MVTX2604 Managed 24-Port 10/100 Mb + 2 Port 1 Gb Ethernet Switch Data Sheet Features • • • • • • • • February 2004 Integrated Single-Chip 10/100/1000 Mbps Ethernet Switch 24 10/100 Mbps Autosensing, Fast Ethernet Ports with RMII or Serial Interface (7WS). Each port can independently use one of the two interfaces 2 Gigabit Ports with GMII, PCS, 10/100 and stacking (2 G per port) interface options per port Stacking port supports hot swap in managed configuration Supports 8/16-bit CPU interface in managed mode Serial interface in unmanaged mode Supports two Frame Buffer Memory domains with SRAM at 100 MHz Supports memory size 2 MB, or 4 MB Ordering Information MVTX2604AG -40°C to 85°C • • • Static address filtering for source and/or destination MAC • Static MAC address not subject to aging • Secure mode freezes MAC address learning Each port may independently use this mode Full Duplex Ethernet IEEE 802.3x Flow Control Backpressure flow control for Half Duplex ports Supports Ethernet multicasting and broadcasting and flooding control Supports per-system option to enable flow control for best effort frames even on QoSenabled ports • • • Applies centralized shared memory architecture Up to 64 K MAC addresses Maximum throughput is 6.4 Gbps non-blocking High performance packet forwarding (19.047 M packets per second) at full wire speed • VLAN 1 MCT VLAN 1 MCT Provides port based and ID tagged VLAN support (IEEE 802.1Q), up to 255 VLANs Supports IP Multicast with IGMP snooping Supports spanning tree with CPU, on per port or per VLAN basis Packet Filtering and Port Security • • • For 24 + 2, two SRAM domains (2 MB or 4 MB) are required. • For 24 + 2 stacking (2 G per stacking port), two ZBT domains (2 MB or 4 MB) are required • • • • 553 Pin HSBGA Frame Data Buffer A SRAM (1 M / 2 M) Frame Data Buffer B SRAM (1 M / 2 M) FDB Interface FCB 24 x 10 / 100 RMII Ports 0 - 23 Search Engine Frame Engine GMII/ PCS Port 24 LED GMII/ PCS Port 25 Management Module MCT Link 16-bit Parallel / Serial Figure 1 - MVTX2604 System Block Diagram 1 Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2003-2004, Zarlink Semiconductor Inc. All Rights Reserved. MVTX2604 • Data Sheet Traffic Classification • 4 transmission priorities for Fast Ethernet ports with 2 dropping levels • Classification based on: - Port based priority - VLAN Priority field in VLAN tagged frame - DS/TOS field in IP packet - UDP/TCP logical ports: 8 hard-wired and 8 programmable ports, including one programmable range • • The precedence of the above classifications is programmable QoS Support • Supports IEEE 802.1p/Q Quality of Service with 4 transmission priority queues with delay bounded, strict priority, and WFQ service disciplines • Provides 2 levels of dropping precedence with WRED mechanism • User controls the WRED thresholds • Buffer management: per class and per port buffer reservations • Port-based priority: VLAN priority in a tagged frame can be overwritten by the priority of Port VLAN ID • • • • • • • • • • • 3 port trunking groups, one for the 2 Gigabit ports, and two groups for 10/100 ports, with up to 4 10/100 ports per group Load sharing among trunked ports can be based on source MAC and/or destination MAC. The Gigabit trunking group has one more option, based on source port Port Mirroring to any two ports of 0-23 in managed mode or to a dedicated mirroring port or port 23 in unmanaged mode Full set of LED signals provided by a serial interface, or 6 LED signals dedicated to Gigabit port status only (without serial interface) Built-in MIB statistics counters Recognizes Simple Bandwidth Management (SBM) and Resource Reservation Protocol (RSVP) packets and forwards to CPU Hardware auto-negotiation through serial management interface (MDIO) for Ethernet ports Built-in reset logic triggered by system malfunction Built-in self test for internal and external SRAM I2C EEPROM for configuration 553 BGA package 2 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Description The MVTX2604 is a high density, low cost, high performance, non-blocking Ethernet switch chip. A single chip provides 24 ports at 10/100 Mbps, 2 ports at 1000 Mbps and a CPU interface for managed and unmanaged switch applications. The Gigabit ports can also support 10/100 M and 2 G stacking modes. The chip supports up to 64 K MAC addresses and up to 255 port-based Virtual LANs (VLANs). The centralized shared memory architecture permits a very high performance packet forwarding rate at up to 9.524 M packets per second at full wire speed. The chip is optimized to provide low-cost, high-performance workgroup switching. Two Frame Buffer Memory domains utilize cost-effective, high-performance synchronous SRAM with aggregate bandwidth of 12.8 Gbps to support full wire speed on all ports simultaneously. In the 24+2 stacking (2 G per stacking port) configuration, 2 ZBT domains are needed. With delay bounded, strict priority, and/or WFQ transmission scheduling, and WRED dropping schemes, the MVTX2604 provides powerful QoS functions for various multimedia and mission-critical applications. The chip provides 4 transmission priorities (8 priorities per Gigabit port) and 2 levels of dropping precedence. Each packet is assigned a transmission priority and dropping precedence based on the VLAN priority field in a VLAN tagged frame, or the DS/TOS field, or the UDP/TCP logical port fields in IP packets. The MVTX2604 recognizes a total of 16 UDP/TCP logical ports, 8 hard-wired and 8 programmable (including one programmable range). The MVTX2604 supports 3 groups of port trunking/load sharing. One group is dedicated to the two Gigabit ports, and the other two groups to 10/100 ports, where each 10/100 group can contain up to 4 ports. Port trunking/load sharing can be used to group ports between interlinked switches to increase the effective network bandwidth. In half-duplex mode all ports support backpressure flow control to minimize the risk of losing data during long activity bursts. In full-duplex mode, IEEE 802.3x flow control is provided. The MVTX2604 also supports a persystem option to enable flow control for best effort frames, even on QoS-enabled ports. The Physical Coding Sublayer (PCS) is integrated on-chip to provide a direct 10-bit interface for connection to SERDES chips. The PCS can be bypassed to provide a GMII interface. Statistical information for SNMP and the Remote Monitoring Management Information Base (RMON MIB) are collected independently for all ports. Access to these statistical counters/registers is provided via the CPU interface. SNMP Management frames can be received and transmitted via the CPU interface creating a complete network management solution. The MVTX2604 is fabricated using 0.25 micron technology. Inputs, however, are 3.3 V tolerant, and the outputs are capable of directly interfacing to LVTTL levels. The MVTX2604 is packaged in a 553-pin Ball Grid Array package. 3 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Table of Contents 1.0 Bock Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.1 Frame Data Buffer (FDB) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 GMII/PCS MAC Module (GMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Physical Coding Sublayer (PCS) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 10/100 MAC Module (RMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 CPU Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6 Management Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.8 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.9 LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.10 Internal Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.0 System Configuration (Stand-alone and Stacking) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Management and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Register Configuration, Frame Transmission, and Frame Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Register Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Rx/Tx of Standard Ethernet Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3 Control Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Unmanaged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.3 Data Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.6 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6.1 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6.2 Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.7 Stacking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.0 MVTX2604 Data Forwarding Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 Unicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Multicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Frame Forwarding To and From CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.0 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 ZBT Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 Detailed Memory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.0 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.1 Search Engine Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 Search, Learning, and Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.1 MAC Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.3 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.4 VLAN Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 MAC Address Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.5 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.6 Priority Classification Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.7 Port and Tag Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.7.1 Port-Based VLAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Table of Contents 5.7.2 Tag-Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.8 Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.0 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.1 Data Forwarding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.2 Frame Engine Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.2.1 FCB Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.2.2 Rx Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.2.3 RxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.2.4 TxQ Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.3 Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.4 TxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.0 Quality of Service and Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.1 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.2 Four QoS Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.3 Delay Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.4 Strict Priority and Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.5 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.6 Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.7 Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.8 WRED Drop Threshold Management Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.9 Buffer Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.9.1 Dropping When Buffers Are Scarce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.10 MVTX2604 Flow Control Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.10.1 Unicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.10.2 Multicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.11 Mapping to IETF Diffserv Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 8.0 Port Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8.1 Features and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8.2 Unicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8.3 Multicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8.4 Unmanaged Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.0 Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.1 Port Mirroring Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.2 Setting Registers for Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 10.0 TBI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 10.1 TBI Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 11.0 GPSI (7WS) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 11.1 GPSI connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 11.2 SCAN LINK and SCAN COL interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 12.0 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 12.1 LED Interface Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 12.2 Port Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 12.3 LED Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 13.0 Hardware Statistics Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 13.1 Hardware Statistics Counters List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 13.2 IEEE 802.3 HUB Management (RFC 1516) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.2.1 Event Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.2.1.1 Readablectet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.2.1.2 ReadableFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 13.2.1.3 FCSErrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 13.2.1.4 AlignmentErrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Table of Contents 13.2.1.5 FrameTooLongs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 13.2.1.6 ShortEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 13.2.1.7 Runts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.2.1.8 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.2.1.9 LateEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.2.1.10 VeryLongEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.2.1.11 DataRateMisatches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.2.1.12 AutoPartitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.2.1.13 TotalErrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.3 IEEE – 802.1 Bridge Management (RFC 1286) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.3.1 Event Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.3.1.1 InFrames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.3.1.2 OutFrames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.3.1.3 InDiscards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.3.1.4 DelayExceededDiscards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.3.1.5 MtuExceededDiscards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.4 RMON – Ethernet Statistic Group (RFC 1757) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.4.1 