SYNQOR MQFL-28-05D

MQFL-28-05D
Dual Output
H IGH R ELIABILITY DC-DC C ONVERTER
16-40 V
Continuous Input
16-50 V
Transient Input
±5 V
24 A
Output
91% @ 12 A / 89% @ 24 A
Output
F ULL P OWER O PERATION : -55ºC
TO
Efficiency
+125ºC
The MilQor® series of high-reliability DC-DC converters
brings SynQor’s field proven high-efficiency synchronous
rectifier technology to the Military/Aerospace industry.
SynQor’s innovative QorSealTM packaging approach ensures
survivability in the most hostile environments. Compatible
with the industry standard format, these converters operate
at a fixed frequency, have no opto-isolators, and follow
conservative component derating guidelines. They are
designed and manufactured to comply with a wide range of
military standards.
Design Process
MQFLseriesconvertersare:
• DesignedforreliabilityperNAVSO-P3641-Aguidelines
• Designedwithcomponentsderatedper:
—MIL-HDBK-1547A
—NAVSOP-3641A
Qualification Process
MQFLseriesconvertersarequalifiedto:
• MIL-STD-810F
—consistentwithRTCA/D0-160E
• SynQor’sFirstArticleQualification
—consistentwithMIL-STD-883F
• SynQor’sLong-TermStorageSurvivabilityQualification
• SynQor’son-goinglifetest
DesIGNeD & MaNUFacTUReD IN THe Usa
FeaTURING QORseaL™ HI-ReL asseMBLY
Features
• Fixedswitchingfrequency
• Noopto-isolators
• Paralleloperationwithcurrentshare
• Clocksynchronization
• Primaryandsecondaryreferencedenable
• Continuousshortcircuitandoverloadprotection
• Inputunder-voltagelockout/over-voltageshutdown
• Outputvoltagetrim
Specification Compliance
In-Line Manufacturing Process
• AS9100andISO9001:2000certifiedfacility
• Fullcomponenttraceability
• Temperaturecycling
• Constantacceleration
• 24,96,160hourburn-in
• Threeleveltemperaturescreening
Product # MQFL-28-05D
Phone 1-888-567-9596
MQFLseriesconverters(withMQMEfilter)aredesignedtomeet:
• MIL-HDBK-704-8(AthroughF)
• RTCA/DO-160ESection16
• MIL-STD-1275B
• DEF-STAN61-5(part6)/5
• MIL-STD-461(C,D,E)
• RTCA/DO-160ESection22
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 1
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
BLOCKDIAGRAM
REGULATION STAGE
7
ISOLATION STAGE
CURRENT
SENSE
1
POSITIVE
INPUT
T1
T1
T2
POSITIVE
OUTPUT
T2
2
8
ISOLATION BARRIER
INPUT
RETURN
3
CASE
GATE DRIVERS
UVLO
OVSD
CURRENT
LIMIT
4
T1
OUTPUT
RETURN
T2
9
NEGATIVE
OUTPUT
GATE DRIVERS
12
MAGNETIC
ENABLE 1
ENABLE 2
PRIMARY
CONTROL
5
DATA COUPLING
SYNC OUTPUT
11
SECONDARY
CONTROL
SHARE
6
10
SYNC INPUT
TRIM
BIAS POWER
CONTROL
POWER
POSITIVE
OUTPUT
TRANSFORMER
TYPICALCONNECTIONDIAGRAM
1
2
3
28Vdc
4
+
–
5
open
means
on
Product # MQFL-28-05D
6
+VIN
ENA2
INRTN
SHARE
CASE
MQFL
ENA1
SYNCOUT
SYNCIN
TRIM
–VOUT
OUTRTN
+VOUT
12
11
open
means
on
10
+
9
Load
–
8
+
7
Load
–
Phone 1-888-567-9596
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 2
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
MQFL-28-05D ELECTRICAL CHARACTERISTICS
Parameter
Min. Nom.
Max. Units Notes & Conditions
ABSOLUTE MAXIMUM RATINGS
Input Voltage
Non-Operating
Operating 1
Reverse Bias (Tcase = 125ºC)
Reverse Bias (Tcase = -55ºC)
Isolation Voltage (input/output to case, input to output)
Continuous
Transient (<100 µs)
Operating Case Temperature 2
Storage Case Temperature
Lead Temperature (20 sec)
Voltage at ENA1, ENA2
INPUT CHARACTERISTICS
Operating Input Voltage Range (continuous)
Operating Input Voltage Range (transient, 1 sec)
Input Under-Voltage Lockout 3
Turn-On Voltage Threshold
Turn-Off Voltage Threshold
Lockout Voltage Hysteresis
Input Over-Voltage Shutdown 3
Turn-Off Voltage Threshold
Turn-On Voltage Threshold
Shutdown Voltage Hysteresis
Maximum Input Current
No Load Input Current (operating)
Disabled Input Current (ENA1)
Disabled Input Current (ENA2)
Input Terminal Current Ripple (peak to peak)
OUTPUT CHARACTERISTICS
Output Voltage Set Point (Tcase = 25ºC)
Positive Output 12
Negative Output 12
Output Voltage Set Point Over Temperature
Positive Output 12
Negative Output 12
Positive Output Voltage Line Regulation 12
Positive Output Voltage Load Regulation 12
Total Positive Output Voltage Range 12
Output Voltage Cross Regulation (Negative Output) 11,12
Output Voltage Ripple and Noise Peak to Peak
Total Operating Current Range
Single Output Operating Current Range
Operating Output Power Range
Output DC Current-Limit Inception 4
Short Circuit Output Current 16
Back-Drive Current Limit while Enabled
Back-Drive Current Limit while Disabled
Maximum Output Capacitance 5
DYNAMIC CHARACTERISTICS
Output Voltage Deviation Load Transient 6
For a Positive Step Change in Load Current
For a Negative Step Change in Load Current
Settling Time (either case) 7
Output Voltage Deviation Line Transient 8
For a Positive Step Change in Line Voltage For a Negative Step Change in Line Voltage Settling Time (either case) 7
Turn-On Transient
Output Voltage Rise Time
Output Voltage Overshoot
Turn-On Delay, Rising Vin 9
Turn-On Delay, Rising ENA1
Turn-On Delay, Rising ENA2
Product # MQFL-28-05D
Vin=28V DC ±5%, +Iout = –Iout = 12A, CL = 0 µF, free
running10 unless otherwise specified
Group A
Subgroup14
60
60
-0.8
-1.2
V
V
V
V
-500
-800
-55
-65
-1.2
500
800
135
135
300
50
V
V
°C
°C
°C
V
16
16
28
28
40
50
V
V
1, 2, 3
4, 5, 6
14.75
13.80
0.5
15.50
14.40
1.1
16.00
15.00
1.8
V
V
V
1, 2, 3
1, 2, 3
1, 2, 3
