Freescale Semiconductor Data Sheet: Advance Information Document Number: MPC5644A Rev. 7, Jan 2012 MPC5644A MPC5644A Microcontroller Data Sheet 176 (24 x 24 mm) • • • • • • • 150 MHz e200z4 Power Architecture core — Variable length instruction encoding (VLE) — Superscalar architecture with 2 execution units — Up to 2 integer or floating point instructions per cycle — Up to 4 multiply and accumulate operations per cycle Memory organization — 4 MB on-chip flash memory with ECC and Read While Write (RWW) — 192 KB on-chip SRAM with standby functionality (32 KB) and ECC — 8 KB instruction cache (with line locking), configurable as 2- or 4-way — 14 + 3 KB eTPU code and data RAM — 5 4 crossbar switch (XBAR) — 24-entry MMU — External Bus Interface (EBI) with slave and master port Fail Safe Protection — 16-entry Memory Protection Unit (MPU) — CRC unit with 3 sub-modules — Junction temperature sensor Interrupts — Configurable interrupt controller (with NMI) — 64-channel DMA Serial channels — 3 eSCI — 3 DSPI (2 of which support downstream Micro Second Channel [MSC]) — 3 FlexCAN with 64 messages each — 1 FlexRay module (V2.1) up to 10 Mbit/s with dual or single channel and 128 message objects and ECC 1 eMIOS: 24 unified channels 1 eTPU2 (second generation eTPU) — 32 standard channels — 1 reaction module (6 channels with three outputs per channel) 208 (17 x 17 mm) • 2 enhanced queued analog-to-digital converters (eQADCs) — Forty 12-bit input channels (multiplexed on 2 ADCs); expandable to 56 channels with external multiplexers — 6 command queues — Trigger and DMA support — 688 ns minimum conversion time • On-chip CAN/SCI/FlexRay Bootstrap loader with Boot Assist Module (BAM) • Nexus — Class 3+ for the e200z4 core — Class 1 for the eTPU • JTAG (5-pin) • Development Trigger Semaphore (DTS) — Register of semaphores (32-bits) and an identification register — Used as part of a triggered data acquisition protocol — EVTO pin is used to communicate to the external tool • Clock generation — On-chip 4–40 MHz main oscillator — On-chip FMPLL (frequency-modulated phase-locked loop) • Up to 120 general purpose I/O lines — Individually programmable as input, output or special function — Programmable threshold (hysteresis) • Power reduction mode: slow, stop and stand-by modes • Flexible supply scheme — 5 V single supply with external ballast — Multiple external supply: 5 V, 3.3 V and 1.2 V • Packages — 176 LQFP — 208 MAPBGA — 324 TEPBGA 496-pin CSP (calibration tool only) This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2009–2012. All rights reserved. 324 (23 x 23 mm) Table of Contents 1 2 3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.4 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 1.4.1 e200z4 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 1.4.2 Crossbar Switch (XBAR) . . . . . . . . . . . . . . . . . . .6 1.4.3 eDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 1.4.4 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . .7 1.4.5 Memory protection unit (MPU). . . . . . . . . . . . . . .8 1.4.6 FMPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 1.4.7 SIU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 1.4.8 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . .9 1.4.9 BAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 1.4.10 eMIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.11 eTPU2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.12 Reaction module . . . . . . . . . . . . . . . . . . . . . . . .13 1.4.13 eQADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 1.4.14 DSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 1.4.15 eSCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 1.4.16 FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 1.4.17 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 1.4.18 System timers . . . . . . . . . . . . . . . . . . . . . . . . . .17 1.4.19 Software watchdog timer (SWT) . . . . . . . . . . . .17 1.4.20 Cyclic redundancy check (CRC) module . . . . . .18 1.4.21 Error correction status module (ECSM). . . . . . .18 1.4.22 External bus interface (EBI). . . . . . . . . . . . . . . .18 1.4.23 Calibration EBI. . . . . . . . . . . . . . . . . . . . . . . . . .19 1.4.24 Power management controller (PMC) . . . . . . . .19 1.4.25 Nexus port controller . . . . . . . . . . . . . . . . . . . . .19 1.4.26 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 1.4.27 Development Trigger Semaphore (DTS) . . . . . .20 1.5 MPC5644A series architecture . . . . . . . . . . . . . . . . . . .20 1.5.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . .20 1.5.2 Block summary . . . . . . . . . . . . . . . . . . . . . . . . .22 Pinout and signal description . . . . . . . . . . . . . . . . . . . . . . . . .24 2.1 176 LQFP pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 2.2 208 MAP BGA ballmap . . . . . . . . . . . . . . . . . . . . . . . . .26 2.3 324 TEPBGA ballmap. . . . . . . . . . . . . . . . . . . . . . . . . .27 2.4 Signal summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 2.5 Signal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .65 3.2 Maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.3 4 5 6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.1 General notes for specifications at maximum junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4 EMI (electromagnetic interference) characteristics . . . 71 3.5 Electrostatic discharge (ESD) characteristics . . . . . . . 71 3.6 Power management control (PMC) and power on reset (POR) electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 72 3.6.1 Voltage regulator controller (VRC) electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 75 3.6.2 Regulator Example. . . . . . . . . . . . . . . . . . . . . . 76 3.6.3 Recommended power transistors . . . . . . . . . . 77 3.7 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . 77 3.8 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . 78 3.9 I/O pad current specifications . . . . . . . . . . . . . . . . . . . 85 3.9.1 I/O pad VRC33 current specifications . . . . . . . . 86 3.9.2 LVDS pad specifications. . . . . . . . . . . . . . . . . . 87 3.10 Oscillator and PLLMRFM electrical characteristics . . . 88 3.11 Temperature sensor electrical characteristics . . . . . . . 90 3.12 eQADC electrical characteristics . . . . . . . . . . . . . . . . . 90 3.13 Configuring SRAM wait states . . . . . . . . . . . . . . . . . . . 93 3.14 Platform flash controller electrical characteristics . . . . 93 3.15 Flash memory electrical characteristics. . . . . . . . . . . . 93 3.16 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.16.1 Pad AC specifications . . . . . . . . . . . . . . . . . . . 95 3.17 AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.17.1 Reset and configuration pin timing . . . . . . . . . . 98 3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . 99 3.17.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.17.4 External Bus Interface (EBI) and calibration bus interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.17.5 External interrupt timing (IRQ pin) . . . . . . . . . 110 3.17.6 eTPU timing . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.17.7 eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . .111 3.17.8 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . .111 3.17.9 eQADC SSI timing . . . . . . . . . . . . . . . . . . . . . 118 3.17.10FlexCAN system clock source. . . . . . . . . . . . 119 Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . 120 4.1.1 176 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.1.2 208 MAPBGA. . . . . . . . . . . . . . . . . . . . . . . . . 123 4.1.3 324 TEPBGA . . . . . . . . . . . . . . . . . . . . . . . . . 125 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . 128 MPC5644A Microcontroller Data Sheet, Rev. 7 2 Freescale Semiconductor 1 Introduction 1.1 Document Overview This document provides electrical specifications, pin assignments, and package diagrams for the MPC5644A series of microcontroller units (MCUs). For functional characteristics, refer to the MPC5644A Microcontroller Reference Manual. 1.2 Description The microcontroller’s e200z4 host processor core is built on Power Architecture® technology and designed specifically for embedded applications. In addition to the Power Architecture technology, this core supports instructions for digital signal processing (DSP). The MPC5644A has two levels of memory hierarchy consisting of 8 KB of instruction cache, backed by 192 KB on-chip SRAM and 4 MB of internal flash memory. The MPC5644A includes an external bus interface, and also a calibration bus that is only accessible when using the Freescale VertiCal Calibration System. This document describes the features of the MPC5644A and highlights important electrical and physical characteristics of the device. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 3 1.3 Device comparison Table 1 summarizes the MPC5644A and compares it to the MPC5634M. Table 1. MPC5644A, MPC5634M and MPC5642A comparison Feature MPC5644A Process Core MPC5634M 90 nm e200z4 e200z3 SIMD Yes VLE Yes Cache MPC5642A 8 KB instruction Non-Maskable Interrupt (NMI) e200z4 No 8 KB instruction NMI & Critical Interrupt MMU 24 entry 16 entry 24 entry MPU 16 entry No 16 entry 54 34 44 0–150 MHz 0–80 MHz 0–150 MHz Crossbar switch Core performance Windowing software watchdog Core Nexus Yes Class 3+ Class 2+ Class 3+ SRAM 192 KB 94 KB 128 KB Flash 4 MB 1.5 MB 2 MB 4 256-bit 4 128-bit External bus 16-bit (incl 32-bit muxed) None Calibration bus 16-bit (incl 32-bit muxed) 16-bit 16-bit (incl 32-bit muxed) 64 ch. 32 ch. 64 ch. Flash fetch accelerator DMA DMA Nexus Serial None 3 eSCI_A Yes (MSC Uplink) eSCI_B Yes (MSC Uplink) eSCI_C CAN 3 Yes No Yes 3 2 3 CAN_A SPI 2 64 buf CAN_B 64 buf No 64 buf CAN_C 64 buf 32 buf 64 buf 3 2 3 MPC5644A Microcontroller Data Sheet, Rev. 7 4 Freescale Semiconductor Table 1. MPC5644A, MPC5634M and MPC5642A comparison (continued) Feature MPC5644A MPC5634M Micro Second Channel (MSC) bus downlink Yes DSPI_A No DSPI_B Yes (with LVDS) DSPI_C Yes (with LVDS) DSPI_D FlexRay Yes No Yes Yes No Yes System timers eMIOS 5 PIT channels 4 STM channels 1 Software Watchdog 24 ch. 16 ch. eTPU 14 KB Data memory Interrupt controller ADC 3 KB 486 ch. 1 40 ch. 307 ch. 486 ch.1 34 ch. 40 ch. ADC_A Yes ADC_B Yes Temp sensor Yes Variable gain amp. Yes Decimation filter 2 Sensor diagnostics CRC 1 Yes No Yes VRC Yes Supplies 5 V, 3.3 V2 Low-power modes Packages 1 199 interrupt vectors are reserved. 2 5 V single supply only for 176 LQFP. 5 6 7 2 Yes FMPLL 4 24 ch. 32 ch. eTPU2 Code memory 3 MPC5642A 5 V, 3.3 V3 Yes 5 V, 3.3 V2 Stop Mode Slow Mode 176 LQFP4 208 MAPBGA4,5 324 TEPBGA3246 496-pin CSP7 144 LQFP 176 LQFP 208 MAPBGA 496-pin CSP7 176 LQFP4 208 MAPBGA4,5 324 TEPBGA3246 496-pin CSP7 5 V single supply only for 144 LQFP. Pinout compatible with Freescale’s MPC5634M devices. Pinout compatible with Freescale’s MPC5534. Ballmap upwardly compatible with the standardized package ballmap used for various Freescale MPC5xxx family members, including MPC5554, MPC5567 and MPC5666. For Freescale VertiCal Calibration System only. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 5 1.4 1.4.1 Feature details e200z4 core MPC5644A devices have a high performance e200z448n3 core processor: • • • • • • • • • • • • • • • 1.4.2 Dual issue, 32-bit Power Architecture embedded category CPU Variable Length Encoding Enhancements 8 KB instruction cache: 2- or 4- way set associative instruction cache Thirty-two 64-bit general purpose registers (GPRs) Memory management unit (MMU) with 24-entry fully-associative translation look-aside buffer (TLB) Harvard Architecture: Separate instruction bus and load/store bus Vectored interrupt support Non-maskable interrupt input Critical Interrupt input New ‘Wait for Interrupt’ instruction, to be used with new low power modes Reservation instructions for implementing read-modify-write accesses Signal processing extension (SPE) APU Single Precision Floating point (scalar and vector) Nexus Class 3+ debug Process ID manipulation for the MMU using an external tool Crossbar Switch (XBAR) The XBAR multiport crossbar switch supports simultaneous connections between five master ports and four slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width. The crossbar allows three concurrent transactions to occur from the master ports to any slave port but each master must access a different slave. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher priority master and grants it ownership of the slave port. All other masters requesting that slave port are stalled until the higher priority master completes its transactions. Requesting masters are treated with equal priority and are granted access to a slave port in round-robin fashion, based upon the ID of the last master to be granted access. The crossbar provides the following features: • • • 5 master ports — CPU instruction bus — CPU data bus — eDMA — FlexRay — External Bus Interface 4 slave ports — Flash — Calibration and EBI bus — SRAM — Peripheral bridge 32-bit internal address, 64-bit internal data paths MPC5644A Microcontroller Data Sheet, Rev. 7 6 Freescale Semiconductor 1.4.3 eDMA The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 64 programmable channels, with minimal intervention from the host processor. The hardware micro-architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation is utilized to minimize the overall block size. The eDMA module provides the following features: • • • • • • • • • • • • 1.4.4 All data movement via dual-address transfers: read from source, write to destination Programmable source and destination addresses, transfer size, plus support for enhanced addressing modes Transfer control descriptor organized to support two-deep, nested transfer operations An inner data transfer loop defined by a “minor” byte transfer count An outer data transfer loop defined by a “major” iteration count Channel activation via one of three methods: — Explicit software initiation — Initiation via a channel-to-channel linking mechanism for continuous transfers — Peripheral-paced hardware requests (one per channel) Support for fixed-priority and round-robin channel arbitration Channel completion reported via optional interrupt requests One interrupt per channel, optionally asserted at completion of major iteration count Error termination interrupts optionally enabled Support for scatter/gather DMA processing Ability to suspend channel transfers by a higher priority channel Interrupt controller The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable. When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the resource cannot preempt each other. The INTC provides the following features: • • • • • • • • • 9-bit vector addresses Unique vector for each interrupt request source Hardware connection to processor or read from register Each interrupt source can assigned a specific priority by software Preemptive prioritized interrupt requests to processor ISR at a higher priority preempts executing ISRs or tasks at lower priorities Automatic pushing or popping of preempted priority to or from a LIFO Ability to modify the ISR or task priority to implement the priority ceiling protocol for accessing shared resources Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to processor This device also includes a non-maskable interrupt (NMI) pin that bypasses the INTC and multiplexing logic. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 7 1.4.5 Memory protection unit (MPU) The Memory Protection Unit (MPU) provides hardware access control for all memory references generated in a device. Using preprogrammed region descriptors, which define memory spaces and their associated access rights, the MPU concurrently monitors all system bus transactions and evaluates the appropriateness of each transfer. Memory references with sufficient access control rights are allowed to complete; references that are not mapped to any region descriptor or have insufficient rights are terminated with a protection error response. The MPU has these major features: • • 1.4.6 Support for 16 memory region descriptors, each 128 bits in size — Specification of start and end addresses provide granularity for region sizes from 32 bytes to 4 GB — MPU is invalid at reset, thus no access restrictions are enforced — Two types of access control definitions: processor core bus master supports the traditional {read, write, execute} permissions with independent definitions for supervisor and user mode accesses; the remaining non-core bus masters (eDMA, FlexRay, and EBI1) support {read, write} attributes — Automatic hardware maintenance of the region descriptor valid bit removes issues associated with maintaining a coherent image of the descriptor — Alternate memory view of the access control word for each descriptor provides an efficient mechanism to dynamically alter the access rights of a descriptor only1 — For overlapping region descriptors, priority is given to permission granting over access denying as this approach provides more flexibility to system software Support for two XBAR slave port connections (SRAM and PBRIDGE) — For each connected XBAR slave port (SRAM and PBRIDGE), MPU hardware monitors every port access using the pre-programmed memory region descriptors — An access protection error is detected if a memory reference does not hit in any memory region or the reference is flagged as illegal in all memory regions where it does hit. In the event of an access error, the XBAR reference is terminated with an error response and the MPU inhibits the bus cycle being sent to the targeted slave device — 64-bit error registers, one for each XBAR slave port, capture the last faulting address, attributes, and detail information FMPLL The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 40 MHz crystal oscillator or external clock generator. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication factor, output clock divider ratio are all software configurable. The PLL has the following major features: • • • • • Input clock frequency from 4 MHz to 40 MHz Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock Three modes of operation — Bypass mode with PLL off — Bypass mode with PLL running (default mode out of reset) — PLL normal mode Each of the three modes may be run with a crystal oscillator or an external clock reference Programmable frequency modulation — Modulation enabled/disabled through software — Triangle wave modulation up to 100 kHz modulation frequency — Programmable modulation depth (0% to 2% modulation depth) — Programmable modulation frequency dependent on reference frequency 1. EBI not available on all packages and is not available, as a master, for customer. MPC5644A Microcontroller Data Sheet, Rev. 7 8 Freescale Semiconductor • • • • 1.4.7 Lock detect circuitry reports when the PLL has achieved frequency lock and continuously monitors lock status to report loss of lock conditions Clock Quality Module — Detects the quality of the crystal clock and causes interrupt request or system reset if error is detected — Detects the quality of the PLL output clock; if error detected, causes system reset or switches system clock to crystal clock and causes interrupt request Programmable interrupt request or system reset on loss of lock Self-clocked mode (SCM) operation SIU The MPC5644A SIU controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, and the system reset operation. The reset configuration block contains the external pin boot configuration logic. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU. The reset controller performs reset monitoring of internal and external reset sources, and drives the RSTOUT pin. Communication between the SIU and the e200z4 CPU core is via the crossbar switch. The SIU provides the following features: • • • • • 1.4.8 System configuration — MCU reset configuration via external pins — Pad configuration control for each pad — Pad configuration control for virtual I/O via DSPI serialization System reset monitoring and generation — Power-on reset support — Reset status register provides last reset source to software — Glitch detection on reset input — Software controlled reset assertion External interrupt — Rising or falling edge event detection — Programmable digital filter for glitch rejection — Critical Interrupt request — Non-Maskable Interrupt request GPIO — Centralized control of I/O and bus pins — Virtual GPIO via DSPI serialization (requires external deserialization device) — Dedicated input and output registers for setting each GPIO and Virtual GPIO pin Internal multiplexing — Allows serial and parallel chaining of DSPIs — Allows flexible selection of eQADC trigger inputs — Allows selection of interrupt requests between external pins and DSPI Flash memory The MPC5644A provides up to 4 MB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be used to store instructions or data, or both. The flash module includes a Fetch Accelerator that optimizes the performance of the flash array to match the CPU architecture. The flash module interfaces the system bus to a dedicated flash memory array controller. For CPU ‘loads’, DMA transfers and CPU instruction fetch, it supports a 64-bit data bus width at the system bus port, MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 9 and 128- and 256-bit read data interfaces to flash memory. The module contains a prefetch controller which prefetches sequential lines of data from the flash array into the buffers. Prefetch buffer hits allow no-wait responses. The flash memory provides the following features: • • • • • • • • • • • • • • • • • 1.4.9 Supports a 64-bit data bus for instruction fetch, CPU loads and DMA access. Byte, halfword, word and doubleword reads are supported. Only aligned word and doubleword writes are supported. Fetch Accelerator — Architected to optimize the performance of the flash — Configurable read buffering and line prefetch support — Four-entry 256-bit wide line read buffer — Prefetch controller Hardware and software configurable read and write access protections on a per-master basis Interface to the flash array controller pipelined with a depth of one, allowing overlapped accesses to proceed in parallel for interleaved or pipelined flash array designs Configurable access timing usable in a wide range of system frequencies Multiple-mapping support and mapping-based block access timing (0-31 additional cycles) usable for emulation of other memory types Software programmable block program/erase restriction control Erase of selected block(s) Read page size of 128 bits (four words) ECC with single-bit correction, double-bit detection Program page size of 128 bits (four words) to accelerate programming ECC single-bit error corrections are visible to software Minimum program size is two consecutive 32-bit words, aligned on a 0-modulo-8 byte address, due to ECC Embedded hardware program and erase algorithm Erase suspend, program suspend and erase-suspended program Shadow information stored in non-volatile shadow block Independent program/erase of the shadow block BAM The BAM (Boot Assist Module) is a block of read-only memory that is programmed once by Freescale and is identical for all MPC5644A MCUs. The BAM program is executed every time the MCU is powered-on or reset in normal mode. The BAM supports different modes of booting. They are: • • • Booting from internal flash memory Serial boot loading (A program is downloaded into RAM via eSCI or the FlexCAN and then executed) Booting from external memory on external bus The BAM also reads the reset configuration half word (RCHW) from internal flash memory and configures the MPC5644A hardware accordingly. The BAM provides the following features: • • • • • • Sets up MMU to cover all resources and mapping of all physical addresses to logical addresses with minimum address translation Sets up MMU to allow user boot code to execute as either Power Architecture embedded category (default) or as Freescale VLE code Location and detection of user boot code Automatic switch to serial boot mode if internal flash is blank or invalid Supports user programmable 64-bit password protection for serial boot mode Supports serial bootloading via FlexCAN bus and eSCI using Freescale protocol MPC5644A Microcontroller Data Sheet, Rev. 7 10 Freescale Semiconductor • • • • • • Supports serial bootloading via FlexCAN bus and eSCI with auto baud rate sensing Supports serial bootloading of either Power Architecture code (default) or Freescale VLE code Supports booting from calibration bus interface Supports censorship protection for internal flash memory Provides an option to enable the core watchdog timer Provides an option to disable the system watchdog timer 1.4.10 eMIOS The eMIOS timer module provides the capability to generate or measure events in hardware. The eMIOS module features include: • • • • • Twenty-four 24-bit wide channels 3 channels’ internal timebases can be shared between channels 1 Timebase from eTPU2 can be imported and used by the channels Global enable feature for all eMIOS and eTPU timebases Dedicated pin for each channel (not available on all package types) Each channel (0–23) supports the following functions: • • • • • • • • • General-purpose input/output (GPIO) Single-action input capture (SAIC) Single-action output compare (SAOC) Output pulse-width modulation buffered (OPWMB) Input period measurement (IPM) Input pulse-width measurement (IPWM) Double-action output compare (DAOC) Modulus counter buffered (MCB) Output pulse width and frequency modulation buffered (OPWFMB) 1.4.11 eTPU2 The eTPU2 is an enhanced co-processor designed for timing control. Operating in parallel with the host CPU, the eTPU2 processes instructions and real-time input events, performs output waveform generation, and accesses shared data without host intervention. Consequently, for each timer event, the host CPU setup and service times are minimized or eliminated. A powerful timer subsystem is formed by combining the eTPU2 with its own instruction and data RAM. High-level assembler/compiler and documentation allows customers to develop their own functions on the eTPU2. MPC5644A devices feature the second generation of the eTPU, called eTPU2. Enhancements of the eTPU2 over the standard eTPU include: • • • • • • The Timer Counter (TCR1), channel logic and digital filters (both channel and the external timer clock input [TCRCLK]) now have an option to run at full system clock speed or system clock / 2. Channels support unordered transitions: transition 2 can now be detected before transition 1. Related to this enhancement, the transition detection latches (TDL1 and TDL2) can now be independently negated by microcode. A new User Programmable Channel Mode has been added: the blocking, enabling, service request and capture characteristics of this channel mode can be programmed via microcode. Microinstructions now provide an option to issue Interrupt and Data Transfer requests selected by channel. They can also be requested simultaneously at the same instruction. Channel Flags 0 and 1 can now be tested for branching, in addition to selecting the entry point. Channel digital filters can be bypassed. