
specified at fSYS = 150 MHz and 100 MHz, VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6
V (unless stated otherwise)” (VDDE range was 1.62 V to 3.6 V)
Correction to IEEE 1149.1 timings:
• SRC value in footnote 1 corrected to read, “JTAG timing specified at VDD = 1.14 V to
1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to Low-Swing
mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10, SRC = 0b11.” (SRC value was
0b00)
Correction to External interrupt timing (IRQ pin) timings:
• Timings are specified at VDD = 1.14 V to 1.32 V (was 1.08 V to 1.32 V).
Update to DSPI timings:
• Some of the timing parameters can vary depending on the value of VDDE. For these
parameters, ranges are now defined for two ranges of VDDE.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
133
Table 53. Revision history (continued)
Revision
Date
Rev. 4
(cont)
08/2010
Substantive changes
Change in signal name notation for DSPI, CAN and SCI signals:
DSPI:
PCS_x[n] is now DSPI_x_PCS[n]
SOUT_x is now DSPI_x_SOUT
SIN_x is now DSPI_x_SIN
SCK_x is now DSPI_x_SCK
CAN:
CNTXx is now CAN_x_TX
CNRXx is now CAN_x_RX
SCI:
RXDx is now SCI_x_RX
TXDx is now SCI_x_TX
Updates to DC electrical specifications:
• Slew rate on power supply pins specification changed to 25 V/ms (was 50 V/ms)
VOH_LS min spec changed to 2.0 V at 0.5 mA (was 2.7 V at 0.5 mA)
Updated I/O pad current specifications
Updated I/O pad VRC33 current specifications
Corrections to Nexus timing:
• Maximum Nexus debug port operating frequency is 40 MHz in all configurations
• To route Nexus to MDO, clear NPC_PCR[NEXCFG] (formerly this was documented as
NPC_PCR[CAL]
• To route Nexus to CAL_MDO, set NPC_PCR[NEXCFG]=1 (formerly this was
documented as NPC_PCR[CAL]
MPC5644A Microcontroller Data Sheet, Rev. 7
134
Freescale Semiconductor
Table 53. Revision history (continued)
Revision
Date
Rev. 5
2/2011
Substantive changes
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Rev. 6
—
Minor editorial updates.
Re-organized the first few subsections of the “Overview” section.
Added ECSM to the block diagram.
Added information on the REACM, SIU, and ECS modules to the “Block summary”
section.
Added DATA[0:15] to VDDE5 in the “signal properties” table.
Updated VSTBY parameters in the “Power/ground segmentation” table.
Updated the parameter symbols and classifications throughout the document.
Updated footnote instances in the “Absolute maximum ratings” table.
Removed IMAXA footnote in the “Absolute Maximum Ratings” table.
Updated the format of the “EMI (electromagnetic interference) characteristics” table.
Removed the footnote on VDDREG in the “Power management control (PMC) and
power on reset (POR) electrical specifications” table.
Updated values for Vbg, Idd3p3, Por3.3V_r, Por3.3V_f, Por5V_r, and Por5V_f in the
“PMC electrical characteristics” table.
Updated “Bandgap reference supply voltage variation” in the “PMC Electrical
Characteristics” table.
Updated VCESAT and VBEin the “Recommended power transistors” operating
characteristics” table.
Updated VIH_LS in the “DC electrical specifications” table.
Updated the VOH_LS min value in the “DC electrical specifications” table.
Updated IDDSTBY and IDDSTBY150 in the “DC electrical specifications” table.
Updated the IDDA/IREF/IDDREG max value in the “DC electrical specifications” table.
Updated IACT_F, IACT_MV_PU, IACT_MV_PD, RPUPD5K, RPUPDMTCH, and footnotes in the
“DC electrical specifications” table.
Updated Medium pad type IDD33 values in the “I/O pad VRC33 average IDDE
specifications” table.
Updated values for VOD in the “DSPI LVDS pad specification” table.
Removed the footnotes from the “DSPI LVDS pad specifications” table.
Removed the redundant “XTAL Load Capacitance” parameter instance from the
“PLLMRFM electrical specifications” table.
Updated footnotes in the “PLLMRFM electrical specifications” table.
Updated values for OFFNC and GAINNC in the “eQADC conversion specifications
(operating)” table.
Added DIFFmax, DIFFmax2, DIFFmax4, and DIFFcmv parameters to the “eQADC
conversion specifications (operating)” table.