54.0
50.0
2.0
56.8
51.4
5.3
110
2
25
40
60.0
54.0
8.0
9.5
160
5
50
60
V
V
V
A
mA
mA
mA
mA
Vin = 16V; +Iout = –Iout = 12A
Vin = 16V, 28V, 50V
Vin = 16V, 28V, 50V
Bandwidth = 100 kHz – 10 MHz; see Figure 20
1,
1,
1,
1,
1,
1,
1,
1,
+4.95
-5.05
+5.00
-5.00
+5.05
-4.95
V
V
+4.90
-5.10
-20
15
4.9
100
0
0
0
25
26
+5.00
+5.10
-5.00
-4.90
0
20
32
50
5.0
5.1
200
350
15
60
24
19
120
28
31
30
34
8
10
50
10000
V
2, 3
V
2, 3
mV
Vin = 16V, 28V, 50V
1, 2, 3
mV
+Vout @ (+Iout = –Iout = 0A) – +Vout @ (+Iout = –Iout = 12A)
1, 2, 3
V
+Vout with Kelvin measurement at output leads
1, 2, 3
mV
–Vout @ (+Iout = –Iout = 4.8A) – –Vout @ (+Iout = 19.2A, –Iout=4.8A)
1, 2, 3
mV
Bandwidth = 100 kHz - 10 MHz; CL=11µF on both outputs
1, 2, 3
A
(+Iout) + (–Iout)
1, 2, 3
A
Maximum +Iout or –Iout
1, 2, 3
W
Total on both outputs
1, 2, 3
A
+Iout + –Iout; +Iout = –Iout
1, 2, 3
A
+Vout ≤ 1.2V
1, 2, 3
A
1, 2, 3
mA
1, 2, 3
µF
Total on both outputs
See Note 5
-500
-300
300
50
500
200
mV
mV
µs
Total Iout Step = 12A ↔ 24A, 2.4A ↔ 12A; CL=11µF on both outputs 4, 5, 6
“
4, 5, 6
4, 5, 6
-500
-500
250
500
500
500
mV
mV
µs
Vin step = 16V ↔ 50V; CL=11µF on both outputs
“
4, 5, 6
4, 5, 6
See Note 5
6
0
5.5
3.0
1.5
10
2
8.0
6.0
3.0
ms
%
ms
ms
ms
+Vout = 0.5V → 4.5V
ENA1, ENA2 = 5V
ENA2 = 5V
ENA1 = 5V
4, 5, 6
See Note 5
4, 5, 6
4, 5, 6
4, 5, 6
Phone 1-888-567-9596
www.synqor.com
2,
2,
2,
2,
2,
2,
2,
2,
3
3
3
3
3
3
3
3
1
1
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 3
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
MQFL-28-05D ELECTRICAL CHARACTERISTICS (Continued)
Parameter
Min. Nom.
Max. Units Notes & Conditions
EFFICIENCY
Iout = 24A (16Vin)
Iout = 12A (16Vin)
Iout = 24A (28Vin)
Iout = 12A (28Vin)
Iout = 24A (40Vin)
Iout = 12A (40Vin)
Load Fault Power Dissipation
Short Circuit Power Dissipation
ISOLATION CHARACTERISTICS
Isolation Voltage (dielectric strength)
Input RTN to Output RTN
Any Input Pin to Case
Any Output Pin to Case
Isolation Resistance (input rtn to output rtn)
Isolation Resistance (any pin to case)
Isolation Capacitance (input rtn to output rtn)
FEATURE CHARACTERISTICS
Switching Frequency (free running)
Synchronization Input
Frequency Range Logic Level High
Logic Level Low
Duty Cycle
Synchronization Output
Pull Down Current
Duty Cycle
Enable Control (ENA1 and ENA2)
Off-State Voltage
Module Off Pulldown Current
On-State Voltage
Module On Pin Leakage Current
Pull-Up Voltage
Output Voltage Trim Range
RELIABILITY CHARACTERISTICS
Calculated MTBF (MIL-STD-217F2)
GB @ Tcase=70ºC
AIF @ Tcase=70ºC
Demonstrated MTBF
WEIGHT CHARACTERISTICS
Device Weight
Vin=28V DC ±5%, +Iout = –Iout = 12A, CL = 0 µF, free
running10 unless otherwise specified
Group A
Subgroup14
85
88
85
87
84
86
89
92
89
91
88
90
16
24
32
33
%
%
%
%
%
%
W
W
Iout at current limit inception point 4
+Vout ≤ +1.2V; –Vout ≥ –1.2V
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
2,
2,
2,
2,
3
3
3
3
3
3
3
3
500
500
500
100
100
44
V
V
V
MW
MW
nF
1
1
1
1
1
1
500
550
600
kHz
1, 2, 3
500
2
-0.5
20
700
10
0.8
80
kHz
V
V
%
1, 2, 3
1, 2, 3
1, 2, 3
See Note 5
20
25
75
mA
%
VSYNC OUT = 0.8V
Output connected to SYNC IN of another MQFL converter
See Note 5
See Note 5
80
2
3.2
-0.4
4.0
0.8
20
4.5
0.5
V
µA
V
µA
V
V
1, 2, 3
Current drain required to ensure module is off
See Note 5
1, 2, 3
Maximum current draw from pin allowed with module still on See Note 5
See Figure A
1, 2, 3
(+Vout) – 5V; See Figure E
See Note 5
2800
420
TBD
103 Hrs.
103 Hrs.
103 Hrs.
79
g
Electrical Characteristics Notes
1. Converter will undergo input over-voltage shutdown.
2. Derate output power to 50% of rated power at Tcase = 135º C.
3. High or low state of input voltage must persist for about 200µs to be acted on by the lockout or shutdown circuitry.
4. Current limit inception is defined as the point where the output voltage has dropped to 90% of its nominal value.
5. Parameter not tested but guaranteed to the limit specified.
6. Load current transition time ≥ 10µs.
7. Settling time measured from start of transient to the point where the output voltage has returned to ±1% of its final value.
8. Line voltage transition time ≥ 100µs.
9. Input voltage rise time ≤ 250µs.
10. Operating the converter at a synchronization frequency above the free running frequency will cause the converter’s efficiency to be
slightly reduced and it may also cause a slight reduction in the maximum output current/power available. For more information consult
the factory.
11. The regulation stage operates to control the positive output. The negative output displays cross regulation.
12. All +Vout and -Vout voltage measurements are made with Kelvin probes on the output leads.
13. SHARE pin outputs a power failure warning pulse during a fault condition. See Current Share section.
14. Only the ES and HB grade products are tested at three temperatures. The B and C grade products are tested at one temperature.
Please refer to the ESS table for details.
15. These derating curves apply for the ES- and HB- grade products. The C- grade product has a maximum case temperature of 100º C
and a maximum junction temperature rise of 20º C above TCASE. The B- grade product has a maximum case temperature of 85º C and
a maximum junction temperature rise of 20º C at full load.