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 11 The eTPU2 includes these distinctive features: • • • • • 32 channels; each channel associated with one input and one output signal — Enhanced input digital filters on the input pins for improved noise immunity — Identical, orthogonal channels: each channel can perform any time function. Each time function can be assigned to more than one channel at a given time, so each signal can have any functionality. — Each channel has an event mechanism which supports single and double action functionality in various combinations. It includes two 24-bit capture registers, two 24-bit match registers, 24-bit greater-equal and equal-only comparators. — Input and output signal states visible from the host 2 independent 24-bit time bases for channel synchronization: — First time base clocked by system clock with programmable prescale division from 2 to 512 (in steps of 2), or by output of second time base prescaler — Second time base counter can work as a continuous angle counter, enabling angle based applications to match angle instead of time — Both time bases can be exported to the eMIOS timer module — Both time bases visible from the host Event-triggered microengine: — Fixed-length instruction execution in two-system-clock microcycle — 14 KB of code memory (SCM) — 3 KB of parameter (data) RAM (SPRAM) — Parallel execution of data memory, ALU, channel control and flow control sub-instructions in selected combinations — 32-bit microengine registers and 24-bit wide ALU, with 1 microcycle addition and subtraction, absolute value, bitwise logical operations on 24-bit, 16-bit, or byte operands, single-bit manipulation, shift operations, sign extension and conditional execution — Additional 24-bit Multiply/MAC/Divide unit which supports all signed/unsigned Multiply/MAC combinations, and unsigned 24-bit divide. The MAC/Divide unit works in parallel with the regular microcode commands. Resource sharing features support channel use of common channel registers, memory and microengine time: — Hardware scheduler works as a “task management” unit, dispatching event service routines by predefined, host-configured priority — Automatic channel context switch when a “task switch” occurs, that is, one function thread ends and another begins to service a request from other channel: channel-specific registers, flags and parameter base address are automatically loaded for the next serviced channel — SPRAM shared between host CPU and eTPU2, supporting communication either between channels and host or inter-channel — Hardware implementation of four semaphores support coherent parameter sharing between both eTPU engines — Dual-parameter coherency hardware support allows atomic access to two parameters by host Test and development support features: — Nexus Class 1 debug, supporting single-step execution, arbitrary microinstruction execution, hardware breakpoints and watchpoints on several conditions — Software breakpoints — SCM continuous signature-check built-in self test (MISC - multiple input signature calculator), runs concurrently with eTPU2 normal operation MPC5644A Microcontroller Data Sheet, Rev. 7 12 Freescale Semiconductor 1.4.12 Reaction module The reaction module provides the ability to modulate output signals to manage closed loop control without CPU assistance. It works in conjunction with the eQADC and eTPU2 to increase system performance by removing the CPU from the current control loop. The reaction module has the following features: • • • Six reaction channels Each channel output is a bus of three signals, providing ability to control 3 inputs. Each channel can implement a peak and hold waveform, making it possible to implement up to six independent peak and hold control channels Target applications include solenoid control for direct injection systems and valve control in automatic transmissions 1.4.13 eQADC The enhanced queued analog to digital converter (eQADC) block provides accurate and fast conversions for a wide range of applications. The eQADC provides a parallel interface to two on-chip analog to digital converters (ADC), and a single master to single slave serial interface to an off-chip external device. Both on-chip ADCs have access to all the analog channels. The eQADC prioritizes and transfers commands from six command conversion command ‘queues’ to the on-chip ADCs or to the external device. The block can also receive data from the on-chip ADCs or from an off-chip external device into the six result queues, in parallel, independently of the command queues. The six command queues are prioritized with Queue_0 having the highest priority and Queue_5 the lowest. Queue_0 also has the added ability to bypass all buffering and queuing and abort a currently running conversion on either ADC and start a Queue_0 conversion. This means that Queue_0 will always have a deterministic time from trigger to start of conversion, irrespective of what tasks the ADCs were performing when the trigger occurred. The eQADC supports software and external hardware triggers from other blocks to initiate transfers of commands from the queues to the on-chip ADCs or to the external device. It also monitors the fullness of command queues and result queues, and accordingly generates DMA or interrupt requests to control data movement between the queues and the system memory, which is external to the eQADC. The ADCs also support features designed to allow the direct connection of high impedance acoustic sensors that might be used in a system for detecting engine knock. These features include differential inputs; integrated variable gain amplifiers for increasing the dynamic range; programmable pull-up and pull-down resistors for biasing and sensor diagnostics. The eQADC also integrates a programmable decimation filter capable of taking in ADC conversion results at a high rate, passing them through a hardware low pass filter, then down-sampling the output of the filter and feeding the lower sample rate results to the result FIFOs. This allows the ADCs to sample the sensor at a rate high enough to avoid aliasing of out-of-band noise; while providing a reduced sample rate output to minimize the amount DSP processing bandwidth required to fully process the digitized waveform. The eQADC provides the following features: • Dual on-chip ADCs — 2 12-bit ADC resolution — Programmable resolution for increased conversion speed (12-bit, 10-bit, 8-bit) – 12-bit conversion time: 938 ns (1 M sample/sec) – 10-bit conversion time: 813 ns (1.2 M sample/second) – 8-bit conversion time: 688 ns (1.4 M sample/second) — Up to 10-bit accuracy at 500 KSample/s and 8-bit accuracy at 1 MSample/s — Differential conversions — Single-ended signal range from 0 to 5 V — Variable gain amplifiers on differential inputs (1, 2, 4) — Sample times of 2 (default), 8, 64 or 128 ADC clock cycles MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 13 • • • • • • • • • • • — Provides time stamp information when requested — Allows time stamp information relative to eTPU clock sources, such as an angle clock — Parallel interface to eQADC CFIFOs and RFIFOs — Supports both right-justified unsigned and signed formats for conversion results 40 single-ended input channels, expandable to 56 channels with external multiplexers (supports four external 8-to-1 muxes) 8 channels can be used as 4 pairs of differential analog input channels Differential channels include variable gain amplifier for improved dynamic range Differential channels include programmable pull-up and pull-down resistors for biasing and sensor diagnostics (200 k100 k5 k Additional internal channels for monitoring voltages (such as core voltage, I/O voltage, LVI voltages, etc.) inside the device An internal bandgap reference to allow absolute voltage measurements Silicon die temperature sensor — Provides temperature of silicon as an analog value — Read using an internal ADC analog channel — May be read with either ADC 2 Decimation Filters — Programmable decimation factor (1 to 16) — Selectable IIR or FIR filter — Up to 4th order IIR or 8th order FIR — Programmable coefficients — Saturated or non-saturated modes — Programmable Rounding (Convergent; Two’s Complement; Truncated) — Prefill mode to precondition the filter before the sample window opens — Supports Multiple Cascading Decimation Filters to implement more complex filter designs — Optional Absolute Integrators on the output of Decimation Filters Full duplex synchronous serial interface to an external device — Free-running clock for use by an external device — Supports a 26-bit message length Priority based queues — Supports six queues with fixed priority. When commands of distinct queues are bound for the same ADC, the higher priority queue is always served first — Queue_0 can bypass all prioritization, buffering and abort current conversions to start a Queue_0 conversion a deterministic time after the queue trigger — Supports software and hardware trigger modes to arm a particular queue — Generates interrupt when command coherency is not achieved External hardware triggers — Supports rising edge, falling edge, high level and low level triggers — Supports configurable digital filter 1.4.14 DSPI The deserial serial peripheral interface (DSPI) block provides a synchronous serial interface for communication between the MPC5644A MCU and external devices. The DSPI supports pin count reduction through serialization and deserialization of eTPU and eMIOS channels and memory-mapped registers. The channels and register content are transmitted using a SPI-like protocol. This SPI-like protocol is completely configurable for baud rate, polarity and phase, frame length, chip select assertion, MPC5644A Microcontroller Data Sheet, Rev. 7 14 Freescale Semiconductor etc. Each bit in the frame may be configured to serialize either eTPU channels, eMIOS channels or GPIO signals. The DSPI can be configured to serialize data to an external device that implements the Microsecond Bus protocol. There are three identical DSPI blocks on the MPC5644A MCU. The DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS) to improve high speed operation. DSPI module features include: • • • • • Selectable LVDS pads working at 40 MHZ for SOUT and SCK pins for DSPI_B and DSPI_C 3 sources of serialized data: eTPU_A, eMIOS output channels and memory-mapped register in the DSPI 4 destinations for deserialized data: eTPU_A and eMIOS input channels, SIU external Interrupt input request, memory-mapped register in the DSPI 32-bit DSI and TSB modes require 32 PCR registers, 32 GPO and GPI registers in the SIU to select either GPIO, eTPU or eMIOS bits for serialization The DSPI Module can generate and check parity in a serial frame 1.4.15 eSCI Three enhanced serial communications interface (eSCI) modules provide asynchronous serial communications with peripheral devices and other MCUs, and include support to interface to Local Interconnect Network (LIN) slave devices. Each eSCI block provides the following features: • • • • • • • • • • • • • • • Full-duplex operation Standard mark/space non-return-to-zero (NRZ) format 13-bit baud rate selection Programmable 8-bit or 9-bit, data format Programmable 12-bit or 13-bit data format for Timed Serial Bus (TSB) configuration to support the Microsecond bus standard Automatic parity generation LIN support — Autonomous transmission of entire frames — Configurable to support all revisions of the LIN standard — Automatic parity bit generation — Double stop bit after bit error — 10- or 13-bit break support Separately enabled transmitter and receiver Programmable transmitter output parity 2 receiver wake-up methods: — Idle line wake-up — Address mark wake-up Interrupt-driven operation with flags Receiver framing error detection Hardware parity checking 1/16 bit-time noise detection DMA support for both transmit and receive data — Global error bit stored with receive data in system RAM to allow post processing of errors 1.4.16 FlexCAN The MPC5644A MCU includes three controller area network (FlexCAN) blocks. The FlexCAN module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 15 be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. Each FlexCAN module contains 64 message buffers. The FlexCAN modules provide the following features: • • • • • • • • • • • • • • • • • • • • • • • • • Based on and including all existing features of the Freescale TouCAN module Full Implementation of the CAN protocol specification, Version 2.0B — Standard data and remote frames — Extended data and remote frames — Zero to eight bytes data length — Programmable bit rate up to 1 Mbit/s Content-related addressing 64 message buffers of zero to eight bytes data length Individual Rx Mask Register per message buffer Each message buffer configurable as Rx or Tx, all supporting standard and extended messages Includes 1088 bytes of embedded memory for message buffer storage Includes 256-byte memory for storing individual Rx mask registers Full featured Rx FIFO with storage capacity for six frames and internal pointer handling Powerful Rx FIFO ID filtering, capable of matching incoming IDs against 8 extended, 16 standard or 32 partial (8 bits) IDs, with individual masking capability Selectable backwards compatibility with previous FlexCAN versions Programmable clock source to the CAN Protocol Interface, either system clock or oscillator clock Listen only mode capability Programmable loop-back mode supporting self-test operation 3 programmable Mask Registers Programmable transmit-first scheme: lowest ID, lowest buffer number or highest priority Time Stamp based on 16-bit free-running timer Global network time, synchronized by a specific message Maskable interrupts Warning interrupts when the Rx and Tx Error Counters reach 96 Independent of the transmission medium (an external transceiver is assumed) Multi-master concept High immunity to EMI Short latency time due to an arbitration scheme for high-priority messages Low power mode, with programmable wake-up on bus activity 1.4.17 FlexRay The MPC5644A includes one dual-channel FlexRay module that implements the FlexRay Communications System Protocol Specification, Version 2.1 Rev A. Features include: • • • • Single channel support FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported 128 message buffers, each configurable as: — Receive message buffer — Single buffered transmit message buffer — Double buffered transmit message buffer (combines two single buffered message buffer) 2 independent receive FIFOs MPC5644A Microcontroller Data Sheet, Rev. 7 16 Freescale Semiconductor • — 1 receive FIFO per channel — Up to 255 entries for each FIFO ECC support 1.4.18 System timers The system timers include two distinct types of system timer: • • Periodic interrupts/triggers using the Periodic Interrupt Timer (PIT) Operating system task monitors using the System Timer Module (STM) 1.4.18.1 Periodic interrupt timer (PIT) The PIT provides five independent timer channels, capable of producing periodic interrupts and periodic triggers. The PIT has no external input or output pins and is intended to provide system ‘tick’ signals to the operating system, as well as periodic triggers for eQADC queues. Of the five channels in the PIT, four are clocked by the system clock and one is clocked by the crystal clock. This one channel is also referred to as Real-Time Interrupt (RTI) and is used to wake up the device from low power stop mode. The following features are implemented in the PIT: • • • • • • 5 independent timer channels Each channel includes 32-bit wide down counter with automatic reload 4 channels clocked from system clock 1 channel clocked from crystal clock (wake-up timer) Wake-up timer remains active when System STOP mode is entered; used to restart system clock after predefined time-out period Each channel optionally able to generate an interrupt request or a trigger event (to trigger eQADC queues) when timer reaches zero 1.4.18.2 System timer module (STM) The System Timer Module (STM) is designed to implement the software task monitor as defined by AUTOSAR1. It consists of a single 32-bit counter, clocked by the system clock, and four independent timer comparators. These comparators produce a CPU interrupt when the timer exceeds the programmed value. The following features are implemented in the STM: • • • • One 32-bit up counter with 8-bit prescaler Four 32-bit compare channels Independent interrupt source for each channel Counter can be stopped in debug mode 1.4.19 Software watchdog timer (SWT) The Software Watchdog Timer (SWT) is a second watchdog module to complement the standard Power Architecture watchdog integrated in the CPU core. The SWT is a 32-bit modulus counter, clocked by the system clock or the crystal clock, that can provide a system reset or interrupt request when the correct software key is not written within the required time window. The following features are implemented: • • 32-bit modulus counter Clocked by system clock or crystal clock 1.AUTOSAR: AUTomotive Open System ARchitecture (see http://www.autosar.org) MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 17 • • • • • Optional programmable watchdog window mode Can optionally cause system reset or interrupt request on timeout Reset by writing a software key to memory mapped register Enabled out of reset Configuration is protected by a software key or a write-once register 1.4.20 Cyclic redundancy check (CRC) module The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC features: • • • Support for CRC-16-CCITT (x25 protocol): — X16 + X12 + X5 + 1 Support for CRC-32 (Ethernet protocol): — X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1 Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency 1.4.21 Error correction status module (ECSM) The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes, and information on platform memory errors reported by error-correcting codes and/or generic access error information for certain processor cores. The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes these features: • • Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the MPC5644A. The sources of the ECC errors are: • • • Flash SRAM Peripheral RAM (FlexRay, CAN, eTPU2 Parameter RAM) 1.4.22 External bus interface (EBI) The MPC5644A device features an external bus interface that is available in 324 TEPBGA and calibration packages. The EBI supports operation at frequencies of system clock /1, /2 and /4, with a maximum frequency support of 80 MHz. Customers running the device at 120 MHz or 132 MHz will use the /2 divider, giving an EBI frequency of 60 MHz or 66 MHz. Customers running the device at 80 MHz will be able to use the /1 divider to have the EBI run at the full 80 MHz frequency. Features include: • • • • • • • • 1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V) Memory controller with support for various memory types 16-bit data bus, up to 22-bit address bus Pin muxing included to support 32-bit muxed bus Selectable drive strength Configurable bus speed modes Bus monitor Configurable wait states MPC5644A Microcontroller Data Sheet, Rev. 7 18 Freescale Semiconductor 1.4.23 Calibration EBI The Calibration EBI controls data transfer across the crossbar switch to/from memories or peripherals attached to the VertiCal connector in the calibration address space. The Calibration EBI is only available in the VertiCal Calibration System. Features include: • • • • • • • • 1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V) Memory controller supports various memory types 16-bit data bus, up to 22-bit address bus Pin muxing supports 32-bit muxed bus Selectable drive strength Configurable bus speed modes Bus monitor Configurable wait states 1.4.24 Power management controller (PMC) The power management controller contains circuitry to generate the internal 3.3 V supply and to control the regulation of 1.2 V supply with an external NPN ballast transistor. It also contains low voltage inhibit (LVI) and power-on reset (POR) circuits for the 1.2 V supply, the 3.3 V supply, the 3.3 V/5 V supply of the closest I/O segment (VDDEH1) and the 5 V supply of the regulators (VDDREG). 1.4.25 Nexus port controller The NPC (Nexus Port Controller) block provides real-time Nexus Class3+ development support capabilities for the MPC5644A Power Architecture-based MCU in compliance with the IEEE-ISTO 5001-2003 and 2010 standards. MDO port widths of 4 pins and 12 pins are available in all packages. 1.4.26 JTAG The JTAGC (JTAG Controller) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001 standard. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE 1149.1-2001 standard and supports the following features: • • • • • • IEEE 1149.1-2001 Test Access Port (TAP) interface 4 pins (TDI, TMS, TCK, and TDO) A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions: — BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD, HIGHZ, CLAMP A 5-bit instruction register that supports the additional following public instructions: — ACCESS_AUX_TAP_NPC — ACCESS_AUX_TAP_ONCE — ACCESS_AUX_TAP_eTPU — ACCESS_CENSOR 3 test data registers to support JTAG Boundary Scan mode — Bypass register — Boundary scan register — Device identification register A TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry Censorship Inhibit Register MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 19 — 64-bit Censorship password register — If the external tool writes a 64-bit password that matches the Serial Boot password stored in the internal flash shadow row, Censorship is disabled until the next system reset. 1.4.27 Development Trigger Semaphore (DTS) MPC5644A devices include a system development feature, the Development Trigger Semaphore (DTS) module, that enables software to signal an external tool by driving a persistent (affected only by reset or an external tool) signal on an external device pin. There is a variety of ways this module can be used, including as a component of an external real-time data acquisition system 1.5 1.5.1 MPC5644A series architecture Block diagram Figure 1 shows a top-level block diagram of the MPC5644A series. MPC5644A Microcontroller Data Sheet, Rev. 7 20 Freescale Semiconductor Power ArchitectureTM e200z4 JTAG Nexus Class 3+ SPE Nexus VLE MMU eDMA 64 Channel 8 KB I-cache M4 M0 FlexRay M6 M1 Crossbar Switch MPU S0 S2 4 MB Flash IEEE-ISTO 5001-2003/2010 M7 S1 S7 Analog PLL 192 KB SRAM Voltage Regulator RCOSC Standby Regulator with Switch XOSC ECSM Cal Bus Interface Ext. Bus Interface Interrupt Controller ADCi DEC x2 Temp Sens ADC ADC eSCI3 DSPI3 FlexCAN3 PIT SWT SIU STM BAM PMC FMPLL CRC DTS 3 KB Data eTPU2 eMIOS 32 RAM Channel 24 14 KB Code Nexus Channel RAM Class 1 REACM I/O Bridge AMux VGA LEGEND ADC – Analog to Digital Converter ADCi – ADC interface AMux – Analog Multiplexer BAM – Boot Assist Module CRC – Cyclic Redundancy Check unit DEC – Decimation Filter DTS – Development Trigger Semaphore DSPI – Deserial/Serial Peripheral Interface EBI – External Bus Interface ECSM – Error Correction Status Module eDMA – Enhanced Direct Memory Access eMIOS – Enhanced Modular Input Output System eSCI – Enhanced Serial Communications Interface eTPU2 – Second gen. Enhanced Time Processing Unit FlexCAN– Controller Area Network (FlexCAN) FMPLL – Frequency-Modulated Phase Locked Loop JTAG MMU MPU PMC PIT RCOSC REACM SIU SPE SRAM STM SWT VGA VLE XOSC – IEEE 1149.1 test controller – Memory Management Unit – Memory Protection Unit – Power Management Controller – Periodic Interrupt Timer – low-speed RC oscillator – Reaction module – System Integration Unit – Signal Processing Extension – Static RAM – System Timer Module – Software Watchdog Timer – Variable Gain Amplifier – Variable Length (instruction) Encoding – XTAL Oscillator Figure 1. MPC5644A series block diagram MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 21 1.5.2 Block summary Table 2 summarizes the functions of the blocks present on the MPC5644A series microcontrollers. Table 2. MPC5644A series block summary Block Function Boot assist module (BAM) Block of read-only memory containing executable code that searches for user-supplied boot code and, if none is found, executes the BAM boot code resident in device ROM. Calibration Bus interface Transfers data across the crossbar switch to/from peripherals attached to the calibration system connector. Controller area network (FlexCAN) Supports the standard CAN communications protocol. Crossbar switch (XBAR) Internal busmaster. Cyclic redundancy check (CRC) CRC checksum generator. Deserial serial peripheral interface (DSPI) Provides a synchronous serial interface for communication with external devices. e200z4 core Executes programs and interrupt handlers. Enhanced direct memory access (eDMA) Performs complex data movements with minimal intervention from the core. Enhanced modular input-output system (eMIOS) Provides the functionality to generate or measure events. Enhanced queued analog-to-digital converter (eQADC) Provides accurate and fast conversions for a wide range of applications. Enhanced serial communication interface (eSCI) Provides asynchronous serial communication capability with peripheral devices and other microcontroller units. Enhanced time processor unit (eTPU2) Second-generation co-processor processes real-time input events, performs output waveform generation, and accesses shared data without host intervention. Error Correction Status Module (ECSM) The Error Correction Status Module supports a number of miscellaneous control functions for the platform, and includes registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented External bus interface (EBI) Enables expansion of internal bus to enable connection of external memory or peripherals. Flash memory Provides storage for program code, constants, and variables. FlexRay Provides high-speed distributed control for advanced automotive applications. Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests. JTAG controller Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. Memory protection unit (MPU) Provides hardware access control for all memory references generated. Nexus port controller (NPC) Provides real-time development support capabilities in compliance with the IEEE-ISTO 5001-2003 standard. MPC5644A Microcontroller Data Sheet, Rev. 7 22 Freescale Semiconductor Table 2. MPC5644A series block summary (continued) Block Function Reaction Module (REACM) Works in conjunction with the eQADC and eTPU2 to increase system performance by removing the CPU from the current control loop. System Integration Unit (SIU) Controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, and the system reset operation. Static random-access memory (SRAM) Provides storage for program code, constants, and variables. System timers Includes periodic interrupt timer with real-time interrupt; output compare timer and system watchdog timer. Temperature sensor Provides the temperature of the device as an analog value. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 23 2 Pinout and signal description This section contains the pinouts for all production packages for the MPC5644A family of devices. CAUTION Any pins labeled “NC” are to be left unconnected. Any connection to an external circuit or voltage may cause unpredictable device behavior or damage. MPC5644A Microcontroller Data Sheet, Rev. 7 24 Freescale Semiconductor 176 LQFP pinout 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 VDD AN[37] AN[36] AN[21] AN[0] (DAN0+) AN[1] (DAN0-) AN[2] (DAN1+) AN[3] (DAN1-) AN[4] (DAN2+) AN[5] (DAN2-) AN[6] (DAN3+) AN[7] (DAN3-) REFBYPC VRH VRL AN[22] AN[23] AN[24] AN[25] AN[27] AN[28] AN[30] AN[31] AN[32] AN[33] AN[34] AN[35] VDD AN[12] / MA[0] / ETPUA19_O /SDS AN[13] / MA[1] / ETPUA21_O / SDO AN[14] / MA[2] / ETPUA27_O / SDI AN[15] / FCK / ETPUA29_O GPIO[207] ETRIG1 GPIO[206] ETRIG0 DSPI_D_SIN / GPIO[99] DSPI_D_SCK / GPIO[98] VSS MDO9 / ETPUA25_O / GPIO[80] VDDEH7B MDO8 / ETPUA21_O / GPIO[79] MDO7 / ETPUA19_O / GPIO[78] MDO6 / ETPUA13_O / GPIO[77] MDO10 / ETPUA27_O / GPIO[81] VSS 2.1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 176-Pin LQFP signal details: pin 21: ETPUA31 / DSPI_C_PCS[4] / ETPUA13_O / GPIO[145] pin 22: ETPUA30 / DSPI_C_PCS[3] / ETPUA11_O / GPIO[144] pin 23: ETPUA29 / DSPI_C_PCS[2] / RCH5_C / GPIO[143] pin 24: ETPUA28 / DSPI_C_PCS[1] / RCH5_B / GPIO[142] pin 25: ETPUA27 / IRQ[15] / DSPI_C_SOUT_LVDS+ / SOUTB / GPIO[141] pin 26: ETPUA26 / IRQ[14] / DSPI_C_SOUT_LVDS- / GPIO[140] pin 27: ETPUA25 / IRQ[13] / DSPI_C_SCK_LVDS+ / GPIO[139] pin 28: ETPUA24 / IRQ[12] / DSPI_C_SCK_LVDS- / GPIO[138] pin 30: ETPUA23 / IRQ[11] / ETPUA21_O / FR_A_TX_EN / GPIO[137] pin 32: ETPUA22 / IRQ[10] / ETPUA17_O / GPIO[136] pin 34: ETPUA21 / IRQ[9] / RCH0_C / FR_A_RX / GPIO[135] pin 35: ETPUA20 / IRQ[8] / RCH0_B / FR_A_TX / GPIO[134] pin 36: ETPUA19 / DSPI_D_PCS[4] / RCH5_A / GPIO[133] pin 37: ETPUA18 / DSPI_D_PCS[3] / RCH4_A / GPIO[132] pin 38: ETPUA17 / DSPI_D_PCS[2] / RCH3_A / GPIO[131] pin 39: ETPUA16 / DSPI_D_PCS[1] / RCH2_A / GPIO[130] pin 40: ETPUA15 / DSPI_B_PCS[5] / RCH1_A / GPIO[129] pin 42: ETPUA14 / DSPI_B_PCS[4] / ETPUA9_O / RCH0_A / GPIO[128] 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 VDD TMS TDI MDO5 / ETPUA4_O / GPIO[76] TCK VSS MDO4 / ETPUA2_O / GPIO[75] VDDEH7A MDO11 / ETPUA29_O / GPIO[82] TDO GPIO[219] JCOMP EVTO NC MSEO[0] MSEO[1] EVTI VSS DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108] DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104] DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103] DSPI_B_PCS[0] / DSPI_D_PCS[2] / GPIO[105] VDDEH6B DSPI_B_PCS[1] / DSPI_D_PCS[0] / GPIO[106] VSS DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107] DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102] DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109] DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110] VDD RSTOUT CAN_C_TX / DSPI_D_PCS3 / GPIO[87] SCI_A_TX / EMIOS13 / GPIO[89] SCI_A_RX / EMIOS15 / GPIO[90] CAN_C_RX / DSPI_D_PCS4 / GPIO[88] RESET VSS VDDEH6A VSS XTAL EXTAL / EXTCLK VDDPLL VSS CAN_B_RX / DSPI_C_PCS[4] / SCI_C_RX / GPIO[86] VDD ETPUA13 / DSPI_B_PCS[3] / GPIO[127] ETPUA12 / DSPI_B_PCS[1] / RCH4_C / GPIO[126] ETPUA11 / ETPUA23_O / RCH4_B / GPIO[125] ETPUA10 / ETPUA22_O / RCH1_C /GPIO[124] ETPUA9 / ETPUA21_O / RCH1_B / GPIO[123] ETPUA8 / ETPUA20_O / DSPI_B_SOUT_LVDS+ / GPIO[122] ETPUA7 / ETPUA19_O / DSPI_B_SOUT_LVDS- / ETPUA6_O / GPIO[121] ETPUA6 / ETPUA18_O / DSPI_B_SCK_LVDS+ / FR_B_RX / GPIO[120] ETPUA5 / ETPUA17_O / DSPI_B_SCK_LVDS- / FR_B_TX_EN/ GPIO[119] VDDEH4A ETPUA4 / ETPUA16_O / FR_B_TX / GPIO[118] VSS ETPUA3 / ETPUA15_O / GPIO[117] ETPUA2 / ETPUA14_O / GPIO[116] ETPUA1 / ETPUA13_O / GPIO[115] ETPUA0 / ETPUA12_O / ETPUA19_O / GPIO[114] VDD EMIOS0 / ETPUA0 / ETPUA25_O / GPIO[179] EMIOS1 / ETPUA1_O / GPIO[180] EMIOS2 / ETPUA2_O / RCH2_B / GPIO[181] EMIOS3 / ETPUA3_O /GPIO[182] EMIOS4 / ETPUA4_O / RCH2_C / GPIO[183] EMIOS6 / ETPUA6_O / GPIO[185] EMIOS7 / ETPUA7_O / GPIO[186] EMIOS8 / ETPUA8_O / SCI_B_TX / GPIO[187] EMIOS9 / ETPUA9_O / SCI_B_RX / GPIO[188] VSS EMIOS10 / DSPI_D_PCS3 / RCH3_B / GPIO[189] VDDEH4B EMIOS11 / DSPI_D_PCS4 / RCH3_C / GPIO[190] EMIOS12 / DSPI_C_SOUT / ETPUA27_O / GPIO[191] EMIOS13 / DSPI_D_SOUT / GPIO[192] EMIOS14 / IRQ[0] / ETPUA29_O / GPIO[193] EMIOS15 / IRQ[1] / GPIO[194] EMIOS23 / GPIO[202] CAN_A_TX / SCI_A_TX / GPIO[83] CAN_A_RX / SCI_A_RX / GPIO[84] PLLREF / IRQ[4]/ETRIG[2] / GPIO[208] SCI_B_RX / DSPI_D_PCS5 / GPIO[92] BOOTCFG1 / IRQ[3] / ETRIG[3] / GPIO[212] WKPCFG / NMI / DSPI_B_SOUT / GPIO[213] SCI_B_TX / DSPI_D_PCS1 / GPIO[91] CAN_B_TX / DSPI_C_PCS3 / SCI_C_TX / GPIO[85] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 AN[18] AN[17] AN[16] AN[11] / ANZ AN[9] / ANX VDDA VSSA AN[39] AN[8] / ANW VDDREG VRCCTL VSTBY VRC33 MCKO VSS NC MDO[0] MDO[1] MDO[2] MDO[3] (see signal details, pin 21) (see signal details, pin 22) (see signal details, pin 23) (see signal details, pin 24) (see signal details, pin 25) (see signal details, pin 26) (see signal details, pin 27) (see signal details, pin 28) VSS (see signal details, pin 30) VDDEH1A (see signal details, pin 32) VDD (see signal details, pin 34) (see signal details, pin 35) (see signal details, pin 36) (see signal details, pin 37) (see signal details, pin 38) (see signal details, pin 39) (see signal details, pin 40) VDDEH1B (see signal details, pin 42) VSS NIC Note: Pin 96 (VSS) should be tied low. Figure 2. 176-pin LQFP pinout (top view) MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 25 26 2.2 208 MAP BGA ballmap MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A VSS AN9 AN11 VDDA1 VSSA1 AN1 AN5 VRH VRL AN27 VSSA0 AN12-SDS MDO2 MDO0 VRC33 VSS A B VDD VSS AN8 AN21 AN0 AN4 REFBYPC AN22 AN25 AN28 VDDA0 AN13-SDO MDO3 MDO1 VSS VDD B C VSTBY VDD VSS AN17 AN34 AN16 AN3 AN7 AN23 AN32 AN33 AN14-SDI AN15-FCK VSS MSEO0 TCK C D VRC33 AN39 VDD VSS AN18 AN2 AN6 AN24 AN30 AN31 AN35 VDDEH7 VSS TMS EVTO NC D E ETPUA30 ETPUA31 AN37 VDD NC TDI EVTI MSEO1 E F ETPUA28 ETPUA29 ETPUA26 AN36 VDDEH6AB TDO MCKO JCOMP F G ETPUA24 ETPUA27 ETPUA25 ETPUA21 VSS VSS VSS VSS DSPI_B_ SOUT DSPI_B_ PCS3 DSPI_B_ SIN DSPI_B_ PCS0 G H ETPUA23 ETPUA22 ETPUA17 ETPUA18 VSS VSS VSS VSS GPIO99 DSPI_B_ PCS4 DSPI_B_ PCS2 DSPI_B_ PCS1 H J ETPUA20 ETPUA19 ETPUA14 ETPUA13 VSS VSS VSS VSS DSPI_B_ PCS5 SCI_A_TX GPIO98 DSPI_B_ SCK J K ETPUA16 ETPUA15 ETPUA7 VDDEH1AB VSS VSS VSS VSS CAN_C_TX SCI_A_RX RSTOUT VDDREG K L ETPUA12 ETPUA11 ETPUA6 TCRCLKA SCI_B_TX CAN_C_ RX WKPCFG RESET L M ETPUA10 ETPUA9 ETPUA1 ETPUA5 SCI_B_RX PLLREF BOOTCFG1 VSS M N ETPUA8 ETPUA4 ETPUA0 VSS VDD VRC33 EMIOS2 EMIOS10 VDDEH4AB EMIOS12 MDO7_ ETPUA19_O VRC33 VSS1 VRCCTL NC EXTAL N P ETPUA3 ETPUA2 VSS VDD GPIO207 NC EMIOS6 EMIOS8 MDO11_ ETPUA29_O MDO4_ ETPUA2_O MDO8_ ETPUA21_O CAN_A_TX VDD VSS NC XTAL P R NC VSS VDD GPIO206 EMIOS4 EMIOS3 EMIOS9 EMIOS11 EMIOS14 MDO10_ ETPUA27_O EMIOS23 CAN_A_RX CAN_B_RX VDD VSS VDDPLL R T VSS VDD NC EMIOS0 EMIOS1 GPIO219 MDO9_ ETPUA25_O EMIOS13 EMIOS15 MDO5_ ETPUA4_O MDO6_ ETPUA13_O CAN_B_TX VDDE5 ENGCLK VDD VSS T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 This pin (N13) should be tied low. Figure 3. 208-pin MAPBGA package ballmap (viewed from above) Freescale Semiconductor 2.3 324 TEPBGA ballmap MPC5644A Microcontroller Data Sheet, Rev. 7 1 2 3 4 5 6 7 8 9 10 11 A VSS VDD AN16 AN17 AN37 VDDA1 VSSA1 AN23 AN25 VRH VRL B VRC33 VSS VDD AN18 AN36 AN21 AN4 AN5 AN24 REFBYPC AN30 C AN11 AN9 ANX VSS VDD AN20 AN0 AN1 AN6 AN7 AN27 AN29 D AN10 ANY AN39 AN38 VSS VDD AN19 AN2 AN3 AN22 AN26 AN28 E AN8 ANW VSSA0 VDDA0 VSTBY F MCKO VRCCTL MDO0 VDDREG G CS0 MDO1 MDO2 MDO3 H CS1 CS2 OE CS3 J WE1 WE0 BDIP RD_WR VSS VSS VSS K ETPUA31 TA TS VDDEH1AB VSS VSS VSS L ETPUA27 ETPUA26 ETPUA29 ETPUA30 VSS VSS VSS Figure 4. 324-pin TEPBGA package ballmap (northwest, viewed from above) 27 28 MPC5644A Microcontroller Data Sheet, Rev. 7 M ETPUA23 ETPUA24 ETPUA25 ETPUA28 VDDE2 VDDE2 VSS N ADDR13 ADDR12 ETPUA22 ETPUA21 VSS VSS VDDE5 P ADDR14 ADDR15 ADDR16 ADDR17 VSS VSS VRC33 R ADDR18 ADDR19 VDDE-EH ADDR20 T ADDR21 ADDR22 ADDR23 ADDR24 U ADDR25 ADDR26 ADDR27 ADDR28 V ADDR29 VDDE-EH ADDR30 ADDR31 W ETPUA20 ETPUA19 ETPUA18 VSS VDDE5 DATA6 DATA10 VDDE5 DATA14 ENGCLK ETPUA4 Y ETPUA17 ETPUA16 VSS VDD DATA0 DATA5 DATA9 DATA13 DATA15 ETPUA8 ETPUA3 AA ETPUA15 ETPUA14 VDD ETPUA10 DATA1 DATA4 DATA8 DATA12 ETPUA9 ETPUA7 ETPUA2 AB VSS ETPUA13 ETPUA12 ETPUA11 DATA2 DATA3 DATA7 DATA11 CLKOUT ETPUA6 ETPUA5 1 2 3 4 5 6 7 8 9 10 11 Figure 5. 324-pin TEPBGA package ballmap (southwest, viewed from above) Freescale Semiconductor 29 12 13 14 15 16 17 18 19 MPC5644A Microcontroller Data Sheet, Rev. 7 20 21 22 AN34 AN14-SDI AN15-FCK GPIO203 DSPI_A_ PCS5 DSPI_A_ SOUT VDD VDD VSS A AN33 AN13-SDO GPIO207 GPIO99 DSPI_A_ PCS4 DSPI_A_SIN MDO7_ ETPUA19_O MDO5_ ETPUA4_O VSS VDDEH7 B AN32 AN12-SDS GPIO206 GPIO98 DSPI_A_ PCS1 DSPI_A_SCK MDO6_ MDO11_ ETPUA13_O ETPUA29_O VSS VDDEH7 VDD C AN31 AN35 GPIO204 VDDEH7 DSPI_A_ PCS0 VSS VSS VDDEH7 TCK TDI D VDDEH7 TMS TDO NC E VDDEH7 JCOMP VSS NC F RDY EVTO MSEO0 MSEO1 G VDDEH7 EVTI VSS DSPI_B_SIN H MDO8_ MDO10_ ETPUA21_O ETPUA27_O MDO9_ ETPUA25_O MDO4_ ETPUA2_O VSS VSS VDDEH7 DSPI_B_ SOUT DSPI_B_ PCS3 DSPI_B_ PCS0 DSPI_B_ PCS1 J VSS VSS VSS NC DSPI_B_ PCS4 DSPI_B_SCK DSPI_B_ PCS2 K VSS VSS VSS DSPI_B_ PCS5 NC VSS NC L Figure 6. 324-pin TEPBGA package ballmap (northeast, viewed from above) Freescale Semiconductor 30 MPC5644A Microcontroller Data Sheet, Rev. 7 1 VSS VSS VSS VRC33 NC NC VDDEH6AB M VSS VSS VSS NC SCI_A_TX VSS NC N VSS VSS VSS CAN_C_TX SCI_A_RX RSTOUT RSTCFG P NC NC NC RESET R VSS BOOTCFG0 VSS1 VSS T VDDEH6AB PLLCFG1 BOOTCFG1 EXTAL U SCI_C_RX CAN_C_RX PLLREF XTAL V ETPUA1 EMIOS1 VDDEH4AB EMIOS8 EMIOS15 EMIOS16 EMIOS23 SCI_C_TX VDD CAN_B_RX VDDPLL W ETPUA0 EMIOS2 EMIOS5 EMIOS9 EMIOS14 EMIOS17 EMIOS22 CAN_A_RX VSS VDD CAN_B_TX Y EMIOS0 EMIOS3 EMIOS6 EMIOS10 EMIOS13 EMIOS18 EMIOS21 VDDEH4AB WKPCFG VSS VDD AA TCRCLKA EMIOS4 EMIOS7 EMIOS11 EMIOS12 EMIOS19 EMIOS20 CAN_A_TX SCI_B_RX SCI_B_TX VSS AB 12 13 14 15 16 17 18 19 20 21 22 This pin (T21) should be tied low. Figure 7. 324-pin TEPBGA package ballmap (southeast, viewed from above) Freescale Semiconductor Freescale Semiconductor 2.4 Signal summary Table 3. MPC5644A signal properties Function1 Name P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 GPIO MPC5644A Microcontroller Data Sheet, Rev. 7 EMIOS148 GPIO[203] eMIOS channel GPIO P G 01 00 203 O I/O VDDEH7 Slow — / Up — / Up — — A15 EMIOS158 GPIO[204] eMIOS channel GPIO P G 01 00 204 O I/O VDDEH7 Slow — / Up —/ Up — — D14 GPIO[206] ETRIG0 GPIO / eQADC Trigger Input G 00 206 I/O9 VDDEH7 Slow10 — / Up — / Up 143 R4 C14 GPIO[207] ETRIG1 GPIO / eQADC Trigger Input G 00 207 I/O9 VDDEH7 Slow — / Up — / Up 144 P5 B14 GPIO[219] G — 21911 I/O VDDEH7 MultiV12 — / Up — / Up 122 T6 RESET / Up 97 L16 R22 K15 P21 M14 V21 GPIO — Reset / Configuration RESET External Reset Input P — — I VDDEH6 Slow RESET / Up RSTOUT External Reset Output P 01 230 O VDDEH6 Slow RSTOUT / Down PLLREF IRQ[4] ETRIG2 GPIO[208] FMPLL Mode Selection External Interrupt Request eQADC Trigger Input GPIO P A1 A2 G 001 010 100 000 208 I I I I/O VDDEH6 Slow — / Up PLLREF / Up PLLCFG113 IRQ[5] DSPI_D_SOUT GPIO[209] — External interrupt request DSPI D data output GPIO — A1 A2 G — 010 100 000 209 — I O I/O VDDEH6 Medium — / Up — / Up — — U20 RSTCFG GPIO[210] RSTCFG GPIO P G 01 00 210 I I/O VDDEH6 Slow — / Down — — — P22 BOOTCFG[0] IRQ[2] GPIO[211] Boot Config. Input External Interrupt Request GPIO P A1 G 01 10 00 211 I I I/O VDDEH6 Slow — / Down BOOTCFG[0] / Down — — T20 RSTOUT / Down 102 83 31 32 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 During Reset Package pin # After Reset 176 208 324 BOOTCFG[1] IRQ[3] ETRIG3 GPIO[212] Boot Config. Input External Interrupt Request eQADC Trigger Input GPIO P A1 A2 G 001 010 100 000 212 I I I I/O VDDEH6 Slow — / Down BOOTCFG[1] / Down 85 M15 U21 WKPCFG NMI DSPI_B_SOUT GPIO[213] Weak Pull Config. Input Non-Maskable Interrupt DSPI D data output GPIO P A1 A2 G 001 010 100 000 213 I I O I/O VDDEH6 Medium — / Up WKPCFG / Up 86 L15 AA20 MPC5644A Microcontroller Data Sheet, Rev. 7 External Bus Interface Freescale Semiconductor CS[0] ADDR[8] GPIO[0] External chip selects External address bus GPIO P A1 G 01 10 00 0 O I/O I/O VDDE2 Fast — / Up — / Up — — G1 CS[1] ADDR9 GPIO[1] External chip selects External address bus GPIO P A1 G 01 10 00 1 O I/O I/O VDDE2 Fast — / Up — / Up — — H1 CS[2] ADDR10 WE[2]/BE[2] CAL_WE[2]/BE[2] GPIO[2] External chip selects External address bus Write/byte enable Cal. bus write/byte enable GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 2 O I/O O O I/O VDDE2 Fast — / Up — / Up — — H2 CS[3] ADDR11 WE[3]/BE[3] CAL_WE[3]/BE[3] GPIO[3] External chip selects External address bus Write/byte enable Cal bus write/byte enable GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 3 O I/O O O I/O VDDE2 Fast — / Up — / Up — — H4 ADDR12 GPIO[8] External address bus GPIO P G 01 00 8 I/O I/O VDDE3 Fast — / Up — / Up — — N2 ADDR13 WE[2] GPIO[9] External address bus Write/byte enable GPIO P A2 G 001 100 000 9 I/O O I/O VDDE3 Fast — / Up — / Up — — N1 ADDR14 WE[3] GPIO[10] External address bus Write/byte enables GPIO P A2 G 001 100 000 10 I/O O I/O VDDE3 Fast — / Up — / Up — — P1 ADDR15 GPIO[11] External address bus GPIO P G 01 00 11 I/O I/O VDDE3 Fast — / Up — / Up — — P2 Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 ADDR16 FR_A_TX DATA16 GPIO[12] External address bus Flexray TX data channel A External data bus GPIO P A1 A2 G 001 010 100 000 12 I/O O I/O I/O VDDE-EH Medium — / Up — / Up — — P3 ADDR17 FR_A_TX_EN DATA17 GPIO[13] External address bus FlexRay ch. A TX data enable External data bus GPIO P A1 A2 G 001 010 100 000 13 I/O O I/O I/O VDDE-EH Medium — / Up — / Up — — P4 ADDR18 FR_A_RX DATA18 GPIO[14] External address bus Flexray RX data ch. A External data bus GPIO P A1 A2 G 001 010 100 000 14 I/O I I/O I/O VDDE-EH Medium — / Up — / Up — — R1 ADDR19 FR_B_TX DATA19 GPIO[15] External address bus Flexray TX data ch. B External data bus GPIO P A1 A2 G 001 010 100 000 15 I/O O I/O I/O VDDE-EH Medium — / Up — / Up — — R2 ADDR20 FR_B_TX_EN DATA20 GPIO[16] P External address bus Flexray TX data enable for ch. B A1 A2 External data bus G GPIO 001 010 100 000 16 I/O O I/O I/O VDDE-EH Medium — / Up — / Up — — R4 ADDR21 FR_B_RX DATA21 GPIO[17] External address bus Flexray RX data channel B External data bus GPIO P A1 A2 G 001 010 100 000 17 I/O I I/O I/O VDDE-EH Medium — / Up — / Up — — T1 ADDR22 DATA22 GPIO[18] External address bus External data bus GPIO P A2 G 001 100 000 18 I/O I/O I/O VDDE-EH Medium — / Up — / Up — — T2 ADDR23 DATA23 GPIO[19] External address bus External data bus GPIO P A2 G 001 100 000 19 I/O I/O I/O VDDE-EH Medium — / Up — / Up — — T3 ADDR24 DATA24 GPIO[20] External address bus External data bus GPIO P A2 G 001 100 000 20 I/O I/O I/O VDDE-EH Medium — / Up — / Up — — T4 ADDR25 DATA25 GPIO[21] External address bus External data bus GPIO P A2 G 001 100 000 21 I/O I/O I/O VDDE-EH Medium — / Up — / Up — — U1 33 34 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor ADDR26 DATA26 GPIO[22] External address bus External data bus GPIO P A2 G 001 100 000 22 I/O I/O I/O VDDE-EH Medium — / Up — / Up — — U2 ADDR27 DATA27 GPIO[23] External address bus External data bus GPIO P A2 G 001 100 000 23 I/O I/O I/O VDDE-EH Medium — / Up — / Up — — U3 ADDR28 DATA28 GPIO[24] External address bus External data bus GPIO P A2 G 001 100 000 24 I/O I/O I/O VDDE-EH Medium — / Up — / Up — — U4 ADDR29 DATA29 GPIO[25] External address bus External data bus GPIO P A2 G 001 100 000 25 I/O I/O I/O VDDE-EH Medium — / Up — / Up — — V1 ADDR30 ADDR68 DATA30 GPIO[26] External address bus External address bus External data bus GPIO P A1 A2 G 001 010 100 000 26 I/O O I/O I/O VDDE-EH Medium — / Up — / Up — — V3 ADDR31 ADDR78 DATA31 GPIO[27] External address bus External address bus External data bus GPIO P A1 A2 G 001 010 100 000 27 I/O O I/O I/O VDDE-EH Medium — / Up — / Up — — V4 DATA0 ADDR16 GPIO[28] External data bus External address bus GPIO P A1 G 001 010 000 28 I/O I/O I/O VDDE5 Fast — / Up — / Up — — Y5 DATA1 ADDR17 GPIO[29] External data bus External address bus GPIO P A1 G 001 010 000 29 I/O I/O I/O VDDE5 Fast — / Up — / Up — — AA5 DATA2 ADDR18 GPIO[30] External data bus External address bus GPIO P A1 G 001 010 000 30 I/O I/O I/O VDDE5 Fast — / Up — / Up — — AB5 DATA3 ADDR19 GPIO[31] External data bus External address bus GPIO P A1 G 001 010 000 31 I/O I/O I/O VDDE5 Fast — / Up — / Up — — AB6 DATA4 ADDR20 GPIO[32] External data bus External address bus GPIO P A1 G 001 010 000 32 I/O I/O I/O VDDE5 Fast — / Up — / Up — — AA6 Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 DATA5 ADDR21 GPIO[33] External data bus External address bus GPIO P A1 G 001 010 000 33 I/O I/O I/O VDDE5 Fast — / Up — / Up — — Y6 DATA6 ADDR22 GPIO[34] External data bus External address bus GPIO P A1 G 001 010 000 34 I/O I/O I/O VDDE5 Fast — / Up — / Up — — W6 DATA7 ADDR23 GPIO[35] External data bus External address bus GPIO P A1 G 001 010 000 35 I/O I/O I/O VDDE5 Fast — / Up — / Up — — AB7 DATA8 ADDR24 GPIO[36] External data bus External address bus GPIO P A1 G 001 010 000 36 I/O I/O I/O VDDE5 Fast — / Up — / Up — — AA7 DATA9 ADDR25 GPIO[37] External data bus External address bus GPIO P A1 G 001 010 000 37 I/O I/O I/O VDDE5 Fast — / Up — / Up — — Y7 DATA10 ADDR26 GPIO[38] External data bus External address bus GPIO P A1 G 001 010 000 38 I/O I/O I/O VDDE5 Fast — / Up — / Up — — W7 DATA11 ADDR27 GPIO[39] External data bus External address bus GPIO P A1 G 001 010 000 39 I/O I/O I/O VDDE5 Fast — / Up — / Up — — AB8 DATA12 ADDR28 GPIO[40] External data bus External address bus GPIO P A1 G 001 010 000 40 I/O I/O I/O VDDE5 Fast — / Up — / Up — — AA8 DATA13 ADDR29 GPIO[41] External data bus External address bus GPIO P A1 G 001 010 000 41 I/O I/O I/O VDDE5 Fast — / Up — / Up — — Y8 DATA14 ADDR30 GPIO[42] External data bus External address bus GPIO P A1 G 001 010 000 42 I/O I/O I/O VDDE5 Fast — / Up — / Up — — W9 DATA15 ADDR31 GPIO[43] External data bus External address bus GPIO P A1 G 001 010 000 43 I/O I/O I/O VDDE5 Fast — / Up — / Up — — Y9 RD_WR GPIO[62] External read/write GPIO P G 01 00 62 I/O I/O VDDE2 Fast — / Up — / Up — — J4 35 36 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 BDIP GPIO[63] External burst data in progress GPIO P G 01 00 63 O I/O VDDE2 Fast — / Up — / Up — — J3 WE[0]/BE[0] GPIO[64] External write/byte enable GPIO P G 01 00 64 O I/O VDDE2 Fast — / Up — / Up — — J2 WE[1]/BE[1] GPIO[65] External write/byte enable GPIO P G 01 00 65 O I/O VDDE2 Fast — / Up — / Up — — J1 OE GPIO[68] External output enable GPIO P G 01 00 68 O I/O VDDE2 Fast — / Up — / Up — — H3 TS ALE GPIO[69] External transfer start Address latch enable GPIO[69] P A1 G 001 010 000 69 I/O O I/O VDDE2 Fast — / Up — / Up — — K3 TA TS8 GPIO[70] External transfer acknowledge External transfer start GPIO P A1 G 001 010 000 70 I/O O I/O VDDE2 Fast — / Up — / Up — — K2 Calibration Bus Freescale Semiconductor CAL_CS0 Calibration chip select P 01 336 O VDDE12 Fast —/— — — — CAL_CS2 CAL_ADDR[10] CAL_WE[2]/BE[2] Calibration chip select Calibration address bus Calibration write/byte enable P A A2 001 010 100 338 O I/O O VDDE12 Fast —/— — — — CAL_CS3 CAL_ADDR[11] CAL_WE[3]/BE[3] Calibration chip select Calibration address bus Calibration write/byte enable P A A2 001 010 100 339 O I/O O VDDE12 Fast —/— — — — CAL_ADDR[12] CAL_WE[2]/BE[2] Calibration address bus Calibration write/byte enable P A 01 10 340 I/O O VDDE12 Fast —/— — — — CAL_ADDR[13] CAL_WE[3]/BE[3] Calibration address bus Calibration write/byte enable P A 01 10 340 I/O O VDDE12 Fast —/— — — — CAL_ADDR[14] CAL_DATA[31] Calibration address bus Calibration data bus P A 01 10 340 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[15] CAL_ALE Calibration address bus P Calibration address latch enable A1 01 10 340 I/O O VDDE12 Fast —/— — — — CAL_ADDR[16] CAL_DATA[16] Calibration address bus Calibration data bus 01 10 345 I/O I/O VDDE12 Fast —/— — — — P A Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 During Reset Package pin # After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 CAL_ADDR[17] CAL_DATA[17] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[18] CAL_DATA[18] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[19] CAL_DATA[19] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[20] CAL_DATA[20] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[21] CAL_DATA[21] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[22] CAL_DATA[22] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[23] CAL_DATA[23] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[24] CAL_DATA[24] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[25] CAL_DATA[25] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[26] CAL_DATA[26] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[27] CAL_DATA[27] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[28] CAL_DATA[28] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[29] CAL_DATA[29] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_ADDR[30] CAL_DATA[30] Calibration address bus Calibration data bus P A 01 10 345 I/O I/O VDDE12 Fast —/— — — — CAL_DATA[0] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[1] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — 37 38 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor CAL_DATA[2] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[3] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[4] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[5] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[6] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[7] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[8] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[9] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[10] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[11] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[12] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[13] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[14] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_DATA[15] Calibration data bus P 01 341 I/O VDDE12 Fast — / Up — / Up — — — CAL_RD_WR Calibration read/write enable P 01 342 O VDDE12 Fast —/— — — — CAL_WE[0]/BE[0] Calibration write/byte enable P 01 342 O VDDE12 Fast —/— — — — Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 During Reset Package pin # After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 CAL_WE[1]/BE[1] Calibration write/byte enable P 01 342 O VDDE12 Fast —/— — — — CAL_OE Calibration output enable P 01 342 O VDDE12 Fast —/— — — — CAL_TS CAL_ALE Calibration transfer start Address Latch Enable P A 01 10 343 O O VDDE12 Fast —/— — — — CAL_MDO[4] Calibration Nexus Message Data Out P 01 — O VDDE12 Fast — CAL_MDO[4] / — — — — CAL_MDO[5] Calibration Nexus Message Data Out P 01 — O VDDE12 Fast — CAL_MDO[5] / — — — — CAL_MDO[6] Calibration Nexus Message Data Out P 01 — O VDDE12 Fast — CAL_MDO[6] / — — — — CAL_MDO[7] Calibration Nexus Message Data Out P 01 — O VDDE12 Fast — CAL_MDO[7] / — — — — CAL_MDO[8] Calibration Nexus Message Data Out P 01 — O VDDE12 Fast — CAL_MDO[8] / — — — — CAL_MDO[9] Calibration Nexus Message Data Out P 01 — O VDDE12 Fast — CAL_MDO[9] / — — — — CAL_MDO[10] Calibration Nexus Message