MQFL-28-05D Dual Output H IGH R ELIABILITY DC-DC C ONVERTER 16-40 V Continuous Input 16-50 V Transient Input ±5 V 24 A Output 91% @ 12 A / 89% @ 24 A Output F ULL P OWER O PERATION : -55ºC TO Efficiency +125ºC The MilQor® series of high-reliability DC-DC converters brings SynQor’s field proven high-efficiency synchronous rectifier technology to the Military/Aerospace industry. SynQor’s innovative QorSealTM packaging approach ensures survivability in the most hostile environments. Compatible with the industry standard format, these converters operate at a fixed frequency, have no opto-isolators, and follow conservative component derating guidelines. They are designed and manufactured to comply with a wide range of military standards. Design Process MQFLseriesconvertersare: • DesignedforreliabilityperNAVSO-P3641-Aguidelines • Designedwithcomponentsderatedper: —MIL-HDBK-1547A —NAVSOP-3641A Qualification Process MQFLseriesconvertersarequalifiedto: • MIL-STD-810F —consistentwithRTCA/D0-160E • SynQor’sFirstArticleQualification —consistentwithMIL-STD-883F • SynQor’sLong-TermStorageSurvivabilityQualification • SynQor’son-goinglifetest DesIGNeD & MaNUFacTUReD IN THe Usa FeaTURING QORseaL™ HI-ReL asseMBLY Features • Fixedswitchingfrequency • Noopto-isolators • Paralleloperationwithcurrentshare • Clocksynchronization • Primaryandsecondaryreferencedenable • Continuousshortcircuitandoverloadprotection • Inputunder-voltagelockout/over-voltageshutdown • Outputvoltagetrim Specification Compliance In-Line Manufacturing Process • AS9100andISO9001:2000certifiedfacility • Fullcomponenttraceability • Temperaturecycling • Constantacceleration • 24,96,160hourburn-in • Threeleveltemperaturescreening Product # MQFL-28-05D Phone 1-888-567-9596 MQFLseriesconverters(withMQMEfilter)aredesignedtomeet: • MIL-HDBK-704-8(AthroughF) • RTCA/DO-160ESection16 • MIL-STD-1275B • DEF-STAN61-5(part6)/5 • MIL-STD-461(C,D,E) • RTCA/DO-160ESection22 www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 1 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification BLOCKDIAGRAM REGULATION STAGE 7 ISOLATION STAGE CURRENT SENSE 1 POSITIVE INPUT T1 T1 T2 POSITIVE OUTPUT T2 2 8 ISOLATION BARRIER INPUT RETURN 3 CASE GATE DRIVERS UVLO OVSD CURRENT LIMIT 4 T1 OUTPUT RETURN T2 9 NEGATIVE OUTPUT GATE DRIVERS 12 MAGNETIC ENABLE 1 ENABLE 2 PRIMARY CONTROL 5 DATA COUPLING SYNC OUTPUT 11 SECONDARY CONTROL SHARE 6 10 SYNC INPUT TRIM BIAS POWER CONTROL POWER POSITIVE OUTPUT TRANSFORMER TYPICALCONNECTIONDIAGRAM 1 2 3 28Vdc 4 + – 5 open means on Product # MQFL-28-05D 6 +VIN ENA2 INRTN SHARE CASE MQFL ENA1 SYNCOUT SYNCIN TRIM –VOUT OUTRTN +VOUT 12 11 open means on 10 + 9 Load – 8 + 7 Load – Phone 1-888-567-9596 www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 2 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification MQFL-28-05D ELECTRICAL CHARACTERISTICS Parameter Min. Nom. Max. Units Notes & Conditions ABSOLUTE MAXIMUM RATINGS Input Voltage Non-Operating Operating 1 Reverse Bias (Tcase = 125ºC) Reverse Bias (Tcase = -55ºC) Isolation Voltage (input/output to case, input to output) Continuous Transient (<100 µs) Operating Case Temperature 2 Storage Case Temperature Lead Temperature (20 sec) Voltage at ENA1, ENA2 INPUT CHARACTERISTICS Operating Input Voltage Range (continuous) Operating Input Voltage Range (transient, 1 sec) Input Under-Voltage Lockout 3 Turn-On Voltage Threshold Turn-Off Voltage Threshold Lockout Voltage Hysteresis Input Over-Voltage Shutdown 3 Turn-Off Voltage Threshold Turn-On Voltage Threshold Shutdown Voltage Hysteresis Maximum Input Current No Load Input Current (operating) Disabled Input Current (ENA1) Disabled Input Current (ENA2) Input Terminal Current Ripple (peak to peak) OUTPUT CHARACTERISTICS Output Voltage Set Point (Tcase = 25ºC) Positive Output 12 Negative Output 12 Output Voltage Set Point Over Temperature Positive Output 12 Negative Output 12 Positive Output Voltage Line Regulation 12 Positive Output Voltage Load Regulation 12 Total Positive Output Voltage Range 12 Output Voltage Cross Regulation (Negative Output) 11,12 Output Voltage Ripple and Noise Peak to Peak Total Operating Current Range Single Output Operating Current Range Operating Output Power Range Output DC Current-Limit Inception 4 Short Circuit Output Current 16 Back-Drive Current Limit while Enabled Back-Drive Current Limit while Disabled Maximum Output Capacitance 5 DYNAMIC CHARACTERISTICS Output Voltage Deviation Load Transient 6 For a Positive Step Change in Load Current For a Negative Step Change in Load Current Settling Time (either case) 7 Output Voltage Deviation Line Transient 8 For a Positive Step Change in Line Voltage For a Negative Step Change in Line Voltage Settling Time (either case) 7 Turn-On Transient Output Voltage Rise Time Output Voltage Overshoot Turn-On Delay, Rising Vin 9 Turn-On Delay, Rising ENA1 Turn-On Delay, Rising ENA2 Product # MQFL-28-05D Vin=28V DC ±5%, +Iout = –Iout = 12A, CL = 0 µF, free running10 unless otherwise specified Group A Subgroup14 60 60 -0.8 -1.2 V V V V -500 -800 -55 -65 -1.2 500 800 135 135 300 50 V V °C °C °C V 16 16 28 28 40 50 V V 1, 2, 3 4, 5, 6 14.75 13.80 0.5 15.50 14.40 1.1 16.00 15.00 1.8 V V V 1, 2, 3 1, 2, 3 1, 2, 3 54.0 50.0 2.0 56.8 51.4 5.3 110 2 25 40 60.0 54.0 8.0 9.5 160 5 50 60 V V V A mA mA mA mA Vin = 16V; +Iout = –Iout = 12A Vin = 16V, 28V, 50V Vin = 16V, 28V, 50V Bandwidth = 100 kHz – 10 MHz; see Figure 20 1, 1, 1, 1, 1, 1, 1, 1, +4.95 -5.05 +5.00 -5.00 +5.05 -4.95 V V +4.90 -5.10 -20 15 4.9 100 0 0 0 25 26 +5.00 +5.10 -5.00 -4.90 0 20 32 50 