Product # MQFL-28-05D
Phone 1-888-567-9596
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 4
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
20
100
18
95
16
Power Disipation (W)
Efficiency (%)
90
85
80
75
70
65
14
12
10
8
6
16Vin
4
28Vin
40Vin
2
16Vin
28Vin
40Vin
0
60
0
20
40
60
80
100
0
120
20
40
Total Output Power (W)
60
80
100
120
Total Output Power (W)
Figure 1: Efficiency vs. output power, from zero load to full load with
equal load on the +5V and -5V outputs at minimum, nominal, and maximum input voltage at 25°C.
Figure 2: Power dissipation vs. output power, from zero load to full
load with equal load on the +5V and -5V outputs at minimum, nominal,
and maximum input voltage at 25°C.
100
18
95
16
14
90
Power Diss. (W)
Efficiency (%)
12
85
10
80
75
8
6
70
4
28Vin
16Vin
40Vin
65
0
60
19.2/0.0 16.8/2.4 14.4/4.8 12.0/7.2
19.2/0.0 16.8/2.4 14.4/4.8 12.0/7.2 9.6/9.6 7.2/12.0 4.8/14.4 2.4/16.8 0.0/19.2
Load Current (A), +Iout/-Iout
Figure 3: Efficiency vs. output current, with total output current fixed
at 80% load (96 W) and loads split as shown between the +5 V and -5
V outputs at minimum, nominal, and maximum input voltage at 25°C.
14
90
12
Power Dissipation (W)
95
80
75
7.2/12.0 4.8/14.4 2.4/16.8 0.0/19.2
Figure 4: Power dissipation vs. output current, with total output current
fixed at 80% load (96 W) and loads split as shown between the +5 V and
-5 V outputs at minimum, nominal, and max input voltage at 25°C.
16
85
9.6/9.6
Load Current(A),+Iout/-Iout
100
Efficiency(%)
16Vin
28Vin
40Vin
2
10
8
6
4
70
16Vin
28Vin
40Vin
65
-35
-15
5
25
45
65
Case Temperature (C)
85
105
Phone 1-888-567-9596
40Vin
-55
125
-35
-15
5
25
45
65
85
105
125
Case Temperature (C)
Figure 5: Efficiency at 60% load (7.2 A load on +5 V and 7.2 A load
on -5 V) versus case temperature for Vin = 16 V, 28 V, and 40 V.
Product # MQFL-28-05D
28Vin
0
60
-55
16Vin
2
Figure 6: Power dissipation at 60% load (7.2 A load on +5 V and 7.2 A
load on -5 V) versus case temperature for Vin =16 V, 28 V, and 40 V.
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 5
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
-5.15
5.10
-5.10
5.05
-5.05
5.00
-5.00
4.95
-4.95
4.90
-4.90
4.85
+Vout
-4.85
4.80
-Vout
-4.80
5.15
-5.15
5.05
-5.05
4.95
-4.95
4.85
-4.85
4.75
4.75
12/12
9.6/14.4
-4.75
+Vout
-Vout
-4.65
4.65
19.2/0.0 16.8/2.4 14.4/4.8 12.0/7.2 9.6/9.6 7.2/12.0 4.8/14.4 2.4/16.8 0.0/19.2
-4.75
14.4/9.6
-5.25
Negative Output (V)
5.25
5.15
19.2/4.8
Input voltage has virtually no
effect on cross regulation
-5.20
Positive Output (V)
Positive Output (V)
5.20
-5.35
5.35
-5.25
Input voltage has virtually no
effect on cross regulation
Negative Output (V)
5.25
4.8/19.2
+Iout(A)/-Iout(A)
+Iout(A)/-Iout(A)
Figure 7: Load regulation vs. load current with power fixed at full load
(120 W) and load currents split as shown between the +5 V and -5 V
outputs, at nominal input voltage and TCASE = 25ºC.
Figure 8: Load regulation vs. load current with power fixed at 80%
load (96 W) and load currents split as shown between the +5 V and -5
V outputs, at nominal input voltage and TCASE = 25ºC.
-5.10
5.05
-5.05
5.00
-5.00
4.95
-4.95
Input voltage has virtually no
effect on cross regulation
4.90
-4.90
4.85
-4.85
+Vout
-Vout
4.80
-4.80
4.75
24
48
72
Total Output Power (W)
96
-5.03
5.00
-5.00
Input voltage has virtually no
effect on cross regulation
4.95
-4.98
-4.95
4.93
-4.93
4.90
-4.90
4.88
-4.88
4.85
-4.85
4.83
-4.83
4.80
+Vout
-4.80
4.78
-Vout
-4.78
4.75
-4.75
0
-5.05
5.03
4.98
Positive Output (V)
5.10
5.05
-4.75
0
120
Negative Output (V)
-5.15
Negative Output(V)
Positive Output (V)
5.15
24
48
72
96
120
Total Output Power (W)
Figure 9: Load regulation vs. total output power from zero to to full
load where +Iout equals three times -Iout at nominal input voltage and
TCASE = 25ºC.
32
160
28
140
24
120
20
100
16
80
12
60
Figure 10: Load regulation vs. total output power from zero to to full
load where -Iout equals three times +Iout at nominal input voltage and
TCASE = 25ºC.
6
8
Tjmax
Tjmax = 105º C
40
Tjmax = 145º C
Tjmax
20
Tjmax = 125º C
Tjmax
4
Output Voltage (V)
Pout (W)
(+Iout) + (-Iout) (A)
5
65
28Vin
85
105
125
0
135º 145
Case Temperature (ºC)
Phone 1-888-567-9596
5
10
15
20
25
30
Total Load Current (A)
Figure 11: Output Current / Output Power derating curve as a function
of TCASE and the maximum desired power MOSFET junction temperature
(see Note 15).
Product # MQFL-28-05D
2
0
0
45
3
1
0
25
4
Figure 12: Positive output voltage vs. total load current, evenly split,
showing typical current limit curves.
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 6
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
+Vout
+Vout
-Vout
-Vout
Figure 13: Turn-on transient at full rated load current (resistive
load) (5 ms/div). Input voltage pre-applied. Ch 1: +Vout (2V/div);
Ch 2: -Vout (2V/div); Ch 3: Enable1 input (5V/div).
Figure 14: Turn-on transient at zero load current (5 ms/div). Input
voltage pre-applied. Ch 1: +Vout (2V/div); Ch 2: -Vout (2V/div);
Ch 3: Enable1 input (5V/div).
+Vout
+Vout
-Vout
Figure 15: Turn-on transient at full rated load current (resistive
load) (5 ms/div). Input voltage pre-applied. Ch 1: +Vout (2V/div);
Ch 2: -Vout (2V/div); Ch 3: Enable2 input (5V/div).
-Vout
Figure 16: Turn-on transient at full load, after application of input voltage (ENA 1 and ENA 2 logic high) (5 ms/div). Ch 1: +Vout (2V/div);
Ch 2: -Vout (2V/div); Ch 3: Vin (10V/div).