Data Out P 01 — O VDDE12 Fast — CAL_MDO[10] / — — — — CAL_MDO[11] Calibration Nexus Message Data Out P 01 — O VDDE12 Fast — CAL_MDO[11] / — — — — NEXUS 39 EVTI Nexus event in P 01 231 I VDDEH7 MultiV12,14 — / Up EVTI / Up 116 E15 H20 EVTO Nexus event out P 01 227 O VDDEH7 MultiV12,14,15 — EVTO / — 120 D15 G20 MCKO Nexus message clock out P — 21911 O VRC33 Fast — MCKO / — 14 F15 F1 MDO016 Nexus message data out P 01 220 O VRC33 Fast — MDO[0] / — 17 A14 F3 MDO116 Nexus message data out P 01 221 O VRC33 Fast — MDO[1] / — 18 B14 G2 40 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor MDO216 Nexus message data out P 01 222 O VRC33 Fast — MDO[2] / — 19 A13 G3 MDO316 Nexus message data out P 01 223 O VRC33 Fast — MDO[3] / — 20 B13 G4 MDO416 ETPUA2_O8 GPIO[75] Nexus message data out eTPU A channel (output only) GPIO[ P A1 G 01 10 00 75 O O I/O VDDEH7 MultiV12,14 — —/— 126 P10 B19 MDO516 ETPUA4_O8 GPIO[76] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 76 O O I/O VDDEH7 MultiV12,14 — —/— 129 T10 B20 MDO616 ETPUA13_O8 GPIO[77] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 77 O O I/O VDDEH7 MultiV12,14 — —/— 135 T11 C18 MDO716 ETPUA19_O8 GPIO[78] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 78 O O I/O VDDEH7 MultiV12,14 — —/— 136 N11 B18 MDO816 ETPUA21_O8 GPIO[79] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 79 O O I/O VDDEH7 MultiV12,14 — —/— 137 P11 A18 MDO916 ETPUA25_O8 GPIO[80] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 80 O O I/O VDDEH7 MultiV12,14 — —/— 139 T7 D18 MDO1016 ETPUA27_O8 GPIO[81] Nexus message data out eTPU A channel (output only) GPIO P A1 G 01 10 00 81 O O I/O VDDEH7 MultiV12,14 — —/— 134 R10 A19 MDO1116 ETPUA29_O8 GPIO[82] Nexus message data out eTPU A channel (output only) GPIO[82] P A1 G 01 10 00 82 O O I/O VDDEH7 MultiV12,14 — —/— 124 P9 C19 MSEO[0]16 Nexus message start/end out P 01 224 O VDDEH7 MultiV12,14 — MSEO[0] / — 118 C15 G21 MSEO[1]16 Nexus message start/end out P 01 225 O VDDEH7 MultiV12,14 — MSEO[1] / — 117 E16 G22 RDY Nexus ready output P 01 226 O VDDEH7 MultiV12,14 — — JTAG — — G19 Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 TCK JTAG test clock input P 01 — I VDDEH7 MultiV12 TCK / Down TCK / Down 128 C16 D21 TDI JTAG test data input P 01 232 I VDDEH7 MultiV12 TDI / Up TDI / Up 130 E14 D22 TDO JTAG test data output P 01 228 O VDDEH7 MultiV12 TDO / Up TDO / Up 123 F14 E21 TMS JTAG test mode select input P 01 — I VDDEH7 MultiV12 TMS / Up TMS / Up 131 D14 E20 JCOMP JTAG TAP controller enable P 01 — I VDDEH7 MultiV12 JCOMP / Down JCOMP / Down 121 F16 F20 FlexCAN CAN_A_TX SCI_A_TX GPIO[83] FlexCAN A TX eSCI A TX GPIO P A1 G 01 10 00 83 O O I/O VDDEH6 Slow — / Up — / Up 81 P12 AB19 CAN_A_RX SCI_A_RX GPIO[84] FlexCAN A RX eSCI A RX GPIO P A1 G 01 10 00 84 I I I/O VDDEH6 Slow — / Up — / Up 82 R12 Y19 CAN_B_TX DSPI_C_PCS[3] SCI_C_TX GPIO[85] FlexCAN B TX DSPI C peripheral chip select eSCI C TX GPIO P A1 A2 G 001 010 100 000 85 O O O I/O VDDEH6 Slow — / Up — / Up 88 T12 Y22 CAN_B_RX DSPI_C_PCS[4] SCI_C_RX GPIO[86] FlexCAN B RX DSPI C peripheral chip select eSCI C RX GPIO P A1 A2 G 001 010 100 000 86 I O I I/O VDDEH6 Slow — / Up — / Up 89 R13 W21 CAN_C_TX DSPI_D_PCS[3] GPIO[87] FlexCAN C TX DSPI D peripheral chip select GPIO P A1 G 01 10 00 87 O O I/O VDDEH6 Medium — / Up — / Up 101 K13 P19 CAN_C_RX DSPI_D_PCS[4] GPIO[88] FlexCAN C RX DSPI D peripheral chip select GPIO P A1 G 01 10 00 88 I O I/O VDDEH6 Slow — / Up — / Up 98 L14 V20 eSCI 41 42 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 SCI_A_TX EMIOS138 GPIO[89] eSCI A TX eMIOS channel GPIO P A1 G 01 10 00 89 O O I/O VDDEH6 Medium — / Up — / Up 100 J14 N20 SCI_A_RX EMIOS158 GPIO[90] eSCI A RX eMIOS channel GPIO P A1 G 01 10 00 90 I O I/O VDDEH6 Medium — / Up — / Up 99 K14 P20 SCI_B_TX DSPI_D_PCS[1] GPIO[91] eSCI B TX DSPI D peripheral chip select GPIO P A1 G 01 10 00 91 O O I/O VDDEH6 Medium — / Up — / Up 87 L13 AB21 SCI_B_RX DSPI_D_PCS[5] GPIO[92] eSCI B RX DSPI D peripheral chip select GPIO P A1 G 01 10 00 92 I O I/O VDDEH6 Medium — / Up — / Up 84 M13 AB20 SCI_C_TX GPIO[244] eSCI C TX GPIO P G 01 00 244 O I/O VDDEH6 Medium — / Up — / Up — — W19 SCI_C_RX GPIO[245] eSCI C RX GPIO P G 01 00 245 I I/O VDDEH6 Medium — / Up — / Up — — V19 DSPI Freescale Semiconductor DSPI_A_SCK17 DSPI_C_PCS[1] GPIO[93] — DSPI C peripheral chip select GPIO — A1 G — 10 00 93 — O I/O VDDEH7 Medium — / Up — / Up — — C17 DSPI_A_SIN17 DSPI_C_PCS[2] GPIO[94] — DSPI C peripheral chip select GPIO — A1 G — 10 00 94 — O I/O VDDEH7 Medium — / Up — / Up — — B17 DSPI_A_SOUT17 DSPI_C_PCS[5] GPIO[95] — DSPI C peripheral chip select GPIO — A1 G — 10 00 95 — O I/O VDDEH7 Medium — / Up — / Up — — A17 DSPI_A_PCS[0]17 — DSPI D peripheral chip select DSPI_D_PCS[2] GPIO GPIO[96] — A1 G — 10 00 96 — O I/O VDDEH7 Medium — / Up — / Up — — D16 DSPI_A_PCS[1]17 — DSPI B peripheral chip select DSPI_B_PCS[2] GPIO GPIO[97] — A1 G — 10 00 97 — O I/O VDDEH7 Medium — / Up — / Up — — C16 — A1 G — 10 00 98 — I/O I/O VDDEH7 Medium — / Up — / Up 141 CS[2] DSPI_D_SCK GPIO[98] — SPI clock pin for DSPI module GPIO J15 C15 Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 — A1 G — 10 00 99 — I I/O VDDEH7 Medium — / Up — / Up 142 DSPI_A_PCS[4]17 — DSPI D data output DSPI_D_SOUT GPIO GPIO[100] — A1 G — 10 00 100 O I/O VDDEH7 Medium — / Up — / Up — — B16 DSPI_A_PCS[5]17 — DSPI B peripheral chip select DSPI_B_PCS[3] GPIO GPIO[101] — A1 G — 10 00 101 O I/O VDDEH7 Medium — / Up — / Up — — A16 CS[3] DSPI_D_SIN GPIO[99] — DSPI D data input GPIO H13 324 B15 MPC5644A Microcontroller Data Sheet, Rev. 7 DSPI_B_SCK DSPI_C_PCS[1] GPIO[102] SPI clock pin for DSPI module DSPI C peripheral chip select GPIO P A1 G 01 10 00 102 I/O O I/O VDDEH6 Medium — / Up — / Up 106 J16 K21 DSPI_B_SIN DSPI_C_PCS[2] GPIO[103] DSPI B data input DSPI C peripheral chip select GPIO P A1 G 01 10 00 103 I O I/O VDDEH6 Medium — / Up — / Up 112 G15 H22 DSPI_B_SOUT DSPI_C_PCS[5] GPIO[104] DSPI B data output DSPI C peripheral chip select GPIO P A1 G 01 10 00 104 O O I/O VDDEH6 Medium — / Up — / Up 113 G13 J19 DSPI_B_PCS[0] DSPI_D_PCS[2] GPIO[105] DSPI B peripheral chip select DSPI D peripheral chip select GPIO P A1 G 01 10 00 105 I/O O I/O VDDEH6 Medium — / Up — / Up 111 G16 J21 DSPI_B_PCS[1] DSPI_D_PCS[0] GPIO[106] DSPI B peripheral chip select DSPI D peripheral chip select GPIO P A1 G 01 10 00 106 O I/O I/O VDDEH6 Medium — / Up — / Up 109 H16 J22 DSPI_B_PCS[2] DSPI_C_SOUT GPIO[107] DSPI B peripheral chip select DSPI C data output GPIO P A1 G 01 10 00 107 O O I/O VDDEH6 Medium — / Up — / Up 107 H15 K22 DSPI_B_PCS[3] DSPI_C_SIN GPIO[108] DSPI B peripheral chip select DSPI C data input GPIO P A1 G 01 10 00 108 O I I/O VDDEH6 Medium — / Up — / Up 114 G14 J20 DSPI_B_PCS[4] DSPI_C_SCK GPIO[109] DSPI B peripheral chip select SPI clock pin for DSPI module GPIO P A1 G 01 10 00 109 O I/O I/O VDDEH6 Medium — / Up — / Up 105 H14 K20 DSPI_B_PCS[5] DSPI_C_PCS[0] GPIO[110] DSPI B peripheral chip select DSPI C peripheral chip select GPIO P A1 G 01 10 00 110 O I/O I/O VDDEH6 Medium — / Up — / Up 104 J13 L19 43 44 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 eQADC MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor AN018 DAN0+ Single Ended Analog Input Positive Terminal Diff. Input P — — I I VDDA Analog I/— AN[0] / — 172 B5 C6 AN118 DAN0- Single Ended Analog Input Negative Terminal Diff. Input P — — I I VDDA Analog I/— AN[1] / — 171 A6 C7 AN218 DAN1+ Single Ended Analog Input Positive Terminal Diff. Input P — — I I VDDA Analog I/— AN[2] / — 170 D6 D7 AN318 DAN1- Single Ended Analog Input Negative Terminal Diff. Input P — — I I VDDA Analog I/— AN[3] / — 169 C7 D8 AN418 DAN2+ Single Ended Analog Input Positive Terminal Diff. Input P — — I I VDDA Analog I/— AN[4] / — 168 B6 B7 AN518 DAN2- Single Ended Analog Input Negative Terminal Diff. Input P — — I I VDDA Analog I/— AN[5] / — 167 A7 B8 AN618 DAN3+ Single Ended Analog Input Positive Terminal Diff. Input P — — I I VDDA Analog I/— AN[6] / — 166 D7 C8 AN718 DAN3- Single Ended Analog Input Negative Terminal Diff. Input P — — I I VDDA Analog I/— AN[7] / — 165 C8 C9 AN8 ANW Single-ended Analog Input Multiplexed Analog Input P 01 — I VDDA Analog I/— AN[8] / — 9 B3 E1 AN9 ANX Single-ended Analog Input External Multiplexed Analog Input P 01 — I I VDDA Analog I/— AN[9] / — 5 A2 C2 AN10 ANY Single-ended Analog Input Multiplexed Analog Input P 01 — I VDDA Analog I/— AN[10] / — AN11 ANZ Single-ended Analog Input Multiplexed Analog Input P 01 — I VDDA Analog I/— AN[11] / — 4 A3 C1 AN12 - SDS MA0 ETPUA19_O8 SDS Single-ended Analog Input MUX Address 0 eTPU A channel (output only) eQADC Serial Data Select P A1 A2 G 001 010 100 000 215 I O O I/O VDDEH719 Medium I/— AN[12] / — 148 A12 C13 AN13 - SDO MA1 ETPUA21_O8 SDO Single-ended Analog Input MUX Address 1 eTPU A channel (output only) eQADC Serial Data Out P A1 A2 G 001 010 100 000 216 I O O O VDDEH719 Medium I/— AN[13] / — 147 B12 B13 — — D1 Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 AN14 - SDI MA2 ETPUA27_O8 SDI Single-ended Analog Input MUX Address 2 eTPU A channel (output only) eQADC Serial Data In P A1 A2 G 001 010 100 000 217 I O O I VDDEH719 Medium I/— AN[14] / — 146 C12 A13 AN15 - FCK FCK ETPUA29_O8 Single-ended Analog Input eQADC Free Running Clock eTPU A channel (output only) P A1 A2 001 010 100 218 I O O VDDEH719 Medium I/— AN[15] / — 145 C13 A14 AN16 Single-ended Analog Input P — — I VDDA Analog I/— AN[16] / — 3 C6 A3 AN17 Single-ended Analog Input P — — I VDDA Analog I/— AN[17] / — 2 C4 A4 AN18 Single-ended Analog Input P — — I VDDA Analog I/— AN[18] / — 1 D5 B4 AN19 Single-ended Analog Input P — — I VDDA Analog I/— AN[19] / — — — D6 AN20 Single-ended Analog Input P — — I VDDA Analog I/— AN[20] / — — — C5 AN21 Single-ended Analog Input P — — I VDDA Analog I/— AN[21] / — 173 B4 B6 AN22 Single-ended Analog Input P — — I VDDA Analog I/— AN[22] / — 161 B8 D9 AN23 Single-ended Analog Input P — — I VDDA Analog I/— AN[23] / — 160 C9 A8 AN24 Single-ended Analog Input P — — I VDDA Analog I/— AN[24] / — 159 D8 B9 AN25 Single-ended Analog Input P — — I VDDA Analog I/— AN[25] / — 158 B9 A9 AN26 Single-ended Analog Input P — — I VDDA Analog I/— AN[26] / — — AN27 Single-ended Analog Input P — — I VDDA Analog I/— AN[27] / — 157 A10 C10 AN28 Single-ended Analog Input P — — I VDDA Analog I/— AN[28] / — 156 B10 D11 — D10 45 46 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 — 324 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor AN29 Single-ended Analog Input P — — I VDDA Analog I/— AN[29] / — — C11 AN30 Single-ended Analog Input P — — I VDDA Analog I/— AN[30] / — 155 D9 B11 AN31 Single-ended Analog Input P — — I VDDA Analog I/— AN[31] / — 154 D10 D12 AN32 Single-ended Analog Input P — — I VDDA Analog I/— AN[32] / — 153 C10 C12 AN33 Single-ended Analog Input P — — I VDDA Analog I/— AN[33] / — 152 C11 B12 AN34 Single-ended Analog Input P — — I VDDA Analog I/— AN[34] / — 151 C5 A12 AN35 Single-ended Analog Input P — — I VDDA Analog I/— AN[35] / — 150 D11 D13 AN36 Single-ended Analog Input P — — I VDDA Analog I/— AN[36] / — 174 F4 B5 AN37 Single-ended Analog Input P — — I VDDA Analog I/— AN[37] / — 175 E3 A5 AN38 Single-ended Analog Input P — — I VDDA Analog I/— AN[38] / — — — D3 AN39 Single-ended Analog Input P — — I VDDA Analog I/— AN[39] / — 8 D2 D2 VRH Voltage Reference High P — — I VDDA — I/— VRH 163 A8 A10 VRL Voltage Reference Low P — — I VDDA — I/— VRL 162 A9 A11 REFBYBC Reference Bypass Capacitor Input P — — I VDDA Analog I/— REFBYPC 164 B7 B10 — / Up — / Up — L4 AB12 eTPU2 TCRCLKA IRQ[7] GPIO[113] eTPU A TCR clock External interrupt request GPIO P A1 G 01 10 00 113 I I I/O VDDEH4 Slow Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 ETPUA0 ETPUA12_O8 ETPUA19_O8 GPIO[114] eTPU A channel eTPU A channel (output only) eTPU A channel (output only) GPIO P A1 A2 G 001 010 100 000 114 I/O O O I/O VDDEH4 Slow —/ WKPCFG —/ WKPCFG 61 N3 Y12 ETPUA1 ETPUA13_O8 GPIO[115] eTPU A channel eTPU A channel (output only) GPIO P A1 G 01 10 00 115 I/O O I/O VDDEH4 Slow —/ WKPCFG —/ WKPCFG 60 M3 W12 ETPUA2 ETPUA14_O8 GPIO[116] eTPU A channel eTPU A channel (output only) GPIO P A1 G 01 10 00 116 I/O O I/O VDDEH4 Slow —/ WKPCFG —/ WKPCFG 59 P2 AA11 ETPUA3 ETPUA15_O8 GPIO[117] eTPU A channel eTPU A channel (output only) GPIO P A1 G 01 10 00 117 I/O O I/O VDDEH4 Slow — / WKPCFG GPIO / WKPCFG 58 P1 Y11 ETPUA4 ETPUA16_O8 FR_B_TX GPIO[118] eTPU A channel eTPU A channel (output only) Flexray TX data channel B GPIO P A1 A3 G 0001 0010 1000 0000 118 I/O O O I/O VDDEH4 Slow —/ WKPCFG —/ WKPCFG 56 N2 W11 ETPUA5 ETPUA17_O8 DSPI_B_SCK_LV DSFR_B_TX_EN GPIO[119] P eTPU A channel A1 eTPU A channel (output only) A2 LVDS negative DSPI clock Flexray TX data enable for ch. B A3 G GPIO 0001 0010 0100 1000 0000 119 I/O O O O I/O VDDEH4 Slow + LVDS —/ WKPCFG —/ WKPCFG 54 M4 AB11 ETPUA6 ETPUA18_O8 DSPI_B_SCK_LV DS+ FR_B_RX GPIO[120] eTPU A channel eTPU A channel (output only) LVDS positive DSPI clock Flexray RX data channel B GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 120 I/O O O I I/O VDDEH4 Medium + LVDS —/ WKPCFG —/ WKPCFG 53 L3 AB10 ETPUA7 ETPUA19_O8 DSPI_B_SOUT_L VDSETPUA6_O8 GPIO[121] eTPU A channel eTPU A channel (output only) LVDS negative DSPI data out eTPU A channel (output only) GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 121 I/O O O O I/O VDDEH4 Slow + LVDS —/ WKPCFG —/ WKPCFG 52 K3 AA10 47 48 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor ETPUA8 ETPUA20_O8 DSPI_B_SOUT_L VDS+ GPIO[122] eTPU A channel eTPU A channel (output only) LVDS positive DSPI data out GPIO P A1 A2 G 001 010 100 000 122 I/O O O I/O VDDEH4 Slow + LVDS —/ WKPCFG —/ WKPCFG 51 N1 Y10 ETPUA9 ETPUA21_O8 RCH1_B GPIO[123] eTPU A channel eTPU A channel (output only) Reaction channel 1B GPIO P A1 A2 G 001 010 100 000 123 I/O O O I/O VDDEH4 Slow —/ WKPCFG —/ WKPCFG 50 M2 AA9 ETPUA10 ETPUA22_O8 RCH1_C GPIO[124] eTPU A channel eTPU A channel (output only) Reaction channel 1C GPIO P A1 A2 G 001 010 100 000 124 I/O O O I/O VDDEH1 Slow —/ WKPCFG —/ WKPCFG 49 M1 AA4 ETPUA11 ETPUA23_O8 RCH4_B GPIO[125] eTPU A channel eTPU A channel (output only) Reaction channel 4B GPIO P A1 A2 G 001 010 100 000 125 I/O O O I/O VDDEH1 Slow —/ WKPCFG —/ WKPCFG 48 L2 AB4 ETPUA12 DSPI_B_PCS[1] RCH4_C GPIO[126] eTPU A channel DSPI B peripheral chip select Reaction channel 4C GPIO P A1 A2 G 001 010 100 000 126 I/O O O I/O VDDEH1 Medium —/ WKPCFG —/ WKPCFG 47 L1 AB3 ETPUA13 DSPI_B_PCS[3] GPIO[127] eTPU A channel DSPI B peripheral chip select GPIO P A1 G 01 10 00 127 I/O O I/O VDDEH1 Medium —/ WKPCFG —/ WKPCFG 46 J4 AB2 ETPUA14 DSPI_B_PCS[4] ETPUA9_O8 RCH0_A GPIO[128] eTPU A channel DSPI B peripheral chip select eTPU A channel (output only) Reaction channel 0A GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 128 I/O O O O I/O VDDEH1 Medium —/ WKPCFG —/ WKPCFG 42 J3 AA2 ETPUA15 DSPI_B_PCS[5] RCH1_A GPIO[129] eTPU A channel DSPI B peripheral chip select Reaction channel 1A GPIO P A1 A2 G 001 010 100 000 129 I/O O O I/O VDDEH1 Medium —/ WKPCFG —/ WKPCFG 40 K2 AA1 ETPUA16 DSPI_D_PCS[1] RCH2_A GPIO[130] eTPU A channel DSPI D peripheral chip select Reaction channel 2A GPIO P A1 A2 G 001 010 100 000 130 I/O O O I/O VDDEH1 Slow —/ WKPCFG —/ WKPCFG 39 K1 Y2 Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 ETPUA17 DSPI_D_PCS[2] RCH3_A GPIO[131] eTPU A channel DSPI D peripheral chip select Reaction channel 3A GPIO P A1 A2 G 001 010 100 000 131 I/O O O I/O VDDEH1 Slow —/ WKPCFG —/ WKPCFG 38 H3 Y1 ETPUA18 DSPI_D_PCS[3] RCH4_A GPIO[132] eTPU A channel DSPI D peripheral chip select Reaction channel 4A GPIO P A1 A2 G 001 010 100 000 132 I/O O O I/O VDDEH1 Slow —/ WKPCFG —/ WKPCFG 37 H4 W3 ETPUA19 DSPI_D_PCS[4] RCH5_A GPIO[133] eTPU A channel DSPI D peripheral chip select Reaction channel 5A GPIO P A1 A2 G 001 010 100 000 133 I/O O O I/O VDDEH1 Slow —/ WKPCFG —/ WKPCFG 36 J2 W2 ETPUA20 IRQ[8] RCH0_B FR_A_TX GPIO[134] eTPU A channel External interrupt request Reaction channel 0B Flexray TX data channel A GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 134 I/O I O O I/O VDDEH1 Slow —/ WKPCFG —/ WKPCFG 35 J1 W1 ETPUA21 IRQ[9] RCH0_C FR_A_RX GPIO[135] eTPU A channel External interrupt request Reaction channel 0C Flexray RX channel A GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 135 I/O I O I I/O VDDEH1 Slow —/ WKPCFG —/ WKPCFG 34 G4 N4 ETPUA22 IRQ[10] ETPUA17_O8 GPIO[136] eTPU A channel External interrupt request eTPU A channel (output only) GPIO P A1 A2 G 001 010 100 000 136 I/O I O I/O VDDEH1 Slow —/ WKPCFG —/ WKPCFG 32 H2 N3 ETPUA23 IRQ[11] ETPUA21_O8 FR_A_TX_EN GPIO[137] eTPU A channel External interrupt request eTPU A channel (output only) Flexray ch. A TX enable GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 137 I/O I O O I/O VDDEH1 Slow —/ WKPCFG —/ WKPCFG 30 H1 M1 ETPUA24 IRQ[12] DSPI_C_SCK_LV DSGPIO[138] eTPU A channel External interrupt request LVDS negative DSPI clock GPIO P A1 A2 G 001 010 100 000 138 I/O I O I/O VDDEH1 Slow + LVDS —/ WKPCFG —/ WKPCFG 28 G1 M2 49 50 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor ETPUA25 IRQ[13] DSPI_C_SCK_LV DS+ GPIO[139] eTPU A channel External interrupt request LVDS positive DSPI clock GPIO P A1 A2 G 001 010 100 000 139 I/O I O I/O VDDEH1 Medium + LVDS —/ WKPCFG —/ WKPCFG 27 G3 M3 ETPUA26 IRQ[14] DSPI_C_SOUT_L VDSGPIO[140] eTPU A channel External interrupt request LVDS negative DSPI data out GPIO P A1 A2 G 001 010 100 000 140 I/O I O I/O VDDEH1 Slow + LVDS —/ WKPCFG —/ WKPCFG 26 F3 L2 ETPUA27 IRQ[15] DSPI_C_SOUT_L VDS+ DSPI_B_SOUT GPIO[141] eTPU A channel External interrupt request LVDS positive DSPI data out DSPI data out GPIO P A1 A2 A3 G 0001 0010 0100 1000 0000 141 I/O I O O I/O VDDEH1 Slow + LVDS —/ WKPCFG —/ WKPCFG 25 G2 L1 ETPUA28 DSPI_C_PCS[1] RCH5_B GPIO[142] eTPU A channel DSPI C peripheral chip select Reaction channel 5B GPIO P A1 A2 G 001 010 100 000 142 I/O O O I/O VDDEH1 Medium —/ WKPCFG —/ WKPCFG 24 F1 M4 ETPUA29 DSPI_C_PCS[2] RCH5_C GPIO[143] eTPU A channel DSPI C peripheral chip select Reaction channel 5C GPIO P A1 A2 G 001 010 100 000 143 I/O O O I/O VDDEH1 Medium —/ WKPCFG —/ WKPCFG 23 F2 L3 ETPUA30 DSPI_C_PCS[3] ETPUA11_O8 GPIO[144] eTPU A channel DSPI C peripheral chip select eTPU A channel (output only) GPIO P A1 A2 G 001 010 100 000 144 I/O O O I/O VDDEH1 Medium —/ WKPCFG —/ WKPCFG 22 E1 L4 ETPUA31 DSPI_C_PCS[4] ETPUA13_O8 GPIO[145] eTPU A channel DSPI C peripheral chip select eTPU A channel (output only) GPIO P A1 A2 G 001 010 100 000 145 I/O O O I/O VDDEH1 Medium —/ WKPCFG —/ WKPCFG 21 E2 K1 — / Up — / Up 63 T4 AA12 eMIOS EMIOS0 ETPUA0_O8 ETPUA25_O8 GPIO[179] eMIOS channel eTPU A channel (output only) eTPU A channel (output only) GPIO P A1 A2 G 001 010 100 000 179 I/O O O I/O VDDEH4 Slow Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 EMIOS1 ETPUA1_O8 GPIO[180] eMIOS channel eTPU A channel (output only) GPIO P A1 G 01 10 00 180 I/O O I/O VDDEH4 Slow — / Up — / Up 64 T5 W13 EMIOS2 ETPUA2_O8 RCH2_B GPIO[181] eMIOS channel eTPU A channel (output only) Reaction channel 2B GPIO P A1 A2 G 001 010 100 000 181 I/O O O I/O VDDEH4 Slow — / Up — / Up 65 N7 Y13 EMIOS3 ETPUA3_O8 GPIO[182] eMIOS channel eTPU A channel (output only) GPIO P A1 G 01 10 00 182 I/O O I/O VDDEH4 Slow —/ WKPCFG —/ WKPCFG 66 R6 AA13 EMIOS4 ETPUA4_O8 RCH2_C GPIO[183] eMIOS channel eTPU A channel (output only) Reaction channel 2C GPIO P A1 A2 G 001 010 100 000 183 I/O O O I/O VDDEH4 Slow —/ WKPCFG —/ WKPCFG 67 R5 AB13 EMIOS5 ETPUA5_O8 GPIO[184] eMIOS channel eTPU A channel (output only) GPIO P A1 G 01 10 00 184 I/O O I/O VDDEH4 Slow —/ WKPCFG —/ WKPCFG EMIOS6 ETPUA6_O8 GPIO[185] eMIOS channel eTPU A channel (output only) GPIO P A1 G 01 10 00 185 I/O O I/O VDDEH4 Slow — / Down — / Down 68 EMIOS7 ETPUA7_O8 GPIO[186] eMIOS channel eTPU A channel (output only) GPIO P A1 G 01 10 00 186 I/O O I/O VDDEH4 Slow — / Down — / Down 69 EMIOS8 ETPUA8_O8 SCI_B_TX GPIO[187] eMIOS channel eTPU A channel (output only) eSCI B TX GPIO P A1 A2 G 001 010 100 000 187 I/O O O I/O VDDEH4 Slow — / Up — / Up 70 P8 W15 EMIOS9 ETPUA9_O8 SCI_B_RX GPIO[188] eMIOS channel eTPU A channel (output only) eSCI B RX GPIO P A1 A2 G 001 010 100 000 188 I/O O I I/O VDDEH4 Slow — / Up — / Up 71 R7 Y15 EMIOS10 DSPI_D_PCS[3] RCH3_B GPIO[189] eMIOS channel DSPI D peripheral chip select Reaction channel 3B GPIO P A1 A2 G 001 010 100 000 189 I/O O O I/O VDDEH4 Medium —/ WKPCFG —/ WKPCFG 73 N8 AA15 — — P7 Y14 AA14 — AB14 51 52 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor EMIOS11 DSPI_D_PCS[4] RCH3_C GPIO[190] eMIOS channel DSPI D peripheral chip select Reaction channel 3C GPIO P A1 A2 G 001 010 100 000 190 I/O O O I/O VDDEH4 Medium —/ WKPCFG —/ WKPCFG 75 R8 AB15 EMIOS12 DSPI_C_SOUT ETPUA27_O8 GPIO[191] eMIOS channel DSPI C data output eTPU A channel (output only) GPIO P A1 A2 G 001 010 100 000 191 I/O O O I/O VDDEH4 Medium —/ WKPCFG —/ WKPCFG 76 N10 AB16 EMIOS13 DSPI_D_SOUT GPIO[192] eMIOS channel DSPI D data output GPIO P A1 G 01 10 00 192 I/O O I/O VDDEH4 Medium —/ WKPCFG —/ WKPCFG 77 T8 AA16 EMIOS14 IRQ[0] ETPUA29_O8 GPIO[193] eMIOS channel External interrupt request eTPU A channel (output only) GPIO P A1 A2 G 001 010 100 000 193 I/O I O I/O VDDEH4 Slow — / Down — / Down 78 R9 Y16 EMIOS15 IRQ[1] GPIO[194] eMIOS channel External interrupt request GPIO P A1 G 01 10 00 194 I/O I I/O VDDEH4 Slow — / Down — / Down 79 T9 W16 EMIOS16 GPIO[195] eMIOS channel GPIO P G 01 00 195 I/O I/O VDDEH4 Slow — / Up — / Up — — W17 EMIOS17 GPIO[196] eMIOS channel GPIO P G 01 00 196 I/O I/O VDDEH4 Slow — / Up — / Up — — Y17 EMIOS18 GPIO[197] eMIOS channel GPIO P G 01 00 197 I/O I/O VDDEH4 Slow — / Up — / Up — — AA17 EMIOS19 GPIO[198] eMIOS channel GPIO P G 01 00 198 I/O I/O VDDEH4 Slow —/ WKPCFG —/ WKPCFG — — AB17 EMIOS20 GPIO[199] eMIOS channel GPIO P G 01 00 199 I/O I/O VDDEH4 Slow —/ WKPCFG —/ WKPCFG — — AB18 EMIOS21 GPIO[200] eMIOS channel GPIO P G 01 00 200 I/O I/O VDDEH4 Slow —/ WKPCFG —/ WKPCFG — — AA18 EMIOS22 GPIO[201] eMIOS channel GPIO P G 01 00 201 I/O I/O VDDEH4 Slow — / Down — / Down — — Y18 EMIOS23 GPIO[202] eMIOS channel GPIO P G 01 00 202 I/O I/O VDDEH4 Slow — / Down — / Down Clock Synthesizer 80 R11 W18 Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 XTAL Crystal oscillator output P 01 — O VDDEH6 Analog — — 93 P16 V22 EXTAL EXTCLK Crystal oscillator input External clock input P A 01 10 — I VDDEH6 Analog — — 92 N16 U22 CLKOUT System clock output P 01 229 O VDDE5 Fast — CLKOUT — ENGCLK Engineering clock output P 01 214 O VDDE5 Fast — ENGCLK — — AB9 T14 W10 Power / Ground VDDREG Voltage Regulator Supply — — I 5V I/— VDDREG 10 K16 F4 VRCCTL Voltage Regulator Control Output — — O — O/— VRCCTL 11 N14 F2 VRC3320 Internal regulator output — — O 3.3 V I/O / — VRC33 13 Input for external 3.3 V supply — — A15, D1, B1, N6, N12 M19, P11 VDDA eQADC high reference voltage — — I 5V I/— VDDA 6 — — VSSA eQADC ground/low reference voltage — — I — I/— VSSA 7 — — VDDA021 eQADC high reference voltage — — I 5V I/— VDDA0 — B11 E3 VSSA022 eQADC ground/low reference voltage — — I — I/— VSSA0 — A11 E2 VDDA121 eQADC high reference voltage — — I 5V I/— VDDA1 — A4 A6 VSSA122 eQADC ground/low reference voltage — — I — I/— VSSA1 — A5 A7 VDDPLL FMPLL Supply Voltage — — I 1.2 I/— VDDPLL 91 R16 W22 VSTBY Power Supply for Standby RAM — — I 0.9 V - 6 V I/— VSTBY 12 C1 E4 VDD Core supply for input or decoupling — — I 1.2 V I/— VDD 33, 45, 62, 103, 132, 149, 176 B1, B16, C2, D3, E4, N5, P4, P13, R3, R14, T2, T15 A2, A20, A21, B3, C4, C22, D5, W20, Y4, Y21, AA3, AA22 3.3 V 53 54 Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 208 324 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor VDDE12 External supply input for calibration bus interfaces — — I 1.8 V - 3.3 V I/— VDDE12 — — — VDDE223 External supply input for EBI interfaces — — I 1.8 V - 3.3 V I/— VDDE224 — — M9, M10 VDDE5 External supply input for ENGCLK, CLKOUT and EBI signals DATA[0:15] — — I 1.8 V - 3.3 V I/— VDDE5 — VDDE-EH External supply for EBI interfaces — — I 3.0 V - 5 V I/— VDDE-EH — — VDDEH1A25 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH1A25 31 — — VDDEH1B25 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH1B25 41 — — VDDEH1AB25 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH1AB25 — VDDEH426 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH426 — — — VDDEH4A26 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH4A26 55 — — VDDEH4B26 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH4B26 74 — — VDDEH4AB26 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH4AB26 — VDDEH627 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH627 VDDEH6A27 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH6A27 VDDEH6B27 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH6B27 VDDEH6AB27 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH6AB27 — T13 K4 N11, W5, W8 R3, V2 K4 N9 W14, AA19 — — 95 — — 110 — — — F13 M22, U19 Freescale Semiconductor Table 3. MPC5644A signal properties (continued) Name Function 1 P PCR A PA PCR4 G2 Field3 I/O Type Voltage5 / Pad Type6 Status7 Package pin # During Reset After Reset 176 D12 324 MPC5644A Microcontroller Data Sheet, Rev. 7 VDDEH7 I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH7 VDDEH7A I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH7A 125 — — VDDEH7B I/O Supply Input — — I 3.3 V - 5.0 V I/— VDDEH7B 138 — — VSS Ground — — I — I/— VSS 15, 29, 43, 57, 72, 90, 94, 96, 108, 115, 127, 133, 140 A1, A16, B2, B15, C3, C14, D4, D13, G7, G8, G9, G10, H7, H8, H9, H10, J7, J8, J9, J10, K7, K8, K9, K10, M16, N4, N13, P3, P14, R2, R15, T1, T16 A1, A22, B2, B21, C3, C20, D4, D17, D19, F21, H21, J9, J10, J11, J12, J13, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, L21, M11, M12, M13, M14, N9, N10, N12, N13, N14, N21, P9, P10, P12, P13, P14, T19, T21, T22, W4, Y3, Y20, AA21, AB1, AB22 1 — 208 B22, C21, D15, D20, E19, F19, H19, J14 For each pin in the table, each line in the Function column is a separate function of the pin. For all I/O pins the selection of primary pin function or secondary function or GPIO is done in the SIU except where explicitly noted. See the Signal details table for a description of each signal. 