5.0 5.1 200 350 15 60 24 19 120 28 31 30 34 8 10 50 10000 V 2, 3 V 2, 3 mV Vin = 16V, 28V, 50V 1, 2, 3 mV +Vout @ (+Iout = –Iout = 0A) – +Vout @ (+Iout = –Iout = 12A) 1, 2, 3 V +Vout with Kelvin measurement at output leads 1, 2, 3 mV –Vout @ (+Iout = –Iout = 4.8A) – –Vout @ (+Iout = 19.2A, –Iout=4.8A) 1, 2, 3 mV Bandwidth = 100 kHz - 10 MHz; CL=11µF on both outputs 1, 2, 3 A (+Iout) + (–Iout) 1, 2, 3 A Maximum +Iout or –Iout 1, 2, 3 W Total on both outputs 1, 2, 3 A +Iout + –Iout; +Iout = –Iout 1, 2, 3 A +Vout ≤ 1.2V 1, 2, 3 A 1, 2, 3 mA 1, 2, 3 µF Total on both outputs See Note 5 -500 -300 300 50 500 200 mV mV µs Total Iout Step = 12A ↔ 24A, 2.4A ↔ 12A; CL=11µF on both outputs 4, 5, 6 “ 4, 5, 6 4, 5, 6 -500 -500 250 500 500 500 mV mV µs Vin step = 16V ↔ 50V; CL=11µF on both outputs “ 4, 5, 6 4, 5, 6 See Note 5 6 0 5.5 3.0 1.5 10 2 8.0 6.0 3.0 ms % ms ms ms +Vout = 0.5V → 4.5V ENA1, ENA2 = 5V ENA2 = 5V ENA1 = 5V 4, 5, 6 See Note 5 4, 5, 6 4, 5, 6 4, 5, 6 Phone 1-888-567-9596 www.synqor.com 2, 2, 2, 2, 2, 2, 2, 2, 3 3 3 3 3 3 3 3 1 1 Doc.# 005-2MQ050D Rev. B 09/03/08 Page 3 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification MQFL-28-05D ELECTRICAL CHARACTERISTICS (Continued) Parameter Min. Nom. Max. Units Notes & Conditions EFFICIENCY Iout = 24A (16Vin) Iout = 12A (16Vin) Iout = 24A (28Vin) Iout = 12A (28Vin) Iout = 24A (40Vin) Iout = 12A (40Vin) Load Fault Power Dissipation Short Circuit Power Dissipation ISOLATION CHARACTERISTICS Isolation Voltage (dielectric strength) Input RTN to Output RTN Any Input Pin to Case Any Output Pin to Case Isolation Resistance (input rtn to output rtn) Isolation Resistance (any pin to case) Isolation Capacitance (input rtn to output rtn) FEATURE CHARACTERISTICS Switching Frequency (free running) Synchronization Input Frequency Range Logic Level High Logic Level Low Duty Cycle Synchronization Output Pull Down Current Duty Cycle Enable Control (ENA1 and ENA2) Off-State Voltage Module Off Pulldown Current On-State Voltage Module On Pin Leakage Current Pull-Up Voltage Output Voltage Trim Range RELIABILITY CHARACTERISTICS Calculated MTBF (MIL-STD-217F2) GB @ Tcase=70ºC AIF @ Tcase=70ºC Demonstrated MTBF WEIGHT CHARACTERISTICS Device Weight Vin=28V DC ±5%, +Iout = –Iout = 12A, CL = 0 µF, free running10 unless otherwise specified Group A Subgroup14 85 88 85 87 84 86 89 92 89 91 88 90 16 24 32 33 % % % % % % W W Iout at current limit inception point 4 +Vout ≤ +1.2V; –Vout ≥ –1.2V 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3 3 3 3 3 3 3 3 500 500 500 100 100 44 V V V MW MW nF 1 1 1 1 1 1 500 550 600 kHz 1, 2, 3 500 2 -0.5 20 700 10 0.8 80 kHz V V % 1, 2, 3 1, 2, 3 1, 2, 3 See Note 5 20 25 75 mA % VSYNC OUT = 0.8V Output connected to SYNC IN of another MQFL converter See Note 5 See Note 5 80 2 3.2 -0.4 4.0 0.8 20 4.5 0.5 V µA V µA V V 1, 2, 3 Current drain required to ensure module is off See Note 5 1, 2, 3 Maximum current draw from pin allowed with module still on See Note 5 See Figure A 1, 2, 3 (+Vout) – 5V; See Figure E See Note 5 2800 420 TBD 103 Hrs. 103 Hrs. 103 Hrs. 79 g Electrical Characteristics Notes 1. Converter will undergo input over-voltage shutdown. 2. Derate output power to 50% of rated power at Tcase = 135º C. 3. High or low state of input voltage must persist for about 200µs to be acted on by the lockout or shutdown circuitry. 4. Current limit inception is defined as the point where the output voltage has dropped to 90% of its nominal value. 5. Parameter not tested but guaranteed to the limit specified. 6. Load current transition time ≥ 10µs. 7. Settling time measured from start of transient to the point where the output voltage has returned to ±1% of its final value. 8. Line voltage transition time ≥ 100µs. 9. Input voltage rise time ≤ 250µs. 10. Operating the converter at a synchronization frequency above the free running frequency will cause the converter’s efficiency to be slightly reduced and it may also cause a slight reduction in the maximum output current/power available. For more information consult the factory. 11. The regulation stage operates to control the positive output. The negative output displays cross regulation. 12. All +Vout and -Vout voltage measurements are made with Kelvin probes on the output leads. 13. SHARE pin outputs a power failure warning pulse during a fault condition. See Current Share section. 14. Only the ES and HB grade products are tested at three temperatures. The B and C grade products are tested at one temperature. Please refer to the ESS table for details. 15. These derating curves apply for the ES- and HB- grade products. The C- grade product has a maximum case temperature of 100º C and a maximum junction temperature rise of 20º C above TCASE. The B- grade product has a maximum case temperature of 85º C and a maximum junction temperature rise of 20º C at full load. Product # MQFL-28-05D Phone 1-888-567-9596 www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 4 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification 20 100 18 95 16 Power Disipation (W) Efficiency (%) 90 85 80 75 70 65 14 12 10 8 6 16Vin 4 28Vin 40Vin 2 16Vin 28Vin 40Vin 0 60 0 20 40 60 80 100 0 120 20 40 Total Output Power (W) 60 80 100 120 Total Output Power (W) Figure 1: Efficiency vs. output power, from zero load to full load with equal load on the +5V and -5V outputs at minimum, nominal, and maximum input voltage at 25°C. Figure 2: Power dissipation vs. output power, from zero load to full load with equal load on the +5V and -5V outputs at minimum, nominal, and maximum input voltage at 