+Vout
+Vout
+Iout
+Iout
-Vout
-Vout
-Iout
-Iout
Figure 17: Output voltage response to step-change in total load current
Figure 18: Output voltage response to step-change in total load current
(50%-100%-50%) of total Iout (max) split 50%/50%. Load cap: 1µF ceramic
cap and 10µF, 100 mW ESR tantalum cap. Ch 1: +Vout (500mV/div);
Ch 2: +Iout (10AV/div); Ch 3: -Vout (500mV/div); Ch 4: -Iout (10A/div).
(0%-50%-0%) of total Iout (max) split 50%/50%. Load cap: 1µF ceramic
cap and 10µF, 100 mW ESR tantalum cap. Ch 1: +Vout (500mV/div);
Ch 2: +Iout (10AV/div); Ch 3: -Vout (500mV/div); Ch 4: -Iout (10A/div).
Product # MQFL-28-05D
Phone 1-888-567-9596
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 7
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
See Fig. 22
See Fig. 21
MQME
Filter
IC
+VOUT
MQFL
Converter
VSOURCE
RTN
1 µF
ceramic
capacitors
–VOUT
10 µF,
100mΩ ESR
capacitors
50V - 16V). Load cap: 10µF, 100 mW ESR tantalum cap and 1µF ceramic cap.
Ch 1: +Vout (500mV/div); Ch 2: -Vout (500mV/div); Ch 3: Vin (20V/div).
Figure 20: Test set-up diagram showing measurement points for
Input Terminal Ripple Current (Figure 21) and Output Voltage Ripple
(Figure 22).
Figure 21: Input terminal current ripple, ic, at full rated output current
and nominal input voltage with SynQor MQ filter module (50 mA/div).
Bandwidth: 20MHz. See Figure 20.
Figure 22: Output voltage ripple, +Vout (Ch 1) and -Vout (Ch 2), at nominal
input voltage and full load current evenly split (20 mV/div). Load capacitance:
1µF ceramic cap and 10µF tantalum cap. Bandwidth: 10 MHz. See Figure 20.
Figure 23: Rise of output voltage after the removal of a short circuit
across the positive output terminals. Ch 1: +Vout (2 V/div); Ch 2:
-Vout (2 V/div); Ch 3: +Iout (20 A/div).
Figure 24: SYNC OUT vs. time, driving SYNC IN of a second SynQor
MQFL converter.
Figure 19: Output voltage response to step-change in input voltage (16V -
Product # MQFL-28-05D
Phone 1-888-567-9596
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 8
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
1.000
Output Impedance (ohms)
Output Impedance (ohms)
1.000
0.100
0.010
0.100
0.010
16Vin
28Vin
40Vin
16Vin
28Vin
40Vin
0.001
0.001
10
100
1,000
Frequency (Hz)
10,000
Figure 25: Magnitude of incremental output impedance of +5V output
(+Zout = +vout /+iout) for minimum, nominal, and maximum input voltage
at full rated power.
0
0
-10
-10
-20
-20
-30
-40
-50
-60
-70
100
10,000
16Vin
28Vin
40Vin
-90
-40
-50
-60
-70
100
1,000
10,000
16Vin
28Vin
40Vin
-90
-100
-100
10
100,000
-30
-80
-80
10
100,000
100
1,000
10,000
100,000
Frequency (Hz)
Frequency (Hz)
Figure 27: Magnitude of incremental forward transmission of +5V output
(+FT = +vout /vin) for minimum, nominal, and maximum input voltage at full
rated power.
Figure 28: Magnitude of incremental forward transmission of -5V output
(-FT = -vout /vin) for minimum, nominal, and maximum input voltage at
full rated power.
20
20
10
10
Reverse Transmission (dB)
Reverse Transmission (dB)
1,000
Frequency (Hz)
Figure 26: Magnitude of incremental output impedance of -5V output
(-Zout = -vout /-iout) for minimum, nominal, and maximum input voltage at
full rated power.
Forward Transmission (dB)
Forward Transmission (dB)
10
100,000
0
-10
-20
-30
16Vin
28Vin
40Vin
-40
0
-10
-20
-30
16Vin
28Vin
40Vin
-40
-50
-50
10
100
1,000
Frequency (Hz)
10,000
100,000
Figure 29: Magnitude of incremental reverse transmission from +5V
output (+RT = iin /+iout) for minimum, nominal, and maximum input
voltage at full rated power.
Product # MQFL-28-05D
Phone 1-888-567-9596
10
100
1,000
Frequency (Hz)
10,000
100,000
Figure 30: Magnitude of incremental reverse transmission from -5V
output (-RT = iin /-iout) for minimum, nominal, and maximum input voltage
at full rated power.
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 9
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
Input Impedance (ohms)
100
10
1
16Vin
28Vin
0.1
40Vin
0.01
10
100
1,000
10,000
100,000
Hz
Figure 31: Magnitude of incremental input impedance (Zin = vin/iin)
for minimum, nominal, and maximum input voltage at full rated power
with 50% / 50% split.
Figure 32: High frequency conducted emissions of standalone MQFL28-05S, 5Vout module at 120W output, as measured with Method CE102.
Limit line shown is the ‘Basic Curve’ for all applications with a 28V source.
Figure 33: High frequency conducted emissions of MQFL-28-05S, 5Vout module at 120W output with MQFL-28-P filter, as measured with Method CE102.
Limit line shown is the ‘Basic Curve’ for all applications with a 28V source.
Product # MQFL-28-05D
Phone 1-888-567-9596
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 10
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
BASICOPERATIONANDFEATURES
TheMQFLdc-dcconverterusesatwo-stagepowerconversion
topology. The first, or regulation, stage is a buck-converter
that keeps the output voltage constant over variations in line,
load, and temperature. The second, or isolation, stage uses
transformers to provide the functions of input/output isolation
and voltage transformation to achieve the output voltage
required.
Inthedualoutputconvertertherearetwosecondarywindings
in the transformer of the isolation stage, one for each output.
There is only one regulation stage, however, and it is used
to control the positive output. The negative output therefore
displays “Cross-Regulation”, meaning that its output voltage
depends on how much current is drawn from each output.
Both the positive and the negative outputs share a common
OUTPUTRETURNpin.
Boththeregulationandtheisolationstagesswitchatafixed
frequency for predictable EMI performance. The isolation
stage switches at one half the frequency of the regulation
stage, but due to the push-pull nature of this stage it creates
a ripple at double its switching frequency. As a result, both
the input and the output of the converter have a fundamental
ripplefrequencyofabout550kHzinthefree-runningmode.
Rectification of the isolation stage’s output is accomplished
with synchronous rectifiers.
These devices, which are
MOSFETswithaverylowresistance,dissipatefarlessenergy
than would Schottky diodes. This is the primary reason why
theMQFLconvertershavesuchhighefficiency,particularlyat
low output voltages.