Event Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.4.1.1 Drop Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.4.1.2 Octets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.4.1.3 BroadcastPkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.4.1.4 MulticastPkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13.4.1.5 CRCAlignErrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 13.4.1.6 UndersizePkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 13.4.1.7 OversizePkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 13.4.1.8 Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 13.4.1.9 Jabbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 13.4.1.10 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 13.4.1.11 Packet Count for Different Size Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 13.5 Miscellaneous Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 14.0 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 14.1 MVTX2604 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 14.2 Directly Accessed Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 14.2.1 INDEX_REG0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 14.2.2 INDEX_REG1 (only needed for 8-bit mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 14.2.3 DATA_FRAME_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 14.2.4 CONTROL_FRAME_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 14.2.5 COMMAND&STATUS Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 14.2.6 Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 14.2.7 Control Command Frame Buffer1 Access Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 14.2.8 Control Command Frame Buffer2 Access Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 14.3 Indirectly Accessed registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 14.4 Group 0 Address MAC Ports Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 14.4.1 ECR1Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 14.4.2 ECR2Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 14.4.3 GGControl – Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 14.5 Group 1 Address VLAN Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 14.5.1 AVTCL – VLAN Type Code Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 14.5.2 AVTCH – VLAN Type Code Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 14.5.3 PVMAP00_0 – Port 00 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 14.5.4 PVMAP00_1 – Port 00 Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 14.5.5 PVMAP00_2 – Port 00 Configuration Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Table of Contents 14.5.6 PVMAP00_3 – Port 00 Configuration Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 14.6 Port Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 14.6.1 PVMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 14.6.2 PVROUTE 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 14.6.3 PVROUTE1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 14.6.4 PVROUTE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 14.6.5 PVROUTE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 14.6.6 PVROUTE4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 14.6.7 PVROUTE5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 14.6.8 PVROUTE6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 14.6.9 PVROUTE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 14.7 Group 2 Address Port Trunking Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 14.7.1 TRUNK0_L – Trunk group 0 Low (Managed mode only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 14.7.2 TRUNK0_M – Trunk group 0 Medium (Managed mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 14.7.3 TRUNK0_H – Trunk group 0 High (Managed mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 14.7.4 TRUNK0_MODE– Trunk group 0 mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 14.7.5 TRUNK0_HASH0 – Trunk group 0 hash result 0 destination port number . . . . . . . . . . . . . . . . . . 78 14.7.6 TRUNK0_HASH1 – Trunk group 0 hash result 1 destination port number . . . . . . . . . . . . . . . . . . 78 14.7.7 TRUNK0_HASH2 – Trunk group 0 hash result 2 destination port number . . . . . . . . . . . . . . . . . . 78 14.7.8 TRUNK0_HASH3 – Trunk group 0 hash result 3 destination port number . . . . . . . . . . . . . . . . . . 79 14.7.9 TRUNK1_L – Trunk group 1 Low (Managed mode only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 14.7.10 TRUNK1_M – Trunk group 1 Medium (Managed mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 14.7.11 TRUNK1_H – Trunk group 1 High (Managed mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 14.7.12 TRUNK1_MODE – Trunk group 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 14.7.13 TRUNK1_HASH0 – Trunk group 1 hash result 0 destination port number . . . . . . . . . . . . . . . . . 80 14.7.14 TRUNK1_HASH1 – Trunk group 1 hash result 1 destination port number . . . . . . . . . . . . . . . . . 80 14.7.15 TRUNK1_HASH2 – Trunk group 1 hash result 2 destination port number . . . . . . . . . . . . . . . . . 80 14.7.16 TRUNK1_HASH3 – Trunk group 1 hash result 3 destination port number . . . . . . . . . . . . . . . . . 80 14.7.17 TRUNK2_MODE – Trunk group 2 mode (Gigabit ports 1 and 2). . . . . . . . . . . . . . . . . . . . . . . . . 80 14.7.18 TRUNK2_HASH0 – Trunk group 2 hash result 0 destination port number . . . . . . . . . . . . . . . . . 81 14.7.19 TRUNK2_HASH1 – Trunk group 2 hash result 1 destination port number . . . . . . . . . . . . . . . . . 81 14.7.20 Multicast Hash Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 14.7.20.1 Multicast_HASH0-1 – Multicast hash result 0 mask byte 1 . . . . . . . . . . . . . . . . . . . . . . . . 82 14.7.20.2 Multicast_HASH0-2 – Multicast hash result 0 mask byte 2 . . . . . . . . . . . . . . . . . . . . . . . . 82 14.7.20.3 Multicast_HASH0-3 – Multicast hash result 0 mask byte 3 . . . . . . . . . . . . . . . . . . . . . . . . 82 14.7.20.4 Multicast_HASH1-0 – Multicast hash result 1 mask byte 0 . . . . . . . . . . . . . . . . . . . . . . . . 82 14.7.20.5 Multicast_HASH1-1 – Multicast hash result 1 mask byte 1 . . . . . . . . . . . . . . . . . . . . . . . . 82 14.7.20.6 Multicast_HASH1-2 – Multicast hash result 1 mask byte 2 . . . . . . . . . . . . . . . . . . . . . . . . 82 14.7.20.7 Multicast_HASH1-3 – Multicast hash result 1 mask byte 3 . . . . . . . . . . . . . . . . . . . . . . . . 82 14.7.20.8 Multicast_HASH2-0 – Multicast hash result 2 mask byte 0 . . . . . . . . . . . . . . . . . . . . . . . . 83 14.7.20.9 Multicast_HASH2-1 – Multicast hash result 2 mask byte 1 . . . . . . . . . . . . . . . . . . . . . . . . 83 14.7.20.10 Multicast_HASH2-2 – Multicast hash result 2 mask byte 2 . . . . . . . . . . . . . . . . . . . . . . . 83 14.7.20.11 Multicast_HASH2-3 – Multicast hash result 2 mask byte 3 . . . . . . . . . . . . . . . . . . . . . . . 83 14.7.20.12 Multicast_HASH3-0 – Multicast hash result 3 mask byte 0 . . . . . . . . . . . . . . . . . . . . . . . 83 14.7.20.13 Multicast_HASH3-1 – Multicast hash result 3 mask byte 1 . . . . . . . . . . . . . . . . . . . . . . . 83 14.7.20.14 Multicast_HASH3-2 – Multicast hash result 3 mask byte 2 . . . . . . . . . . . . . . . . . . . . . . . 83 14.7.20.15 Multicast_HASH3-3 – Multicast hash result 3 mask byte 3 . . . . . . . . . . . . . . . . . . . . . . . 84 14.8 Group 3 Address CPU Port Configuration Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 14.8.1 MAC0 – CPU Mac address byte 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 14.8.2 MAC1 – CPU Mac address byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 14.8.3 MAC2 – CPU Mac address byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 14.8.4 MAC3 – CPU Mac address byte 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Table of Contents 14.8.5 MAC4 – CPU Mac address byte 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 14.8.6 MAC5 – CPU Mac address byte 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 14.8.7 INT_MASK0 – Interrupt Mask 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 14.8.8 INTP_MASK0 – Interrupt Mask for MAC Port 0,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 14.8.9 INTP_MASK1 – Interrupt Mask for MAC Port 2,3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.8.10 INTP_MASK2 – Interrupt Mask for MAC Port 4,5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.8.11 INTP_MASK3 – Interrupt Mask for MAC Port 6,7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.8.12 INTP_MASK4 – Interrupt Mask for MAC Port 8,9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.8.13 INTP_MASK5 – Interrupt Mask for MAC Port 10,11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.8.14 INTP_MASK6 – Interrupt Mask for MAC Port 12,13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.8.15 INTP_MASK7 – Interrupt Mask for MAC Port 14,15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.8.16 INTP_MASK8 – Interrupt Mask for MAC Port 16,17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.8.17 NTP_MASK9 – Interrupt Mask for MAC Port 18,19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 14.8.18 INTP_MASK10 – Interrupt Mask for MAC Port 20,21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 14.8.19 INTP_MASK11 – Interrupt Mask for MAC Port 22,23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 14.8.20 INTP_MASK12 – Interrupt Mask for MAC Port G1,G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 14.8.21 RQS – Receive Queue Select CPU Address:h323). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 14.8.22 RQSS – Receive Queue Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 14.8.23 TX_AGE – Tx Queue Aging timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 14.9 Group 4 Address Search Engine Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 14.9.1 AGETIME_LOW – MAC address aging time Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 14.9.2 AGETIME_HIGH –MAC address aging time High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 14.9.3 V_AGETIME – VLAN to Port aging time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 14.9.4 SE_OPMODE – Search Engine Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 14.9.5 SCAN – SCAN Control Register (default 00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 14.10 Group 5 Address Buffer Control/QOS Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 14.10.1 FCBAT – FCB Aging Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 14.10.2 QOSC – QOS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 14.10.3 FCR – Flooding Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 14.10.4 AVPML – VLAN Tag Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 14.10.5 AVPMM – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 14.10.6 AVPMH – VLAN Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 14.10.7 TOSPML – TOS Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 14.10.8 TOSPMM – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 14.10.9 TOSPMH – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 14.10.10 AVDM – VLAN Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 14.10.11 TOSDML – TOS Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 14.10.12 BMRC - Broadcast/Multicast Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 14.10.13 UCC – Unicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 14.10.14 MCC – Multicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 14.10.15 PR100 – Port Reservation for 10/100 ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 14.10.16 PRG – Port Reservation for Giga ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 14.10.17 SFCB – Share FCB Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 14.10.18 C2RS – Class 2 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 14.10.19 C3RS – Class 3 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 14.10.20 C4RS – Class 4 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 14.10.21 C5RS – Class 5 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 14.10.22 C6RS – Class 6 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 14.10.23 C7RS – Class 7 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 14.10.24 QOSCn - Classes Byte Limit Set 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 14.10.25 Classes Byte Limit Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 14.10.26 Classes Byte Limit Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Table of Contents 14.10.27 Classes Byte Limit Set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 14.10.28 Classes Byte Limit Giga Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 14.10.29 Classes Byte Limit Giga Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 14.10.30 Classes WFQ Credit Set 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 14.10.31 Classes WFQ Credit Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 14.10.32 Classes WFQ Credit Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 14.10.33 Classes WFQ Credit Set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 14.10.34 Classes WFQ Credit Port G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 14.10.35 Classes WFQ Credit Port G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 14.10.36 Class 6 Shaper Control Port G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 14.10.37 Class 6 Shaper Control Port G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 14.10.38 RDRC0 – WRED Rate Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 14.10.39 RDRC1 – WRED Rate Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 14.10.40 User Defined Logical Ports and Well Known Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 14.10.40.1 USER_PORT0_(0~7) – User Define Logical Port (0~7) . . . . . . . . . . . . . . . . . . . . . . . . 105 14.10.40.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority . . . . . . . . . . 105 14.10.40.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority . . . . . . . . . . 106 14.10.40.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority . . . . . . . . . . 106 14.10.40.5 USER_PORT_[7:6]_PRIORITY - User Define Logic Port 7 and 6 Priority . . . . . . . . . . 106 14.10.40.6 USER_PORT_ENABLE[7:0] – User Define Logic 7 to 0 Port Enables . . . . . . . . . . . . . 106 14.10.40.7 WELL_KNOWN_PORT[1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority . . . . 106 14.10.40.8 WELL_KNOWN_PORT[3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority . . . . 107 14.10.40.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority . . . . 107 14.10.40.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority . . . 107 14.10.40.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables . . . . 108 14.10.40.12 RLOWL – User Define Range Low Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 14.10.40.13 RLOWH – User Define Range Low Bit 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 14.10.40.14 RHIGHL – User Define Range High Bit 7:0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 14.10.40.15 RHIGHH – User Define Range High Bit 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 14.10.40.16 RPRIORITY – User Define Range Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 14.10.41 CPUQOSC123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 14.11 Group 6 Address MISC Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 14.11.1 MII_OP0 – MII Register Option 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 14.11.2 MII_OP1 – MII Register Option 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 14.11.3 FEN – Feature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 14.11.4 MIIC0 – MII Command Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 14.11.5 MIIC1 – MII Command Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 14.11.6 MIIC2 – MII Command Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 14.11.7 MIIC3 – MII Command Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 14.11.8 MIID0 – MII Data Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 14.11.9 MIID1 – MII Data Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 14.11.10 LED Mode – LED Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 14.11.11 DEVICE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 14.11.12 CHECKSUM - EEPROM Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 14.12 Group 7 Address Port Mirroring Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 14.12.1 MIRROR1_SRC - Port Mirror source port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 14.12.2 MIRROR1_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 14.12.3 MIRROR2_SRC – Port Mirror source port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 14.12.4 MIRROR2_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 14.13 Group F Address CPU Access Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 14.13.1 GCR-Global Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 14.13.2 DCR-Device Status and Signature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Table of Contents 14.3.13 DCR1-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 14.3.14 DPST – Device Port Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 14.3.15 DTST – Data read back register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 14.3.16 DA – DA Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 14.4 TBI Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 14.4.1 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 14.4.2 Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 14.4.3 Advertisement Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 14.4.4 Link Partner Ability Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 14.4.5 Expansion Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 14.4.6 Extended Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 15.0 BGA and Ball Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 15.1 BGA Views (Top-View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 15.1.1 Encapsulated view in unmanaged mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 15.1.2 Encapsulated view in managed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 15.2 Ball – Signal Descriptions in Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 15.2.1 Ball Signal Descriptions in Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 15.2.2 Ball – Signal Descriptions in Unmanaged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 15.3 Ball – Signal Name in Unmanaged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 15.4 Ball – Signal Name in Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 15.5 AC/DC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 15.5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 15.5.2 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 15.5.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 15.5.4 Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 15.5.5 Typical CPU Timing Diagram for a CPU Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 15.5.6 Typical CPU Timing Diagram for a CPU Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 15.6 Local Frame Buffer SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 15.6.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 15.7 Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 15.7.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 15.8 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 15.8.1 Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 15.8.2 Gigabit Media Independent Interface - Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 15.8.3 Ten Bit Interface - Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 15.8.4 Gigabit Media Independent Interface - Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 15.8.5 Ten Bit Interface - Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 15.8.6 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 15.8.7 SCANLINK SCANCOL Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 15.9 MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 15.9.1 I2C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 15.9.2 Serial Interface Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 10 Zarlink Semiconductor Inc. MVTX2604 Data Sheet List of Figures Figure 1 - MVTX2604 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Overview of the MVTX2604 CPU Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 3 - Data Transfer Format for I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 4 - MVTX2604 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only) . . . . . . . . . . . . . . . . . . . . 24 Figure 5 - Priority Classification Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 6 - Memory Configuration For: 2 Banks, 1 Layer, 2 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 7 - Memory Configuration For: 2 Banks, 2 Layers, 4 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 8 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 9 - Memory Configuration For: 2 Banks, 2 Layers, 4 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 10 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 11 - Buffer Partition Scheme Used to Implement MVTX2604 AG Buffer Management . . . . . . . . . . . . . . . 41 Figure 12 - TBI Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 13 - GPSI (7WS) Mode Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 14 - SCAN LINK and SCAN COLLISON Status Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 15 - Timing Diagram of LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 16 - Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Figure 17 - Typical CPU Timing Diagram for a CPU Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Figure 18 - Typical CPU Timing Diagram for a CPU Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Figure 19 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Figure 20 - Local Memory Interface - Output Valid Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Figure 21 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Figure 22 - Local Memory Interface - Output Valid Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Figure 23 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Figure 24 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Figure 25 - AC Characteristics- GMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Figure 26 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Figure 27 - Gigabit TBI Interface Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Figure 28 - Gigabit TBI Interface Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Figure 29 - AC Characteristics- GMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Figure 30 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Figure 31 - Gigabit TBI Interface Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Figure 32 - Gigabit TBI Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Figure 33 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Figure 34 - SCANLINK SCANCOL Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Figure 35 - SCANLINK, SCANCOL Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Figure 36 - MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Figure 37 - MDIO Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Figure 38 - I2C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Figure 39 - I2C Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Figure 40 - Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Figure 41 - Serial Interface Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 11 Zarlink Semiconductor Inc. MVTX2604 Data Sheet List of Tables Table 1 - VLAN Index Mapping Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 2 - LAN Index Port Association Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 3 - PVMAP Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 4 - Supported Memory Configurations (SBRAM Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 5 - Supported Memory Configurations (ZBT Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 6 - Options for Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 7 - Two-dimensional World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 8 - Four QoS Configurations for a 10/100 Mbps Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 9 - Four QoS Configurations for a Gigabit Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 10 - WRED Drop Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 11 - Mapping between MVTX2604 and IETF Diffserv Classes for Gigabit Ports . . . . . . . . . . . . . . . . . . . . . 43 Table 12 - Mapping between MVTX2604 and IETF Diffserv Classes for 10/100 Ports . . . . . . . . . . . . . . . . . . . . . 43 Table 13 - MVTX2604 Features Enabling IETF Diffserv Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 14 - Reset & Bootstrap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Table 15 - AC Characteristics – Local Frame Buffer SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . 161 Table 16 - AC Characteristics – Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . 163 Table 17 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Table 18 - AC Characteristics – Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Table 19 - Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Table 20 - Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Table 21 - AC Characteristics – Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Table 22 - Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Table 23 - Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Table 24 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Table 25 - SCANLINK, SCANCOL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Table 26 - MDIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Table 27 - I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Table 28 - Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 12 Zarlink Semiconductor Inc. MVTX2604 1.0 Bock Functionality 1.1 Frame Data Buffer (FDB) Interfaces Data Sheet The FDB interface supports pipelined synchronous burst SRAM (SBRAM) memory at 100 MHz. To ensure a nonblocking switch two memory domains are required. Each domain has a 64 bit wide memory bus. At 100 MHz, the aggregate memory bandwidth is 12.8 Gbps which is enough to support 24 10/100 Mbps and 2 Gigabit ports at full wire speed switching. For 24 + 2 stacking application, pipelined ZBT-SRAM memory running at 125 MHz is required. The Switching Database is also located in the external SRAM; it is used for storing MAC addresses and their physical port number. It is duplicated and stored in both memory domains. Therefore, when the system updates the contents of the switching database it has to write the entry to both domains at the same time. 1.2 GMII/PCS MAC Module (GMAC) The GMII/PCS Media Access Control (MAC) module provides the necessary buffers and control interface between the Frame Engine (FE) and the external physical device (PHY). The MVTX2604 GMAC implements both GMII and MII interface, which offers a simple migration from 10/100 to 1 G. The GMAC of the MVTX2604 meets the IEEE 802.3Z specification. It is able to operate in 10 M/100 M either Half or Full Duplex mode with a back pressure/flow control mechanism or in 1G Full duplex mode with flow control mechanism. Furthermore, it will automatically retransmit upon collision for up to 16 total transmissions. PHY addresses for GMAC are 01h and 02h. For fiber optics media, the MVTX2604 implements the Physical Code Sublayer (PCS) interface. The PCS includes an 8B10B encoder and decoder, auto-negotiation and Ten Bit Interface (TBI) 1.3 Physical Coding Sublayer (PCS) Interface For the MVTX2604, the 1000BASE-X PCS Interface is designed internally and may be utilized in the absence of a GMII. The PCS incorporates all the functions required by the GMII to include encoding (decoding) 8B GMII data to (from) 8B/10B TBI format for PHY communication and generating Collision Detect (COL) signals for half-duplex mode. It also manages the Auto negotiation process by informing the management entity that the PHY is ready for communications. The on-chip TBI may be disabled if TBI exists within the Gigabit PHY. The TBI interface provides a uniform interface for all 1000 Mbps PHY implementations. The PCS comprises the PCS Transmit, Synchronization, PCS Receive and Auto negotiation processes for 1000BASE-X. The PCS Transmit process sends the TBI signals TXD [9:0] to the physical medium and generates the GMII Collision Detect (COL) signal based on whether a reception is occurring simultaneously with transmission. Additionally, the Transmit process generates an internal “transmitting” flag and monitors Auto negotiation to determine whether to transmit data or to reconfigure the link. The PCS Synchronization process determines whether or not the receive channel is operational. The PCS Receive process generates RXD [7:0] on the GMII from the TBI data [9:0], and the internal “receiving” flag for use by the Transmit processes. The PCS Auto negotiation process allows the MVTX2604 to exchange configuration information between two devices that share a link segment and to automatically configure the link for the appropriate speed of operation for both devices. 