25°C. 100 18 95 16 14 90 Power Diss. (W) Efficiency (%) 12 85 10 80 75 8 6 70 4 28Vin 16Vin 40Vin 65 0 60 19.2/0.0 16.8/2.4 14.4/4.8 12.0/7.2 19.2/0.0 16.8/2.4 14.4/4.8 12.0/7.2 9.6/9.6 7.2/12.0 4.8/14.4 2.4/16.8 0.0/19.2 Load Current (A), +Iout/-Iout Figure 3: Efficiency vs. output current, with total output current fixed at 80% load (96 W) and loads split as shown between the +5 V and -5 V outputs at minimum, nominal, and maximum input voltage at 25°C. 14 90 12 Power Dissipation (W) 95 80 75 7.2/12.0 4.8/14.4 2.4/16.8 0.0/19.2 Figure 4: Power dissipation vs. output current, with total output current fixed at 80% load (96 W) and loads split as shown between the +5 V and -5 V outputs at minimum, nominal, and max input voltage at 25°C. 16 85 9.6/9.6 Load Current(A),+Iout/-Iout 100 Efficiency(%) 16Vin 28Vin 40Vin 2 10 8 6 4 70 16Vin 28Vin 40Vin 65 -35 -15 5 25 45 65 Case Temperature (C) 85 105 Phone 1-888-567-9596 40Vin -55 125 -35 -15 5 25 45 65 85 105 125 Case Temperature (C) Figure 5: Efficiency at 60% load (7.2 A load on +5 V and 7.2 A load on -5 V) versus case temperature for Vin = 16 V, 28 V, and 40 V. Product # MQFL-28-05D 28Vin 0 60 -55 16Vin 2 Figure 6: Power dissipation at 60% load (7.2 A load on +5 V and 7.2 A load on -5 V) versus case temperature for Vin =16 V, 28 V, and 40 V. www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 5 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification -5.15 5.10 -5.10 5.05 -5.05 5.00 -5.00 4.95 -4.95 4.90 -4.90 4.85 +Vout -4.85 4.80 -Vout -4.80 5.15 -5.15 5.05 -5.05 4.95 -4.95 4.85 -4.85 4.75 4.75 12/12 9.6/14.4 -4.75 +Vout -Vout -4.65 4.65 19.2/0.0 16.8/2.4 14.4/4.8 12.0/7.2 9.6/9.6 7.2/12.0 4.8/14.4 2.4/16.8 0.0/19.2 -4.75 14.4/9.6 -5.25 Negative Output (V) 5.25 5.15 19.2/4.8 Input voltage has virtually no effect on cross regulation -5.20 Positive Output (V) Positive Output (V) 5.20 -5.35 5.35 -5.25 Input voltage has virtually no effect on cross regulation Negative Output (V) 5.25 4.8/19.2 +Iout(A)/-Iout(A) +Iout(A)/-Iout(A) Figure 7: Load regulation vs. load current with power fixed at full load (120 W) and load currents split as shown between the +5 V and -5 V outputs, at nominal input voltage and TCASE = 25ºC. Figure 8: Load regulation vs. load current with power fixed at 80% load (96 W) and load currents split as shown between the +5 V and -5 V outputs, at nominal input voltage and TCASE = 25ºC. -5.10 5.05 -5.05 5.00 -5.00 4.95 -4.95 Input voltage has virtually no effect on cross regulation 4.90 -4.90 4.85 -4.85 +Vout -Vout 4.80 -4.80 4.75 24 48 72 Total Output Power (W) 96 -5.03 5.00 -5.00 Input voltage has virtually no effect on cross regulation 4.95 -4.98 -4.95 4.93 -4.93 4.90 -4.90 4.88 -4.88 4.85 -4.85 4.83 -4.83 4.80 +Vout -4.80 4.78 -Vout -4.78 4.75 -4.75 0 -5.05 5.03 4.98 Positive Output (V) 5.10 5.05 -4.75 0 120 Negative Output (V) -5.15 Negative Output(V) Positive Output (V) 5.15 24 48 72 96 120 Total Output Power (W) Figure 9: Load regulation vs. total output power from zero to to full load where +Iout equals three times -Iout at nominal input voltage and TCASE = 25ºC. 32 160 28 140 24 120 20 100 16 80 12 60 Figure 10: Load regulation vs. total output power from zero to to full load where -Iout equals three times +Iout at nominal input voltage and TCASE = 25ºC. 6 8 Tjmax Tjmax = 105º C 40 Tjmax = 145º C Tjmax 20 Tjmax = 125º C Tjmax 4 Output Voltage (V) Pout (W) (+Iout) + (-Iout) (A) 5 65 28Vin 85 105 125 0 135º 145 Case Temperature (ºC) Phone 1-888-567-9596 5 10 15 20 25 30 Total Load Current (A) Figure 11: Output Current / Output Power derating curve as a function of TCASE and the maximum desired power MOSFET junction temperature (see Note 15). Product # MQFL-28-05D 2 0 0 45 3 1 0 25 4 Figure 12: Positive output voltage vs. total load current, evenly split, showing typical current limit curves. www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 6 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification +Vout +Vout -Vout -Vout Figure 13: Turn-on transient at full rated load current (resistive load) (5 ms/div). Input voltage pre-applied. Ch 1: +Vout (2V/div); Ch 2: -Vout (2V/div); Ch 3: Enable1 input (5V/div). Figure 14: Turn-on transient at zero load current (5 ms/div). Input voltage pre-applied. Ch 1: +Vout (2V/div); Ch 2: -Vout (2V/div); Ch 3: Enable1 input (5V/div). +Vout +Vout -Vout Figure 15: Turn-on transient at full rated load current (resistive load) (5 ms/div). Input voltage pre-applied. Ch 1: +Vout (2V/div); Ch 2: -Vout (2V/div); Ch 3: Enable2 input (5V/div). -Vout Figure 16: Turn-on transient at full load, after application of input voltage (ENA 1 and ENA 2 logic high) (5 ms/div). Ch 1: +Vout (2V/div); Ch 2: -Vout (2V/div); Ch 3: Vin (10V/div). +Vout +Vout +Iout +Iout -Vout -Vout -Iout -Iout Figure 17: Output voltage response to step-change in total load current Figure 18: Output voltage response to step-change in total load current (50%-100%-50%) of total Iout (max) split 50%/50%. Load cap: 1µF ceramic cap and 10µF, 100 mW ESR tantalum cap. Ch 1: +Vout (500mV/div); Ch 2: +Iout (10AV/div); Ch 3: -Vout (500mV/div); Ch 4: -Iout (10A/div). (0%-50%-0%) of total Iout (max) split 50%/50%. Load cap: 1µF ceramic cap and 10µF, 100 mW ESR tantalum cap. Ch 1: +Vout (500mV/div); Ch 2: +Iout (10AV/div); Ch 3: -Vout (500mV/div); Ch 4: -Iout (10A/div). Product # MQFL-28-05D Phone 1-888-567-9596 www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 7 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification See Fig. 22 See Fig. 21 MQME Filter IC +VOUT MQFL Converter VSOURCE RTN 