Besidesimprovingefficiency,thesynchronousrectifierspermit
operation down to zero load current. There is no longer a
need for a minimum load, as is typical for converters that use
diodes for rectification. The synchronous rectifiers actually
permit a negative load current to flow back into the converter’s output terminals if the load is a source of short or long
termenergy.TheMQFLconvertersemploya“back-drivecurrentlimit”tokeepthisnegativeoutputterminalcurrentsmall.
There is a control circuit on both the input and output sides of
theMQFLconverterthatdeterminestheconductionstateofthe
power switches. These circuits communicate with each other
across the isolation barrier through a magnetically coupled
device. No opto-isolators are used. A separate bias supply
provides power to both the input and output control circuits.
An input under-voltage lockout feature with hysteresis is provided, as well as an input over-voltage shutdown. There is
also an output current limit that is nearly constant as the load
impedancedecreasestoashortcircuit(i.e.,thereisnofold-
Product # MQFL-28-05D
Phone 1-888-567-9596
back or fold-forward characteristic to the output current under
this condition). When a load fault is removed, the output
voltage rises exponentially to its nominal value without an
overshoot.
The MQFL converter’s control circuit does not implement an
output over-voltage limit or an over-temperature shutdown.
The following sections describe the use and operation of additionalcontrolfeaturesprovidedbytheMQFLconverter.
CONTROLFEATURES
ENABLE: The MQFL converter has two enable pins. Both
must have a logic high level for the converter to be enabled.
A logic low on either pin will inhibit the converter.
The ENA1 pin (pin 4) is referenced with respect to the converter’sinputreturn(pin2).TheENA2pin(pin12)isreferenced with respect to the converter’s output return (pin 8).
This permits the converter to be inhibited from either the input
or the output side.
Regardless of which pin is used to inhibit the converter, the
regulationandtheisolationstagesareturnedoff.However,
whentheconverterisinhibitedthroughtheENA1pin,thebias
supply is also turned off, whereas this supply remains on when
the converter is inhibited through the ENA2 pin. A higher
input standby current therefore results in the latter case.
Both enable pins are internally pulled high so that an open
connectiononbothpinswillenabletheconverter.FigureA
showstheequivalentcircuitlookingintoeitherenablepins.It
isTTLcompatible.
5.6V
PIN 4
(or PIN 12)
1N4148
82K
ENABLE
TO ENABLE
CIRCUITRY
250K
2N3904
125K
PIN 2
(or PIN 8)
IN RTN
Figure A: Equivalent circuit looking into either the ENA1 or ENA2
pins with respect to its corresponding return pin.
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 11
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
SYNCHRONIZATION:TheMQFLconverter’sswitchingfrequencycanbesynchronizedtoanexternalfrequencysource
thatisinthe500kHzto700kHzrange.Apulsetrainatthe
desiredfrequencyshouldbeappliedtotheSYNCINpin(pin
6)withrespecttotheINPUTRETURN(pin2).Thispulsetrain
shouldhaveadutycycleinthe20%to80%range.Itslow
valueshouldbebelow0.8Vtobeguaranteedtobeinterpretedasalogiclow,anditshighvalueshouldbeabove2.0V
to be guaranteed to be interpreted as a logic high. The transitiontimebetweenthetwostatesshouldbelessthan300ns.
IftheMQFLconverterisnottobesynchronized,theSYNCIN
pin should be left open circuit. The converter will then operate in its free-running mode at a frequency of approximately
550kHz.
If,duetoafault,theSYNCINpinisheldineitheralogiclow
orlogichighstatecontinuously,theMQFLconverterwillrevert
to its free-running frequency.
TheMQFLconverteralsohasaSYNCOUTpin(pin5).This
outputcanbeusedtodrivetheSYNCINpinsofasmanyas
ten(10)otherMQFLconverters.Thepulsetraincomingout
ofSYNCOUThasadutycycleof50%andafrequencythat
matches the switching frequency of the converter with which
it is associated. This frequency is either the free-running frequencyifthereisnosynchronizationsignalattheSYNCIN
pin,orthesynchronizationfrequencyifthereis.
The SYNC OUT signal is available only when the dc input
voltageisaboveapproximately125Vandwhentheconverter
isnotinhibitedthroughtheENA1pin.Aninhibitthroughthe
ENA2pinwillnotturntheSYNCOUTsignaloff.
NOTE:AnMQFLconverterthathasitsSYNCINpindriven
bytheSYNCOUTpinofasecondMQFLconverterwillhave
its start of its switching cycle delayed approximately 180
degrees relative to that of the second converter.
Figure B shows the equivalent circuit looking into the SYNC
INpin.FigureCshowstheequivalentcircuitlookingintothe
SYNCOUTpin.
CURRENT SHARE:LikethesingleoutputMQFLconverters,
thedualoutputconvertershaveaSHAREpin(pin11).Inthis
case, however, the voltage at this pin represents the sum of the
positive and negative output currents. As such, the share pin
cannot cause two or more paralleled converters to share load
currents on the positive or negative outputs independently.
Nevertheless, there may be applications where the two currents have a fixed ratio, in which case it can make sense to
force the sharing of total current among several converters.
SincetheSHAREpinismonitoredwithrespecttotheOUTPUT
RETURN(pin8)byeachconverter,itisimportanttoconnect
alloftheconverters’OUTPUTRETURNpinstogetherthrough
alowDCandACimpedance.Whenthisisdonecorrectly,
the converters will deliver their appropriate fraction of the total
loadcurrenttowithin+/-10%atfullratedload.
Whether or not converters are paralleled, the voltage at the
SHAREpincouldbeusedtomonitortheapproximateaverage
current delivered by the converter(s). A nominal voltage of
1.0Vrepresentszerocurrentandanominalvoltageof2.2V
represents the maximum rated total current, with a linear
relationship in between. The internal source resistance of a
converter’sSHAREpinsignalis2.5kW. During an input voltagefaultorprimarydisableevent,theSHAREpinoutputsa
powerfailurewarningpulse.TheSHAREpinwillgoto3Vfor
approximately14msastheoutputvoltagefalls.
NOTE: Converters operating from separate input filters with
reversepolarityprotection(suchastheMQME-28-Tfilter)with
their outputs connected in parallel may exhibit hiccup operation at light loads. Consult factory for details.
5V
5K
IN RTN
OPEN COLLECTOR
OUTPUT
5V
PIN 2
SYNC IN
PIN 5
PIN 2
Figure C: Equivalent circuit looking into SYNC OUT pin with
respect to the IN RTN (input return) pin.
5K
PIN 6
SYNC OUT
FROM SYNC
CIRCUITRY
5K
TO SYNC
CIRCUITRY
IN RTN
Figure B: Equivalent circuit looking into the SYNC IN pin with
respect to the IN RTN (input return) pin.