15 Zarlink Semiconductor Inc. MVTX2604 1.4 Data Sheet 10/100 MAC Module (RMAC) The 10/100 Media Access Control module provides the necessary buffers and control interface between the Frame Engine (FE) and the external physical device (PHY). The MVTX2604 has two interfaces, RMII or Serial (only for 10 M). The 10/100 MAC of the MVTX2604 device meets the IEEE 802.3 specification. It is able to operate in either Half or Full Duplex mode with a back pressure/flow control mechanism. In addition, it will automatically retransmit upon collision for up to 16 total transmissions. The PHY addresses for 24 10/100 MAC are from 08h to 1Fh. 1.5 CPU Interface Module One extra port is dedicated to the CPU via the CPU interface module. The CPU interface utilizes a 16/8-bit bus in managed mode (Bootstrap pin TSTOUT6 makes the selection). It also supports a serial and an I2C interface, which provides an easy way to configure the system if unmanaged. 1.6 Management Module The CPU can send a control frame to access or configure the internal network management database. The Management Module decodes the control frame and executes the functions requested by the CPU. 1.7 Frame Engine The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request which is sent to the search engine to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch response from the search engine, the frame engine performs transmission scheduling based on the frame’s priority. The frame engine forwards the frame to the MAC module when the frame is ready to be sent. 1.8 Search Engine The Search Engine resolves the frame’s destination port or ports according to the destination MAC address (L2) or IP multicast address (IP multicast packet) by searching the database. It also performs MAC learning, priority assignment and trunking functions. 1.9 LED Interface The LED interface provides a serial interface for carrying 24 + 2 port status signals. It can also provide direct status pins (6) for the two Gigabit ports. 1.10 Internal Memory Several internal tables are required and are described as follows: • • • Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame stored in the FDB, e.g., frame size, read/write pointer, transmission priority, etc. Network Management (NM) Database - The NM database contains the information in the statistics counters and MIB. MAC address Control Table (MCT) Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the external MAC Table. Note that the external MAC table is located in the external SRAM Memory. 16 Zarlink Semiconductor Inc. MVTX2604 Data Sheet 2.0 System Configuration (Stand-alone and Stacking) 2.1 Management and Configuration Two modes are supported in the MVTX2604: managed and unmanaged. In managed mode, the MVTX2604 uses an 8 or 16 bit CPU interface very similar to the Industry Standard Architecture (ISA) specification. In unmanaged mode, the MVTX2604 has no CPU but can be configured by EEPROM using an I2C interface at bootup, or via a synchronous serial interface otherwise. 2.2 Managed Mode In managed mode, the MVTX2604 uses an 8 or 16 bit CPU interface very similar to the ISA bus. The MVTX2604 CPU interface provides for easy and effective management of the switching system. Figure 2 provides an overview of the CPU interface. INDEX REG 1 (Addr = 001) INDEX REG 0 (Addr = 000) CONFIG DATA REG (Addr = 010) 8 bit internal data bus FRAME DATA REG (Addr = 011) CONTROL BLOCK REG 8/16 bit internal data bus 8/16 bit internal data bus 16 bit internal address bus INTERNAL CONFIGURE REGISTERS CPU FRAME RECEIVE FIFO CPU FRAME TRANSMIT FIFO CONTROL COMMAND FRAME RECEIVE FIFO CONTROL COMMAND FRAME TRANSMIT FIFO 1 AND 2 SYNOCHRONOUS SERIAL INTERFACE Figure 2 - Overview of the MVTX2604 CPU Interface 2.3 Register Configuration, Frame Transmission, and Frame Reception 2.3.1 Register Configuration The MVTX2604 has many programmable parameters, covering such functions as QoS weights, VLAN control and port mirroring setup. In managed mode, the CPU interface provides an easy way of configuring these parameters. The parameters are contained in 8-bit configuration registers. The MVTX2604 allows indirect access to these registers, as follows: • If operating in 8 bits-interface mode, two “index” registers (addresses 000 and 001) need to be written to indicate the desired 8-bit register address. In 16-bit mode, only one register (address 000) needs to be written for the desired 16-bit register address. 17 Zarlink Semiconductor Inc. MVTX2604 • • Data Sheet To indirectly configure the register addressed by the two index registers, a “configure data” register (address 010) must be written with the desired 8-bit data. Similarly, to read the value in the register addressed by the two index registers, the “configure data” register can now simply be read. In summary, access to the many internal registers is carried out simply by directly accessing only three registers – two registers to indicate the address of the desired parameter, and one register to read or write a value. Of course, because there is only one bus master, there can never be any conflict between reading and writing the configuration registers. 2.3.2 Rx/Tx of Standard Ethernet Frames The CPU interface is also responsible for receiving and transmitting standard Ethernet frames to and from the CPU. To transmit a frame from the CPU: • • The CPU writes a “data frame” register (address 011) with the data it wants to transmit (minimum 64 bytes). After writing all the data, it then writes the frame size, destination port number and frame status. The MVTX2604 forwards the Ethernet frame to the desired destination port, no longer distinguishing the fact that the frame originated from the CPU. To receive a frame into the CPU: • • • The CPU receives an interrupt when an Ethernet frame is available to be received. Frame information arrives first in the data frame register. This includes source port number, frame size and VLAN tag. The actual data follows the frame information. The CPU uses the frame size information to read the frame out. In summary, receiving and transmitting frames to and from the CPU is a simple process that uses one direct access register only. 2.3.3 Control Frames In addition to standard Ethernet frames described in the preceding section, the CPU is also called upon to handle special “Control frames,” generated by the MVTX2604 and sent to the CPU. These proprietary frames are related to such tasks as statistics collection, MAC address learning and aging etc. All Control frames are up to 40 bytes long. Transmitting and receiving these frames is similar to transmitting and receiving Ethernet frames, except that the register accessed is the “Control frame data” register (address 111). Specifically, there are eight types of control frames generated by the CPU and sent to the MVTX2604: • • • • • • • • Memory read request Memory write request Learn MAC address Delete MAC address Search MAC address Learn IP Multicast address Delete IP Multicast address Search IP Multicast address Note: Memory read and write requests by the CPU may include VLAN table, spanning tree, statistic counters and similar updates. In addition, there are nine types of Control frames generated by the MVTX2604 and sent to the CPU: • Interrupt CPU when statistics counter rolls over 18 Zarlink Semiconductor Inc. MVTX2604 • • • • • • • • Data Sheet Response to memory read request from CPU Learn MAC address Delete MAC address Delete IP Multicast address New VLAN port Age out VLAN port Response to search MAC address request from CPU Response to search IP Multicast address request from CPU The format of the Control Frame is described in the processor interface application note. 2.4 Unmanaged Mode In unmanaged mode, the MVTX2604 can be configured by EEPROM (24C02 or compatible) via an I2C interface at boot time, or via a synchronous serial interface during operation. 2.5 I2C Interface The I2C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries the control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit serial and bidirectional at 50 Kbps. Data transfer is performed between master and slave IC using a request / acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer. Figure 3 depicts the data transfer format. START SLAVE ADDRESS R/W ACK DATA 1 (8 bits) ACK DATA 2 ACK DATA M ACK STOP Figure 3 - Data Transfer Format for I 2C Interface 2.5.1 Start Condition Generated by the master (in our case, the MVTX2604). The bus is considered to be busy after the Start condition is generated. The Start condition occurs if while the SCL line is High, there is a High-to-Low transition of the SDA line. Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I2C bus is free, both lines are High. 2.5.2 Address The first byte after the Start condition determines which slave the master will select. The slave in our case is the EEPROM. The first seven bits of the first data byte make up the slave address. 2.5.3 Data Direction The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master transmitter sets this bit to W; a master receiver sets this bit to R. 2.5.4 Acknowledgment Like all clock pulses, the acknowledgment-related clock pulse is generated by the master. However, the transmitter releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the SDA line during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An acknowledgment pulse follows every byte transfer. 19 Zarlink Semiconductor Inc. MVTX2604 Data Sheet If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the transfer. If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to let the master generate the Stop condition. 2.5.5 Data After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an acknowledge bit. Data is transferred MSB first. 2.5.6 Stop Condition Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop condition occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line. The I2C interface serves the function of configuring the MVTX2604 at boot time. The master is the MVTX2604 and the slave is the EEPROM memory. 2.6 Synchronous Serial Interface The synchronous serial interface serves the function of configuring the MVTX2604, not at boot time, but via a PC. The PC serves as master and the MVTX2604 serves as slave. The protocol for the synchronous serial interface is nearly identical to the I2C protocol. The main difference is that there is no acknowledgment bit after each byte of data transferred. The unmanaged MVTX2604 uses a synchronous serial interface to program the internal registers. To reduce the number of signals required, the register address, command and data are shifted in serially through the D0 pin. STROBE- pin is used as the shift clock. AUTOFD- pin is used as data return path. Each command consists of four parts. • • • • START pulse Register Address Read or Write command Data to be written or read back Any command can be aborted in the middle by sending a ABORT pulse to the MVTX2600AG. A START command is detected when D0 is sampled high when STROBE- rise and D0 is sampled low when STROBE- fall. An ABORT command is detected when D0 is sampled low when STROBE- rise and D0 is sampled high when STROBE- fall. 20 Zarlink Semiconductor Inc. MVTX2604 2.6.1 Data Sheet Write Command STROBE2 extra clock cycles after 2 Extra clocks after last last transfer transfer A0 A1 A1 A2 A2 ... A0 D0 START 2.6.2 A11 W A9 A9 A10 A10 A11 ADDRESS D0 D1 D2 D3 D4 D5 D6 D7 COMMAND DATA Read Command STROBE- A0 A1 A1 A2 A0 A2 D0 START AUTOFD- A10 A11 A11 A9 A10 ... A9 ADDRESS R COMMAND DATA D0 D1 D2 D3 D4 D5 D6 D7 All registers in MVTX2600AG can be modified through this synchronous serial interface. 2.7 Stacking The MVTX2604 supports expanded port count by providing stacking capabilities. The Gigabit port is used as the link between boxes, and each Gigabit port can be accelerated to 2 Gpbs if desired (in conjunction with ZBT memory domains at 125 MHz). If both Gigabit ports are used for this purpose, this provides a total of 4 Gbps of bandwidth between devices. In addition to a standard back-to-back configuration of devices, the MVTX2604 also provides more powerful stacking alternatives: • • Unidirectional ring configuration. Up to 32 devices. Devices are connected by one Gigabit link, which can be accelerated to 2 Gbps, if desired. Flow control cannot be enabled in this configuration, because of the inherent inefficiency in sending flow control messages upstream in a unidirectional ring. Bidirectional ring configuration. Up to 32 devices. Devices are connected by two Gigabit links, forming two rings, one clockwise and one counter clockwise. The total outgoing bandwidth can be as much as 4 Gbps. Flow control may be enabled in this configuration. The outgoing direction of a packet (clockwise or counter clockwise) is selected using a hash key for load distribution. The hash key can be a function of source MAC address, destination MAC address, both MAC addresses, or source port. This configuration provides faulttolerance when one of the stacking links fail. 21 Zarlink Semiconductor Inc. MVTX2604 MVTX2600 • MVTX2600 ... Data Sheet MVTX2600 Cascade Stacking configuration. Up to 32 devices. Devices are connected to form a list configuration. Devices are connected by two Gigabit links, except the two devices at both ends, where one Gigabit port is used as an uplink port. Flow control may be enabled in this configuration. MVTX2600 MVTX2600 3.0 MVTX2604 Data Forwarding Protocol 3.1 Unicast Data Frame Forwarding ... MVTX2600 When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). An FCB handle will always be available because of advance buffer reservations. The memory (SRAM) interface consists of two 64-bit buses, connected to two SRAM banks, A and B. The Receive DMA (RxDMA) is responsible for multiplexing the data and the address. On a port’s “turn,” the RxDMA will move 8 bytes (or up to the end-of-frame) from the port’s associated RxFIFO into memory (Frame Data Buffer, or FDB). Once an entire frame has been moved to the FDB, and a good end-of-frame (EOF) has been received, the Rx interface makes a switch request. The RxDMA arbitrates among multiple switch requests. The switch request consists of the first 64 bytes of a frame, containing among other things, the source and destination MAC addresses of the frame. The search engine places a switch response in the switch response queue of the frame engine when done. Among other information, the search engine will have resolved the destination port of the frame and will have determined that the frame is unicast. After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has to decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ occupancy at the destination. If the frame is not dropped, then the TxQ manager links the frame’s FCB to the correct per-portper-class TxQ. Unicast TxQ’s are linked lists of transmission jobs, represented by their associated frames’ FCB’s. There is one linked list for each transmission class for each port. There are 4 transmission classes for each of the 24 10/100 ports and 8 classes for each of the two Gigabit ports – a total of 112 unicast queues. The TxQ manager is responsible for scheduling transmission among the queues representing different classes for a port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among the head-of-line (HOL) frames from the per-class queues for that port using a Zarlink Semiconductor scheduling algorithm. 