1 µF ceramic capacitors –VOUT 10 µF, 100mΩ ESR capacitors 50V - 16V). Load cap: 10µF, 100 mW ESR tantalum cap and 1µF ceramic cap. Ch 1: +Vout (500mV/div); Ch 2: -Vout (500mV/div); Ch 3: Vin (20V/div). Figure 20: Test set-up diagram showing measurement points for Input Terminal Ripple Current (Figure 21) and Output Voltage Ripple (Figure 22). Figure 21: Input terminal current ripple, ic, at full rated output current and nominal input voltage with SynQor MQ filter module (50 mA/div). Bandwidth: 20MHz. See Figure 20. Figure 22: Output voltage ripple, +Vout (Ch 1) and -Vout (Ch 2), at nominal input voltage and full load current evenly split (20 mV/div). Load capacitance: 1µF ceramic cap and 10µF tantalum cap. Bandwidth: 10 MHz. See Figure 20. Figure 23: Rise of output voltage after the removal of a short circuit across the positive output terminals. Ch 1: +Vout (2 V/div); Ch 2: -Vout (2 V/div); Ch 3: +Iout (20 A/div). Figure 24: SYNC OUT vs. time, driving SYNC IN of a second SynQor MQFL converter. Figure 19: Output voltage response to step-change in input voltage (16V - Product # MQFL-28-05D Phone 1-888-567-9596 www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 8 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification 1.000 Output Impedance (ohms) Output Impedance (ohms) 1.000 0.100 0.010 0.100 0.010 16Vin 28Vin 40Vin 16Vin 28Vin 40Vin 0.001 0.001 10 100 1,000 Frequency (Hz) 10,000 Figure 25: Magnitude of incremental output impedance of +5V output (+Zout = +vout /+iout) for minimum, nominal, and maximum input voltage at full rated power. 0 0 -10 -10 -20 -20 -30 -40 -50 -60 -70 100 10,000 16Vin 28Vin 40Vin -90 -40 -50 -60 -70 100 1,000 10,000 16Vin 28Vin 40Vin -90 -100 -100 10 100,000 -30 -80 -80 10 100,000 100 1,000 10,000 100,000 Frequency (Hz) Frequency (Hz) Figure 27: Magnitude of incremental forward transmission of +5V output (+FT = +vout /vin) for minimum, nominal, and maximum input voltage at full rated power. Figure 28: Magnitude of incremental forward transmission of -5V output (-FT = -vout /vin) for minimum, nominal, and maximum input voltage at full rated power. 20 20 10 10 Reverse Transmission (dB) Reverse Transmission (dB) 1,000 Frequency (Hz) Figure 26: Magnitude of incremental output impedance of -5V output (-Zout = -vout /-iout) for minimum, nominal, and maximum input voltage at full rated power. Forward Transmission (dB) Forward Transmission (dB) 10 100,000 0 -10 -20 -30 16Vin 28Vin 40Vin -40 0 -10 -20 -30 16Vin 28Vin 40Vin -40 -50 -50 10 100 1,000 Frequency (Hz) 10,000 100,000 Figure 29: Magnitude of incremental reverse transmission from +5V output (+RT = iin /+iout) for minimum, nominal, and maximum input voltage at full rated power. Product # MQFL-28-05D Phone 1-888-567-9596 10 100 1,000 Frequency (Hz) 10,000 100,000 Figure 30: Magnitude of incremental reverse transmission from -5V output (-RT = iin /-iout) for minimum, nominal, and maximum input voltage at full rated power. www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 9 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification Input Impedance (ohms) 100 10 1 16Vin 28Vin 0.1 40Vin 0.01 10 100 1,000 10,000 100,000 Hz Figure 31: Magnitude of incremental input impedance (Zin = vin/iin) for minimum, nominal, and maximum input voltage at full rated power with 50% / 50% split. Figure 32: High frequency conducted emissions of standalone MQFL28-05S, 5Vout module at 120W output, as measured with Method CE102. Limit line shown is the ‘Basic Curve’ for all applications with a 28V source. Figure 33: High frequency conducted emissions of MQFL-28-05S, 5Vout module at 120W output with MQFL-28-P filter, as measured with Method CE102. Limit line shown is the ‘Basic Curve’ for all applications with a 28V source. Product # MQFL-28-05D Phone 1-888-567-9596 www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 10 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification BASICOPERATIONANDFEATURES TheMQFLdc-dcconverterusesatwo-stagepowerconversion topology. The first, or regulation, stage is a buck-converter that keeps the output voltage constant over variations in line, load, and temperature. The second, or isolation, stage uses transformers to provide the functions of input/output isolation and voltage transformation to achieve the output voltage required. Inthedualoutputconvertertherearetwosecondarywindings in the transformer of the isolation stage, one for each output. There is only one regulation stage, however, and it is used to control the positive output. The negative output therefore displays “Cross-Regulation”, meaning that its output voltage depends on how much current is drawn from each output. Both the positive and the negative outputs share a common OUTPUTRETURNpin. Boththeregulationandtheisolationstagesswitchatafixed frequency for predictable EMI performance. The isolation stage switches at one half the frequency of the regulation stage, but due to the push-pull nature of this stage it creates a ripple at double its switching frequency. As a result, both the input and the output of the converter have a fundamental ripplefrequencyofabout550kHzinthefree-runningmode. Rectification of the isolation stage’s output is accomplished with synchronous rectifiers. These devices, which are MOSFETswithaverylowresistance,dissipatefarlessenergy than would Schottky diodes. This is the primary reason why theMQFLconvertershavesuchhighefficiency,particularlyat low output voltages. Besidesimprovingefficiency,thesynchronousrectifierspermit operation down to zero load current. There is no