Product # MQFL-28-05D
Phone 1-888-567-9596
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 12
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
OUTPUT VOLTAGE TRIM:Ifdesired,itispossibletoincreaseor
decreasetheMQFLdualconverter’soutputvoltagefromitsnominal
value.Toincreasetheoutputvoltagearesistor,Rup,shouldbeconnected between the TRIM pin (pin 10) and the OUTPUTRETURN
pin(pin8),asshowninFigureD.Thevalueofthisresistorshould
bedeterminedaccordingtothefollowingequation:
(
Vnom–2.5
Rup=10x Vout–Vnom –2xVnom+5
1,000.0
Trim Resistance (kOhms)
10,000.0
)
where:
Vnom=theconverter’snominaloutputvoltage,
Vout=thedesiredoutputvoltage(greaterthanVnom),and
RupisinkiloOhms(kW).
Todecreasetheoutputvoltagearesistor,Rdown,shouldbeconnectedbetweentheTRIMpinandthePOSITIVEOUTPUTpin(pin
7), as shown in Figure D. The value of this resistor should be
determinedaccordingtothefollowingequation:
[
][
]
Vnom –1
Vout–2.5 –5
x
Rdown=10x
2.5
Vnom–Vout
where:
Vnom=theconverter’snominaloutputvoltage,
Vout=thedesiredoutputvoltage(lessthanVnom),and
RdownisinkiloOhms(kW).
As the output voltage is trimmed up, it produces a greater voltage
stress on the converter’s internal components and may cause the
converter to fail to deliver the desired output voltage at the low
end of the input voltage range at the higher end of the load cur-
1
2
3
4
28Vdc +
–
5
open
means
on
6
10.0
Trim Down Configuration
Trim Up Configuration
1.0
0.1
-0.5
The maximum value of output voltage that can be achieved is
5.5V.
100.0
-0.4
-0.3
0
0.1
0.2
0.3
0.4
0.5
0.6
Figure E: Change in Output Voltage Graph
rentandtemperaturerange.Pleaseconsultthefactoryfordetails.
Factorytrimmedconvertersareavailablebyrequest.
INPUT UNDER-VOLTAGE LOCKOUT: The MQFL converter
has an under-voltage lockout feature that ensures the converter
will be off if the input voltage is too low. The threshold of input
voltage at which the converter will turn on is higher that the thresholdatwhichitwillturnoff.Inaddition,theMQFLconverterwill
not respond to a state of the input voltage unless it has remained
inthatstateformorethanabout200µs. This hysteresis and the
delay ensure proper operation when the source impedance is high
or in a noisy enviroment.
ENA2
INRTN
SHARE
MQFL
ENA1
-0.1
Change in Vout (V)
+VIN
CASE
-0.2
SYNCOUT
SYNCIN
TRIM
–VOUT
OUTRTN
+VOUT
12
open
means
on
11
10
9
Rup
8
Rdown
+
Load
–
+
7
Load
–
Figure D: Typical connection for output voltage trimming.
Product # MQFL-28-05D
Phone 1-888-567-9596
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 13
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
INPUT OVER-VOLTAGE SHUTDOWN:TheMQFLconverter
also has an over-voltage feature that ensures the converter will
beoffiftheinputvoltageistoohigh.Italsohasahysteresisand
time delay to ensure proper operation.
SHUT DOWN:TheMQFLconverterwillshutdowninresponse
tofollowingconditions:
- ENA1inputlow
- ENA2inputlow
- VINinputbelowunder-voltagelockoutthreshold
- VINinputaboveover-voltageshutdownthreshold
Followingashutdownfromadisableeventoraninputvoltage
fault, there is a startup inhibit delay which will prevent the converterfromrestartingforapproximately300ms.Afterthe300ms
delay elapses, if the enable inputs are high and the input voltage
is within the operating range, the converter will restart. If the
VINinputisbroughtdowntonearly0Vandbackintotheoperating range, there is no startup inhibit, and the output voltage will
riseaccordingtothe“Turn-OnDelay,RisingVin”specification.
BACK-DRIVE CURRENT LIMIT:
Converters that use
MOSFETsassynchronousrectifiersarecapableofdrawing
a negative current from the load if the load is a source of
short- or long-term energy. This negative current is referred
toasa“back-drivecurrent”.
Conditions where back-drive current might occur include
paralleled converters that do not employ current sharing, or
where the current share feature does not adequately ensure
sharing during the startup or shutdown transitions. It can
also occur when converters having different output voltages
are connected together through either explicit or parasitic
diodes that, while normally off, become conductive during
startup or shutdown. Finally, some loads, such as motors,
canreturnenergytotheirpowerrail.Evenaloadcapacitor
is a source of back-drive energy for some period of time during a shutdown transient.
To avoid any problems that might arise due to back-drive
current, the MQFL converters limit the negative current
that the converter can draw from its output terminals. The
threshold for this back-drive current limit is placed sufficiently
below zero so that the converter may operate properly
downtozeroload,butitsabsolutevalue(seetheElectrical
Characteristics page) is small compared to the converter’s
rated output current.
Product # MQFL-28-05D
Phone 1-888-567-9596
INPUT SYSTEM INSTABILITY: This condition can occur
because any dc-dc converter appears incrementally as a
negative resistance load. A detailed application note titled
“Input System Instability” is available on the SynQor website which provides an understanding of why this instability
arises, and shows the preferred solution for correcting it.
THERMAL CONSIDERATIONS: Figure 11 shows the suggestedPowerDeratingCurvesforthisconverterasafunctionof
thecasetemperatureandthemaximumdesiredpowerMOSFET
junction temperature. All other components within the converter
are cooler than its hottest MOSFET, which at full power is no
morethan20ºChigherthanthecasetemperaturedirectlybelow
thisMOSFET.
TheMil-HDBK-1547Acomponentderatingguidelinecallsfora
maximum component temperature of 105ºC. Figure 11 therefore has one power derating curve that ensures this limit is maintained.IthasbeenSynQor’sextensiveexperiencethatreliable
long-term converter operation can be achieved with a maximum
componenttemperatureof125ºC.Inextremecases,amaximum
temperatureof145ºCispermissible,butnotrecommendedfor
long-term operation where high reliability is required. Derating
curves for these higher temperature limits are also included in
Figure 11. The maximum case temperature at which the convertershouldbeoperatedis135ºC.
When the converter is mounted on a metal plate, the plate will
help to make the converter’s case bottom a uniform temperature.
How well it does so depends on the thickness of the plate and
on the thermal conductance of the interface layer (e.g. thermal
grease,thermalpad,etc.)betweenthecaseandtheplate.Unless
this is done very well, it is important not to mistake the plate’s
temperature for the maximum case temperature. It is easy for
themtobeasmuchas5-10ºCdifferentatfullpowerandathigh
temperatures. It is suggested that a thermocouple be attached
directly to the converter’s case through a small hole in the plate
when investigating how hot the converter is getting. Care must
also be made to ensure that there is not a large thermal resistance
between the thermocouple and the case due to whatever adhesive might be used to hold the thermocouple in place.