22 Zarlink Semiconductor Inc. MVTX2604 Data Sheet The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address. On a port’s turn, the TxDMA will move 8 bytes (or up to the EOF) from memory into the port’s associated TxFIFO. After reading the EOF, the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple buffer release requests. The frame is transmitted from the TxFIFO to the line. 3.2 Multicast Data Frame Forwarding After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of the multicast packet’s destinations. If so, then the frame is dropped at some destinations but not others and the FCB is not released. If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the multicast queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast frames). There are 2 multicast queues for each of the 24 10/100 ports. The queue with higher priority has room for 32 entries and the queue with lower priority has room for 64 entries. There are 4 multicast queues for each of the two Gigabit ports. The size of the queues are: 32 entries (higher priority queue), 32 entries, 32 entries and 64 entries (lower priority queue). There is one multicast queue for every two priority classes. For the 10/100 ports to map the 8 transmit priorities into 2 multicast queues, the 2 LSB are discarded. For the gigabit ports to map the 8 transmit priorities into 4 multicast queues, the LSB are discarded. During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one logical queue. The older head of line of the two queues is forwarded first. The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to which the frame is destined. 3.3 Frame Forwarding To and From CPU Frame forwarding from the CPU port to a regular transmission port is nearly the same as forwarding between transmission ports. The only difference is that the physical destination port must be indicated in addition to the destination MAC address. Frame forwarding to the CPU port is nearly the same as forwarding to a regular transmission port. The only difference is in frame scheduling. Instead of using the patent-pending Zarlink Semiconductor scheduling algorithms, scheduling for the CPU port is simply based on strict priority. That is, a frame in a high priority queue will always be transmitted before a frame in a lower priority queue. There are four output queues to the CPU and one receive queue. 4.0 Memory Interface 4.1 Overview The MVTX2604 provides two 64-bit wide SRAM banks, SRAM Bank A and SRAM Bank B with a 64-bit bus connected to each. Each DMA can read and write from both bank A and bank B. The following figure provides an overview of the MVTX2604 SRAM banks. 23 Zarlink Semiconductor Inc. MVTX2604 SRAM SRAM TX DMA 0-7 Data Sheet TX DMA 8-15 TX DMA 16-23 RX DMA 0-7 RX DMA 8-15 RX DMA 16-23 Figure 4 - MVTX2604 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only) 4.2 ZBT Support The MVTX2604 supports Zero Bus Turnaround (ZBT). ZBT is a synchronous SRAM architecture that is optimized for networking and telecommunications applications. It can significantly increase the switch’s internal bandwidth when compared to standard Pipeline SyncBurst SRAM. The ZBT architecture is optimized for switching and other applications with highly random READs and WRITEs. ZBT SRAMs eliminate all idle cycles when turning the data bus around from a WRITE operation to a READ operation (or vice versa). This feature results in dramatic performance improvements in systems that have such traffic patterns (that is, frequent and random read and write access to the SRAM). Please refer to the ZBT Application Note for further details. 4.3 Detailed Memory Information Because the bus for each bank is 64 bits wide, frames are broken into 8-byte granules, written to and read from memory. The first 8-byte granule gets written to Bank A, the second 8-byte granule gets written to Bank B and so on in alternating fashion. When reading frames from memory, the same procedure is followed, first from A, then from B and so on. The reading and writing from alternating memory banks can be performed with minimal waste of memory bandwidth. What’s the worst case? For any speed port, in the worst case, a 1-byte-long EOF granule gets written to Bank A. This means that a 7-byte segment of Bank A bandwidth is idle, and furthermore, the next 8-byte segment of Bank B bandwidth is idle, because the first 8 bytes of the next frame will be written to Bank A, not B. This scenario results in a maximum 15 bytes of waste per frame, which is always acceptable because the interframe gap is 20 bytes. The CPU management port gets treated like any other port, reading and writing to alternating memory banks starting with Bank A. The VLAN Index Mapping Table and Mac Address Table are duplicated in Bank A and B. When the CPU writes an entry to the VLAN Index Mapping Table it has to write the same data in bank A and bank B. Search engine data is written to both banks in parallel. In this way, a search engine read operation can be performed by either bank at any time without a problem. 24 Zarlink Semiconductor Inc. MVTX2604 4.4 Data Sheet Memory Requirements To speed up searching and decrease memory latency, the external MAC address database is duplicated in both memory banks. To support 64 K MAC address, 4 MB memory is required. When VLAN support is enabled, 512 entries of the MAC address table are used for storing the VLAN ID at VLAN Index Mapping Table. Up to 2 K Ethernet frame buffers are supported and they will use 3 MB of memory. Each frame uses 1536 bytes. The maximum system memory requirement is 4 MB. If less memory is desired, the configuration can scale down. Memory Configuration Bank A Bank B Tag based VLAN Frame Buffer Max MAC Address 1M 1M Disable 1K 32 K 1M 1M Enable 1K 31.5 K 2M 2M Disable 2K 64 K 2M 2M Enable 2K 63.5 K Memory Map 25 Zarlink Semiconductor Inc. MVTX2604 5.0 Search Engine 5.1 Search Engine Overview Data Sheet The MVTX2604 search engine is optimized for high throughput searching, with enhanced features to support: • • • • • • • • • Up to 64 K MAC addresses Up to 255 VLAN and IP Multicast groups 3 groups of port trunking (1 for the two Gigabit ports and 2 others) Traffic classification into 4 (or 8 for Gigabit) transmission priorities and 2 drop precedence levels Packet filtering Security IP Multicast Flooding, Broadcast, Multicast Storm Control MAC address learning and aging 5.2 Basic Flow Shortly after a frame enters the MVTX2604 and is written to the Frame Data Buffer (FDB), the frame engine generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of the frame, which contain all the necessary information for the search engine to perform its task. When the search engine is done, it writes to the Switch Response Queue and the frame engine uses the information provided in that queue for scheduling and forwarding. In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch request. Among the information extracted are the source and destination MAC addresses, the transmission and discard priorities, whether the frame is unicast or multicast and VLAN ID. Requests are sent to the external SRAM to locate the associated entries in the external hash table. When all the information has been collected from external SRAM, the search engine has to compare the MAC address on the current entry with the MAC address for which it is searching. If it is not a match, the process is repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained internal to the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address unknown) or flooding (destination MAC address unknown). In addition, VLAN information is used to select the correct set of destination ports for the frame (for multicast), or to verify that the frame’s destination port is associated with the VLAN (for unicast). If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the source and destination MAC addresses. When all the information is compiled, the switch response is generated, as stated earlier. The search engine also interacts with the CPU with regard to learning and aging. 5.3 5.3.1 Search, Learning, and Aging MAC Search The search block performs source MAC address and destination MAC address (or destination IP address for IP multicast) searching. As we indicated earlier, if a match is not found, then the next entry in the linked list must be examined and so on until a match is found or the end of the list is reached. In tag based VLAN mode, if the frame is unicast, and the destination port is not a member of the correct VLAN, then the frame is dropped; otherwise, the frame is forwarded. If the frame is multicast, this same table is used to indicate 26 Zarlink Semiconductor Inc. MVTX2604 Data Sheet all the ports to which the frame will be forwarded. Moreover, if port trunking is enabled, this block selects the destination port (among those in the trunk group). In port based VLAN mode, a bitmap is used to determine whether the frame should be forwarded to the outgoing port. The main difference in this mode is that the bitmap is not dynamic. Ports cannot enter and exit groups because of real-time learning made by a CPU. The MAC search block is also responsible for updating the source MAC address timestamp and the VLAN port association timestamp, used for aging. 5.3.2 Learning The learning module learns new MAC addresses and performs port change operations on the MCT database. The goal of learning is to update this database as the networking environment changes over time. When CPU reporting is enabled, learning and port change will be performed when the CPU request queue has room, and a memory slot is available, and a “Learn MAC Address” message is sent to the CPU. When fast learning mode is enabled, learning and port change will be performed when memory slot is available and a latter “Learn MAC Address” message is sent to the CPU when CPU queue has room. When CPU reporting is disabled, learning and port change will be performed based on memory slot availability only. In tag based VLAN mode, if the source port is not a member of a classified VLAN a “New VLAN Port” message is sent to the CPU. The CPU can decide whether or not the source port can be added to the VLAN. 5.3.3 Aging Aging time is controlled by register 400h and 401h. The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we indicated earlier, the search module updates the source MAC address and VLAN port association timestamps for each frame it processes. When an entry is ready to be aged, the entry is removed from the table and a “Delete MAC Address” message is sent to inform the CPU. Supported MAC entry types are: dynamic, static, source filter, destination filter, IP multicast, source and destination filter and secure MAC address. Only dynamic entries can be aged; all others are static. The MAC entry type is stored in the “status” field of the MCT data structure. 5.3.4 VLAN Table The table below provides a mapping from VLAN ID to VLAN index. It is maintained by system software and is checked by the hardware search engine for every incoming frame. This table has 4 K entries and is stored in external SRAM. It is organized as 512 × 8 entries (total of 4 K VLAN indexes) as shown. Each VLAN index is 8 bits. VIX7 VIX6 VIX5 VIX4 VIX3 VIX2 VIX1 VIX0 … … … … … … … … … … … … … … … … VIX4095 VIX4094 VIX4093 VIX4092 VIX4091 VIX4090 VIX4089 VIX4088 Table 1 - VLAN Index Mapping Table Each VIX represents the mapping result from the associated VLAN ID (VLANID = 0x004 is mapped to VIX4). Unused VLAN ID’s have their corresponding VIX programmed to hexadecimal 00. Used VLAN ID’s have their corresponding VIX programmed to hexadecimal 01 through FF. In other words, 255 VLAN’s are supported. The VIX value is a pointer to the entries in the VLAN Index port association table (internal memory). 27 Zarlink Semiconductor Inc. MVTX2604 Data Sheet The VLAN Index port association table is used by both software and hardware. It contains 256 entries. Each entry has 27 fields, such that each field represents the port status of that particular VLAN. Port Not Used G1 G0 CPU P23 P22 Bit 63 to 54 53 52 51 50 49 48 47 46 45 44 …… P3 P2 P1 7 6 5 4 3 P0 2 1 0 0 E N T R I E S 1 : : 255 Table 2 - LAN Index Port Association Table Each entry has 64 bits. Each port has a VLAN status field with the following two bits values: • • • • 00: Port not a member of VLAN 01: Port is a member of VLAN, and is subject to aging (Do not use. Used by the aging module) 10: Port is a member of VLAN, and is subject to aging 11: Port is a member of VLAN, and is not subject to aging Note: The VLAN aging time is controlled by register 402h. 5.4 MAC Address Filtering The MVTX2604's implementation of intelligent traffic switching provides filters for source and destination MAC addresses. This feature filters unnecessary traffic, thereby providing intelligent control over traffic flows and broadcast traffic. MAC address filtering allows the MVTX2604 to block an incoming packet to an interface when it sees a specified MAC address in either the source address or destination address of the incoming packet. For example, if your network is congested because of high utilization from a MAC address you can filter all traffic transmitted from that address and restore network flow while you troubleshoot the problem. 