longer a need for a minimum load, as is typical for converters that use diodes for rectification. The synchronous rectifiers actually permit a negative load current to flow back into the converter’s output terminals if the load is a source of short or long termenergy.TheMQFLconvertersemploya“back-drivecurrentlimit”tokeepthisnegativeoutputterminalcurrentsmall. There is a control circuit on both the input and output sides of theMQFLconverterthatdeterminestheconductionstateofthe power switches. These circuits communicate with each other across the isolation barrier through a magnetically coupled device. No opto-isolators are used. A separate bias supply provides power to both the input and output control circuits. An input under-voltage lockout feature with hysteresis is provided, as well as an input over-voltage shutdown. There is also an output current limit that is nearly constant as the load impedancedecreasestoashortcircuit(i.e.,thereisnofold- Product # MQFL-28-05D Phone 1-888-567-9596 back or fold-forward characteristic to the output current under this condition). When a load fault is removed, the output voltage rises exponentially to its nominal value without an overshoot. The MQFL converter’s control circuit does not implement an output over-voltage limit or an over-temperature shutdown. The following sections describe the use and operation of additionalcontrolfeaturesprovidedbytheMQFLconverter. CONTROLFEATURES ENABLE: The MQFL converter has two enable pins. Both must have a logic high level for the converter to be enabled. A logic low on either pin will inhibit the converter. The ENA1 pin (pin 4) is referenced with respect to the converter’sinputreturn(pin2).TheENA2pin(pin12)isreferenced with respect to the converter’s output return (pin 8). This permits the converter to be inhibited from either the input or the output side. Regardless of which pin is used to inhibit the converter, the regulationandtheisolationstagesareturnedoff.However, whentheconverterisinhibitedthroughtheENA1pin,thebias supply is also turned off, whereas this supply remains on when the converter is inhibited through the ENA2 pin. A higher input standby current therefore results in the latter case. Both enable pins are internally pulled high so that an open connectiononbothpinswillenabletheconverter.FigureA showstheequivalentcircuitlookingintoeitherenablepins.It isTTLcompatible. 5.6V PIN 4 (or PIN 12) 1N4148 82K ENABLE TO ENABLE CIRCUITRY 250K 2N3904 125K PIN 2 (or PIN 8) IN RTN Figure A: Equivalent circuit looking into either the ENA1 or ENA2 pins with respect to its corresponding return pin. www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 11 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification SYNCHRONIZATION:TheMQFLconverter’sswitchingfrequencycanbesynchronizedtoanexternalfrequencysource thatisinthe500kHzto700kHzrange.Apulsetrainatthe desiredfrequencyshouldbeappliedtotheSYNCINpin(pin 6)withrespecttotheINPUTRETURN(pin2).Thispulsetrain shouldhaveadutycycleinthe20%to80%range.Itslow valueshouldbebelow0.8Vtobeguaranteedtobeinterpretedasalogiclow,anditshighvalueshouldbeabove2.0V to be guaranteed to be interpreted as a logic high. The transitiontimebetweenthetwostatesshouldbelessthan300ns. IftheMQFLconverterisnottobesynchronized,theSYNCIN pin should be left open circuit. The converter will then operate in its free-running mode at a frequency of approximately 550kHz. If,duetoafault,theSYNCINpinisheldineitheralogiclow orlogichighstatecontinuously,theMQFLconverterwillrevert to its free-running frequency. TheMQFLconverteralsohasaSYNCOUTpin(pin5).This outputcanbeusedtodrivetheSYNCINpinsofasmanyas ten(10)otherMQFLconverters.Thepulsetraincomingout ofSYNCOUThasadutycycleof50%andafrequencythat matches the switching frequency of the converter with which it is associated. This frequency is either the free-running frequencyifthereisnosynchronizationsignalattheSYNCIN pin,orthesynchronizationfrequencyifthereis. The SYNC OUT signal is available only when the dc input voltageisaboveapproximately125Vandwhentheconverter isnotinhibitedthroughtheENA1pin.Aninhibitthroughthe ENA2pinwillnotturntheSYNCOUTsignaloff. NOTE:AnMQFLconverterthathasitsSYNCINpindriven bytheSYNCOUTpinofasecondMQFLconverterwillhave its start of its switching cycle delayed approximately 180 degrees relative to that of the second converter. Figure B shows the equivalent circuit looking into the SYNC INpin.FigureCshowstheequivalentcircuitlookingintothe SYNCOUTpin. CURRENT SHARE:LikethesingleoutputMQFLconverters, thedualoutputconvertershaveaSHAREpin(pin11).Inthis case, however, the voltage at this pin represents the sum of the positive and negative output currents. As such, the share pin cannot cause two or more paralleled converters to share load currents on the positive or negative outputs independently. Nevertheless, there may be applications where the two currents have a fixed ratio, in which case it can make sense to force the sharing of total current among several converters. SincetheSHAREpinismonitoredwithrespecttotheOUTPUT RETURN(pin8)byeachconverter,itisimportanttoconnect alloftheconverters’OUTPUTRETURNpinstogetherthrough alowDCandACimpedance.Whenthisisdonecorrectly, the converters will deliver their appropriate fraction of the total loadcurrenttowithin+/-10%atfullratedload. Whether or not converters are paralleled, the voltage at the SHAREpincouldbeusedtomonitortheapproximateaverage current delivered by the converter(s). A nominal voltage of 1.0Vrepresentszerocurrentandanominalvoltageof2.2V represents the maximum rated total current, with a linear relationship in between. The internal source resistance of a converter’sSHAREpinsignalis2.5kW. During an input voltagefaultorprimarydisableevent,theSHAREpinoutputsa powerfailurewarningpulse.TheSHAREpinwillgoto3Vfor approximately14msastheoutputvoltagefalls. NOTE: Converters operating from separate input filters with reversepolarityprotection(suchastheMQME-28-Tfilter)with their outputs connected in parallel may exhibit hiccup operation at light loads. Consult factory for details. 