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 14
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
CONSTRUCTION AND ENVIRONMENTAL STRESS SCREENING OPTIONS
Screening
Consistent with
MIL-STD-883F
B-Grade
(-40 ºC to +85 ºC)
C-Grade
(-40 ºC to +100 ºC)
ES-Grade
(-55 ºC to +125 ºC)
(Element Evaluation)
HB-Grade
(-55 ºC to +125 ºC)
(Element Evaluation)
Internal Visual
*
Yes
Yes
Yes
Yes
Temperature Cycle
Method 1010
No
No
Condition B
(-55 ºC to +125 ºC)
Condition C
(-65 ºC to +150 ºC)
Constant
Acceleration
Method 2001
(Y1 Direction)
No
No
500g
Condition A
(5000g)
Burn-in
Method 1015
Load Cycled
• 10s period
• 2s @ 100% Load
• 8s @ 0% Load
12 Hrs @ +100 ºC
24 Hrs @ +125 ºC
96 Hrs @ +125 ºC
160 Hrs @ +125 ºC
Final Electrical Test
Method 5005
(Group A)
+25 ºC
+25 ºC
-45, +25, +100 ºC
-55, +25, +125 ºC
Anodized Package
Full QorSeal
Full QorSeal
Full QorSeal
*
*
Yes
Yes
Ruggedized
QorSeal
QorSeal
QorSeal
Mechanical Seal,
Thermal, and Coating
Process
External Visual
Construction Process
2009
* Per IPC-A-610 (Rev. D) Class 3
MilQor converters and filters are offered in four variations of construction technique and environmental stress screening options. The
threehighestgrades,C,ES,andHB,alluseSynQor’sproprietaryQorSeal™Hi-RelassemblyprocessthatincludesaParylene-Ccoating
ofthecircuit,ahighperformancethermalcompoundfiller,andanickelbarriergoldplatedaluminumcase.TheB-gradeversionuses
aruggedizedassemblyprocessthatincludesamediumperformancethermalcompoundfillerandablackanodizedaluminumcase†.
Eachsuccessivelyhighergradehasmorestringentmechanicalandelectricaltesting,aswellasalongerburn-incycle.TheES-and
HB-Gradesarealsoconstructedofcomponentsthathavebeenprocuredthroughanelementevaluationprocessthatpre-qualifieseach
new batch of devices.
†Note:Sincethesurfaceoftheblackanodizedcaseisnotguaranteedtobeelectricallyconductive,astarwasherorsimilardevice
should be used to cut through the surface oxide if electrical connection to the case is desired.
Product # MQFL-28-05D
Phone 1-888-567-9596
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 15
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
0.093
[2.36]
1
2
3
4
5
6
+VIN
IN RTN
CASE
ENA 1
SYNC OUT
SYNC IN
SHARE
MQFL-28-05D-X-HB
DC-DC CONVERTER
28Vin ±5 Vout @ 24A
TRIM
-VOUT
OUT RTN
S/N 0000000 D/C 3205-301 CAGE 1WX10
0.250 [6.35]
12
11
10
9
8
7
ENA 2
+VOUT
0.200 [5.08]
TYP. NON-CUM.
1.50 [32.10]
1.260
[32.00]
0.220 [5.59]
PIN
2.50 [63.50]
2.76 [70.10]
3.00 [76.20]
0.050 [1.27]
0.28 [3.25]
0.220 [5.59]
2.96 [75.2]
0.228 [5.79]
0.390 [9.91]
Case X
0.140 [3.56]
0.250 [6.35]
TYP
1
2
3
4
5
6
+VIN
ENA 2
IN RTN
CASE
ENA 1
SYNC OUT
SYNC IN
SHARE
MQFL-28-05D-Y-HB
DC-DC CONVERTER
28Vin ±5 Vout @ 24A
TRIM
-VOUT
OUT RTN
S/N 0000000 D/C 3205-301 CAGE 1WX10
+VOUT
1.750 [44.45]
0.390 [9.91]
PACKAGEPINOUTS
0.300 [7.62]
1.15 [29.21]
0.250 [6.35]
12
2.00
11
[50.80]
10
1.50
9 [38.10]
8
1.750
7
[44.45]
0.200 [5.08]
TYP. NON-CUM.
0.040 [1.02]
PIN
0.050 [1.27]
0.220 [5.59]
0.375 [9.52]
2.50 [63.50]
2.96 [75.2]
0.228 [5.79]
Case Y
Case W (variant of Y)
POSITIVEINPUT
INPUTRETURN
CASE
ENABLE1
SYNCOUTPUT
SYNCINPUT
POSITIVEOUTPUT
OUTPUTRETURN
NEGATIVEOUTPUT
TRIM
SHARE
ENABLE2
1
2
3
4
5
6
7
8
9
10
11
12
NOTES
0.250 [6.35]
0.200 [5.08]
TYP. NON-CUM.
0.200 [5.08]
TYP. NON-CUM.
0.420 [10.7]
0.040 [1.02]
PIN
0.040 [1.02]
PIN
0.220 [5.59]
0.050 [1.27]
0.050 [1.27]
0.220 [5.59]
2.80 [71.1]
0.525 [13.33]
0.050 [1.27]
2.80 [71.1]
0.525
[13.33]
0.390 [9.91]
Product # MQFL-28-05D
Function
Case Z (variant of Y)
0.250 [6.35]
0.420 [10.7]
Pin#
Phone 1-888-567-9596
0.390
[9.91]
www.synqor.com
1)Case:Aluminumwithgoldover
nickelplatefinishfortheC-,ES-,and
HB-Gradeproducts.
Aluminumwithblackanodizedfinish
fortheB-Gradeproducts.
2)Pins:Diameter:0.040”(1.02mm)
Material:Copper
Finish:GoldoverNickelplate
3)Alldimensionsasinches(mm)
4)Tolerances: a)x.xx+0.02”
(x.x+0.5mm)
b)x.xxx+0.010”
(x.xx+0.25mm)
5)Weight:2.8oz.(79g)typical
6)Workmanship:Meetsorexceeds
IPC-A-610CClassIII
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 16
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
MilQor MQFL FAMILY MATRIX
ThetablesbelowshowthearrayofMQFLconvertersavailable.WhenorderingSynQorconverters,pleaseensurethatyouuse
the complete part number according to the table in the last page. Contact the factory for other requirements.