2 The P/A/G column indicates the position a signal occupies in the muxing order for a pin—Primary, Alternate 1, Alternate 2, Alternate 3, or GPIO. Signals are selected by setting the PA field value in the appropriate PCR register in the SIU module. The PA field values are as follows: P - 0b0001, A1 - 0b0010, A2 - 0b0100, A3 - 0b1000, or G - 0b0000. Depending on the register, the PA field size can vary in length. For PA fields having fewer than four bits, remove the appropriate number of leading zeroes from these values. 3 The Pad Configuration Register (PCR) PA field is used by software to select pin function. 4 Values in the PCR No. column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR number. For example, PCR[190] refers to the SIU register named SIU_PCR190. 55 56 5 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor The VDDE and VDDEH supply inputs are broken into segments. Each segment of slow I/O pins (VDDEH) may have a separate supply in the 3.3 V to 5.0 V range (-10%/+5%). Each segment of fast I/O (VDDE) may have a separate supply in the 1.8 V to 3.3 V range (+/- 10%). 6 See Table 4 for details on pad types. 7 The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. Terminology is O - output, I - input, Up - weak pull up enabled, Down - weak pull down enabled, Low - output driven low, High - output driven high. A dash for the function in this column denotes that both the input and output buffer are turned off. The signal name to the left or right of the slash indicates the pin is enabled. 8 Output only. 9 When used as ETRIG, this pin must be configured as an input. For GPIO it can be configured either as an input or output. 10 Maximum frequency is 50 kHz. 11 The SIU_PCR219 register is unusual in that it controls pads for two separate device pins: GPIO[219] and MCKO. See the MPC5644A Microcontroller Reference Manual (SIU chapter) for details. 12 Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function is selected, otherwise they are high swing. 13 On 176 LQFP and 208 MAPBGA packages, this pin is tied low internally. 14 Nexus multivoltage pads default to 5 V operation until the Nexus module is enabled. 15 EVTO should be clamped to 3.3 V to prevent possible damage to external tools that only support 3.3 V. 16 Do not connect pin directly to a power supply or ground. 17 This signal name is used to support legacy naming. 18 During and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors are disabled when the system clock propagates through the device. 19 For pins AN12-AN15, if the analog features are used the VDDEH7 input pins should be tied to VDDA because that segment must meet the VDDA specification to support analog input function. 20 Do not use VRC33 to drive external circuits. 21 VDDA0 and VDDA1 are shorted together internally in BGA packages. In the QFP package the two pads are double bonded on one pin called VDDA. 22 VSSA0 and VSSA1 are shorted together internally in BGA packages. In the QFP package the two pads are double bonded on one pin called VSSA. 23 VDDE2 and VDDE3 are shorted together in all production packages. 24 VDDE2 and VDDE3 are shorted together in all production packages. 25 VDDEH1A, VDDEH1B, and VDDEH1AB are shorted together in all production packages. The separation of the signal names is present to support legacy naming, however they should be considered as the same signal in this document. 26 VDDEH4, VDDEH4A, VDDEH4B, and VDDEH4AB are shorted together in all production packages. The separation of the signal names is present to support legacy naming, however they should be considered as the same signal in this document. 27 VDDEH6, VDDEH6A, VDDEH6B, and VDDEH6AB are shorted together in all production packages. The separation of the signal names is present to support legacy naming, however they should be considered as the same signal in this document. Table 4. Pad types Pad Type Name I/O Voltage Range Slow pad_ssr_hv 3.0V - 5.5 V Medium pad_msr_hv 3.0 V - 5.5 V Fast pad_fc 3.0 V - 3.6 V pad_multv_hv 3.0 V - 5.5 V (high swing mode) 3.0 V - 3.6 V (low swing mode) Analog pad_ae_hv 0.0 - 5.5 V LVDS pad_lo_lv — MultiV 1,2 1 Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function is selected, otherwise they are high swing. 2 VDDEH7 supply cannot be below 4.5 V when in low-swing mode. 2.5 Signal details Table 5. Signal details Signal Module or Function Description CLKOUT Clock Generation MPC5644A clock output for the external/calibration bus interface ENGCLK Clock Generation Clock for external ASIC devices EXTAL Clock Generation Input pin for an external crystal oscillator or an external clock source based on the value driven on the PLLREF pin at reset. PLLREF Clock Generation Reset/Configuration PLLREF is used to select whether the oscillator operates in xtal mode or external reference mode from reset. PLLREF=0 selects external reference mode. On the 324BGA package, PLLREF is bonded to the ball used for PLLCFG[0] for compatibility with MPC55xx devices . For the 176-pin QFP and 208-ball BGA packages: 0: External reference clock is selected. 1: XTAL oscillator mode is selected For the 324 ball BGA package: If RSTCFG is 0: 0: External reference clock is selected. 1: XTAL oscillator mode is selected. If RSTCFG is 1, XTAL oscillator mode is selected. XTAL Clock Generation Crystal oscillator input DSPI_B_SCK_LVDSDSPI_B_SCK_LVDS+ DSPI LVDS pair used for DSPI_B TSB mode transmission DSPI_B_SOUT_LVDSDSPI_B_SOUT_LVDS+ DSPI LVDS pair used for DSPI_B TSB mode transmission DSPI_C_SCK_LVDSDSPI_C_SCK_LVDS+ DSPI LVDS pair used for DSPI_C TSB mode transmission MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 57 Table 5. Signal details (continued) Signal Module or Function Description DSPI_C_SOUT_LVDSDSPI_C_SOUT_LVDS+ DSPI LVDS pair used for DSPI_C TSB mode transmission PCS_B[0] PCS_C[0] PCS_D[0] DSPI_B - DSPI_D Peripheral chip select when device is in master mode—slave select when used in slave mode PCS_B[1:5] PCS_C[1:5] PCS_D[1:5] DSPI_B - DSPI_D Peripheral chip select when device is in master mode—not used in slave mode SCK_B SCK_C SCK_D DSPI_B - DSPI_D DSPI clock—output when device is in master mode; input when in slave mode SIN_B SIN_C SIN_D DSPI_B - DSPI_D DSPI data in SOUT_B SOUT_C SOUT_D DSPI_B - DSPI_D DSPI data out ADDR[10:31] EBI The ADDR[10:31] signals specify the physical address of the bus transaction. The 26 address lines correspond to bits 3-31 of the EBI’s 32-bit internal address bus. ADDR[15:31] can be used as Address and Data signals when configured appropriately for a multiplexed external bus. This allows 32-bit data operations, or 16-bit data operations without using DATA[0:15] signals. ALE EBI The Address Latch Enable (ALE) signal is used to demultiplex the address from the data bus. It is asserted while the least significant 16 bits of the address are present in the multiplexed address/data bus. BDIP EBI BDIP is asserted to indicate that the master is requesting another data beat following the current one. CS[0:3] EBI CSx is asserted by the master to indicate that this transaction is targeted for a particular memory bank on the Primary external bus. DATA[0:31] EBI The DATA[0:31] signals contain the data to be transferred for the current transaction. OE EBI OE is used to indicate when an external memory is permitted to drive back read data. External memories must have their data output buffers off when OE is negated. OE is only asserted for chip-select accesses. RD_WR EBI RD_WR indicates whether the current transaction is a read access or a write access. MPC5644A Microcontroller Data Sheet, Rev. 7 58 Freescale Semiconductor Table 5. Signal details (continued) Signal Module or Function Description TA EBI TA is asserted to indicate that the slave has received the data (and completed the access) for a write cycle, or returned data for a read cycle. If the transaction is a burst read, TA is asserted for each one of the transaction beats. For write transactions, TA is only asserted once at access completion, even if more than one write data beat is transferred. TS EBI The Transfer Start signal (TS) is asserted by the MPC5644A to indicate the start of a transfer. WE[2:3] EBI Write enables are used to enable program operations to a particular memory. WE[2:3] are only asserted for write accesses WE[0:3]/BE[0:3] EBI Write enables are used to enable program operations to a particular memory. These signals can also be used as byte enables for read and write operation by setting the WEBS bit in the appropriate EBI Base Register (EBI_BRn). WE[0:3] are only asserted for write accesses. BE[0:3] are asserted for both read and write accesses eMIOS[0:23] eMIOS eMIOS I/O channels AN[0:39] eQADC Single-ended analog inputs for analog-to-digital converter FCK eQADC eQADC free running clock for eQADC SSI. MA[0:2] eQADC These three control bits are output to enable the selection for an external Analog Mux for expansion channels. REFBYPC eQADC Bypass capacitor input SDI eQADC Serial data in SDO eQADC Serial data out SDS eQADC Serial data select VRH eQADC Voltage reference high input VRL eQADC Voltage reference low input SCI_A_RX SCI_B_RX SCI_C_RX eSCI_A - eSCI_C eSCI receive SCI_A_TX SCI_B_TX SCI_C_TX eSCI_A - eSCI_C eSCI transmit ETPU_A[0:31] eTPU eTPU I/O channel RCH0_[A:C] RCH1_[A:C] RCH2_[A:C] RCH3_[A:C] RCH4_[A:C] RCH5_[A:C] eTPU2 Reaction Module eTPU2 reaction channels. Used to control external actuators, e.g., solenoid control for direct injection systems and valve control in automatic transmissions TCRCLKA eTPU2 Input clock for TCR time base MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 59 Table 5. Signal details (continued) Signal Module or Function Description CAN_A_TX CAN_B_TX CAN_C_TX FlexCan_A FlexCAN_C FlexCAN transmit CAN_A_RX CAN_B_RX CAN_C_RX FlexCAN_A FlexCAN_C FlexCAN receive FR_A_RX FR_B_RX FlexRay FlexRay receive (Channels A, B) FR_A_TX_EN FR_B_TX_EN FlexRay FlexRay transmit enable (Channels A, B) FR_A_TX FR_B_TX FlexRay Flexray transmit (Channels A, B) JCOMP JTAG Enables the JTAG TAP controller. TCK JTAG Clock input for the on-chip test logic. TDI JTAG Serial test instruction and data input for the on-chip test logic. TDO JTAG Serial test data output for the on-chip test logic. TMS JTAG Controls test mode operations for the on-chip test logic. EVTI Nexus EVTI is an input that is read on the negation of RESET to enable or disable the Nexus Debug port. After reset, the EVTI pin is used to initiate program synchronization messages or generate a breakpoint. EVTO Nexus Output that provides timing to a development tool for a single watchpoint or breakpoint occurrence. MCKO Nexus MCKO is a free running clock output to the development tools which is used for timing of the MDO and MSEO signals. MDO[0:11]1 Nexus Trace message output to development tools. This pin also indicates the status of the crystal oscillator clock following a power-on reset, when MDO[0] is driven high until the crystal oscillator clock achieves stability and is then negated. MSEO[0:1]1 Nexus Output pin—Indicates the start or end of the variable length message on the MDO pins RDY Nexus Nexus Ready Output (RDY) is an output that indicates to the development tools the data is ready to be read from or written to the Nexus read/write access registers. MPC5644A Microcontroller Data Sheet, Rev. 7 60 Freescale Semiconductor Table 5. Signal details (continued) Signal BOOTCFG[0:1] Module or Function SIU - Configuration Description Two BOOTCFG signals are implemented in MPC5644A MCUs. The BAM program uses the BOOTCFG0 bit to determine where to read the reset configuration word, and whether to initiate a FlexCAN or eSCI boot. The BOOTCFG1 pin is sampled during the assertion of the RSTOUT signal, and the value is used to update the RSR and the BAM boot mode See the MPC5644A Microcontroller Reference Manual for more information. The following values are for BOOTCFG[0:1}: 00:Boot from internal flash memory 01:FlexCAN/eSCI boot 10:Boot from external memory using EBI 11:Reserved Note: For the 176-pin QFP and 208-ball BGA packages BOOTCFG[0] is always 0 since the EBI interface is not available. WKPCFG SIU - Configuration The WKPCFG pin is applied at the assertion of the internal reset signal (assertion of RSTOUT), and is sampled 4 clock cycles before the negation of the RSTOUT pin. The value is used to configure whether the eTPU and eMIOS pins are connected to internal weak pull up or weak pull down devices after reset. The value latched on the WKPCFG pin at reset is stored in the Reset Status Register (RSR), and is updated for all reset sources except the Debug Port Reset and Software External Reset. 0: Weak pulldown applied to eTPU and eMIOS pins at reset 1: Weak pullup applied to eTPU and eMIOS pins at reset. ETRIG[2:3] SIU - eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx GPIO[206] ETRIG0 (Input) SIU - eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx GPIO[207] ETRIG1 (Input) SIU - eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx IRQ[0:5] IRQ[7:15] SIU - External Interrupts The IRQ[0:15] pins connect to the SIU IRQ inputs. IMUX Select Register 1 is used to select the IRQ[0:15] pins as inputs to the IRQs. See the MPC5644A Microcontroller Reference Manual for more information. NMI SIU - External Interrupts Non-Maskable Interrupt MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 61 Table 5. Signal details (continued) Signal Module or Function GPIO[0:3] GPIO[8:43] GPIO[62:65] GPIO[68:70] GPIO[75:145] GPIO[179:204] GPIO[208:213] GPIO[219] GPIO[244:245] SIU - GPIO RESET SIU - Reset Description Configurable general purpose I/O pins. Each GPIO input and output is separately controlled by an 8-bit input (GPDI) or output (GPDO) register. Additionally, each GPIO pins is configured using a dedicated SIU_PCR register. The GPIO pins are generally multiplexed with other I/O pin functions. See The MPC5644A Microcontroller Reference Manual for more information. • The RESET pin is an active low input. The RESET pin is asserted by an external device during a power-on or external reset. The internal reset signal asserts only if the RESET pin asserts for 10 clock cycles. Assertion of the RESET pin while the device is in reset causes the reset cycle to start over. The RESET pin has a glitch detector which detects spikes greater than two clock cycles in duration that fall below the switch point of the input buffer logic of the VDDEH input pins. The switch point lies between the maximum VIL and minimum VIH specifications for the VDDEH input pins. RSTCFG SIU - Reset Used to enable or disable the PLLREF and the BOOTCFG[0:1] configuration signals. 0: Get configuration information from BOOTCFG[0:1] and PLLREF 1: Use default configuration of booting from internal flash with crystal clock source Note: For the 176-pin QFP and 208-ball BGA packages RSTCFG is always 0, so PLLREF and BOOTCFG signals are used. RSTOUT 1 SIU - Reset The RSTOUT pin is an active low output that uses a push/pull configuration. The RSTOUT pin is driven to the low state by the MCU for all internal and external reset sources. There is a delay between initiation of the reset and the assertion of the RSTOUT pin. Do not connect pin directly to a power supply or ground. MPC5644A Microcontroller Data Sheet, Rev. 7 62 Freescale Semiconductor Table 6. Power/ground segmentation Power Segment Voltage I/O Pins Powered by Segment VDDE2 1.8 V - 3.3 V CS0, CS1, CS2, CS3,RD_WR, BDIP, WE0, WE1, OE, TS, TA VDDE3 1.8 V - 3.3 V ADDR12, ADDR13, ADDR14, ADDR15 VDDE5 1.8 V - 3.3 V DATA0, DATA1, DATA2, DATA3, DATA4, DATA5, DATA6, DATA7, DATA8, DATA9, DATA10, DATA11, DATA12, DATA13, DATA14, DATA15, CLKOUT, ENGCLK VDDE12 1.8 V - 3.3 V CAL_CS0, CAL_CS2, CAL_CS3 CAL_ADDR12, CAL_ADDR13, CAL_ADDR14, CAL_ADDR15, CAL_ADDR16, CAL_ADDR17, CAL_ADDR18, CAL_ADDR19, CAL_ADDR20, CAL_ADDR21, CAL_ADDR22, CAL_ADDR23, CAL_ADDR24, CAL_ADDR25, CAL_ADDR26, CAL_ADDR27, CAL_ADDR28, CAL_ADDR29, CAL_ADDR30, CAL_DATA0, CAL_DATA1, CAL_DATA2, CAL_DATA3, CAL_DATA4, CAL_DATA5, CAL_DATA6, CAL_DATA7, CAL_DATA8, CAL_DATA9, CAL_DATA10, CAL_DATA11, CAL_DATA12, CAL_DATA13, CAL_DATA14, CAL_DATA15, CAL_RD_WR, CAL_WE0, CAL_WE1, CAL_OE, CAL_TS VDDE-EH 3.0 V - 5 V ADDR16, ADDR17, ADDR18, ADDR19, ADDR20, ADDR21, ADDR22, ADDR23, ADDR24, ADDR25, ADDR26, ADDR27, ADDR28, ADDR29, ADDR30, ADDR31 VDDEH1 3.3 V - 5.0 V ETPUA10, ETPUA11, ETPUA12, ETPUA13, ETPUA14, ETPUA15, ETPUA16, ETPUA17, ETPUA18, ETPUA19, ETPUA20, ETPUA21, ETPUA22, ETPUA23, ETPUA24, ETPUA25, ETPUA26, ETPUA27, ETPUA28, ETPUA29, ETPUA30, ETPUA31 VDDEH4 3.3 V - 5.0 V EMIOS0, EMIOS1, EMIOS2, EMIOS3, EMIOS4, EMIOS5, EMIOS6, EMIOS7, EMIOS8, EMIOS9, EMIOS10, EMIOS11, EMIOS12, EMIOS13, EMIOS14, EMIOS15, EMIOS16, EMIOS17, EMIOS18, EMIOS19, EMIOS20, EMIOS21, EMIOS22, EMIOS23, TCRCLKA, ETPUA0, ETPUA1, ETPUA2, ETPUA3, ETPUA4, ETPUA5, ETPUA6, ETPUA7, ETPUA8, ETPUA9, ETPUA0 VDDEH6 3.3 V - 5.0 V RESET, RSTOUT, PLLREF, PLLCFG1, RSTCFG, BOOTCFG0, BOOTCFG1, WKPCFG, CAN_A_TX, CAN_A_RX, CAN_B_TX, CAN_B_RX, CAN_C_TX, CAN_C_RX, SCI_A_TX, SCI_A_RX, SCI_B_TX, SCI_C_RX, DSPI_B_SCK, DSPI_B_SIN, DSPI_B_SOUT, DSPI_B_PCS[0], DSPI_B_PCS[1], DSPI_B_PCS[2], DSPI_B_PCS[3], DSPI_B_PCS[4], DSPI_B_PCS[5], SCI_B_RX, SCI_C_TX, EXTAL, XTAL VDDEH7 3.3 V - 5.0 V EMIOS14, EMIOS 15, GPIO98, GPIO99, GPIO203, GPIO204, GPIO206, GPIO207, GPIO219, EVTI, EVTO, MDO4, MDO5, MDO6, MDO7, MDO8, MDO9, MDO10, MDO11, MSEO0, MSEO1, RDY, TCK, TDI, TDO, TMS, JCOMP, DSPI_A_SCK, DSPI_A_SIN, DSPI_A_SOUT, DSPI_A_PCS[0], DSPI_A_PCS[1], DSPI_A_PCS[4], DSPI_A_PCS[5], AN12-SDS, AN13-SDO, AN14-SDI, AN15-FCK MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 63 Table 6. Power/ground segmentation Power Segment Voltage I/O Pins Powered by Segment VDDA 5V AN0, AN1, AN2, AN3, AN4, AN5, AN6, AN7, AN8, AN9, AN10, AN11, AN16, AN17, AN18, AN19, AN20, AN21, AN22, AN23, AN24, AN25, AN26, AN27, AN28, AN29, AN30, AN31, AN32, AN33, AN34, AN35, AN36, AN37, AN38, AN39, VRH, VRL, REFBYBC VRC331 3.3 V MCKO, MDO0, MDO1, MDO2, MDO3 Other Power Segments VDDREG 5V — VRCCTL — — VDDPLL 1.2 V — VSTBY 0.95–1.2 V (unregulated mode) — 2.0–5.5 V (regulated mode) — — — VSS 1 Do not use VRC33 to drive external circuits. MPC5644A Microcontroller Data Sheet, Rev. 7 64 Freescale Semiconductor 3 Electrical characteristics This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MPC5644A series of MCUs. The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. 3.1 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 7 are used and the parameters are tagged accordingly in the tables where appropriate. Table 7. Parameter classifications Classification tag Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. 3.2 Maximum ratings Table 8. Absolute maximum ratings1 Value Symbol Parameter Conditions Unit min max VDD SR 1.2 V core supply voltage2 –0.3 1.32 V VFLASH SR Flash core voltage3,4 –0.3 3.6 V VSTBY SR SRAM standby voltage5 –0.3 6 V VDDPLL SR Clock synthesizer voltage –0.3 1.32 V VRC33 SR Voltage regulator control input voltage4 –0.3 3.6 V MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 65 Table 8. Absolute maximum ratings1 (continued) Value Symbol 1 2 3 4 5 Parameter Conditions Unit min max –0.3 5.5 V VDDA SR Analog supply voltage5 VDDE SR I/O supply voltage4,6 –0.3 3.6 V VDDEH SR I/O supply voltage5 –0.3 5.5 V VIN SR DC input voltage7 VDDEH powered I/O pads –1.08 VDDEH + 0.3 V9 V VDDE powered I/O pads –1.010 VDDE + 0.3 V10 VDDA powered I/O pads –1.0 5.5 –0.3 5.5 V –0.3 5.5 V Reference to VSSA VDDREG SR Voltage regulator supply voltage VRH SR Analog reference high voltage VSS – VSSA SR VSS differential voltage –0.1 0.1 V VRH – VRL SR VREF differential voltage –0.3 5.5 V VRL – VSSA SR VRL to VSSA differential voltage –0.3 0.3 V VSSPLL – VSS SR VSSPLL to VSS differential voltage –0.1 0.1 V IMAXD SR Maximum DC digital input current11 Per pin, applies to all digital pins –3 3 mA IMAXA SR Maximum DC analog input current12 Per pin, applies to all analog pins — 5 mA TJ SR Maximum operating temperature range - die junction temperature –40.0 150.0 oC TSTG SR Storage temperature range –55.0 150.0 oC TSDR SR Maximum solder temperature13 — 260.0 oC MSL SR Moisture sensitivity level14 — 3 Reference to VRL Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. Allowed 2 V for 10 hours cumulative time, remaining time at 1.2 V +10%. The VFLASH supply is connected to VRC33 in the package substrate. This specification applies to calibration package devices only. Allowed 5.3 V for 10 hours cumulative time, remaining time at 3.3 V +10%. Allowed 5.9 V for 10 hours cumulative time, remaining time at 5 V +10%. MPC5644A Microcontroller Data Sheet, Rev. 7 66 Freescale Semiconductor 6 All functional non-supply I/O pins are clamped to VSS and VDDE, or VDDEH. AC signal overshoot and undershoot of up to 2.0 V of the input voltages is permitted for an accumulative duration of 60 hours over the complete lifetime of the device (injection current not limited for this duration). 8 Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met. 9 Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDEH supplies, if the maximum injection current specification is met (2 mA for all pins) and VDDEH is within the operating voltage specifications. 10 Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if the maximum injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage specifications. 11 Total injection current for all pins (including both digital and analog) must not exceed 25 mA. 12 Total injection current for all analog input pins must not exceed 15 mA. 13 Solder profile per IPC/JEDEC J-STD-020D. 14 Moisture sensitivity per JEDEC test method A112. 7 3.3 Thermal characteristics Table 9. Thermal characteristics for 176-pin QFP1 Symbol RJA RJA C Parameter Conditions CC D Junction-to-Ambient, Natural Convection2 CC Convection2 D Junction-to-Ambient, Natural Value Unit Single layer board - 1s 38 °C/W Four layer board - 2s2p 31 °C/W Ambient2 200 ft./min., single layer board - 1s 30 °C/W at 200 ft./min., four layer board - 2s2p 25 °C/W 20 °C/W 5 °C/W 2 °C/W RJMA CC D Junction-to-Moving-Air, RJMA CC D Junction-to-Moving-Air, Ambient2 RJB CC D Junction-to-Board3 Junction-to-Case4 RJCtop CC D JT CC D Junction-to-Package Top, Natural Convection5 1 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5 Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 2 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 67 Table 10. Thermal characteristics for 208-pin MAPBGA1 Symbol 3 4 5 6 7 Conditions 2,3 CC D Junction-to-Ambient, Natural Convection RJA CC D Junction-to-Ambient, Natural Convection2,4 Four layer board - 2s2p One layer board - 1s Value Unit 39 °C/W 24 °C/W 2,4 at 200 ft./min., one layer board 31 °C/W RJMA CC D Junction-to-Moving-Air, Ambient RJMA CC D Junction-to-Moving-Air, Ambient2,4 at 200 ft./min., four layer board 2s2p 20 °C/W RJB CC D Junction-to-board5 Four layer board - 2s2p 13 °C/W 6 °C/W 2 °C/W JT 1 Parameter RJA RJC 2 C CC CC D Junction-to-case 6 D Junction-to-package top natural convection 7 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. Table 11. Thermal characteristics for 324-pin TEPBGA1 Symbol RJA RJA C Parameter Conditions CC D Junction-to-Ambient, Natural Convection2 CC Convection2 D Junction-to-Ambient, Natural Ambient2 Value Unit Single layer board - 1s 29 °C/W Four layer board - 2s2p 19 °C/W at 200 ft./min., single layer board 23 °C/W at 200 ft./min., four layer board 2s2p 16 °C/W RJMA CC D Junction-to-Moving-Air, RJMA CC D Junction-to-Moving-Air, Ambient2 RJB CC D Junction-to-Board3 10 °C/W RJCtop CC D Junction-to-Case4 7 °C/W JT CC D Junction-to-Package Top, Natural Convection5 2 °C/W 1 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 2 MPC5644A Microcontroller Data Sheet, Rev. 7 68 Freescale Semiconductor 5 3.3.1 Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from the equation: TJ = TA + (RJA * PD) Eqn. 1 where: TA = ambient temperature for the package (oC) RJA = junction-to-ambient thermal resistance (oC/W) PD = power dissipation in the package (W) The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the: • • • • Construction of the application board (number of planes) Effective size of the board which cools the component Quality of the thermal and electrical connections to the planes Power dissipated by adjacent components Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced. As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has: • • • One oz. (35 micron nominal thickness) internal planes Components are well separated Overall power dissipation on the board is less than 0.02 W/cm2 The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device. At a known board temperature, the junction temperature is estimated using the following equation: TJ = TB + (RJB * PD) Eqn. 2 where: TB = board temperature for the package perimeter (oC) RJB = junction-to-board thermal resistance (oC/W) per JESD51-8S PD = power dissipation in the package (W) When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to a board with internal planes. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 69 The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance: RJA = RJC + RCA Eqn. 3 where: RJA = junction-to-ambient thermal resistance (oC/W) RJC = junction-to-case thermal resistance (oC/W) RCA = case to ambient thermal resistance (oC/W) RJC is device related and is not affected by other factors. The thermal environment can be controlled to change the case-to-ambient thermal resistance, RCA. For example, change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient. For most packages, a better model is required. A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple estimations and for computational fluid dynamics (CFD) thermal models. To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization parameter (JT) to determine the junction temperature by measuring the temperature at the top center of the package case using the following equation: TJ = TT + (JT x PD) Eqn. 4 where: TT = thermocouple temperature on top of the package (oC) JT = thermal characterization parameter (oC/W) PD = power dissipation in the package (W) The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire. References: Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 USA (408) 943-6900 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB at http://www.jedec.org. • • C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications”, Electronic Packaging and Production, pp. 53-58, March 1998. MPC5644A Microcontroller Data Sheet, Rev. 7 70 Freescale Semiconductor • B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220. 3.4 EMI (electromagnetic interference) characteristics Table 12. EMI Testing Specifications1 Symbol Radiated emissions, electric field Parameter VRE_TEM Conditions VDDREG = 5.25 V; TA = 25 °C 150 kHz – 30 MHz RBW 9 kHz, Step Size 5 kHz 30 MHz – 1 GHz RBW 120 kHz, Step Size 80 kHz 1 3.5 Frequency Range Clocks 16 MHz crystal 150 kHz – 50 MHz 40 MHz bus 50 – 150 MHz No PLL frequency modulation 150 – 500 MHz 16 MHz crystal 40 MHz bus ±2% PLL frequency modulation Level (Max) Unit 20 dBV 20 26 500 – 1000 MHz 26 IEC Level K — SAE Level 3 — 150 kHz– 50 MHz 13 dBV 50 – 150 MHz 13 150 – 500 MHz 11 500 – 1000 MHz 13 IEC Level L — SAE Level 2 — Conditions Value Unit EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03 and IEC 61967-2. Electrostatic discharge (ESD) characteristics Table 13. ESD ratings1,2 Symbol — SR ESD for Human Body Model (HBM) — 2000 V R1 SR HBM circuit description — 1500 C SR — 100 pF — SR V — — 1 Parameter SR SR ESD for field induced charge Model (FDCM) All pins 500 Corner pins 750 Number of pulses per pin Positive pulses (HBM) 1 — Negative pulses (HBM) 1 — 1 — Number of pulses — All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 71 2 Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature.” 3.6 Power management control (PMC) and power on reset (POR) electrical specifications Table 14. PMC Operating Conditions and External Regulators Supply Voltage ID Name Parameter Min Typ Max Unit 1 Jtemp SR — Junction temperature –40 27 150 °C 2 Vddreg SR — PMC 5 V supply voltage VDDREG 4.75 5 5.25 V 1.3 1.32 V 3 Vdd SR — Core supply voltage 1.2 V VDD when external regulator is used without disabling the internal regulator (PMC unit turned on, LVI monitor active)1 1.262 3a — SR — Core supply voltage 1.2 V VDD when external regulator is used with a disabled internal regulator (PMC unit turned-off, LVI monitor disabled) 1.14 1.2 1.32 V 4 Ivdd SR — Voltage regulator core supply maximum required DC output current 400 — — mA 5 Vdd33 SR — Regulated 3.3 V supply voltage when external regulator is used without disabling the internal regulator (PMC unit turned-on, internal 3.3V regulator enabled, LVI monitor active)3 3.3 3.45 3.6 V 5a — SR — Regulated 3.3 V supply voltage when external regulator is used with a disabled internal regulator (PMC unit turned-off, LVI monitor disabled) 3 3.3 3.6 V 6 — SR — Voltage regulator 3.3 V supply maximum required DC output current 80 — — mA 1 An internal regulator controller can be used to regulate core supply. The minimum supply required for the part to exit reset and enter in normal run mode is 1.28 V. 3 An internal regulator can be used to regulate 3.3 V supply. 2 MPC5644A Microcontroller Data Sheet, Rev. 7 72 Freescale Semiconductor Table 15. PMC Electrical Characteristics ID Name Parameter Typ Max Unit — 1.219 — V VBG - 7% VBG Vbg + 6% V Notes 1 VBG 1a — CC P Untrimmed bandgap reference voltage 1b — CC P Trimmed bandgap reference voltage (5 V, 27 °C) VBG -10mV VBG VBG + 10mV V 1c — CC C Bandgap reference temperature variation — 100 — ppm /°C 1d — CC C Bandgap reference supply voltage variation — 3000 — ppm /V 2 Vdd CC C Nominal VDD core supply internal regulator target DC output voltage1 — 1.28 — V 2a — CC P Nominal VDD core supply internal regulator target DC output voltage variation at power-on reset Vdd - 6% Vdd Vdd + 10% V 2b — CC P Nominal VDD core supply Vdd - 10%2 internal regulator target DC output voltage variation after power-on reset Vdd Vdd + 3% V 2c — CC C Trimming step Vdd — 20 — mV 2d Ivrcctl CC C Voltage regulator controller for core supply maximum DC output current 20 — — mA 3 Lvi1p2 CC C Nominal LVI for rising core supply3 — 1.160 — V 3a — CC C Variation of LVI for rising core supply at power-on reset 1.120 1.200 1.280 V See note 4 3b — CC C Variation of LVI for rising core supply after power-on reset Lvi1p2 3% Lvi1p2 Lvi1p2 + 3% V See note 4 3c — CC C Trimming step LVI core supply — 20 — mV 3d Lvi1p2_h CC C LVI core supply hysteresis — 40 — mV 4 Por1.2V_r CC C POR 1.2 V rising — 0.709 — V 4a — 4b Por1.2V_f 4c — CC C Nominal bandgap voltage reference Min CC C POR 1.2 V rising variation CC C POR 1.2 V falling Por1.2V_r - Por1.2V_r Por1.2V_r 35% + 35% — 0.638 — CC C POR 1.2 V falling variation Por1.2V_f - Por1.2V_f Por1.2V_f + 35% 35% V V V MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 73 Table 15. PMC Electrical Characteristics (continued) ID Name Parameter Min Typ Max — Unit Notes 5 Vdd33 CC C Nominal 3.3 V supply internal regulator DC output voltage — 3.39 5a — CC P Nominal 3.3 V supply internal regulator DC output voltage variation at power-on reset Vdd33 8.5% Vdd33 5b — CC P Nominal 3.3 V supply internal regulator DC output voltage variation power-on reset Vdd33 7.5% Vdd33 Vdd33 + 7% V 5c — CC D Voltage regulator 3.3 V output impedance at maximum DC load — — 2 5d Idd3p3 CC P Voltage regulator 3.3 V maximum DC output current (internal regulator enabled)6 807 — — mA — 130 — mA — 3.090 — V The Lvi3p3 specs are also valid for the Vddeh LVI 5e Vdd33 ILim CC C Voltage regulator 3.3 V DC current limit See note 5 Vdd3 + 7% V With internal load up to Idd3p3 6 Lvi3p3 6a — CC C Variation of LVI for rising 3.3 V supply at power-on reset Lvi3p3 6% Lvi3p3 Lvi3p3 + 6% V See note 8 6b — CC C Variation of LVI for rising 3.3 V supply after power-on reset Lvi3p3 3% Lvi3p3 Lvi3p3 + 3% V See note 8 6c — CC C Trimming step LVI 3.3 V — 20 — mV 6d Lvi3p3_h CC C LVI 3.3 V hysteresis — 60 — mV 7 Por3.3V_r CC C Nominal POR for rising 3.3 V supply — 2.07 — V 7a — 7b Por3.3V_f 7c — 8 Lvi5p0 CC C Nominal LVI for rising 3.3 V supply V CC C Variation of POR for rising 3.3 V supply CC C Nominal POR for falling 3.3 V supply Por3.3V_r- Por3.3V_r Por3.3V_r 35% + 35% — 1.95 — V V CC C Variation of POR for falling Por3.3V_f - Por3.3V_f Por3.3V_f + 3.3 V supply 35% 35% V CC C Nominal LVI for rising 5 V VDDREG supply V — 4.290 — The 3.3V POR specs are also valid for the VDDEH POR MPC5644A Microcontroller Data Sheet, Rev. 7 74 Freescale Semiconductor Table 15. PMC Electrical Characteristics (continued) ID Name Parameter Min Typ Max Unit 8a — CC C Variation of LVI for rising 5 V VDDREG supply at power-on reset Lvi5p0 6% Lvi5p0 Lvi5p0 + 6% V 8b — CC C Variation of LVI for rising 5 V VDDREG supply power-on reset Lvi5p0 3% Lvi5p0 Lvi5p0 + 3% V 8c — CC C Trimming step LVI 5 V — 20 — mV 8d Lvi5p0_h CC C LVI 5 V hysteresis — 60 — mV 9 Por5V_r CC C Nominal POR for rising 5 V VDDREG supply — 2.67 — V 9a — CC C Variation of POR for rising 5 V VDDREG supply Por5V_r - 35% Por5V_r Por5V_r + 50% V 9b Por5V_f CC C Nominal POR for falling 5 V VDDREG supply — 2.47 — V 9c — CC C Variation of POR for falling 5 V VDDREG supply Por5V_f - 35% Por5V_f Por5V_f + 50% V 1 Notes Using external ballast transistor. Min range is extended to 10% since Lvi1p2 is reprogrammed from 1.2 V to 1.16 V after power-on reset. LVI for falling supply is calculated as LVI rising – LVI hysteresis. Lvi1p2 tracks DC target variation of internal Vdd regulator. Minimum and maximum Lvi1p2 correspond to minimum and maximum Vdd DC target respectively. Minimum loading (<10 mA) for reading trim values from flash, powering internal RC oscillator, and IO consumption during POR. No external load is allowed, except for use as a reference for an external tool. This value is valid only when the internal regulator is bypassed. When the internal regulator is enabled, the maximum external load allowed on the Nexus pads is 30 pF at 40 MHz. Lvi3p3 tracks DC target variation of internal Vdd33 regulator. Minimum and maximum Lvi3p3 correspond to minimum and maximum Vdd33 DC target respectively. 2 3 4 5 6 7 8 3.6.1 Voltage regulator controller (VRC) electrical specifications Table 16. VRC electrical specifications Symbol IVRCCTL1 BETA 2 1 Parameter Current can be sourced by VRCCTL at Tj: Required gain at Tj: IDD IVRCCTL (fsys = fMAX) 1,3,4 25 oC Min. Max. Units TBD — mA 150 oC TBD — mA – 40 oC TBD — — 25 oC TBD — — 150 oC TBD TBD — IVRCCTL is measured at the following conditions: VDD = 1.35 V, VRC33 = 3.1 V, VVRCCTL = 2.2 V. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 75 2 BETA represents the worst-case external transistor. It is measured on a per-part basis and calculated as (IDD IVRCCTL). 3 Refer to Table 52 for the maximum operating frequency. 4 Values are based on IDD from high-use applications as explained in the IDD Electrical Specification. 3.6.2 Regulator Example In designs where the MPC5644A microcontroller’s internal regulators are used, a ballast is required for generation of the 1.2 V internal supply. No ballast is required when an external 1.2 V supply is used. The resistor may or may not be required. This depends on the allowable power dissipation of the npn bypass transistor device. The resistor may be used to limit the in-rush current at power on. VDDREG Creg Rc The bypass transistor MUST be operated out of saturation region. Cc VRCCTL Keep parasitic inductance under 20nH Re Mandatory decoupling capacitor network MCU Rb VDD Cb VSS Ce Cd VRCCTL capacitor and resistor is required Figure 8. Core voltage regulator controller external components preferred configuration Table 17. MPC5644A External network specification External Network Parameter Min Typ Max T1 Comment NJD2873 or BCP68 only Cb 1.1 F Ce 3*2.35F+5F Equivalent ESR of Ce capacitors 5m Cd 4*50nF Rb 9 2.2F 2.97F X7R,-50%/+35% 3*4.7F+10F 3*6.35F+13.5F X7R, -50%/+35% 50m 4*100nF 4*135nF X7R, -50%/+35% 10 11 +/-10% MPC5644A Microcontroller Data Sheet, Rev. 7 76 Freescale Semiconductor Table 17. MPC5644A External network specification External Network Parameter Min 0.252 Re Typ Max Comment 0.280 0.308 +/-10% Creg 3.6.3 10F Cc 5F Rc 1.1 10F It depends on external Vreg. 13.5F X7R, -50%/+35% 5.6 May or may not be required. It depends on the allowable power dissipation of T1. Recommended power transistors The following NPN transistors are recommended for use with the on-chip voltage regulator controller: ON SemiconductorTM BCP68T1 or NJD2873 as well as Philips SemiconductorTM BCP68. The collector of the external transistor is preferably connected to the same voltage supply source as the output stage of the regulator. Table 18. Recommended operating characteristics Symbol hFE () PD Parameter DC current gain (Beta) Absolute minimum power dissipation Value Unit 60 – 550 — >1.0 (1.5 preferred) W 1.0 A 200 – 6001 mV 0.4 – 1.0 V ICMaxDC Minimum peak collector current VCESAT Collector-to-emitter saturation voltage VBE 1 3.7 Base-to-emitter voltage Adjust resistor at bipolar transistor collector for 3.3 V/5.0 V to avoid VCE < VCESAT. Power up/down sequencing There is no power sequencing required among power sources during power up and power down, in order to operate within specification. Although there are no power up/down sequencing requirements to prevent issues such as latch-up or excessive current spikes the state of the I/O pins during power up/down varies according to Table 19 for all pins with fast pads, and Table 20 for all pins with medium, slow, and multi-voltage pads. Table 19. Power sequence pin states (fast pads) VDDE VRC33 VDD Pad State LOW X X LOW VDDE LOW X HIGH VDDE VRC33 LOW HIGH IMPEDANCE VDDE VRC33 VDD FUNCTIONAL MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 77 Table 20. Power sequence pin states (medium, slow, and multi-voltage pads) 3.8 VDDEH VDD Pad State LOW X LOW VDDEH LOW HIGH IMPEDANCE VDDEH VDD FUNCTIONAL DC electrical specifications Table 21. DC electrical specifications Value Symbol C Parameter Conditions Unit min typ max VDD SR — Core supply voltage — 1.14 1.32 V VDDE SR — I/O supply voltage — 1.62 3.6 V VDDEH SR — I/O supply voltage — 3.0 5.25 V VDDE-EH SR — I/O supply voltage — 3.0 5.25 V VRC33 SR — 3.3 V regulated voltage1 — 3.0 — 3.6 V VDDA SR — Analog supply voltage — 4.752 — 5.25 V VINDC SR — Analog input voltage — VSSA-0.3 — VDDA+0.3 V VSS – VSSA SR — VSS differential voltage — –100 — 100 mV VRL SR — Analog reference low voltage — VSSA — VSSA+0.1 V VRL – VSSA SR — VRL differential voltage — –100 — 100 mV VRH SR — Analog reference high voltage — VDDA-0.1 — VDDA V VRH – VRL SR — VREF differential voltage — 4.75 — 5.25 V VDDF SR — Flash operating voltage3 — 1.14 — 1.32 V VFLASH4 SR — Flash read voltage — 3.0 — 3.6 V VSTBY SR — SRAM standby voltage Unregulated mode 0.95 — 1.2 V Regulated mode 2.0 — 5.5 Keep-out Range: 1.2V–2V MPC5644A Microcontroller Data Sheet, Rev. 7 78 Freescale Semiconductor Table 21. DC electrical specifications (continued) Value Symbol C Parameter Conditions Unit min typ max VDDREG SR — Voltage regulator supply voltage — 4.75 — 5.25 V VDDPLL SR — Clock synthesizer operating voltage — 1.14 — 1.32 V VSSPLL – VSS SR — VSSPLL to VSS differential voltage — –100 — 100 mV VIL_S CC C Hysteresis enabled VSS-0.3 — 0.35*VDDEH V Hysteresis disabled VSS-0.3 — 0.40*VDDEH Hysteresis enabled VSS-0.3 — 0.35*VDDE Hysteresis disabled VSS-0.3 — 0.40*VDDE Multi-voltage I/O pad input low voltage in Low-swing-mode5,6,7, Hysteresis enabled VSS-0.3 — 0.8 8 Hysteresis disabled VSS-0.3 — 1.1 Multi-voltage pad I/O input low voltage in high-swing-mode Hysteresis enabled VSS-0.3 — 0.35 VDDEH Hysteresis disabled VSS-0.3 — 0.4 VDDEH Slow/medium pad I/O input high voltage9 Hysteresis enabled 0.65 VDDEH — VDDEH+0.3 Hysteresis disabled 0.55 VDDEH — VDDEH+0.3 Hysteresis enabled 0.65 VDDE — VDDE+0.3 Hysteresis disabled 0.58 VDDE — VDDE+0.3 Hysteresis enabled 2.5 — VDDEH+0.3 Hysteresis disabled 2.2 — VDDEH+0.3 Hysteresis enabled 0.65 VDDEH — VDDEH+0.3 Hysteresis disabled 0.55 VDDEH — VDDEH+0.3 Slow/medium I/O pad input low voltage P VIL_F CC C Fast pad I/O input low voltage P VIL_LS CC C P VIL_HS CC C P VIH_S CC C P VIH_F CC C Fast I/O input high voltage P VIH_LS CC C P VIH_HS CC C P Multi-voltage pad I/O input high voltage in low-swing-mode5,6,7,8 Multi-voltage I/O input high voltage in high-swing-mode V V V V V V V MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 79 Table 21. DC electrical specifications (continued) Value Symbol C Parameter Conditions Unit min typ max VOL_S CC P Slow/medium pad I/O output low voltage9 — — 0.2*VDDEH V VOL_F CC P Fast I/O output low voltage9 — — 0.2*VDDE V VOL_LS CC P Multi-voltage pad I/O output low voltage in low-swing mode5,6,7,8,9 — — 0.6 V VOL_HS CC P Multi-voltage pad I/O output low voltage in high-swing mode9 — — 0.2*VDDEH V VOH_S CC P Slow/medium pad I/O output high voltage9 0.8 VDDEH — — V VOH_F CC P Fast pad I/O output high voltage9 0.8 VDDE — — V VOH_LS CC P Multi-voltage pad I/O output high voltage in low-swing mode5,6,7,8 2.1 3.1 3.7 V VOH_HS CC P Multi-voltage pad I/O output high voltage in high-swing mode9 0.8 VDDEH — — V VHYS_S CC C Slow/medium/multi-vo ltage I/O input hysteresis — 0.1 * VDDEH — — V VHYS_F CC C Fast I/O input hysteresis — 0.1 * VDDE — — V VHYS_LS CC C Low-Swing-Mode Multi-Voltage I/O Input Hysteresis hysteresis enabled 0.25 — — v IDD+IDDPLL CC P Operating current 1.2 V supplies VDD at 1.32 V at 80 MHz — 380 mA P VDD at 1.32V at 120 MHz — 400 mA P VDD at 1.32V at 150 MHz — 400 mA IOH_LS = 0.5 mA MPC5644A Microcontroller Data Sheet, Rev. 7 80 Freescale Semiconductor Table 21. DC electrical specifications (continued) Value Symbol IDDSTBY IDDSTBY27 IDDSTBY150 C CC CC CC Parameter Conditions Unit min typ max T Operating current 0.95-1.2 V VSTBY at 55 oC — 35 100 A T Operating current 2–5.5 V VSTBY at 55 oC — 45 110 A P Operating current 0.95-1.2 V VSTBY 27 oC 25 90 A P Operating current 2-5.5 V VSTBY 27 oC 35 100 A P Operating current 0.95-1.2 V VSTBY 150 oC — 790 2000 A P Operating current 2–5.5 V VSTBY at 150 oC — 760 2000 A IDDPLL CC P Operating current 1.2 V supplies VDDPLL, 80 MHz, VDD=1.2 V — 15 mA IDDSLOW IDDSTOP CC P VDD low-power mode operating current at 1.32 V Slow mode10 — 90 mA Stop mode11 — 75 60 mA mA P IDD33 CC C Operating current 3.3 V supplies VRC331,12 — IDDA IREF CC P Operating current 5.0 V supplies VDDA — — 30.0 Analog reference supply current (transient) — — 1.0 VDDREG — — 7013 VDDEH1 — — See note 14 VDDEH4 — — D VDDEH6 — — D VDDEH7 — — D VDDE7 — — D VDDEH9 — — D VDDE12 — — P IDDREG C IDDH1 IDDH4 IDDH6 IDDH7 IDD7 IDDH9 IDD12 CC D D Operating current VDDE14 supplies mA MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 81 Table 21. DC electrical specifications (continued) Value Symbol IACT_S C CC IACT_MV_PU CC CC CC Unit typ max 3.0 V – 3.6 V 15 — 95 4.75 V – 5.5 V 35 — 200 1.62 V – 1.98 V 36 — 120 D 2.25 V – 2.75 V 34 — 139 D 3.0 V – 3.6 V 42 — 158 VDDE= 3.0–3.6 V5, MultiV pad, high swing mode only 10 — 75 4.75 V – 5.25 V 25 — 200 VDDE= 3.0–3.6 V5, MultiV pad, high swing mode only 10 — 60 4.75 V – 5.25 V 25 — 200 C D C Slow/medium I/O weak pull up/down current15 Fast I/O weak pull up/down current15 Multi-voltage pad weak pullup current P IACT_MV_PD Conditions min P IACT_F Parameter C Multivoltage pad weak pulldown current P A A A A IINACT_D CC P I/O input leakage current16 — –2.5 — 2.5 A IIC SR T DC injection current (per pin) — –1.0 — 1.0 mA IINACT_A SR P Analog input current, channel off, AN[0:7]17 — –250 — 250 nA P Analog input current, channel off, all other analog pins17 — –150 — 150 MPC5644A Microcontroller Data Sheet, Rev. 7 82 Freescale Semiconductor Table 21. DC electrical specifications (continued) Value Symbol C Parameter Conditions Unit min CL CC D Load capacitance (fast I/O)18 typ max DSC(PCR[8 :9]) = 0b00 — 10 D DSC(PCR[8 :9]) = 0b01 — 20 D DSC(PCR[8 :9]) = 0b10 — 30 D DSC(PCR[8 :9]) = 0b11 — 50 pF CIN CC D Input capacitance (digital pins) — — 7 pF CIN_A CC D Input capacitance (analog pins) — — 10 pF CIN_M CC D Input capacitance (digital and analog pins19) — — 12 pF RPUPD200K SR P Weak Pull-Up/Down Resistance20, 200 k Option — 130 — 280 k RPUPD100K SR P Weak Pull-Up/Down Resistance20, 100 k Option — 65 — 140 k RPUPD5K SR C Weak Pull-Up/Down Resistance20, 5 k Option 5 V ± 5% supply 1.4 — 7.5 k RPUPDMTCH CC C Pull-up/Down Resistance matching ratios (100K/200K) Pull-up and pull-down resistances both enabled and settings are equal. –2.5 — 2.5 % TA (TL to TH) SR — Operating temperature range ambient (packaged) — –40.0 125.0 C — SR — Slew rate on power supply pins — — 25 V/ms 1 These specifications apply when VRC33 is supplied externally, after disabling the internal regulator (VDDREG = 0). ADC is functional with 4 V VDDA 4.75 V but with derated accuracy. This means the ADC will continue to function at full speed with no undesirable behavior, but the accuracy will be degraded. 3 The VDDF supply is connected to VDD in the package substrate. This specification applies to calibration package devices only. 2 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 83 4 VFLASH is only available in the calibration package. Power supply for multi-voltage pads cannot be below 4.5 V when in low-swing mode. 6 The slew rate (SRC) setting must be 0b11 when in low-swing mode. 7 While in low-swing mode there are no restrictions in transitioning to high-swing mode. 8 Pin in low-swing mode can accept a 5 V input. 9 All VOL/VOH values 100% tested with ± 2 mA load except where noted. 10 Bypass mode, system clock at 1 MHz (using system clock divider), PLL shut down, CPU running simple executive code, 4 x ADC conversion every 10 ms, 2 x PWM channels 1 kHz, all other modules stopped. 11 Bypass mode, system clock at 1 MHz (using system clock divider), CPU stopped, PIT running, all other modules stopped. 12 This current will be consumed for external regulation and internal regulation, when 3.3V regulator is switched off by shadow flash 13 If 1.2V and 3.3V internal regulators are on,then iddreg=70mA If supply is external that is 3.3V internal regulator is off, then iddreg=15mA 14 Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular I/O segment, and the voltage of the I/O segment. See Table 22 for values to calculate power dissipation for specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment. 15 Absolute value of current, measured at V and V . IL IH 16 Weak pull up/down inactive. Measured at V = DDE 3.6 V and VDDEH = 5.25 V. Applies to fast, slow, and medium pads. 17 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to analog pads. 18 Applies to CLKOUT, external bus pins, and Nexus pins. 19 Applies to the FCK, SDI, SDO, and SDS pins. 20 This programmable option applies only to eQADC differential input channels and is used for biasing and sensor diagnostics. 5 MPC5644A Microcontroller Data Sheet, Rev. 7 84 Freescale Semiconductor 3.9 I/O pad current specifications The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 22 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 22. Table 22. I/O pad average IDDE specifications1 Pad Type Slow Medium Fast MultiV (High Swing Mode) MultiV (Low Swing Mode) C Period (ns) Load2 (pF) VDDE (V) Drive/Slew Rate Select IDDE Avg (mA)3 IDDE RMS (mA) CC D 37 50 5.5 11 9 — CC D 130 50 5.5 01 2.5 — CC D 650 50 5.5 00 0.5 — CC D 840 200 5.5 00 1.5 — CC D 24 50 5.5 11 14 — CC D 62 50 5.5 01 5.3 — CC D 317 50 5.5 00 1.1 — CC D 425 200 5.5 00 3 — CC D 10 50 3.6 11 22.7 68.3 CC D 10 30 3.6 10 12.1 41.1 CC D 10 20 3.6 01 8.3 27.7 CC D 10 10 3.6 00 4.44 14.3 CC D 10 50 1.98 11 12.5 31 CC D 10 30 1.98 10 7.3 18.6 CC D 10 20 1.98 01 5.42 12.6 CC D 10 10 1.98 00 2.84 6.4 CC D 20 50 5.5 11 9 — CC D 30 50 5.5 01 6.1 — CC D 117 50 5.5 00 2.3 — CC D 212 200 5.5 00 5.8 — CC D 30 30 5.5 11 3.4 — Symbol IDRV_SSR_HV IDRV_MSR_HV IDRV_FC IDRV_MULTV_ HV IDRV_MULTV_ HV 1 Numbers from simulations at best case process, 150 °C. All loads are lumped. 3 Average current is for pad configured as output only. 2 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 85 3.9.1 I/O pad VRC33 current specifications The power consumption of the VRC33 supply is dependent on the usage of the pins on all I/O segments. The power consumption is the sum of all input and output pin VRC33 currents for all I/O segments. The output pin VRC33 current can be calculated from Table 23 based on the voltage, frequency, and load on all fast pad pins. The input pin VRC33 current can be calculated from Table 23 based on the voltage, frequency, and load on all medium-speed pads. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 23. Table 23. I/O pad VRC33 average IDDE specifications1 Pad Type Slow Medium MultiV3 (High Swing Mode) MultiV4 (Low Swing Mode) C Period (ns) Load2 (pF) Drive Select IDD33 Avg (µA) IDD33 RMS (µA) CC D 100 50 11 0.8 235.7 CC D 200 50 01 0.04 87.4 CC D 800 50 00 0.06 47.4 CC D 800 200 00 0.009 47 CC D 40 50 11 2.75 258 CC D 100 50 01 0.11 76.5 CC D 500 50 00 0.02 56.2 CC D 500 200 00 0.01 56.2 CC D 20 50 11 33.4 35.4 CC D 30 50 01 33.4 34.8 CC D 117 50 00 33.4 33.8 CC D 212 200 00 33.4 33.7 CC D 30 30 11 33.4 34.9 Symbol IDRV_SSR_HV IDRV_MSR_HV IDRV_MULTV_HV IDRV_MULTV_HV 1 These are typical values that are estimated from simulation and not tested. Currents apply to output pins only. All loads are lumped. 3 Average current is for pad configured as output only. 4 In low swing mode, multi-voltage pads must operate in highest slew rate setting. 2 MPC5644A Microcontroller Data Sheet, Rev. 7 86 Freescale Semiconductor Table 24. VRC33 pad average DC current1 Pad Type Fast 1 C Period (ns) Load2 (pF) VRC33 (V) VDDE (V) Drive Select IDD33 Avg (µA) IDD33 RMS (µA) CC D 10 50 3.6 3.6 11 2.35 6.12 CC D 10 30 3.6 3.6 10 1.75 4.3 CC D 10 20 3.6 3.6 01 1.41 3.43 CC D 10 10 3.6 3.6 00 1.06 2.9 CC D 10 50 3.6 1.98 11 1.75 4.56 CC D 10 30 3.6 1.98 10 1.32 3.44 CC D 10 20 3.6 1.98 01 1.14 2.95 CC D 10 10 3.6 1.98 00 0.95 2.62 Symbol IDRV_FC These are typical values that are estimated from simulation and not tested. Currents apply to output pins only. All loads are lumped. 