5V 5K IN RTN OPEN COLLECTOR OUTPUT 5V PIN 2 SYNC IN PIN 5 PIN 2 Figure C: Equivalent circuit looking into SYNC OUT pin with respect to the IN RTN (input return) pin. 5K PIN 6 SYNC OUT FROM SYNC CIRCUITRY 5K TO SYNC CIRCUITRY IN RTN Figure B: Equivalent circuit looking into the SYNC IN pin with respect to the IN RTN (input return) pin. Product # MQFL-28-05D Phone 1-888-567-9596 www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 12 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification OUTPUT VOLTAGE TRIM:Ifdesired,itispossibletoincreaseor decreasetheMQFLdualconverter’soutputvoltagefromitsnominal value.Toincreasetheoutputvoltagearesistor,Rup,shouldbeconnected between the TRIM pin (pin 10) and the OUTPUTRETURN pin(pin8),asshowninFigureD.Thevalueofthisresistorshould bedeterminedaccordingtothefollowingequation: ( Vnom–2.5 Rup=10x Vout–Vnom –2xVnom+5 1,000.0 Trim Resistance (kOhms) 10,000.0 ) where: Vnom=theconverter’snominaloutputvoltage, Vout=thedesiredoutputvoltage(greaterthanVnom),and RupisinkiloOhms(kW). Todecreasetheoutputvoltagearesistor,Rdown,shouldbeconnectedbetweentheTRIMpinandthePOSITIVEOUTPUTpin(pin 7), as shown in Figure D. The value of this resistor should be determinedaccordingtothefollowingequation: [ ][ ] Vnom –1 Vout–2.5 –5 x Rdown=10x 2.5 Vnom–Vout where: Vnom=theconverter’snominaloutputvoltage, Vout=thedesiredoutputvoltage(lessthanVnom),and RdownisinkiloOhms(kW). As the output voltage is trimmed up, it produces a greater voltage stress on the converter’s internal components and may cause the converter to fail to deliver the desired output voltage at the low end of the input voltage range at the higher end of the load cur- 1 2 3 4 28Vdc + – 5 open means on 6 10.0 Trim Down Configuration Trim Up Configuration 1.0 0.1 -0.5 The maximum value of output voltage that can be achieved is 5.5V. 100.0 -0.4 -0.3 0 0.1 0.2 0.3 0.4 0.5 0.6 Figure E: Change in Output Voltage Graph rentandtemperaturerange.Pleaseconsultthefactoryfordetails. Factorytrimmedconvertersareavailablebyrequest. INPUT UNDER-VOLTAGE LOCKOUT: The MQFL converter has an under-voltage lockout feature that ensures the converter will be off if the input voltage is too low. The threshold of input voltage at which the converter will turn on is higher that the thresholdatwhichitwillturnoff.Inaddition,theMQFLconverterwill not respond to a state of the input voltage unless it has remained inthatstateformorethanabout200µs. This hysteresis and the delay ensure proper operation when the source impedance is high or in a noisy enviroment. ENA2 INRTN SHARE MQFL ENA1 -0.1 Change in Vout (V) +VIN CASE -0.2 SYNCOUT SYNCIN TRIM –VOUT OUTRTN +VOUT 12 open means on 11 10 9 Rup 8 Rdown + Load – + 7 Load – Figure D: Typical connection for output voltage trimming. Product # MQFL-28-05D Phone 1-888-567-9596 www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 13 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification INPUT OVER-VOLTAGE SHUTDOWN:TheMQFLconverter also has an over-voltage feature that ensures the converter will beoffiftheinputvoltageistoohigh.Italsohasahysteresisand time delay to ensure proper operation. SHUT DOWN:TheMQFLconverterwillshutdowninresponse tofollowingconditions: - ENA1inputlow - ENA2inputlow - VINinputbelowunder-voltagelockoutthreshold - VINinputaboveover-voltageshutdownthreshold Followingashutdownfromadisableeventoraninputvoltage fault, there is a startup inhibit delay which will prevent the converterfromrestartingforapproximately300ms.Afterthe300ms delay elapses, if the enable inputs are high and the input voltage is within the operating range, the converter will restart. If the VINinputisbroughtdowntonearly0Vandbackintotheoperating range, there is no startup inhibit, and the output voltage will riseaccordingtothe“Turn-OnDelay,RisingVin”specification. BACK-DRIVE CURRENT LIMIT: Converters that use MOSFETsassynchronousrectifiersarecapableofdrawing a negative current from the load if the load is a source of short- or long-term energy. This negative current is referred toasa“back-drivecurrent”. Conditions where back-drive current might occur include paralleled converters that do not employ current sharing, or where the current share feature does not adequately ensure sharing during the startup or shutdown transitions. It can also occur when converters having different output voltages are connected together through either explicit or parasitic diodes that, while normally off, become conductive during startup or shutdown. Finally, some loads, such as motors, canreturnenergytotheirpowerrail.Evenaloadcapacitor is a source of back-drive energy for some period of time during a shutdown transient. To avoid any problems that might arise due to back-drive current, the MQFL converters limit the negative current that the converter can draw from its output terminals. The threshold for this back-drive current limit is placed sufficiently below zero so that the converter may operate properly downtozeroload,butitsabsolutevalue(seetheElectrical Characteristics page) is small compared to the