5.5 Quality of Service Quality of Service (QoS) refers to the ability of a network to provide better service to selected network traffic over various technologies. Primary goals of QoS include dedicated bandwidth, controlled jitter and latency (required by some real-time and interactive traffic) and improved loss characteristics. Traditional Ethernet networks have had no prioritization of traffic. Without a protocol to prioritize or differentiate traffic, a service level known as “best effort” attempts to get all the packets to their intended destinations with minimum delay; however, there are no guarantees. In a congested network or when a low-performance switch/router is overloaded, “best effort” becomes unsuitable for delay-sensitive traffic and mission-critical data transmission. 28 Zarlink Semiconductor Inc. MVTX2604 Data Sheet The advent of QoS for packet-based systems accommodates the integration of delay-sensitive video and multimedia traffic onto any existing Ethernet network. It also alleviates the congestion issues that have previously plagued such “best effort” networking systems. QoS provides Ethernet networks with the breakthrough technology to prioritize traffic and ensure that a certain transmission will have a guaranteed minimum amount of bandwidth. Extensive core QoS mechanisms are built into the MVTX2604 architecture to ensure policy enforcement and buffering of the ingress port, as well as weighted fair-queue(WFQ) scheduling at the egress port. In the MVTX2604, QoS-based policies sort traffic into a small number of classes and mark the packets accordingly. The QoS identifier provides specific treatment to traffic in different classes, so that different quality of service is provided to each class. Frame and packet scheduling and discarding policies are determined by the class to which the frames and packets belong. For example, the overall service given to frames and packets in the premium class will be better than that given to the standard class; the premium class is expected to experience lower loss rate or delay. The MVTX2604 supports the following QoS techniques: • • • • 5.6 In a port-based setup, any station connected to the same physical port of the switch will have the same transmit priority. In a tag-based setup, a 3-bit field in the VLAN tag provides the priority of the packet. This priority can be mapped to different queues in the switch to provide QoS. In a TOS/DS-based set up, TOS stands for “Type of Service” that may include “minimize delay,” “maximize throughput,” or “maximize reliability.” Network nodes may select routing paths or forwarding behaviours that are suitably engineered to satisfy the service request. In a logical port-based set up, a logical port provides the application information of the packet. Certain applications are more sensitive to delays than others; using logical ports to classify packets can help speed up delay sensitive applications, such as VoIP. Priority Classification Rule Figure 5 shows the MVTX2604 priority classification rule. Yes Use Default Port Settings Fix Port Priority ? No TOS Precedence over VLAN? (FCR Register, Bit 7) Use Default Port Settings No No No IP Yes Yes VLAN Tag ? No IP Frame ? Yes Yes Use Logical Port Yes Use VLAN Priority Use Logical Port Figure 5 - Priority Classification Rule 29 Zarlink Semiconductor Inc. No Use TOS MVTX2604 5.7 Data Sheet Port and Tag Based VLAN The MVTX2604 supports two models for determining and controlling how a packet gets assigned to a VLAN: port priority and tag -based VLAN. 5.7.1 Port-Based VLAN An administrator can use the PVMAP Registers to configure the MVTX2604 for port-based VLAN (see “Registration Definition” on page 42). For example, ports 1-3 might be assigned to the Marketing VLAN, ports 4-6 to the Engineering VLAN and ports 7-9 to the Administrative VLAN. The MVTX2604 determines the VLAN membership of each packet by noting the port on which it arrives. From there, the MVTX2604 determines which outgoing port(s) is/are eligible to transmit each packet or whether the packet should be discarded. Destination Port Numbers Bit Map Port Registers 26 Register for Port #0 PVMAP00_0[7:0] to PVMAP00_3[2:0] … 2 1 0 0 1 1 0 Register for Port #1 PVMAP01_0[7:0] to PVMAP01_3[2:0] 0 1 0 1 Register for Port #2 PVMAP02_0[7:0] to PVMAP02_3[2:0] 0 0 0 0 0 0 0 0 … Register for Port #26 PVMAP26_0[7:0] to PVMAP26_3[2:0] Table 3 - PVMAP Register For example, in the above table, a "1" denotes that an outgoing port is eligible to receive a packet from an incoming port. A 0 (zero) denotes that an outgoing port is not eligible to receive a packet from an incoming port. In this example: Data packets received at port #0 are eligible to be sent to outgoing ports 1 and 2. Data packets received at port #1 are eligible to be sent to outgoing ports 0 and 2. Data packets received at port #2 are NOT eligible to be sent to ports 0 and 1. 5.7.2 Tag-Based VLAN The MVTX2604 supports the IEEE 802.1q specification for “tagging” frames. The specification defines a way to coordinate VLANs across multiple switches. In the specification, an additional 4-octet header (or “tag”) is inserted in a frame after the source MAC address and before the frame type. 12 bits of the tag are used to define the VLAN ID. Packets are then switched through the network with each MVTX2604 simply swapping the incoming tag for an appropriate forwarding tag rather than processing each packet's contents to determine the path. This approach minimizes the processing needed once the packet enters the tag-switched network. In addition, coordinating VLAN IDs across multiple switches enables VLANs to extend to multiple switches. Up to 255 VLANs are supported in the MVTX2604. The 4 K VLANs specified in the IEEE 802.1q are mapped to 255 VLAN indexes. The mapping is made by the VLAN index mapping table. Based on the VLAN index (VIXn), the source and destination port membership is checked against the content in the VLAN Index Port association table. If the destination port is a member of the VLAN, the packet is forwarded; otherwise it is discarded. If the source port is not a member, a “New VLAN Port” message is sent to the CPU. A filter can be applied to discard the packet if the source port is not a member of the VLAN. 30 Zarlink Semiconductor Inc. MVTX2604 5.8 Data Sheet Memory Configurations The MVTX2604 supports the following memory configurations. Pipeline SBRAM modes support 1 M and 2 M per bank configurations, while ZBT mode supports 4 M configurations, 2 M per domain (bank). For detail connection information, please reference the memory application note. Configuration Single Layer (Bootstrap pin TSTOUT13 = open) 1 M per bank (Bootstrap pin TSTOUT7 = open) 2 M per bank (Bootstrap pin TSTOUT7 = pull down) Connections Two 128 K x 32 SRAM/bank Two 256 K x 32 SRAM/bank Connect 0E# and WE# Four 128 K x 32 SRAM/bank Connect 0E0# and WE0# Connect 0E1# and WE1# or One 128 K x 64 SRAM/bank NA Double Layer (Bootstrap pin TSTOUT13 = pull down) or Two 128 K x 64 SRAM/bank Table 4 - Supported Memory Configurations (SBRAM Mode) Configuration 2 M per bank Connections Single Layer (Bootstrap pin TSTOUT13 = open) Two 256 K x 32 ZBT SRAM/bank or One 256 K x 64 ZBT SRAM/bank Connect ADS# to Layer 0 chipselect pin Double Layer (Bootstrap pin TSTOUT13 = pull down) Four 128 K x 32 ZBT SRAM/bank or Two 128 K x 64 ZBT SRAM/bank Connect ADS# to Layer 0 chipselect pin and 0E# to Layer 1 chipselect pin Table 5 - Supported Memory Configurations (ZBT Mode) Frame data Buffer Only Bank A 1M (SBRAM) 2M (SBRAM) MVTX2601 X X MVTX2602 X X MVTX2603 Bank A and Bank B Bank A and Bank B 1 M/bank (SBRAM) 2 M/bank (SBRAM) 1 M/bank (ZBT SRAM) 2 M/bank (ZBT SRAM) X X X X X X MVTX2603 (Gigabit ports in 2giga mode) MVTX2604 X X MVTX2604 (Gigabit ports in 2giga mode) Table 6 - Options for Memory Configuration 31 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Bank A (1 M One Layer) Bank B (1 M One Layer) Data LA_D[63:32] Data LB_D[63:32] Data LB_D[31:0] Data LA_D[31:0] SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits Memory 128 K 32 bits Memory 128 K 32 bits Address LB_A[19:3] Address LA_A[19:3] Bootstraps: TSTOUT7 = Open, TSTOUT13 = Open, TSTOUT4 = Open Figure 6 - Memory Configuration For: 2 Banks, 1 Layer, 2 MB Total Bank A (2 M Two Layers) Bank B (2 M Two Layers) Data LA_D[63:32] Data LB_D[63:32] Data LA_D[31:0] Data LB_D[31:0] SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits Address LA_A[19:3] SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits SRAM Memory 128 K 32 bits Address LB_A[19:3] Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Pull Down, TSTOUT4 = Open Figure 7 - Memory Configuration For: 2 Banks, 2 Layers, 4 MB Total 32 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Bank A (2 M One Layer) Bank B (2 M One Layer) Data LA_D[63:32] Data LB_D[63:32] Data LB_D[31:0] Data LA_D[31:0] SRAM Memory 256 K 32 bits SRAM Memory 256 K 32 bits Memory 256 K 32 bits Memory 256 K 32 bits Address LB_A[20:3] Address LA_A[20:3] Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Open Figure 8 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB Bank A (2 M Two Layers) Bank B (2 M Two Layers) Data LA_D[63:32] Data LB_D[63:32] Data LA_D[31:0] Data LB_D[31:0] ZBT Memory 128 K 32 bits ZBT Memory 128 K 32 bits ZBT Memory 128 K 32 bits ZBT Memory 128 K 32 bits Address LA_A[19:3] ZBT Memory 128 K 32 bits ZBT Memory 128 K 32 bits ZBT Memory 128 K 32 bits ZBT Memory 128 K 32 bits Address LB_A[19:3] Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Pull Down, TSTOUT4 = Open Figure 9 - Memory Configuration For: 2 Banks, 2 Layers, 4 MB Total 33 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Bank A (2 M One Layer) Bank B (2 M One Layer) Data LA_D[63:32] Data LB_D[63:32] Data LA_D[31:0] ZBT Memory 256 K 32 bits Data LB_D[31:0] ZBT Memory 256 K 32 bits ZBT Memory 256 K 32 bits ZBT Memory 256 K 32 bits Address LB_A[20:3] Address LA_A[20:3] Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Open Figure 10 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB 6.0 Frame Engine 6.1 Data Forwarding Summary When a frame enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB. Data is moved in 8-byte granules in conjunction with the scheme for the SRAM interface. A switch request is sent to the Search Engine. The Search Engine processes the switch request. A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast and its destination port or ports. A VLAN table lookup is performed as well. A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon receiving a Transmission Scheduling Request, the device will format an entry in the appropriate Transmission Scheduling Queue (TxSch Q) or Queues. There are 4 TxSch Q for each 10/100 port (and 8 per Gigabit port), one for each priority. Creation of a queue entry either involves linking a new job to the appropriate linked list if unicast or adding an entry to a physical queue if multicast. When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of one of the TxSch Qs, according to the transmission scheduling algorithm (to ensure per-class quality of service). The unicast linked list and the multicast queue for the same port-class pair are treated as one logical queue. The older HOL between the two queues goes first. For 10/100 ports multicast queue 0 is associated with unicast queue 0 and multicast queue 1 is associated with unicast queue 2. For Gigabit ports multicast queue 0 is associated with unicast queue 0, multicast queue 1 with unicast queue 2, multicast queue 2 with unicast queue 4 and multicast queue 3 with unicast queue 6. The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of the destination port. 34 Zarlink Semiconductor Inc. MVTX2604 6.2 Data Sheet Frame Engine Details This section briefly describes the functions of each of the modules of the MVTX2604 frame engine. 6.2.1 FCB Manager The FCB manager allocates FCB handles to incoming frames and releases FCB handles upon frame departure. The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be determined by referring to Chapter 7. In addition, the FCB manager is responsible for buffer aging and for linking unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin and the aging time is defined in register FCBAT. 6.2.2 Rx Interface The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch request. 6.2.3 RxDMA The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each frame for use by the search engine when the switch request has been made. 6.2.4 TxQ Manager First, the TxQ manager checks the per-class queue status and global reserved resource situation and using this information makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the TxQ manager requests that the FCB manager link the unicast frame’s FCB to the correct per-port-per-class TxQ. If multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also trigger source port flow control for the incoming frame’s source if that port is flow control enabled. Second, the TxQ manager handles transmission scheduling; it schedules transmission among the queues representing different classes for a port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to the correct port control module. 6.3 Port Control The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control module requests that the buffer be released. 6.4 TxDMA The TxDMA multiplexes data and address from port control and arbitrates among buffer release requests from the port control modules. 