Single Output
1.5V
(1R5S)
1.8V
(1R8S)
2.5V
(2R5S)
3.3V
(3R3S)
5V
(05S)
6V
(06S)
7.5V
(7R5S)
9V
(09S)
12V
(12S)
15V
(15S)
28V
(28S)
40A
40A
40A
30A
24A
20A
16A
13A
10A
8A
4A
40A
40A
40A
30A
24A
20A
16A
13A
10A
8A
4A
40A
40A
40A
30A
20A
17A
13A
11A
8A
6.5A
3.3A
40A
40A
40A
30A
24A
17A
13A
11A
8A
6.5A
4A
40A
40A
40A
30A
24A
20A
16A
13A
10A
8A
4A
40A
40A
40A
30A
20A
17A
13A
11A
8A
6.5A
3.3A
40A
40A
30A
22A
15A
12A
10A
8A
6A
5A
2.7A
MQFL-28
16-40Vin Cont.
16-50Vin 1s Trans.*
Absolute Max Vin = 60V
MQFL-28E
16-70Vin Cont.
16-80Vin 1s Trans.*
Absolute Max Vin =100V
MQFL-28V
16-40Vin Cont.
5.5-50Vin 1s Trans.*
Absolute Max Vin = 60V
MQFL-28VE
16-70Vin Cont.
5.5-80Vin 1s Trans.*
Absolute Max Vin = 100V
MQFL-270
155-400Vin Cont.
155-475Vin 0.1s Trans.*
Absolute Max Vin = 550V
MQFL-270E
130-475Vin Cont.
130-520Vin 0.1s Trans.*
Absolute Max Vin = 600V
MQFL-270L
65-350Vin Cont.
65-475Vin 0.1s Trans.*
Absolute Max Vin = 550V
Dual Output
5V
(05D)
12V
(12D)
MQFL-28
16-40Vin Cont.
16-50Vin 1s Trans.*
Absolute Max Vin = 60V
16-40Vin Cont.
16-50Vin 1s Trans.*
Absolute Max Vin = 60V
24A Total 10A Total
8A
Total
16-70Vin Cont.
16-80Vin 1s Trans.*
Absolute Max Vin =100V
6.5A
Total
16-40Vin Cont.
5.5-50Vin 1s Trans.*
Absolute Max Vin = 60V
20A Total
8A
Total
6.5A
Total
16-70Vin Cont.
5.5-80Vin 1s Trans.*
Absolute Max Vin = 100V
MQFL-270L
65-350Vin Cont.
65-475Vin 0.1s Trans.*
Absolute Max Vin = 550V
MQFL-28VE
MQFL-270
24A Total 10A Total 8A Total
MQFL-270E
130-475Vin Cont.
130-520Vin 0.1s Trans.*
Absolute Max Vin = 600V
MQFL-28V
8A
Total
MQFL-270
155-400Vin Cont.
155-475Vin 0.1s Trans.*
Absolute Max Vin = 550V
MQFL-28E
20A Total
MQFL-28VE
16-70Vin Cont.
5.5-80Vin 1s Trans.*
Absolute Max Vin = 100V
MQFL-28
8A
Total
MQFL-28V
16-40Vin Cont.
5.5-50Vin 1s Trans.*
Absolute Max Vin = 60V
Triple Output
24A Total 10A Total
MQFL-28E
16-70Vin Cont.
16-80Vin 1s Trans.*
Absolute Max Vin =100V
15V
(15D)
155-400Vin Cont.
155-475Vin 0.1s Trans.*
Absolute Max Vin = 550V
MQFL-270E
20A Total
8A
Total
6.5A
Total
130-475Vin Cont.
130-520Vin 0.1s Trans.*
Absolute Max Vin = 600V
15A
Total
6A
Total
5A
Total
65-350Vin Cont.
65-475Vin 0.1s Trans.*
Absolute Max Vin = 550V
MQFL-270L
3.3V/±12V
(3R312T)
3.3V/±15V
(3R315T)
5V/±12V
(0512T)
5V/±15V
(0515T)
30V/±15V
(3015T)
22A/
±1A
22A/
±0.8A
15A/
±1A
15A/
±0.8A
2.5A/
±0.8A
22A/
±1A
22A/
±0.8A
15A/
±1A
15A/
±0.8A
2.5A/
±0.8A
22A/
±1A
22A/
±0.8A
15A/
±1A
15A/
±0.8A
2.5A/
±0.8A
22A/
±1A
22A/
±0.8A
15A/
±1A
15A/
±0.8A
2.5A/
±0.8A
22A/
±1A
22A/
±0.8A
15A/
±1A
15A/
±0.8A
2.5A/
±0.8A
22A/
±1A
22A/
±0.8A
15A/
±1A
15A/
±0.8A
2.5A/
±0.8A
22A/
±1A
22A/
±0.8A
15A/
±1A
15A/
±0.8A
2.5A/
±0.8A
(75Wmax Total Output Power)
*Converters may be operated continuously at the highest transient input voltage, but some
componentelectricalandthermalstresseswouldbebeyondMIL-HDBK-1547Aguidelines.
Product # MQFL-28-05D
Phone 1-888-567-9596
www.synqor.com
†80%oftotaloutputcurrentavailableon
any one output.
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 17
MQFL-28-05D
Output: ±5 V
Current: 24 A Total
Technical Specification
PART NUMBERING SYSTEM
The part numbering system for SynQor’s MilQor DC-DC converters follows the format shown in the table below.
Model
Name
MQFL
Input
Voltage
Range
28
28E
28V
28VE
270
270E
270L
APPLICATION NOTES
Output Voltage(s)
Single
Output
Dual
Output
Triple
Output
1R5S
1R8S
2R5S
3R3S
05S
06S
7R5S
09S
12S
15S
28S
05D
12D
15D
3R312T
3R315T
0512T
0515T
3015T
Example:
Package Outline/
Pin Configuration
Screening
Grade
X
Y
W
Z
B
C
ES
HB
MQFL – 28 – 05D – Y – ES
A variety of application notes and technical white papers can be downloaded in pdf format from the SynQor website.
PATENTS
SynQorholdsthefollowingpatents,oneormoreofwhichmightapplytothisproduct:
5,999,417
6,927,987
6,222,742
7,050,309
6,545,890
7,072,190
6,577,109
7,085,146
6,594,159
7,119,524
6,731,520
7,269,034
6,894,468
7,272,021
6,896,526
7,272,023
Contact SynQor for further information:
Phone:
TollFree:
Fax:
E-mail:
Web:
Address:
Product # MQFL-28-05D
978-849-0600
888-567-9596
978-849-0602
[email protected]
www.synqor.com
155SwansonRoad
Boxborough,MA01719
USA
Phone 1-888-567-9596
Warranty
SynQoroffersatwo(2)yearlimitedwarranty.Completewarranty
information is listed on our website or is available upon request from
SynQor.
InformationfurnishedbySynQorisbelievedtobeaccurateandreliable.
However,noresponsibilityisassumedbySynQorforitsuse,norforany
infringements of patents or other rights of third parties which may result
fromitsuse.Nolicenseisgrantedbyimplicationorotherwiseunderany
patent or patent rights of SynQor.
www.synqor.com
Doc.# 005-2MQ050D Rev. B
09/03/08
Page 18