converter’s rated output current. Product # MQFL-28-05D Phone 1-888-567-9596 INPUT SYSTEM INSTABILITY: This condition can occur because any dc-dc converter appears incrementally as a negative resistance load. A detailed application note titled “Input System Instability” is available on the SynQor website which provides an understanding of why this instability arises, and shows the preferred solution for correcting it. THERMAL CONSIDERATIONS: Figure 11 shows the suggestedPowerDeratingCurvesforthisconverterasafunctionof thecasetemperatureandthemaximumdesiredpowerMOSFET junction temperature. All other components within the converter are cooler than its hottest MOSFET, which at full power is no morethan20ºChigherthanthecasetemperaturedirectlybelow thisMOSFET. TheMil-HDBK-1547Acomponentderatingguidelinecallsfora maximum component temperature of 105ºC. Figure 11 therefore has one power derating curve that ensures this limit is maintained.IthasbeenSynQor’sextensiveexperiencethatreliable long-term converter operation can be achieved with a maximum componenttemperatureof125ºC.Inextremecases,amaximum temperatureof145ºCispermissible,butnotrecommendedfor long-term operation where high reliability is required. Derating curves for these higher temperature limits are also included in Figure 11. The maximum case temperature at which the convertershouldbeoperatedis135ºC. When the converter is mounted on a metal plate, the plate will help to make the converter’s case bottom a uniform temperature. How well it does so depends on the thickness of the plate and on the thermal conductance of the interface layer (e.g. thermal grease,thermalpad,etc.)betweenthecaseandtheplate.Unless this is done very well, it is important not to mistake the plate’s temperature for the maximum case temperature. It is easy for themtobeasmuchas5-10ºCdifferentatfullpowerandathigh temperatures. It is suggested that a thermocouple be attached directly to the converter’s case through a small hole in the plate when investigating how hot the converter is getting. Care must also be made to ensure that there is not a large thermal resistance between the thermocouple and the case due to whatever adhesive might be used to hold the thermocouple in place. www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 14 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification CONSTRUCTION AND ENVIRONMENTAL STRESS SCREENING OPTIONS Screening Consistent with MIL-STD-883F B-Grade (-40 ºC to +85 ºC) C-Grade (-40 ºC to +100 ºC) ES-Grade (-55 ºC to +125 ºC) (Element Evaluation) HB-Grade (-55 ºC to +125 ºC) (Element Evaluation) Internal Visual * Yes Yes Yes Yes Temperature Cycle Method 1010 No No Condition B (-55 ºC to +125 ºC) Condition C (-65 ºC to +150 ºC) Constant Acceleration Method 2001 (Y1 Direction) No No 500g Condition A (5000g) Burn-in Method 1015 Load Cycled • 10s period • 2s @ 100% Load • 8s @ 0% Load 12 Hrs @ +100 ºC 24 Hrs @ +125 ºC 96 Hrs @ +125 ºC 160 Hrs @ +125 ºC Final Electrical Test Method 5005 (Group A) +25 ºC +25 ºC -45, +25, +100 ºC -55, +25, +125 ºC Anodized Package Full QorSeal Full QorSeal Full QorSeal * * Yes Yes Ruggedized QorSeal QorSeal QorSeal Mechanical Seal, Thermal, and Coating Process External Visual Construction Process 2009 * Per IPC-A-610 (Rev. D) Class 3 MilQor converters and filters are offered in four variations of construction technique and environmental stress screening options. The threehighestgrades,C,ES,andHB,alluseSynQor’sproprietaryQorSeal™Hi-RelassemblyprocessthatincludesaParylene-Ccoating ofthecircuit,ahighperformancethermalcompoundfiller,andanickelbarriergoldplatedaluminumcase.TheB-gradeversionuses aruggedizedassemblyprocessthatincludesamediumperformancethermalcompoundfillerandablackanodizedaluminumcase†. Eachsuccessivelyhighergradehasmorestringentmechanicalandelectricaltesting,aswellasalongerburn-incycle.TheES-and HB-Gradesarealsoconstructedofcomponentsthathavebeenprocuredthroughanelementevaluationprocessthatpre-qualifieseach new batch of devices. †Note:Sincethesurfaceoftheblackanodizedcaseisnotguaranteedtobeelectricallyconductive,astarwasherorsimilardevice should be used to cut through the surface oxide if electrical connection to the case is desired. Product # MQFL-28-05D Phone 1-888-567-9596 www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 15 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification 0.093 [2.36] 1 2 3 4 5 6 +VIN IN RTN CASE ENA 1 SYNC OUT SYNC IN SHARE MQFL-28-05D-X-HB DC-DC CONVERTER 28Vin ±5 Vout @ 24A TRIM -VOUT OUT RTN S/N 0000000 D/C 3205-301 CAGE 1WX10 0.250 [6.35] 12 11 10 9 8 7 ENA 2 +VOUT 0.200 [5.08] TYP. NON-CUM. 1.50 [32.10] 1.260 [32.00] 0.220 [5.59] PIN 2.50 [63.50] 2.76 [70.10] 3.00 [76.20] 0.050 [1.27] 0.28 [3.25] 0.220 [5.59] 2.96 [75.2] 0.228 [5.79] 0.390 [9.91] Case X 0.140 [3.56] 0.250 [6.35] TYP 1 2 3 4 5 6 +VIN ENA 2 IN RTN CASE ENA 1 SYNC OUT SYNC IN SHARE MQFL-28-05D-Y-HB DC-DC CONVERTER 28Vin ±5 Vout @ 24A TRIM -VOUT OUT RTN S/N 0000000 D/C 3205-301 CAGE 1WX10 +VOUT 1.750 [44.45] 0.390 [9.91] PACKAGEPINOUTS 0.300 [7.62] 1.15 [29.21] 0.250 [6.35] 12 2.00 11 [50.80] 10 1.50 9 [38.10] 8 1.750 7 [44.45] 0.200 [5.08] TYP. NON-CUM. 0.040 [1.02] PIN 0.050 [1.27] 0.220 [5.59] 0.375 [9.52] 2.50 [63.50] 2.96 [75.2] 0.228 [5.79] Case Y Case W (variant of Y) POSITIVEINPUT INPUTRETURN CASE ENABLE1 SYNCOUTPUT SYNCINPUT POSITIVEOUTPUT OUTPUTRETURN NEGATIVEOUTPUT TRIM SHARE ENABLE2 1 2 3 4 5 6 7 8 9 10 11 12 NOTES 0.250 [6.35] 0.200 [5.08] TYP. NON-CUM. 0.200 [5.08] TYP. NON-CUM. 0.420 [10.7] 0.040 [1.02] PIN 0.040 [1.02] PIN 0.220 [5.59] 0.050 [1.27] 0.050 [1.27] 0.220 [5.59] 2.80 [71.1] 0.525 [13.33] 0.050 [1.27] 2.80 [71.1] 0.525 [13.33] 0.390 [9.91] Product # MQFL-28-05D Function Case Z (variant of Y) 0.250 [6.35] 0.420 [10.7] Pin# Phone 1-888-567-9596 0.390 [9.91] www.synqor.com 1)Case:Aluminumwithgoldover nickelplatefinishfortheC-,ES-,and HB-Gradeproducts. Aluminumwithblackanodizedfinish fortheB-Gradeproducts. 