7.0 Quality of Service and Flow Control 7.1 Model Quality of service is an all-encompassing term for which different people have different interpretations. In general, the approach to quality of service described here assumes that we do not know the offered traffic pattern. We also assume that the incoming traffic is not policed or shaped. Furthermore, we assume that the network manager knows his applications, such as voice, file transfer, or web browsing and their relative importance. The manager can then subdivide the applications into classes and set up a service contract with each. The contract may consist 35 Zarlink Semiconductor Inc. MVTX2604 Data Sheet of bandwidth or latency assurances per class. Sometimes it may even reflect an estimate of the traffic mix offered to the switch. As an added bonus, although we do not assume anything about the arrival pattern, if the incoming traffic is policed or shaped we may be able to provide additional assurances about our switch’s performance. Table 7 shows examples of QoS applications with three transmission priorities, but best effort (P0) traffic may form a fourth class with no bandwidth or latency assurances. Gigabit ports actually have eight total transmission priorities. Goals TotalAssured Bandwidth (user defined) Low Drop Probability (low-drop) High Drop Probability (high-drop) Highest transmission priority, P3 50 Mbps Apps: phone calls, circuit emulation. Latency: < 1 ms. Drop: No drop if P3 not oversubscribed. Apps: training video. Latency: < 1 ms. Drop: No drop if P3 not oversubscribed; first P3 to drop otherwise. Middle transmission priority, P2 37.5 Mbps Apps: interactive apps, Web business. Latency: < 4-5 ms. Drop: No drop if P2 not oversubscribed. Apps: non-critical interactive apps. Latency: < 4-5 ms. Drop: No drop if P2 not oversubscribed; firstP2 to drop otherwise. Low transmission priority, P1 12.5 Mbps Apps: emails, file backups. Latency: < 16 ms desired, but not critical. Drop: No drop if P1 not oversubscribed. Apps: casual web browsing. Latency: < 16 ms desired, but not critical. Drop: No drop if P1 not oversubscribed; first to drop otherwise. Total 100 Mbps Table 7 - Two-dimensional World Traffic A class is capable of offering traffic that exceeds the contracted bandwidth. A well-behaved class offers traffic at a rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreedupon rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link utilization, a misbehaving class is allowed to use any idle bandwidth. However, such leniency must not degrade the quality of service (QoS) received by well-behaved classes. As Table 7 illustrates, the six traffic types may each have their own distinct properties and applications. As shown, classes may receive bandwidth assurances or latency bounds. In the table, P3, the highest transmission class, requires that all frames be transmitted within 1 ms,and receives 50% of the 100 Mbps of bandwidth at that port. Best-effort (P0) traffic forms a fourth class that only receives bandwidth when none of the other classes have any traffic to offer. It is also possible to add a fourth class that has strict priority over the other three; if this class has even one frame to transmit, then it goes first. In the MVTX2604, each 10/100 Mbps port will support four total classes and each 1000 Mbps port will support eight classes. We will discuss the various modes of scheduling these classes in the next section. In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should rarely lose packets. But poorly behaved users – users who send frames at too high a rate – will encounter frame loss and the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some low-drop frames are dropped and then all frames in the worst case. 36 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Table 7 shows that different types of applications may be placed in different boxes in the traffic table. For example, casual web browsing fits into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the category of low-loss, low-latency traffic. 7.2 Four QoS Configurations There are four basic pieces to QoS scheduling in the MVTX2604: strict priority (SP), delay bound, weighted fair queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation as shown in the tables below. For 10/100 Mbps ports, the following registers select these modes: QOSC24 [7:6]_CREDIT_C00 QOSC28 [7:6]_CREDIT_C10 QOSC32 [7:6]_CREDIT_C20 QOSC36 [7:6]_CREDIT_C30 P3 P2 P1 Op1 (default) Delay Bound Op2 SP Delay Bound Op3 SP WFQ Op4 WFQ P0 BE BE Table 8 - Four QoS Configurations for a 10/100 Mbps Port QOSC40 [7:6] and QOSC48 [7:6] select these modes for the first and second gigabit ports, respectively. P7 P6 P5 P4 Op1 (default) Delay Bound Op2 SP Delay Bound Op3 SP WFQ Op4 WFQ P3 P2 P1 P0 BE BE Table 9 - Four QoS Configurations for a Gigabit Port The default configuration for a 10/100 Mbps port is three delay-bounded queues and one best-effort queue. The delay bounds per class are 0,8 ms for P3, 3.2 ms for P2, and 12.8 ms for P1. For a 1 Gbps port, we have a default of six delay-bounded queues and two best-effort queues. The delay bounds for a 1 Gbps port are 0.16 ms for P7 and P6, 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. Best effort traffic is only served when there is no delay-bounded traffic to be served. For a 1 Gbps port, where there are two best-effort queues, P1 has strict priority over P0. We have a second configuration for a 10/100 Mbps port in which there is one strict priority queue, two delay bounded queues and one best effort queue. The delay bounds per class are 3.2 ms for P2 and 12.8 ms for P1. If the user is to choose this configuration, it is important that P3 (SP) traffic be either policed or implicitly bounded (e.g., if the incoming P3 traffic is very light and predictably patterned). Strict priority traffic, if not admissioncontrolled at a prior stage to the MVTX2604 can have an adverse effect on all other classes’ performance. For a 1 Gbps port, P7 and P6 are both SP classes and P7 has strict priority over P6. In this case, the delay bounds per class are 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. 37 Zarlink Semiconductor Inc. MVTX2604 Data Sheet The third configuration for a 10/100 Mbps port contains one strict priority queue and three queues receiving a bandwidth partition via WFQ. As in the second configuration, strict priority traffic needs to be carefully controlled. In the fourth configuration, all queues are served using a WFQ service discipline. 7.3 Delay Bound In the absence of a sophisticated QoS server and signaling protocol, the MVTX2604 may not know the mix of incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically adjusts its scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (HOL) frames. As a result, we assure latency bounds for all admitted frames with high confidence, even in the presence of system-wide congestion. Our algorithm identifies misbehaving classes and intelligently discards frames at no detriment to well-behaved classes. Our algorithm also differentiates between high-drop and low-drop traffic with a weighted random early drop (WRED) approach. Random early dropping prevents congestion by randomly dropping a percentage of high-drop frames even before the chip’s buffers are completely full, while still largely sparing lowdrop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames. Finally, the delay bound algorithm also achieves bandwidth partitioning among classes. 7.4 Strict Priority and Best Effort When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is important that strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes. When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other classes have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for best effort classes to be used for non-essential traffic, because we provide no assurances about best effort performance. However, in a typical network setting, much best effort traffic will indeed be transmitted and with an adequate degree of expediency. Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before entering the MVTX2604, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To summarize, dropping to enforce bandwidth or delay does not apply to strict priority or best effort queues. We only drop frames from best effort and strict priority queues when global buffer resources become scarce. 7.5 Weighted Fair Queuing In some environments – for example, in an environment in which delay assurances are not required, but precise bandwidth partitioning on small time scales is essential, WFQ may be preferable to a delay-bounded scheduling discipline. The MVTX2604 provides the user with a WFQ option with the understanding that delay assurances can not be provided if the incoming traffic pattern is uncontrolled. The user sets four WFQ “weights” (eight for Gigabit ports) such that all weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with error within 2%. In WFQ mode, though we do not assure frame latency, the MVTX2604 still retains a set of dropping rules that helps to prevent congestion and trigger higher level protocol end-to-end flow control. As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do indeed drop frames from SP queues for global buffer management purposes. In addition, queue P0 for a 10/100 port (and queues P0 and P1 for a Gigabit port) are treated as best effort from a dropping perspective, though they still are assured a percentage of bandwidth from a WFQ scheduling perspective. What this means is that these particular queues are only affected by dropping when the global buffer count becomes low. 38 Zarlink Semiconductor Inc. MVTX2604 7.6 Data Sheet Shaper Although traffic shaping is not a primary function of the MVTX2604, the chip does implement a shaper for expedited forwarding (EF). Our goal in shaping is to control the peak and average rate of traffic exiting the MVTX2604. Shaping is limited to the two Gigabit ports only, and only to class P6 (the second highest priority). This means that class P6 will be the class used for EF traffic. If shaping is enabled for P6, then P6 traffic must be scheduled using strict priority. With reference to Table 7, only the middle two QoS configurations may be used. Peak rate is set using a programmable whole number, no greater than 64. For example, if the setting is 32, then the peak rate for shaped traffic is 32/64 * 1000 Mbps = 500 Mbps. Average rate is also a programmable whole number, no greater than 64 and no greater than the peak rate. For example, if the setting is 16, then the average rate for shaped traffic is 16/64 * 1000 Mbps = 250 Mbps. As a consequence of the above settings in our example, shaped traffic will exit the MVTX2604 at a rate always less than 500 Mbps and averaging no greater than 250 Mbps. See Programming QoS Register application note for more information. Also, when shaping is enabled, it is possible for a P6 queue to explode in length if fed by a greedy source. The reason is that a shaper is by definition not work-conserving; that is, it may hold back from sending a packet even if the line is idle. Though we do have global resource management, we do nothing to prevent this situation locally. We assume SP traffic is policed at a prior stage to the MVTX2604. 7.7 Rate Control The MVTX2604 provides a rate control function on its 10/100 ports. This rate control function applies to the outgoing traffic aggregate on each 10/100 port. It provides a way of reducing the outgoing average rate below full wire speed. Note that the rate control function does not shape or manipulate any particular traffic class. Furthermore, though the average rate of the port can be controlled with this function, the peak rate will still be full line rate. Two principal parameters are used to control the average rate for a 10/100 port. A port’s rate is controlled by allowing, on average, M bytes to be transmitted every N microseconds. Both of these values are programmable. The user can program the number of bytes in 8-byte increments and the time may be set in units of 10 ms. The value of M/N will, of course, equal the average data rate of the outgoing traffic aggregate on the given 10/100 port. Although there are many (M,N) pairs that will provide the same average data rate performance, the smaller the time interval N, the “smoother” the output pattern will appear. In addition to controlling the average data rate on a 10/100 port, the rate control function also manages the maximum burst size at wire speed. The maximum burst size can be considered the memory of the rate control mechanism; if the line has been idle for a long time, to what extent can the port “make up for lost time” by transmitting a large burst? This value is also programmable, measured in 8-byte increments. Example: Suppose that the user wants to restrict Fast Ethernet port P’s average departure rate to 32 Mbps – 32% of line rate – when the average is taken over a period of 10 ms. In an interval of 10 ms, exactly 40000 bytes can be transmitted at an average rate of 32 Mbps. So how do we set the parameters? The rate control parameters are contained in an internal RAM block accessible through the CPU port (See Programming QoS Registers application note and Processor interface application note). The data format is shown below. 63:40 39:32 31:16 15:0 0 Time interval Maximum burst size Number of bytes As we indicated earlier, the number of bytes is measured in 8-byte increments, so the 16-bit field “Number of bytes” should be set to 40000/8, or 5000. In addition, the time interval has to be indicated in units of 10 ms. Though we want the average data rate on port P to be 32 Mbps when measured over an interval of 10 ms, we can also adjust the maximum number of bytes that can be transmitted at full line rate in any single burst. Suppose we wish this limit 39 Zarlink Semiconductor Inc. MVTX2604 Data Sheet to be 12 kilobytes. The number of bytes is measured in 8-byte increments, so the 16-bit field “Maximum burst size” is set to 12000/8, or 1500. 7.8 WRED Drop Threshold Management Support To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified parameters. The following table summarizes the behavior of the WRED logic. In KB (kilobytes) Level 1 N ≥ 120 Level 2 N ≥ 140 P3 P3 ≥ AKB P2 P1 P2 ≥ BKB P1 ≥ CKB Level 3 N ≥ 160 High Drop Low Drop X% 0% Y% Z% 100% 100% Table 10 - WRED Drop Thresholds Px is the total byte count, in the priority queue x. The WRED logic has three drop levels, depending on the value of N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals P3*16+P2*4+P1. If using WFQ scheduling, N equals P3+P2+P1. Each drop level from one to three has defined high-drop and low-drop percentages, which indicate the minimum and maximum percentages of the data that can be discarded. The X, Y Z percent can be programmed by the register RDRC0, RDRC1. In Level 3, all packets are dropped if the bytes in each priority queue exceed the threshold. Parameters A, B, C are the byte count thresholds for each priority queue. They can be programmed by the QOS control register (refer to the register group 5). See Programming QoS Registers application note for more information. 