2 3.9.2 LVDS pad specifications LVDS pads are implemented to support the MSC (Microsecond Channel) protocol which is an enhanced feature of the DSPI module. The LVDS pads are compliant with LVDS specifications and support data rates up to 50 MHz. Table 25. DSPI LVDS pad specification # Characteristic Symbol C Condition Min. Value Typ. Value Max. Value Unit Data Rate 4 Data Frequency fLVDSCLK CC D — 50 MHz Driver Specs 5 Differential output voltage VOD CC P SRC=0b00 or 0b11 150 400 CC P SRC=0b01 90 320 CC P SRC=0b10 160 480 6 Common mode voltage (LVDS), VOS VOD CC P 7 Rise/Fall time TR/TF CC D 8 Propagation delay (Low to High) TPLH CC D 9 Propagation delay (High to Low) TPHL CC D 10 Delay (H/L), sync Mode tPDSYNC CC D 1.06 — — 1.2 1.39 mV V 2 ns 4 ns 4 ns 4 ns MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 87 Table 25. DSPI LVDS pad specification (continued) 11 Delay, Z to Normal (High/Low) TDZ CC D — 12 Diff Skew Itphla-tplhbI or Itplhb-tphlaI TSKEW CC D — 500 ns 0.5 ns 105 150 C Termination 13 Trans. Line (differential Zo) CC D 14 Temperature CC D 3.10 — 95 100 –40 Oscillator and PLLMRFM electrical characteristics Table 26. PLLMRFM electrical specifications (VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) Value Symbol fref_crystal fref_ext C CC D Parameter Conditions PLL reference frequency range1 C Unit min max Crystal reference 4 40 External reference 4 80 MHz fpll_in CC P Phase detector input frequency range (after pre-divider) — 4 16 MHz fvco CC P VCO frequency range — 256 512 MHz fsys CC C On-chip PLL frequency2 — 16 150 MHz fsys CC T System frequency in bypass mode2 Crystal reference 4 40 MHz External reference 0 80 — — 1 / fsys ns Lower limit 1.6 3.7 MHz Upper limit 24 56 P tCYC CC D D System clock period fLORL fLORH CC fSCM CC P Self-clocked mode frequency 4,5 — 1.2 72.25 MHz CJITTER CC T CLKOUT period jitter6,7,8,9 fSYS maximum –5 5 % fCLKOUT –6 6 ns — 10 ms D T tcst Loss of reference frequency window3 CC T Peak-to-peak (clock edge to clock edge) Long-term jitter (avg. over 2 ms interval) Crystal start-up time 10, 11 — MPC5644A Microcontroller Data Sheet, Rev. 7 88 Freescale Semiconductor Table 26. PLLMRFM electrical specifications (VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) (continued) Value Symbol VIHEXT C CC T Parameter EXTAL input high voltage T VILEXT CC T EXTAL input low voltage T — 1 2 3 4 5 6 7 CC T XTAL load capacitance10 Conditions Unit min max Crystal Mode12 Vxtal + 0.4 — External Reference12, 13 VRC33 /2 + 0.4 VRC33 Crystal Mode12 — Vxtal 0.4 External Reference12, 13 0 VRC33 /2 0.4 4 MHz 5 30 8 MHz 5 26 12 MHz 5 23 16 MHz 5 19 20 MHz 5 16 40 MHz 5 8 V V pF tlpll CC P PLL lock time 10, 14 — — 200 s tdc CC T Duty cycle of reference — 40 60 % fLCK CC T Frequency LOCK range — –6 6 % fsys fUL CC T Frequency un-LOCK range — –18 18 % fsys fCS fDS CC D Modulation Depth Center spread ±0.25 ±4.0 % fsys Down Spread –0.5 –8.0 fMOD CC — 100 D D Modulation frequency15 — kHz Considering operation with PLL not bypassed. All internal registers retain data at 0 Hz. “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked mode. Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the fLOR window. fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in enhanced mode. This value is determined by the crystal manufacturer and board design. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the CJITTER percentage for a given interval. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 89 8 Proper PC board layout procedures must be followed to achieve specifications. Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled). 10 This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals specified for this PLL, load capacitors should not exceed these limits. 11 Proper PC board layout procedures must be followed to achieve specifications. 12 This parameter is guaranteed by design rather than 100% tested. 13 VIHEXT cannot exceed VRC33 in external reference mode. 14 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 15 Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz. 9 3.11 Temperature sensor electrical characteristics Table 27. Temperature sensor electrical characteristics Value Symbol 3.12 C Parameter — CC C Temperature monitoring range — CC C Sensitivity — CC P Accuracy Conditions Unit TJ = –40 to 150 °C min typical max –40 — 150 °C — 6.3 — mV/°C –10 — 10 °C eQADC electrical characteristics Table 28. eQADC conversion specifications (operating) Value Symbol 1 C Unit Parameter fADCLK SR — ADC clock (ADCLK) frequency CC CC D Conversion cycles time1 TSR CC C Stop mode recovery fADCLK SR — ADC clock (ADCLK) frequency min max 2 16 MHz 2+13 128+14 ADCLK cycles — 10 s 2 16 mV Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that the ADC is ready to perform conversions.Delay from power up to full accuracy = 8 ms. MPC5644A Microcontroller Data Sheet, Rev. 7 90 Freescale Semiconductor Table 29. eQADC single ended conversion specifications (operating) Value Symbol 1 2 3 4 5 6 C Parameter Unit min max OFFNC CC C Offset error without calibration 0 160 Counts OFFWC CC C Offset error with calibration –4 4 Counts GAINNC CC C Full scale gain error without calibration –160 0 Counts GAINWC CC C Full scale gain error with calibration –4 4 Counts –3 3 mA –4 4 Counts 6 Counts Counts 1, 2, 3, 4 IINJ CC T Disruptive input injection current EINJ CC T Incremental error due to injection current5,6 TUE8 CC C Total unadjusted error (TUE) at 8 MHz –4 4 TUE16 CC C Total unadjusted error at 16 MHz –8 8 Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog inputs greater then VRH and 0x0 for values less then VRL. Other channels are not affected by non-disruptive conditions. Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = – 0.3 V, then use the larger of the calculated values. Condition applies to two adjacent pins at injection limits. Performance expected with production silicon. All channels have same 10 k < Rs < 100 k; Channel under test has Rs=10 k; IINJ=IINJMAX,IINJMIN Table 30. eQADC differential ended conversion specifications (operating) Value Symbol C Parameter Unit min GAINVGA11 CC – CC C CC C CC C CC C max Variable gain amplifier accuracy (gain=1)2 INL DNL 8 MHz ADC –4 4 Counts 16 MHz ADC –8 8 Counts 8 MHz ADC –34 34 Counts 16 MHz ADC –34 34 Counts 3 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 91 Table 30. eQADC differential ended conversion specifications (operating) (continued) Value Symbol C Parameter Unit min GAINVGA21 CC – CC D CC D CC D CC D CC – CC D CC D CC D CC D DIFFmax CC C DIFFmax2 CC C DIFFmax4 CC C DIFFcmv CC C GAINVGA41 max Variable gain amplifier accuracy (gain=2)2 INL DNL 8 MHz ADC –5 5 Counts 16 MHz ADC –8 8 Counts 8 MHz ADC –3 3 Counts 16 MHz ADC –3 3 Counts 8 MHz ADC –7 7 Counts 16 MHz ADC –8 8 Counts 8 MHz ADC –4 4 Counts 16 MHz ADC –4 4 Counts — (VRH - VRL)/2 V — (VRH - VRL)/4 V — (VRH - VRL)/8 V Variable gain amplifier accuracy (gain=4)2 INL DNL Maximum PREGAIN differential voltage set to 1X (DANx+ - DANx-) or setting (DANx- - DANx+)5 PREGAIN set to 2X setting PREGAIN set to 4X setting Differential input Common mode voltage (DANx- + DANx+)/25 — (VRH + VRL)/2 - 5% (VRH + VRL)/2 + 5% V 1 Applies only to differential channels. Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of 1, 2, or 4. Settings are for differential input only. Tested at 1 gain. Values for other settings are guaranteed by as indicated. 3 At V RH – VRL = 5.12 V, one LSB = 1.25 mV. 4 Guaranteed 10-bit mono tonicity. 5 Voltages between VRL and VRH will not cause damage to the pins. However, they may not be converted accurately if the differential voltage is above the maximum differential voltage. In addition, conversion errors may occur if the common mode voltage of the differential signal violates the Differential Input common mode voltage specification. 2 MPC5644A Microcontroller Data Sheet, Rev. 7 92 Freescale Semiconductor 3.13 Configuring SRAM wait states Use the SWSC field in the ECSM_MUDCR register to specify an additional wait state for the device SRAM. By default, no wait state is added. Table 31. Cutoff frequency for additional SRAM wait state 1 1 SWSC Value 98 0 153 1 Max frequencies including 2% PLL FM. Please see the device reference manual for details. 3.14 Platform flash controller electrical characteristics Table 32. APC, RWSC, WWSC settings vs. frequency of operation1,2 Max. Flash Operating Frequency (MHz)3 APC4 RWSC4 WWSC 20 MHz 0b000 0b000 0b11 61 MHz 0b001 0b001 0b11 90 MHz 0b010 0b010 0b11 123 MHz 0b011 0b011 0b11 153 MHz 0b100 0b100 0b11 1 APC, RWSC and WWSC are fields in the flash memory BIUCR register used to specify wait states for address pipelining and read/write accesses. Illegal combinations exist—all entries must be taken from the same row. 2 TBD: To Be Defined. 3 Max frequencies including 2% PLL FM. 4 APC must be equal to RWSC. 3.15 Flash memory electrical characteristics Table 33. Flash program and erase specifications1 # 1 Symbol Tdwprogram CC C Parameter P Double Word (64 bits) Program Time Min. Typical Value Value — Initial Max2 Max3 Unit 38 — 500 s 500 s CC P Page Program Time — 45 1604 3 T16kpperase CC P 16 KB Block Pre-program and Erase Time — 270 1000 5000 ms 5 T64kpperase CC P 64 KB Block Pre-program and Erase Time — 800 1800 5000 ms 2 Tpprogram MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 93 Table 33. Flash program and erase specifications1 3 4 5 6 Max3 Unit 1500 2600 7500 ms — 3000 5200 15000 ms 100 — — — s C Parameter 6 T128kpperase CC P 128 KB Block Pre-program and Erase Time — 7 T256kpperase CC P 256 KB Block Pre-program and Erase Time Program suspend request rate5 Tpsrt 9 2 Initial Max2 Symbol 8 1 Min. Typical Value Value # Tesrt SR — SR — Erase suspend request rate 6 10 ms o Typical program and erase times assume nominal supply values and operation at 25 C. All times are subject to change pending device characterization. Initial factory condition: < 100 program/erase cycles, 25 oC, typical supply voltage, 80 MHz minimum system frequency. The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is characterized but not guaranteed. Page size is 128 bits (4 words). Time between program suspend resume and the next program suspend request. Time between erase suspend resume and the next erase suspend request. Table 34. Flash module life Value Symbol 1 C Parameter Conditions Unit min typ P/E CC C Number of program/erase cycles per block for 16 KB, 48 KB, and 64 Kbyte blocks over the operating temperature range (TJ) — 100,000 — P/E cycles P/E CC C Number of program/erase cycles per block for 128 Kbyte and 256 Kbyte blocks over the operating temperature range (TJ) — 1,000 100,000 P/E cycles Data Retention CC C Minimum data retention at 85 C average ambient temperature1 Blocks with 0 – 1,000 P/E cycles 20 — years Blocks with 1,001 – 10,000 P/E cycles 10 — years Blocks with 10,001 – 100,000 P/E cycles 5 — years Ambient temperature averaged over duration of application, not to exceed product operating temperature range. MPC5644A Microcontroller Data Sheet, Rev. 7 94 Freescale Semiconductor 3.16 AC specifications 3.16.1 Pad AC specifications Table 35. Pad AC specifications (5.0 V)1 Name Medium5,6,7 C CC D Output Delay (ns)2,3 Low-to-High / High-to-Low Rise/Fall Edge (ns)3,4 Min Max Min Max 4.6/3.7 12/12 2.2/2.2 7/7 Drive Load (pF) MSB,LSB 50 CC D 12/13 28/34 5.6/6 15/15 50 01 CC D 69/71 152/165 34/35 74/74 50 00 CC D 7.3/5.7 19/18 4.4/4.3 14/14 50 118 109 N/A 11 MultiV (High Swing Mode) MultiV (Low Swing Mode) 118 109 N/A Slow7,10 SRC/DSC CC D 26/27 61/69 13/13 34/34 50 01 CC D 137/142 320/330 72/74 164/164 50 00 CC D 4.1/3.6 10.3/8.9 3.28/2.98 8/8 50 118 109 N/A CC D 8.38/6.11 16/12.9 5.48/4.81 11/11 50 01 CC D 61.7/10.4 92.2/24.3 42.0/12.2 63/63 50 00 CC D 2.31/2.34 7.62/6.33 1.26/1.67 6.5/4.4 30 118 ±1.5/1.5 0.5 N/A 5000/5000 50 N/A Fast12 N/A pad_i_hv13 CC D 0.5/0.5 1.9/1.9 pull_hv CC D NA 6000 0.3/0.3 1 These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH 2 This parameter is supplied for reference and is not guaranteed by design and not tested. 3 Delay and rise/fall are measured to 20% or 80% of the respective signal. 4 This parameter is guaranteed by characterization before qualification rather than 100% tested. 5 In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output pads 6 Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown. 7 Output delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect to system clock. 8 Can be used on the tester. 9 This drive select value is not supported. If selected, it will be approximately equal to 11. 10 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown. 11 Selectable high/low swing IO pad with selectable slew in high swing mode only. 12 Fast pads are 3.3 V pads. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 95 13 Stand alone input buffer. Also has weak pull-up/pull-down. Table 36. Pad AC specifications (VDDE = 3.3 V)1 Pad Type Medium5,6,7 C Output Delay (ns)2,3 Low-to-High / High-to-Low Rise/Fall Edge (ns)3,4 Min Max Min Max Drive Load (pF) MSB,LSB 118 CC D 5.8/4.4 18/17 2.7/2.1 10/10 50 CC D 16/13 46/49 11.2/8.6 34/34 200 109 N/A 7,10 Slow CC D 14/16 37/45 6.5/6.7 19/19 50 01 CC D 27/27 69/82 15/13 43/43 200 CC D 83/86 200/210 38/38 86/86 50 CC D 113/109 270/285 53/46 120/120 200 CC D 9.2/6.9 27/28 5.5/4.1 20/20 50 CC D 30/23 81/87 21/16 63/63 200 00 11 109 N/A MultiV7,11 (High Swing Mode) CC D 31/31 80/90 15.4/15.4 42/42 50 CC D 58/52 144/155 32/26 82/85 200 CC D 162/168 415/415 80/82 190/190 50 CC D 216/205 533/540 106/95 250/250 200 CC D 3.7/3.1 10/10 30 CC D 46/49 37/37 200 01 00 118 109 N/A CC D 32 15/15 50 CC D 72 46/46 200 CC D 210 100/100 50 CC D 295 134/134 200 MultiV (Low Swing Mode) Fast 1 SRC/DSC 01 00 Not a valid operational mode CC D 2.5/2.5 1.2/1.2 10 00 CC D 2.5/2.5 1.2/1.2 20 01 CC D 2.5/2.5 1.2/1.2 30 10 CC D 2.5/2.5 1.2/1.2 50 118 pad_i_hv12 CC D 0.5/0.5 3/3 ±1.5/1.5 0.5 N/A pull_hv CC D NA 6000 5000/5000 50 N/A 0.4/0.4 These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V, VDDEH = 3 V to 3.6 V, TA = TL to TH. MPC5644A Microcontroller Data Sheet, Rev. 7 96 Freescale Semiconductor 2 This parameter is supplied for reference and is not guaranteed by design and not tested. Delay and rise/fall are measured to 20% or 80% of the respective signal. 4 This parameter is guaranteed by characterization before qualification rather than 100% tested. 5 In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output pads 6 Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown. 7 Output delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect to system clock. 8 Can be used on the tester. 9 This drive select value is not supported. If selected, it will be approximately equal to 11. 10 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown. 11 Selectable high/low swing IO pad with selectable slew in high swing mode only. 12 Stand alone input buffer. Also has weak pull-up/pull-down. 3 VDDE/2 Pad Data Input Rising Edge Output Delay Falling Edge Output Delay Pad Output VOH VOL Figure 9. Pad output delay MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 97 3.17 AC timing 3.17.1 Reset and configuration pin timing Table 37. Reset and Configuration Pin Timing1 # 1 2 Characteristic Symbol Min Max Unit 1 RESET Pulse Width2 tRPW 10 — tcyc 2 RESET Glitch Detect Pulse Width tGPW 2 — tcyc 3 PLLREF, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid tRCSU 10 — tcyc 4 PLLREF, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid tRCH 0 — tcyc Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.14 V to 1.32 V, TA = TL to TH. RESET pulse width is measured from 50% of the falling edge to 50% of the rising edge. 2 RESET 1 RSTOUT 3 BOOTCFG WKPCFG 4 Figure 10. Reset and Configuration Pin Timing MPC5644A Microcontroller Data Sheet, Rev. 7 98 Freescale Semiconductor 3.17.2 IEEE 1149.1 interface timing Table 38. JTAG pin AC electrical characteristics1 # Symbol C Characteristic Min. Value Max. Value Unit 1 tJCYC CC D TCK Cycle Time 100 — ns 2 tJDC CC D TCK Clock Pulse Width 40 60 ns 3 tTCKRISE CC D TCK Rise and Fall Times (40% - 70%) — 3 ns 4 tTMSS, tTDIS CC D TMS, TDI Data Setup Time 5 — ns 5 tTMSH, tTDIH CC D TMS, TDI Data Hold Time 25 — ns 6 tTDOV CC D TCK Low to TDO Data Valid — 222 ns 7 tTDOI CC D TCK Low to TDO Data Invalid 0 — ns 8 tTDOHZ CC D TCK Low to TDO High Impedance — 22 ns 9 tJCMPPW CC D JCOMP Assertion Time 100 — ns 10 tJCMPS CC D JCOMP Setup Time to TCK Low 40 — ns 11 tBSDV CC D TCK Falling Edge to Output Valid — 50 ns 12 tBSDVZ CC D TCK Falling Edge to Output Valid out of High Impedance — 50 ns 13 tBSDHZ CC D TCK Falling Edge to Output High Impedance — 50 ns 14 tBSDST CC D Boundary Scan Input Valid to TCK Rising Edge 253 — ns 15 tBSDHT CC D TCK Rising Edge to Boundary Scan Input Invalid 253 — ns 1 JTAG timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to Low-Swing mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10, SRC = 0b11. These specifications apply to JTAG boundary scan only. See Table 39 for functional specifications. 2 Pad delay is 8–10 ns. Remainder includes TCK pad delay, clock tree delay logic delay and TDO output pad delay. 3 For 20 MHz TCK. NOTE The Nexus/JTAG Read/Write Access Control/Status Register (RWCS) write (to begin a read access) or the write to the Read/Write Access Data Register (RWD) (to begin a write access) does not actually begin its action until 1 JTAG clock (TCK) after leaving the JTAG Update-DR state. This prevents the access from being performed and therefore will not signal its completion via the READY (RDY) output unless the JTAG controller receives an additional TCK. In addition, EVTI is not latched into the device unless there are clock transitions on TCK. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 99 The tool/debugger must provide at least one TCK clock for the EVTI signal to be recognized by the MCU. When using the RDY signal to indicate the end of a Nexus read/write access, ensure that TCK continues to run for at least 1 TCK after leaving the Update-DR state. This can be just a TCK with TMS low while in the Run-Test/Idle state or by continuing with the next Nexus/JTAG command. Expect the affect of EVTI and RDY to be delayed by edges of TCK. Note: RDY is not available in all packages of all devices. TCK 2 3 2 1 3 Figure 11. JTAG test clock input timing MPC5644A Microcontroller Data Sheet, Rev. 7 100 Freescale Semiconductor TCK 4 5 TMS, TDI 6 8 7 TDO Figure 12. JTAG test access port timing TCK 10 JCOMP 9 Figure 13. JTAG JCOMP timing MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 101 TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals Figure 14. JTAG boundary scan timing 3.17.3 Nexus timing Table 39. Nexus debug port timing1 # Symbol C Characteristic Min. Value Max. Value Unit 1 tMCYC CC D MCKO Cycle Time 22,3 1a tMCYC CC D Absolute Minimum MCKO Cycle Time 254 2 tMDC CC D MCKO Duty Cycle 40 60 % 3 tMDOV CC D MCKO Low to MDO Data Valid5 - 0.1 0.35 tMCYC 4 tMSEOV CC D MCKO Low to MSEO Data Valid5 - 0.1 0.35 tMCYC 6 tEVTOV CC D MCKO Low to EVTO Data Valid5 - 0.1 0.35 tMCYC 7 tEVTIPW CC D EVTI Pulse Width 4.0 — tTCYC 8 tEVTOPW CC D EVTO Pulse Width 1 — tMCYC 9 tTCYC CC D TCK Cycle Time 46,7 — tCYC 9a tTCYC CC D Absolute Minimum TCK Cycle Time 1008 — ns 10 tTDC CC D TCK Duty Cycle 40 60 % 8 tCYC — ns MPC5644A Microcontroller Data Sheet, Rev. 7 102 Freescale Semiconductor Table 39. Nexus debug port timing1 (continued) # 1 2 3 4 5 6 7 8 Symbol C Characteristic Min. Value Max. Value Unit 11 tNTDIS CC D TDI Data Setup Time 5 — ns 12 tNTDIH CC D TDI Data Hold Time 25 — ns 13 tNTMSS CC D TMS Data Setup Time 5 — ns 14 tNTMSH CC D TMS Data Hold Time 25 — ns 15 — CC D TDO propagation delay from falling edge of TCK — 19.5 ns 16 — CC D TDO hold time with respect to TCK falling edge (minimum TDO propagation delay) 5.25 — ns All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to Low-Swing mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10. Achieving the absolute minimum MCKO cycle time may require setting the MCKO divider to more than its minimum setting (NPC_PCR[MCKO_DIV] depending on the actual system frequency being used. This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the Absolute minimum MCKO period specification. This may require setting the MCO divider to more than its minimum setting (NPC_PCR[MCKO_DIV]) depending on the actual system frequency being used. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used. This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the Absolute minimum TCK period specification. This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used. 1 2 MCKO 3 4 6 MDO MSEO EVTO Output Data Valid Figure 15. Nexus output timing MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 103 TCK EVTI EVTO 9 7 7 8 8 Figure 16. Nexus event trigger and test clock timings TCK 11 13 12 14 TMS, TDI 15 16 TDO Figure 17. Nexus TDI, TMS, TDO timing MPC5644A Microcontroller Data Sheet, Rev. 7 104 Freescale Semiconductor N Table 40. Nexus debug port operating frequency Nexus Pin Usage Package Nexus Width Nexus Routing MDO[0:3] MDO[4:11] CAL_MDO[4:1 1] 176 LQFP Reduced port Route to MDO2 Nexus Data Out GPIO 208 BGA mode1 [0:3] 324 BGA Full port Route to MDO2 Nexus Data Out Nexus Data Out mode4 [0:3] [4:11] 496 CSP Reduced port Route to MDO2 Nexus Data Out mode1 [0:3] Full port mode4 1 2 3 4 5 6 7 GPIO 40 MHz3 GPIO 40 MHz5,6 GPIO 40 MHz3 GPIO 40 MHz5,6 Cal Nexus Data Out [4:11] 40 MHz3 GPIO Route to MDO2 Nexus Data Out Nexus Data Out [0:3] [4:11] Route to CAL_MDO7 Cal Nexus Data Out [0:3] GPIO Max. Operating Frequency NPC_PCR[FPM] = 0 NPC_PCR[NEXCFG] = 0 The Nexus AUX port runs up to 40 MHz. Set NPC_PCR[MCKO_DIV] to divide-by-two if the system frequency is greater than 40 MHz. NPC_PCR[FPM] = 1 Set the NPC_PCR[MCKO_DIV] to divide by two if the system frequency is between 40 MHz and 80 MHz inclusive. Set the NPC_PCR[MCKO_DIV] to divide by four if the system frequency is greater than 80 MHz. Pad restrictions limit the Maximum Operation Frequency in these configurations NPC_PCR[NEXCFG] = 1 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 105 3.17.4 External Bus Interface (EBI) and calibration bus interface timing Table 41. External Bus Interface maximum operating frequency Port Width Multiplexed Mode ADDR[12:15] Pin Usage ADDR[16:31] Pin Usage DATA[0:15] Pin Usage Max. Operating Frequency 16-bit Yes ADDR[12:15] GPIO ADDR[16:31] DATA[0:15] 66 MHz1 16-bit No ADDR[12:15] ADDR[16:31] DATA[0:15] 33 MHz2,3 32-bit Yes ADDR[12:15] ADDR[16:31] DATA[16:31] DATA[0:15] 33 MHz2,3 1 Set SIU_ECCR[EBDF] to divide by two or divide by four if the system frequency is greater than 66 MHz. System Frequency must be 132 MHz and SIU_ECCR[EBDF] set to divide by four. 3 Pad restrictions limit the maximum operating frequency. 2 Table 42. Calibration bus interface maximum operating frequency 1 Port Width Multiplexed Mode CAL_ADDR[12:15] Pin Usage CAL_ADDR[16:30] Pin Usage CAL_DATA[0:15] Pin Usage Max. Operating Frequency 16-bit Yes GPIO GPIO CAL_ADDR[12:30] CAL_DATA[0:15] 66 MHz1 16-bit No CAL_ADDR[12:15] CAL_ADDR[16:30] CAL_DATA[0:15] 66 MHz1 32-bit Yes CAL_WE[2:3] CAL_DATA[31] CAL_ADDR[16:30] CAL_DATA[16:30] CAL_ADDR[0:15] CAL_DATA[0:15] 66 MHz1 Set SIU_ECCR[EBDF] to divide by two or divide by four if the system frequency is greater than 66 MHz Table 43. External bus interface (EBI) and calibration bus operation timing 1 # Symbol C 1 TC CC P 2 tCDC 3 tCRT Characteristic 66 MHz (ext. bus)2 Unit Min Max CLKOUT Period 15.2 — ns CC D CLKOUT duty cycle 45% 55% TC CC D CLKOUT rise time — 3 ns ns ns 4 tCFT CC D CLKOUT fall time — 3 5 tCOH CC D CLKOUT Posedge to Output Signal Invalid or High Z(Hold Time) 1.3 — • • • • • • • Notes Signals are measured at 50% VDDE. ADDR[8:31] CS[0:3] DATA[0:31] OE RD_WR TS WE[0:3]/BE[0:3] MPC5644A Microcontroller Data Sheet, Rev. 7 106 Freescale Semiconductor Table 43. External bus interface (EBI) and calibration bus operation timing 1 (continued) # Symbol C 6 tCOV D CLKOUT Posedge to Output Signal Valid (Output Delay) CC Characteristic 66 MHz (ext. bus)2 Unit Min Max — 9 ns 6.0 — ns 1.0 — ns 6.5 — ns 1.55 — ns Notes ADDR[8:31] CS[0:3] DATA[0:31] OE RD_WR TS WE[0:3]/BE[0:3] 7 tCIS CC D Input Signal Valid to CLKOUT Posedge (Setup Time) DATA[0:31] 8 tCIH CC D CLKOUT Posedge to Input Signal Invalid (Hold Time) 9 tAPW CC D ALE Pulse Width4 DATA[0:31] 10 1 2 3 4 5 tAAI CC D ALE Negated to Address Invalid4 External Bus and Calibration bus timing specified at fSYS = 150 MHz and 100 MHz, VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V (unless stated otherwise), TA = TL to TH, and CL = 30 pF with DSC = 0b10. The external bus is limited to half the speed of the internal bus. The maximum external bus frequency is 66 MHz for 16-bit muxed mode and 33 MHz for non-muxed mode. For The EBI division factor should be set accordingly based on the internal frequency being used. Refer to Fast Pad timing in Table 35 and Table 36 (different values for 1.8 V vs. 3.3 V). Measured at 50% of ALE. When CAL_TS pad is used for CAL_ALE function the hold time is 1 ns instead of 1.5 ns. Voh_f VDDE/2 CLKOUT Vol_f 2 3 2 4 1 Figure 18. CLKOUT timing MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 107 VDDE/2 CLKOUT 6 5 VDDE/2 5 OUTPUT BUS VDDE/2 6 5 5 OUTPUT SIGNAL VDDE/2 6 OUTPUT SIGNAL VDDE/2 Figure 19. Synchronous output timing MPC5644A Microcontroller Data Sheet, Rev. 7 108 Freescale Semiconductor CLKOUT VDDE/2 7 8 INPUT BUS VDDE/2 7 8 INPUT SIGNAL VDDE/2 Figure 20. Synchronous input timing System Clock CLKOUT ALE TS A/D DATA ADDR 9 10 Figure 21. ALE signal timing MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 109 3.17.5 External interrupt timing (IRQ pin) Table 44. External interrupt timing1 # Characteristic Symbol Min Max Unit 1 IRQ Pulse Width Low tIPWL 3 — tcyc 2 IRQ Pulse Width High tIPWH 3 — tcyc tICYC 6 — tcyc 3 2 IRQ Edge to Edge Time 1 IRQ timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH. 2 Applies when IRQ pins are configured for rising edge or falling edge events, but not both. IRQ 2 1 3 Figure 22. External Interrupt Timing 3.17.6 eTPU timing Table 45. eTPU timing1 # 1 2 Characteristic eTPU Input Channel Pulse Width eTPU Output Channel Pulse Width Symbol Min Max Unit tICPW 4 — tcyc tOCPW 22 — tcyc 1 eTPU timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and CL = 200 pF with SRC = 0b00. 2 This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR). MPC5644A Microcontroller Data Sheet, Rev. 7 110 Freescale Semiconductor 3.17.7 eMIOS timing Table 46. eMIOS timing1 # 1 Symbol C Characteristic Min. Value Max. Value Unit 1 tMIPW CC D eMIOS Input Pulse Width 4 — tCYC 2 tMOPW CC D eMIOS Output Pulse Width 1 — tCYC eMIOS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH, and CL = 50 pF with SRC = 0b00. 3.17.8 DSPI timing DSPI channel frequency support for the MPC5644A MCU is shown in Table 47. Timing specifications are in Table 48. Table 47. DSPI channel frequency support System Clock (MHz) DSPI Use Mode Max. Usable Frequency (MHz) 150 LVDS 37.5 Use sysclock /4 divide ratio. Non-LVDS 18.75 Use sysclock /8 divide ratio. LVDS 40 Use sysclock /3 divide ratio. Gives 33/66 duty cycle. Use DSPI configuration DBR=0b1 (double baud rate), BR=0b0000 (scaler value 2) and PBR=0b01 (prescaler value 3). Non-LVDS 20 Use sysclock /6 divide ratio. LVDS 40 Use sysclock /2 divide ratio. Non-LVDS 20 Use sysclock /4 divide ratio. 