2)Pins:Diameter:0.040”(1.02mm) Material:Copper Finish:GoldoverNickelplate 3)Alldimensionsasinches(mm) 4)Tolerances: a)x.xx+0.02” (x.x+0.5mm) b)x.xxx+0.010” (x.xx+0.25mm) 5)Weight:2.8oz.(79g)typical 6)Workmanship:Meetsorexceeds IPC-A-610CClassIII Doc.# 005-2MQ050D Rev. B 09/03/08 Page 16 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification MilQor MQFL FAMILY MATRIX ThetablesbelowshowthearrayofMQFLconvertersavailable.WhenorderingSynQorconverters,pleaseensurethatyouuse the complete part number according to the table in the last page. Contact the factory for other requirements. Single Output 1.5V (1R5S) 1.8V (1R8S) 2.5V (2R5S) 3.3V (3R3S) 5V (05S) 6V (06S) 7.5V (7R5S) 9V (09S) 12V (12S) 15V (15S) 28V (28S) 40A 40A 40A 30A 24A 20A 16A 13A 10A 8A 4A 40A 40A 40A 30A 24A 20A 16A 13A 10A 8A 4A 40A 40A 40A 30A 20A 17A 13A 11A 8A 6.5A 3.3A 40A 40A 40A 30A 24A 17A 13A 11A 8A 6.5A 4A 40A 40A 40A 30A 24A 20A 16A 13A 10A 8A 4A 40A 40A 40A 30A 20A 17A 13A 11A 8A 6.5A 3.3A 40A 40A 30A 22A 15A 12A 10A 8A 6A 5A 2.7A MQFL-28 16-40Vin Cont. 16-50Vin 1s Trans.* Absolute Max Vin = 60V MQFL-28E 16-70Vin Cont. 16-80Vin 1s Trans.* Absolute Max Vin =100V MQFL-28V 16-40Vin Cont. 5.5-50Vin 1s Trans.* Absolute Max Vin = 60V MQFL-28VE 16-70Vin Cont. 5.5-80Vin 1s Trans.* Absolute Max Vin = 100V MQFL-270 155-400Vin Cont. 155-475Vin 0.1s Trans.* Absolute Max Vin = 550V MQFL-270E 130-475Vin Cont. 130-520Vin 0.1s Trans.* Absolute Max Vin = 600V MQFL-270L 65-350Vin Cont. 65-475Vin 0.1s Trans.* Absolute Max Vin = 550V Dual Output 5V (05D) 12V (12D) MQFL-28 16-40Vin Cont. 16-50Vin 1s Trans.* Absolute Max Vin = 60V 16-40Vin Cont. 16-50Vin 1s Trans.* Absolute Max Vin = 60V 24A Total 10A Total 8A Total 16-70Vin Cont. 16-80Vin 1s Trans.* Absolute Max Vin =100V 6.5A Total 16-40Vin Cont. 5.5-50Vin 1s Trans.* Absolute Max Vin = 60V 20A Total 8A Total 6.5A Total 16-70Vin Cont. 5.5-80Vin 1s Trans.* Absolute Max Vin = 100V MQFL-270L 65-350Vin Cont. 65-475Vin 0.1s Trans.* Absolute Max Vin = 550V MQFL-28VE MQFL-270 24A Total 10A Total 8A Total MQFL-270E 130-475Vin Cont. 130-520Vin 0.1s Trans.* Absolute Max Vin = 600V MQFL-28V 8A Total MQFL-270 155-400Vin Cont. 155-475Vin 0.1s Trans.* Absolute Max Vin = 550V MQFL-28E 20A Total MQFL-28VE 16-70Vin Cont. 5.5-80Vin 1s Trans.* Absolute Max Vin = 100V MQFL-28 8A Total MQFL-28V 16-40Vin Cont. 5.5-50Vin 1s Trans.* Absolute Max Vin = 60V Triple Output 24A Total 10A Total MQFL-28E 16-70Vin Cont. 16-80Vin 1s Trans.* Absolute Max Vin =100V 15V (15D) 155-400Vin Cont. 155-475Vin 0.1s Trans.* Absolute Max Vin = 550V MQFL-270E 20A Total 8A Total 6.5A Total 130-475Vin Cont. 130-520Vin 0.1s Trans.* Absolute Max Vin = 600V 15A Total 6A Total 5A Total 65-350Vin Cont. 65-475Vin 0.1s Trans.* Absolute Max Vin = 550V MQFL-270L 3.3V/±12V (3R312T) 3.3V/±15V (3R315T) 5V/±12V (0512T) 5V/±15V (0515T) 30V/±15V (3015T) 22A/ ±1A 22A/ ±0.8A 15A/ ±1A 15A/ ±0.8A 2.5A/ ±0.8A 22A/ ±1A 22A/ ±0.8A 15A/ ±1A 15A/ ±0.8A 2.5A/ ±0.8A 22A/ ±1A 22A/ ±0.8A 15A/ ±1A 15A/ ±0.8A 2.5A/ ±0.8A 22A/ ±1A 22A/ ±0.8A 15A/ ±1A 15A/ ±0.8A 2.5A/ ±0.8A 22A/ ±1A 22A/ ±0.8A 15A/ ±1A 15A/ ±0.8A 2.5A/ ±0.8A 22A/ ±1A 22A/ ±0.8A 15A/ ±1A 15A/ ±0.8A 2.5A/ ±0.8A 22A/ ±1A 22A/ ±0.8A 15A/ ±1A 15A/ ±0.8A 2.5A/ ±0.8A (75Wmax Total Output Power) *Converters may be operated continuously at the highest transient input voltage, but some componentelectricalandthermalstresseswouldbebeyondMIL-HDBK-1547Aguidelines. Product # MQFL-28-05D Phone 1-888-567-9596 www.synqor.com †80%oftotaloutputcurrentavailableon any one output. Doc.# 005-2MQ050D Rev. B 09/03/08 Page 17 MQFL-28-05D Output: ±5 V Current: 24 A Total Technical Specification PART NUMBERING SYSTEM The part numbering system for SynQor’s MilQor DC-DC converters follows the format shown in the table below. Model Name MQFL Input Voltage Range 28 28E 28V 28VE 270 270E 270L APPLICATION NOTES Output Voltage(s) Single Output Dual Output Triple Output 1R5S 1R8S 2R5S 3R3S 05S 06S 7R5S 09S 12S 15S 28S 05D 12D 15D 3R312T 3R315T 0512T 0515T 3015T Example: Package Outline/ Pin Configuration Screening Grade X Y W Z B C ES HB MQFL – 28 – 05D – Y – ES A variety of application notes and technical white papers can be downloaded in pdf format from the SynQor website. PATENTS SynQorholdsthefollowingpatents,oneormoreofwhichmightapplytothisproduct: 5,999,417 6,927,987 6,222,742 7,050,309 6,545,890 7,072,190 6,577,109 7,085,146 6,594,159 7,119,524 6,731,520 7,269,034 6,894,468 7,272,021 6,896,526 7,272,023 Contact SynQor for further information: Phone: TollFree: Fax: E-mail: Web: Address: Product # MQFL-28-05D 978-849-0600 888-567-9596 978-849-0602 [email protected] www.synqor.com 155SwansonRoad Boxborough,MA01719 USA Phone 1-888-567-9596 Warranty SynQoroffersatwo(2)yearlimitedwarranty.Completewarranty information is listed on our website or is available upon request from SynQor. InformationfurnishedbySynQorisbelievedtobeaccurateandreliable. However,noresponsibilityisassumedbySynQorforitsuse,norforany infringements of patents or other rights of third parties which may result fromitsuse.Nolicenseisgrantedbyimplicationorotherwiseunderany patent or patent rights of SynQor. www.synqor.com Doc.# 005-2MQ050D Rev. B 09/03/08 Page 18