Added the maximum operating frequency values in the “Cutoff frequency for additional
SRAM wait state” table.
Updated multiple entries in the “APC, RWSC, WWSC settings vs. frequency of
operation” table.
Removed footnote in the “APC, RWSC, WWSC settings vs. frequency of operation”
table.
Changed the voltage in the “Pad AC specifications” table title from 4.5 V to 5.0 V.
Added the maximum LH/HL output delay values for pad type MultiV in the “Pad AC
specifications (VDDE = 3.3 V)” table.
• Rev. 6 not published.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
135
Table 53. Revision history (continued)
Revision
Date
Substantive changes
Rev. 7
01/2012
• Minor editorial changes.
• In MPC5644A feature list, moved “24 unified channels” after “1 x eMIOS”.
• In Table 3MPC5644A signal properties/Column “Name” updated the following rows:
DSPI_D_SCK /GPIO [98] -Changed “-” to CS[2]
DSPI_D_SIN /GPIO[99] -Changed “-” to CS[3].
• In Table 11Thermal characteristics for 324-pin TEPBGA/ Column “Value” added
conditional text.
• In Table 21DC electrical specifications made the following changes:
-For the value “VOL_S” parameter changed from “Slow/ medium/multi-voltage pad I/O
output low voltage” to “Slow/medium pad I/O output low voltage”.
-Added a new row for “IDDSTBY27”.
-For row “IDDSTBY(operating current 0.95 -1.2V)” added max value “100” and changed
typ value from “125” to “35”.
-For row “IDDSTBY (operating current 2 - 5.5V)” added max value “110” and changed typ
value from “135” to “45”.
-For symbol “IDDSTBY 150(operating current 0.95 -1.2V)” added max value “2000”,
changed typ value from “1050” to “790”,C cell changed from “T” to “P” and for symbol
“IDDSTBY (operating current 2 - 5.5V)” added max value “2000”, changed typ value from
“1050” to “760”, C cell changed from “T” to “P”.
-Removed note 9 and note 10 (Characterization based capability) from symbol
“VOL_HS”.
• Splitted Table 28eQADC conversion specifications (operating)into Table 29eQADC
single ended conversion specifications (operating) and Table 30eQADC differential
ended conversion specifications (operating).
• In Table 30 eQADC differential ended conversion specifications (operating)made the
following changes:
-Added the note of DIFFcmv on all of the DIFF specs.
-Min value changed from (VRH-VRL)/2-5% to (VRH+VRL)/2-5 % and max value
changed from (VRH-VRL)/2+5 % to (VRH+VRL)/2+5 %for DIFFcmv.
• In Table 31 Cutoff frequency for additional SRAM wait statemade the following
changes:
-Added note “Max frequencies including 2% PLL FM”.
-Max operating frequency changed from “96” to “98” and “150” to “153”.
• In Section 3.13, “Configuring SRAM wait states, changed text from “MPC5644A
Microcontroller Reference Manual “ to “device reference manual”.
• In Table 32APC, RWSC, WWSC settings vs. frequency of operation,
- Added note for “Max Flash Operating Frequency(MHz).
- Changed values from 30, 60,120, 150 to 20,61,123, 153 respectively in Max Flash
Operating Frequency (MHz).
• In Table 33,aFlash program and erase specificationsdded two parameter “Tpsrt” and
“Tesrt”.
• In Table 41External Bus Interface maximum operating frequency, replacedthe <=
symbol in notes with 
• Added note “Refer to table DSPI timing for the numbers” in all the figures under
Section 3.17.8, “DSPI timing .
• In Table 52Orderable part number summary, changed LBGA208 to MAPBGA and
changed all packages to 123XXXX format.
MPC5644A Microcontroller Data Sheet, Rev. 7
136
Freescale Semiconductor
Table 53. Revision history (continued)
Revision
Date
Substantive changes
Rev. 7
(cont.)
01/12
• Added Table 17MPC5644A External network specification.
• Updated Figure 8.
• Changed External Network Parameter Ce min value to “3*2.35  F+5  F” from
“2*2.35  F+5  F” in Table 17MPC5644A External network specification.
• Changed Trans. Line (differential Zo) unit to  from W in Table 25DSPI LVDS
pad specification.
MPC5644A Microcontroller Data Sheet, Rev. 7
Freescale Semiconductor
137
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
[email protected]
Document Number: MPC5644A
Rev. 7
Jan 2012
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009–2012. All rights reserved.