120 80 Notes Table 48. DSPI timing1,2 # Symbol C Characteristic Condition Min. Max. Unit 1 tSCK CC D SCK Cycle Time3,4,5 24.4 ns 2.9 ms — 2 tCSC CC D PCS to SCK Delay6 227 — ns 3 tASC CC D After SCK Delay8 219 — ns 4 tSDC CC D SCK Duty Cycle (½tSC)–2 (½tSC)+2 ns 5 tA CC D Slave Access Time (SS active to SOUT driven) — 25 ns 6 tDIS CC D Slave SOUT Disable Time (SS inactive to SOUT High-Z or invalid) — 25 ns 7 tPCSC CC D PCSx to PCSS time 410 — ns 8 tPASC CC D PCSS to PCSx time 511 — ns MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 111 Table 48. DSPI timing1,2 (continued) # 9 Symbol tSUI C Characteristic CC Condition Master (MTFE = 0) D 11 tSUO 20 — ns VDDEH=3–3.6 V 23.5 — 2 — D Master (MTFE = 1, CPHA = 0)12 8 — D Master (MTFE = 1, CPHA = 1) VDDEH=4.5–5.5 V 20 — VDDEH=3–3.6 V 23.5 — CC Data Hold Time for Inputs D Master (MTFE = 0) -4 — D Slave 7 — D Master (MTFE = 1, CPHA = 0)12 21 — D Master (MTFE = 1, CPHA = 1) -4 — VDDEH=4.5–5.5 V — 5 VDDEH=3–3.6 V — 6.3 VDDEH=4.5–5.5 V — 25 VDDEH=3–3.6 V — 27 — 21 VDDEH=4.5–5.5 V — 5 VDDEH=3–3.6 V — 6.3 VDDEH=4.5–5.5 V –5 — VDDEH=3 –3.6 V –7.5 — 5.5 — 3 — VDDEH=4.5–5.5 V –5 — VDDEH=3–3.6 V –7.5 — CC ns Data Valid (after SCK edge) Master (MTFE = 0) D D Slave D D Master (MTFE = 1, CPHA = 0) D Master (MTFE = 1, CPHA = 1) D tHO VDDEH=4.5–5.5 V Slave D 12 Unit D D tHI Max. Data Setup Time for Inputs D 10 Min. CC ns Data Hold Time for Outputs D Master (MTFE = 0) D D Slave D Master (MTFE = 1, CPHA = 0) D Master (MTFE = 1, CPHA = 1) D ns 1 All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on medium-speed pads. DSPI signals using slow pads have an additional delay based on the slew rate. DSPI timing is specified at VDDEH = 3 to 3.6 V and VDDEH = 4.5 to 5.5 V, TA = TL to TH, and CL = 50 pF with SRC = 0b11. 2 Data is verified at fSYS = 102 MHz and 153 MHz (100 MHz and 150 MHz + 2% frequency modulation). 3 The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated based on two MPC5644A devices communicating over a DSPI link. MPC5644A Microcontroller Data Sheet, Rev. 7 112 Freescale Semiconductor 4 The actual minimum SCK cycle time is limited by pad performance. For DSPI channels using LVDS output operation, up to 40 MHz SCK cycle time is supported. For non-LVDS output, maximum SCK frequency is 20 MHz. Appropriate clock division must be applied. 6 The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. 7 Timing met when pcssck = 3(01), and cssck =2 (0000). 8 The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. 9 Timing met when ASC = 2 (0000), and PASC = 3 (01). 10 Timing met when pcssck = 3. 11 Timing met when ASC = 3. 12 This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10. 5 2 3 PCSx 1 4 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 10 First Data SIN Data 12 SOUT First Data Last Data 11 Data Last Data Note: Refer to Table 48 for the numbers. Figure 23. DSPI classic SPI timing — master, CPHA = 0 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 113 PCSx SCK Output (CPOL=0) 10 SCK Output (CPOL=1) 9 Data First Data SIN Last Data 12 SOUT First Data 11 Data Last Data Note: Refer to Table 48 for the numbers. Figure 24. DSPI classic SPI timing — master, CPHA = 1 3 2 SS 1 4 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 SOUT First Data 9 SIN 12 11 Data Last Data Data Last Data 6 10 First Data Note: Refer to Table 48 for the numbers. Figure 25. DSPI classic SPI timing — slave, CPHA = 0 MPC5644A Microcontroller Data Sheet, Rev. 7 114 Freescale Semiconductor SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 12 SOUT First Data 9 SIN Data Last Data Data Last Data 6 10 First Data Note: Refer to Table 48 for the numbers. Figure 26. DSPI classic SPI timing — slave, CPHA = 1 3 PCSx 4 1 2 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN First Data 10 12 SOUT First Data Last Data Data 11 Data Last Data Note: Refer to Table 48 for the numbers. Figure 27. DSPI modified transfer format timing — master, CPHA = 0 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 115 PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 10 9 SIN First Data Last Data Data 12 First Data SOUT 11 Last Data Data Note: Refer to Table 48 for the numbers. Figure 28. DSPI modified transfer format timing — master, CPHA = 1 3 2 SS 1 SCK Input (CPOL=0) 4 4 SCK Input (CPOL=1) SOUT First Data Data First Data 6 Last Data 10 9 SIN 12 11 5 Data Last Data Note: Refer to Table 48 for the numbers. Figure 29. DSPI modified transfer format timing — slave, CPHA =0 MPC5644A Microcontroller Data Sheet, Rev. 7 116 Freescale Semiconductor SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data 6 Note: Refer to Table 48 for the numbers. Figure 30. DSPI modified transfer format timing — slave, CPHA =1 7 8 PCSS PCSx Note: Refer to Table 48 for the numbers. Figure 31. DSPI PCS strobe (PCSS) timing MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 117 3.17.9 eQADC SSI timing Table 49. eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)1 CLOAD = 25 pF on all outputs. Pad drive strength set to maximum. # Symbol C Rating Min Typ Max Unit 1/17 12 fSYS_CLK 2 17 tSYS_CLK 1 fFCK CC D FCK Frequency 2, 3 1 tFCK CC D FCK Period (tFCK = 1/ fFCK) 2 tFCKHT CC D Clock (FCK) High Time tSYS_CLK 6.5 9* tSYS_CLK 6.5 ns 3 tFCKLT CC D Clock (FCK) Low Time tSYS_CLK 6.5 8* tSYS_CLK 6.5 ns 4 tSDS_LL CC D SDS Lead/Lag Time -7.5 7.5 ns 5 tSDO_LL CC D SDO Lead/Lag Time -7.5 7.5 ns 6 tDVFE CC D Data Valid from FCK Falling Edge (tFCKLT+tSDO_LL) 1 ns 7 tEQ_SU CC D eQADC Data Setup Time (Inputs) 22 ns 8 tEQ_HO CC D eQADC Data Hold Time (Inputs) 1 ns 1 SS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH, and CL = 50 pF with SRC = 0b00. 2 Maximum operating frequency is highly dependent on track delays, master pad delays, and slave pad delays. 3 FCK duty is not 50% when it is generated through the division of the system clock by an odd number. 1 2 3 FCK 4 4 SDS 5 SDO 25th 6 1st (MSB) 5 2nd 26th External Device Data Sample at FCK Falling Edge 8 7 SDI 1st (MSB) 2nd 25th 26th eQADC Data Sample at FCK Rising Edge Figure 32. eQADC SSI timing MPC5644A Microcontroller Data Sheet, Rev. 7 118 Freescale Semiconductor 3.17.10 FlexCAN system clock source Table 50. FlexCAN engine system clock divider threshold # Symbol Characteristic 1 FCAN_TH FlexCAN engine system clock threshold Value Unit 100 MHz Table 51. FlexCAN engine system clock divider System Frequency Required SIU_SYSDIV[CAN_SRC] Value <= FCAN_TH 01,2 > FCAN_TH 12,3 1 Divides system clock source for FlexCAN engine by 1. System clock is only selected for FlexCAN when CAN_CR[CLK_SRC] = 1. 3 Divides system clock source for FlexCAN engine by 2. 2 MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 119 4 Packages 4.1 Package mechanical data 4.1.1 176 LQFP MPC5644A Microcontroller Data Sheet, Rev. 7 120 Freescale Semiconductor Figure 33. 176 LQFP package mechanical drawing (part 1) Figure 34. 176 LQFP package mechanical drawing (part 2) MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 121 Figure 35. 176 LQFP package mechanical drawing (part 3) MPC5644A Microcontroller Data Sheet, Rev. 7 122 Freescale Semiconductor 4.1.2 208 MAPBGA Figure 36. 208 MAPBGA package mechanical drawing (part 1) MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 123 Figure 37. 208 MAPBGA package mechanical drawing (part 2) MPC5644A Microcontroller Data Sheet, Rev. 7 124 Freescale Semiconductor 4.1.3 324 TEPBGA Figure 38. 324 BGA package mechanical drawing (part 1) MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 125 Figure 39. 324 BGA package mechanical drawing (part 2) MPC5644A Microcontroller Data Sheet, Rev. 7 126 Freescale Semiconductor 5 Ordering information Table 52 shows the orderable part numbers for the MPC5644A series. Table 52. Orderable part number summary Flash/SRAM Package Speed (MHz) SPC5643AF0MLU3 3 MB/192 KB 176LQFP (Pb free) 80 SPC5643AF0MMG3 3 MB/192 KB 208MAPBGA(Pb free) 80 SPC5643AF0MVZ3 3 MB/192 KB 324PBGA (Pb free) 80 SPC5643AF0MLU2 3 MB/192 KB 176LQFP (Pb free) 120 SPC5643AF0MMG2 3 MB/192 KB 208MAPBGA (Pb free) 120 SPC5643AF0MVZ2 3 MB/192 KB 324PBGA (Pb free) 120 SPC5643AF0MLU1 3 MB/192 KB 176LQFP (Pb free) 150 SPC5643AF0MMG1 3 MB/192 KB 208MAPBGA (Pb free) 150 SPC5643AF0MVZ1 3 MB/192 KB 324PBGA (Pb free) 150 SPC5644AF0MLU3 4 MB/192 KB 176 LQFP (Pb free) 80 SPC5644AF0MMG3 4 MB/192 KB 208 MAPBGA (Pb free) 80 SPC5644AF0MVZ3 4 MB/192 KB 324 TEPBGA (Pb free) 80 SPC5644AF0MLU2 4 MB/192 KB 176 LQFP (Pb free) 120 SPC5644AF0MMG2 4 MB/192 KB 208 MAPBGA (Pb free) 120 SPC5644AF0MVZ2 4 MB/192 KB 324 TEPBGA (Pb free) 120 SPC5644AF0MLU1 4 MB/192 KB 176 LQFP (Pb free) 150 SPC5644AF0MMG1 4 MB/192 KB 208 MAPBGA (Pb free) 150 SPC5644AF0MVZ1 4 MB/192 KB 324 TEPBGA (Pb free) 150 Part number MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 127 Figure 40. Product code structure Example code: SPC 5644A F0 M VZ 1 Qualification Status Product Family ATMC Fab and Mask Revision Temperature Range Package Maximum Frequency Qualification Status MPC = Industrial qualified SPC = Automotive qualified PC = Prototype Fab and Mask Revision F = ATMC 0 = Revision Temperature spec. M = –40 °C to 125 °C Product 5644A= MPC5644A family 6 Package Code LU = 176 LQFP MG = 208 MAPBGA VZ = 324 TEPBGA Maximum Frequency 1 = 150 MHz 2 = 120 MHz 3 = 80 MHz Document revision history Table 53 summarizes revisions to this document. Table 53. Revision history Revision Date Rev. 1 4/2008 Substantive changes Initial release MPC5644A Microcontroller Data Sheet, Rev. 7 128 Freescale Semiconductor Table 53. Revision history (continued) Revision Date Rev. 2 11/2009 Substantive changes Maximum device speed is 145 MHz (was 150 MHz) 16-entry Memory Protection Unit (MPU). Was incorrectly listed as 8-entry. Feature details section added Changes to signal summary table: • Added ANY function to AN[10] • Added ANW function to AN[8] Changes to 208 ball BGA ballmap: • A12 is AN12-SDS (was AN12) • A15 is VRC33 (was VDD33) • B12 is AN13-SDO (was AN13) • C12 is AN14SDI (was AN14) • C13 is AN15-FCK (was AN15) • D1 is VRC33 (was VDD33) • F13 is VDDEH6AB (was VDDEH6) • H13 is GPIO99 (was PCSA3) • J15 is GPIO98 (was PCSA2) • K4 is now VDDEH1AB (was VDDEH1) • N6 is now VRC33 (was VDD33) • N9 is VDDEH4AB (was VDDEH4) • N12 is now VRC33 (was VDD33) • P6 is now NC • T13 is VDDE5 (was NC) Rev. 2 11/2009 (cont.) Recommended operating characteristics for power transistor updated Pad current specifications updated LVDS pad specifications updated. SRC does not apply to common mode voltage. Temperature sensor electrical characteristics added eQADC electrical characteristics updated with VGA gain specs Pad AC specifications updated Definition for RDY signal added to signal details VSTBY maximum is 5.5 V (was listed incorrectly as 6.0 V) IMAXA maximum is 5 mA (was TBD) Analog differential input functions added to AN0–AN7 in signal summary MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 129 Table 53. Revision history (continued) Revision Date Rev. 3 04/2010 Substantive changes Changes to Signal Properties table (changes apply to Revision 2 and later devices: EBI changes: • WE_BE[2] (A2) and CAL_WE_BE[2] (A3) signals added to CS[2] (PCR 2) • WE_BE[3] (A2) and CAL_WE_BE[3] (A3) signals added to CS[3] (PCR 3) Calibration bus changes: • CAL_WE[2]/BE[2] (A2) signal added to CAL_CS[2] (PCR 338) • CAL_WE[3]/BE[3] (A2) signal added to CAL_CS[3] (PCR 339) • CAL_ALE (A1) added to CAL_ADDR[15] (PCR 340) eQADC changes: • AN[8] and AN[38] pins swapped. AN[8] Is now on pins 9 (176-pin), B3 (208-ball) and E1 (324-ball). AN[8] was on D3 (324-ball) on previous devices. AN[38] Is now on D3 (324-ball). AN[38] was on pins 9 (176-pin), B3 (208-ball) and E1 (324-ball) on previous devices. • ANZ function added to AN11 pin Reaction channels added to eTPU2: • RCH0_A (A3) added to ETPU_A[14] (PCR 128) • RCH0_B (A2) added to ETPU_A[20] (PCR 134) • RCH0_C (A2) added to ETPU_A[21] (PCR 135) • RCH1_A (A2) added to ETPU_A[15] (PCR 129) • RCH1_B (A2) added to ETPU_A[9] (PCR 123) • RCH1_C (A2) added to ETPU_A[10] (PCR 124) • RCH2_A (A2) added to ETPU_A[16] (PCR 130) • RCH3_A (A2) added to ETPU_A[17] (PCR 131 • RCH4_A (A2) added to ETPU_A[18] (PCR 132)) • RCH4_B (A2) added to ETPU_A[11] (PCR 125) • RCH4_C (A2) added to ETPU_A[12] (PCR 126) • RCH5_A (A2) added to ETPU_A[19] (PCR 133) • RCH5_B (A2) added to ETPU_A[28] (PCR 142) • RCH5_C (A2) added to ETPU_A[29] (PCR 143) Reaction channels added to eMIOS: • RCH2_B (A2) added to EMIOS[2] (PCR 181) • RCH2_C (A2) added to EMIOS[4] (PCR 183) • RCH3_B (A2) added to EMIOS[10] (PCR 189) • RCH3_C (A2) added to EMIOS[11] (PCR 190) Pad changes: • ETPUA16 (PCR 130) has Medium (was Slow) pad • ETPUA17 (PCR 131) has Medium (was Slow) pad • ETPUA18 (PCR 132) has Medium (was Slow) pad • ETPUA19 (PCR 133) has Medium (was Slow) pad • ETPUA25 (PCR 139) has Slow+LVDS (was Medium+LVDS) pads Signal Details table updated: • Added eTPU2 reaction channels • Changed IRQ[0:15] to two ranges, excluding IRQ6, which does not exist on this device • Changed TCR_A to TCRCLKA (TCR_A is the pin name, not the signal name) • Changed WE_BE[0:1] to WE_BE[0:3] (2 new signals added to Rev. 2). Also changed notation from “WE_BE[n]” to “WE[n]/BE[n]” to be consistent. MPC5644A Microcontroller Data Sheet, Rev. 7 130 Freescale Semiconductor Table 53. Revision history (continued) Revision Date Rev. 3 (cont) 04/2010 Substantive changes Changes to Power/ground segmentation table: • ADDR[20:21] removed from VDDE2 segment; they are in VDDE-EH • CAL_CS1 removed from VDDE12 segment (there is no CAL_CS1 on this device) • CAL_EVTO and CAL_MCKO removed from VDDE12 segment. Those pins do not exist • VDDE-VDDEH renamed to VDDE-EH • EMIOS24 removed from VDDEH segment. That pin does not exist. • ETPUA[0:9] added to VDDEH4 segment • Renamed TCR_A in VDDEH4 segment to TCRCLKA. • EXTAL and XTAL added to VDDEH6 segment • AN15-FCK added to VDDEH7 segment • GPIO98, GPIO99, GPIO206, GPIO207 and GPIO219 added to VDDEH7 segment. • MSEO1 added to VDDEH7 segment • Power segment VDDEH1A renamed to VDDEH1 Changes to 176-pin package pinout: • Changed pin 9 from AN38 to AN8. • Added note that pin 96 (VSS) should be tied low. Changes to 208-ball package ballmap: • Changed ball B3 from AN38 to AN8. • Added note that ball N13 (VSS) should be tied low. 324-ball package ballmap updated for Rev. 2 silicon: • AN8 was on ball D3; it is now on E1 • AN38 was on ball E1; it is now on D3 Changes to features list: • Correction: there are 6 reaction channels (was noted as 5) • Development Trigger Semaphore (DTS) added to features list and feature details • FlexRay module now has 128 message buffers (was 64) and ECC support Added note after JTAG pin AC electrical characteristics table detailing JTAG EVTI and RDY signal clocking with TCK. This affects debuggers. Part numbers and part number decoder updated. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 131 Table 53. Revision history (continued) Revision Date Substantive changes Rev. 3 (cont) 04/2010 Added information to AC timings section: • New section added: Reset and configuration pin timing • New section added: External interrupt timing (IRQ pin) • New section added: eTPU timing • Added Nexus debug port operating frequency table to Nexus timings section • Added external bus interface maximum operating frequency table and calibration bus interface maximum operation frequency table • Added FlexCAN system clock source section Changes to Power management control (PMC) and power on reset (POR) electrical specifications: • Max value for parameter 2 (vddreg) is 5.25 V (was 5.5 V) Updated “Core voltage regulator controller external components preferred configuration” diagram. Changes to DC electrical specifications table: • Slew rate on power supply pins (system requirement) changed to 25 V/ms (was 50 V/ms) Throughout the document the maximum frequency is now 150 MHz (was 145 MHz) Changes to DC electrical specifications: • Parameter classifications added • VDDREG max value changed to 5.25 V (was 5.5 V) • VOH_LS min value changed to 2.0 V (was 2.7 V) with a load current of 0.5 mA • VOL_LS max value changed to 0.6 V (was 0.2*VDDEH) with load current of 2 mA • VINDC min value changed to VSSA-0.3 (was VSSA-1.0) • VINDC max value changed to VDDA+0.3 (was VDDA+1.0) Added new section: Configuring SRAM wait states VRCCTL external circuit updated. MPC5644A Microcontroller Data Sheet, Rev. 7 132 Freescale Semiconductor Table 53. Revision history (continued) Revision Date Rev. 4 08/2010 Substantive changes Updates to Nexus timings: • tMDOV max value changed to 0.35 (was 0.2) • tMSEOV max value changed to 0.35 (was 0.2) • tEVTOV max value changed to 0.35 (was 0.2) Updates to DC electrical specifications: • VSTBY min value changed to 0.95 V (was 0.9 V) • VSTBY has two ranges—for regulated mode and unregulated mode Correction to PLLMRFM electrical specifications: • VDDPLL range is from 1.08 V to 3.6 V (was 3.0 V to 3.6 V. Updates to pad AC specifications: • Specs with drive load = 200 pF deleted. DSC (drive strength control) values range from 10 – 50 pF. • I/O pad average IDDE specifications updated (fast pad specs only) • I/O pad VRC33 average IDDE specifications (fast pad specs only) Updates to Reset and configuration pin timings: • Footnote added: RESET pulse width is measured from 50% of the falling edge to 50% of the rising edge. • Timings are specified at VDD = 1.14 V to 1.32 V (was 1.08 V to 1.32 V). Updates to EBI timings: • Note added to tAAI: When CAL_TS is used as CAL_ALE the hold time is 1 ns instead of 1.5 ns. • Correction: maximum calibration bus interface operating frequency is 66 MHz for all port configurations. • VDDE range in footnote 1 corrected to read, “External Bus and Calibration bus timing specified at fSYS = 150 MHz and 100 MHz, VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V (unless stated otherwise)” (VDDE range was 1.62 V to 3.6 V) Correction to IEEE 1149.1 timings: • SRC value in footnote 1 corrected to read, “JTAG timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to Low-Swing mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10, SRC = 0b11.” (SRC value was 0b00) Correction to External interrupt timing (IRQ pin) timings: • Timings are specified at VDD = 1.14 V to 1.32 V (was 1.08 V to 1.32 V). Update to DSPI timings: • Some of the timing parameters can vary depending on the value of VDDE. For these parameters, ranges are now defined for two ranges of VDDE. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 133 Table 53. Revision history (continued) Revision Date Rev. 4 (cont) 08/2010 Substantive changes Change in signal name notation for DSPI, CAN and SCI signals: DSPI: PCS_x[n] is now DSPI_x_PCS[n] SOUT_x is now DSPI_x_SOUT SIN_x is now DSPI_x_SIN SCK_x is now DSPI_x_SCK CAN: CNTXx is now CAN_x_TX CNRXx is now CAN_x_RX SCI: RXDx is now SCI_x_RX TXDx is now SCI_x_TX Updates to DC electrical specifications: • Slew rate on power supply pins specification changed to 25 V/ms (was 50 V/ms) VOH_LS min spec changed to 2.0 V at 0.5 mA (was 2.7 V at 0.5 mA) Updated I/O pad current specifications Updated I/O pad VRC33 current specifications Corrections to Nexus timing: • Maximum Nexus debug port operating frequency is 40 MHz in all configurations • To route Nexus to MDO, clear NPC_PCR[NEXCFG] (formerly this was documented as NPC_PCR[CAL] • To route Nexus to CAL_MDO, set NPC_PCR[NEXCFG]=1 (formerly this was documented as NPC_PCR[CAL] MPC5644A Microcontroller Data Sheet, Rev. 7 134 Freescale Semiconductor Table 53. Revision history (continued) Revision Date Rev. 5 2/2011 Substantive changes • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Rev. 6 — Minor editorial updates. Re-organized the first few subsections of the “Overview” section. Added ECSM to the block diagram. Added information on the REACM, SIU, and ECS modules to the “Block summary” section. Added DATA[0:15] to VDDE5 in the “signal properties” table. Updated VSTBY parameters in the “Power/ground segmentation” table. Updated the parameter symbols and classifications throughout the document. Updated footnote instances in the “Absolute maximum ratings” table. Removed IMAXA footnote in the “Absolute Maximum Ratings” table. Updated the format of the “EMI (electromagnetic interference) characteristics” table. Removed the footnote on VDDREG in the “Power management control (PMC) and power on reset (POR) electrical specifications” table. Updated values for Vbg, Idd3p3, Por3.3V_r, Por3.3V_f, Por5V_r, and Por5V_f in the “PMC electrical characteristics” table. Updated “Bandgap reference supply voltage variation” in the “PMC Electrical Characteristics” table. Updated VCESAT and VBEin the “Recommended power transistors” operating characteristics” table. Updated VIH_LS in the “DC electrical specifications” table. Updated the VOH_LS min value in the “DC electrical specifications” table. Updated IDDSTBY and IDDSTBY150 in the “DC electrical specifications” table. Updated the IDDA/IREF/IDDREG max value in the “DC electrical specifications” table. Updated IACT_F, IACT_MV_PU, IACT_MV_PD, RPUPD5K, RPUPDMTCH, and footnotes in the “DC electrical specifications” table. Updated Medium pad type IDD33 values in the “I/O pad VRC33 average IDDE specifications” table. Updated values for VOD in the “DSPI LVDS pad specification” table. Removed the footnotes from the “DSPI LVDS pad specifications” table. Removed the redundant “XTAL Load Capacitance” parameter instance from the “PLLMRFM electrical specifications” table. Updated footnotes in the “PLLMRFM electrical specifications” table. Updated values for OFFNC and GAINNC in the “eQADC conversion specifications (operating)” table. Added DIFFmax, DIFFmax2, DIFFmax4, and DIFFcmv parameters to the “eQADC conversion specifications (operating)” table. Added the maximum operating frequency values in the “Cutoff frequency for additional SRAM wait state” table. Updated multiple entries in the “APC, RWSC, WWSC settings vs. frequency of operation” table. Removed footnote in the “APC, RWSC, WWSC settings vs. frequency of operation” table. Changed the voltage in the “Pad AC specifications” table title from 4.5 V to 5.0 V. Added the maximum LH/HL output delay values for pad type MultiV in the “Pad AC specifications (VDDE = 3.3 V)” table. • Rev. 6 not published. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 135 Table 53. Revision history (continued) Revision Date Substantive changes Rev. 7 01/2012 • Minor editorial changes. • In MPC5644A feature list, moved “24 unified channels” after “1 x eMIOS”. • In Table 3MPC5644A signal properties/Column “Name” updated the following rows: DSPI_D_SCK /GPIO [98] -Changed “-” to CS[2] DSPI_D_SIN /GPIO[99] -Changed “-” to CS[3]. • In Table 11Thermal characteristics for 324-pin TEPBGA/ Column “Value” added conditional text. • In Table 21DC electrical specifications made the following changes: -For the value “VOL_S” parameter changed from “Slow/ medium/multi-voltage pad I/O output low voltage” to “Slow/medium pad I/O output low voltage”. -Added a new row for “IDDSTBY27”. -For row “IDDSTBY(operating current 0.95 -1.2V)” added max value “100” and changed typ value from “125” to “35”. -For row “IDDSTBY (operating current 2 - 5.5V)” added max value “110” and changed typ value from “135” to “45”. -For symbol “IDDSTBY 150(operating current 0.95 -1.2V)” added max value “2000”, changed typ value from “1050” to “790”,C cell changed from “T” to “P” and for symbol “IDDSTBY (operating current 2 - 5.5V)” added max value “2000”, changed typ value from “1050” to “760”, C cell changed from “T” to “P”. -Removed note 9 and note 10 (Characterization based capability) from symbol “VOL_HS”. • Splitted Table 28eQADC conversion specifications (operating)into Table 29eQADC single ended conversion specifications (operating) and Table 30eQADC differential ended conversion specifications (operating). • In Table 30 eQADC differential ended conversion specifications (operating)made the following changes: -Added the note of DIFFcmv on all of the DIFF specs. -Min value changed from (VRH-VRL)/2-5% to (VRH+VRL)/2-5 % and max value changed from (VRH-VRL)/2+5 % to (VRH+VRL)/2+5 %for DIFFcmv. • In Table 31 Cutoff frequency for additional SRAM wait statemade the following changes: -Added note “Max frequencies including 2% PLL FM”. -Max operating frequency changed from “96” to “98” and “150” to “153”. • In Section 3.13, “Configuring SRAM wait states, changed text from “MPC5644A Microcontroller Reference Manual “ to “device reference manual”. • In Table 32APC, RWSC, WWSC settings vs. frequency of operation, - Added note for “Max Flash Operating Frequency(MHz). - Changed values from 30, 60,120, 150 to 20,61,123, 153 respectively in Max Flash Operating Frequency (MHz). • In Table 33,aFlash program and erase specificationsdded two parameter “Tpsrt” and “Tesrt”. • In Table 41External Bus Interface maximum operating frequency, replacedthe <= symbol in notes with • Added note “Refer to table DSPI timing for the numbers” in all the figures under Section 3.17.8, “DSPI timing . • In Table 52Orderable part number summary, changed LBGA208 to MAPBGA and changed all packages to 123XXXX format. MPC5644A Microcontroller Data Sheet, Rev. 7 136 Freescale Semiconductor Table 53. Revision history (continued) Revision Date Substantive changes Rev. 7 (cont.) 01/12 • Added Table 17MPC5644A External network specification. • Updated Figure 8. • Changed External Network Parameter Ce min value to “3*2.35 F+5 F” from “2*2.35 F+5 F” in Table 17MPC5644A External network specification. • Changed Trans. Line (differential Zo) unit to from W in Table 25DSPI LVDS pad specification. MPC5644A Microcontroller Data Sheet, Rev. 7 Freescale Semiconductor 137 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 [email protected] Document Number: MPC5644A Rev. 7 Jan 2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009–2012. All rights reserved.