7.9 Buffer Management Because the number of FDB slots is a scarce resource and because we want to ensure that one misbehaving source port or class cannot harm the performance of a well-behaved source port or class, we introduce the concept of buffer management into the MVTX2604. Our buffer management scheme is designed to divide the total buffer space into numerous reserved regions and one shared pool as shown in Figure 11 on page 41. As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first enters the MVTX2604, its destination port and class are as yet unknown, and so the decision to drop or not needs to be temporarily postponed. This ensures that every frame can be received first before subjecting them to the frame drop discipline after classifying. Six reserved sections, one for each of the first six priority classes, ensure a programmable number of FDB slots per class. The lowest two classes do not receive any buffer reservation. Furthermore, even for 10/100 Mbps ports, a frame is stored in the region of the FDB corresponding to its class. As we have indicated, the eight classes use only four transmission scheduling queues for 10/100 Mbps ports, but as far as buffer usage is concerned there are still eight distinguishable classes. Another segment of the FDB reserves space for each of the 27 ports — 26 ports for Ethernet and one CPU port (port number 24). Two parameters can be set, one for the source port reservation for 10/100 Mbps ports and CPU port, and one for the source port reservation for 1 Gbps ports. These 27 reserved regions make sure that no wellbehaved source port can be blocked by another misbehaving source port. In addition, there is a shared pool, which can store any type of frame. The frame engine allocates the frames first in the six priority sections. When the priority section is full or the packet has priority 1 or 0, the frame is allocated in the shared poll. Once the shared poll is full the frames are allocated in the section reserved for the source port. 40 Zarlink Semiconductor Inc. MVTX2604 Data Sheet The following registers define the size of each section of the Frame data Buffer: PR100- Port Reservation for 10/100 Ports PRG- Port Reservation for Giga Ports SFCB- Share FCB Size C2RS- Class 2 Reserve Size C3RS- Class 3 Reserve Size C4RS- Class 4 Reserve Size C5RS- Class 5 Reserve Size C6RS- Class 6 Reserve Size C7RS- Class 7 Reserve Size temporary reservation shared pool S per-class reservation per-source reservations (24 10/100 M, CPU) per-source reservations (2 G) Figure 11 - Buffer Partition Scheme Used to Implement MVTX2604 AG Buffer Management 7.9.1 Dropping When Buffers Are Scarce Summarizing the two examples of local dropping discussed earlier in this chapter: If a queue is a delay-bounded queue we have a multi-level WRED drop scheme designed to control delay and partition bandwidth in case of congestion. If a queue is a WFQ-scheduled queue we have a multi-level WRED drop scheme designed to prevent congestion. In addition to these reasons for dropping, we also drop frames when global buffer space becomes scarce. The function of buffer management is to make sure that such dropping causes as little blocking as possible. 41 Zarlink Semiconductor Inc. MVTX2604 7.10 Data Sheet MVTX2604 Flow Control Basics Because frame loss is unacceptable for some applications, the MVTX2604 provides a flow control option. When flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a source port that is sending a packet to this switch, to temporarily hold off. While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved or not, are halted. A single packet destined for a congested output can block other packets destined for uncongested outputs. The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high confidence when flow control is enabled. In the MVTX2604, each source port can independently have flow control enabled or disabled. For flow control enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports feed to only one queue at the destination, the queue of lowest priority. This means that if flow control is enabled for a given source port then we can guarantee that no packets originating from that port will be lost but at the possible expense of minimum bandwidth or maximum delay assurances. In addition, these “downgraded” frames may only use the shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not use reserved FDB slots for the highest six classes (P2-P7). The MVTX2604 does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for frames originating from flow control enabled ports. When this programmable option is active, it is possible that some packets may be dropped even though flow control is on. The reason is that intelligent packet dropping is a major component of the MVTX2604’s approach to ensuring bounded delay and minimum bandwidth for high priority flows. 7.10.1 Unicast Flow Control For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2604’s buffer management scheme allocates a reserved number of FDB slots for each source port. If a programmed number of a source port’s reserved FDB slots have been used then flow control Xoff is triggered. Xon is triggered when a port is currently being flow controlled and all of that port’s reserved FDB slots have been released. Note that the MVTX2604’s per-source-port FDB reservations assure that a source port that sends a single frame to a congested destination will not be flow controlled. 7.10.2 Multicast Flow Control In unmanaged mode, flow control for multicast frames is triggered by a global buffer counter. When the system exceeds a programmable threshold of multicast packets Xoff is triggered. Xon is triggered when the system returns below this threshold. In managed mode, per-VLAN flow control is used for multicast frames. In this case, flow control is triggered by congestion at the destination. How so? The MVTX2604 checks each destination to which a multicast packet is headed. For each destination port, the occupancy of the lowest-priority transmission multicast queue (measured in number of frames) is compared against a programmable congestion threshold. If congestion is detected at even one of the packet’s destinations then Xoff is triggered. In addition, each source port has a 26-bit port map recording which port or ports of the multicast frame’s fanout were congested at the time Xoff was triggered. All ports are continuously monitored for congestion and a port is identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were originally marked as congested in the port map have become uncongested, then Xon is triggered and the 26-bit vector is reset to zero. 42 Zarlink Semiconductor Inc. MVTX2604 Data Sheet The MVTX2604 also provides the option of disabling VLAN multicast flow control. Note: If per-Port flow control is on, QoS performance will be affected. 7.11 Mapping to IETF Diffserv Classes The mapping between priority classes discussed in this chapter and elsewhere is shown below. VTX P7 P6 P5 P4 P3 P2 P1 P0 IETF NM EF AF0 AF1 AF2 AF3 BE0 BE1 Table 11 - Mapping between MVTX2604 and IETF Diffserv Classes for Gigabit Ports As the table illustrates, P7 is used solely for network management (NM) frames. P6 is used for expedited forwarding service (EF). Classes P2 through P5 correspond to an assured forwarding (AF) group of size 4. Finally, P0 and P1 are two best effort (BE) classes. For 10/100 Mbps ports, the classes of Table 12 are merged in pairs—one class corresponding to NM+EF, two AF classes, and a single BE class. VTX P3 P2 P1 P0 IETF NM+EF AF0 AF1 BE0 Table 12 - Mapping between MVTX2604 and IETF Diffserv Classes for 10/100 Ports Features of the MVTX2604 that correspond to the requirements of their associated IETF classes are summarized in the table below. Network management (NM) and Expedited forwarding (EF) Global buffer reservation for NM and EF Shaper for EF traffic on 1 Gbps ports Option of strict priority scheduling No dropping if admission controlled Assured forwarding (AF) Four AF classes for 1 Gbps ports Programmable bandwidth partition, with option of WFQ service Option of delay-bounded service keeps delay under fixed levels even if not admissioncontrolled Random early discard, with programmable levels Global buffer reservation for each AF class Best effort (BE) Two BE classes for 1 Gbps ports Service only when other queues are idle means that QoS not adversely affected Random early discard, with programmable levels Traffic from flow control enabled ports automatically classified as BE Table 13 - MVTX2604 Features Enabling IETF Diffserv Standards 43 Zarlink Semiconductor Inc. MVTX2604 8.0 Port Trunking 8.1 Features and Restrictions Data Sheet A port group (i.e., trunk) can include up to 4 physical ports but when using stack all of the ports in a group must be in the same MVTX2604. The two Gigabit ports may also be trunked together. There are three trunk groups total including the option to trunk Gigabit ports. Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address and destination MAC address. Three other options include source MAC address only, destination MAC address only and source port (in bidirectional ring mode only). Load distribution for multicast is performed similarly. If a VLAN includes any of the ports in a trunk group, all the ports in that trunk group should be in the same VLAN member map. The MVTX2604 also provides a safe fail-over mode for port trunking automatically. If one of the ports in the trunking group goes down, the MVTX2604 will automatically redistribute the traffic over to the remaining ports in the trunk in unmanaged mode. In managed mode, the software can perform similar tasks. 8.2 Unicast Packet Forwarding The search engine finds the destination MCT entry, and if the status field says that the destination port found belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the source address belongs to a trunk then the source port’s trunk membership register is checked. A hash key, based on some combination of the source and destination MAC addresses for the current packet selects the appropriate forwarding port as specified in the Trunk_Hash registers. 8.3 Multicast Packet Forwarding For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the packet based on the VLAN index and hash key. Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port trunking environment. Determining one forwarding port per group. For multicast packets, all but one port per group, the forwarding port must be excluded. Preventing the multicast packet from looping back to the source trunk. The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with the source port. This is because, when we select the primary forwarding port for each group we do not take the source port into account. To prevent this, we simply apply one additional filter so as to block that forwarding port for this multicast packet. 44 Zarlink Semiconductor Inc. MVTX2604 8.4 Data Sheet Unmanaged Trunking In unmanaged mode, 3 trunk groups are supported. Groups 0 and 1 can trunk up to 4 10/100 ports. Group 2 can trunk 2 Gigabit ports. The supported combinations are shown in the following table. Group 0 Port 0 Port 1 Port 2 9 9 9 9 9 9 9 9 Port 3 9 Select via trunk0_mode register Group 1 Port 4 Port 5 9 9 9 9 Port 6 Port 7 9 9 Select via trunk1_mode register Group 2 Port 25(Giga 0) Port 26 (Giga 1) 9 9 In unmanaged mode, the trunks are individually enabled/disabled by controlling pin trunk0,1,2. 9.0 9.1 Port Mirroring Port Mirroring Features The received or transmitted data of any 10/100 port in the MVTX2604 chip can be “mirrored” to any other port. We support two such mirrored source-destination pairs. A mirror port can not also serve as a data port. Please refer to the Port Mirroring Application note for further details. 9.2 Setting Registers for Port Mirroring MIRROR1_SRC: Sets the source port for the first port mirroring pair. Bits [4:0] select the source port to be mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to select between ingress (Rx) or egress (Tx) data. MIRROR1_DEST: Sets the destination port for the first port mirroring pair. Bits [4:0] select the destination port to be mirrored. The default is port 23. MIRROR2_SRC: Sets the source port for the second port mirroring pair. Bits [4:0] select the source port to be mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to select between ingress (Rx) or egress (Tx) data. MIRROR2_DEST: Sets the destination port for the second port mirroring pair. Bits [4:0] select the destination port to be mirrored. The default is port 0. 45 Zarlink Semiconductor Inc. MVTX2604 10.0 TBI Interface 10.1 TBI Connection Data Sheet The TBI interface can be used for 1000 Mbps fiber operation. In this mode, the MVTX2604 is connected to the Serdes as shown in Figure 12. There are two TBI interfaces in the MVTX2604 devices. To enable to TBI function, the corresponding TXEN and TXER pins need to be boot strapped. See Ball – Signal Description for details. M25/26_TXD[9:0] T[9:0] REFCLK M25/26_TXCLK MVTX2604 SERDES M25/26_RXD[9:0] R[9:0] M25/26_RXCLK RBC0 M25/26_COL RBC1 Figure 12 - TBI Connection 11.0 GPSI (7WS) Interface 11.1 GPSI connection The 10/100 RMII ethernet port can function in GPSI (7WS) mode when the corresponding TXEN pin is strapped low with a 1K pull down resistor. In this mode, the TXD[0], TXD[1], RXD[0] and RXD[1] serve as TX data, TX clock, RX data and RX clock respectively. The link status and collision from the PHY are multiplexed and shifted into the switch device through external glue logic. The duplex of the port can be controlled by programming the ECR register. The GPSI interface can be operated in port based VLAN mode only. 46 Zarlink Semiconductor Inc. MVTX2604 CRS_DV RXD[0] RXD[1] TXD[1] TXD[0] TXEN Data Sheet crs rxd rx_clk tx_clk link0 Port 0 Ethernet PHY col0 txd txen link1 260X link2 col1 col2 SCAN_LINK SCAN_CLK SCAN_COL link23 col23 Port 23 Ethernet PHY Link Serializer (CPLD) Collision Serializer (CPLD) Figure 13 - GPSI (7WS) Mode Connection Diagram 47 Zarlink Semiconductor Inc. MVTX2604 Data Sheet 11.2SCAN LINK and SCAN COL interface An external CPLD logic is required to take the link signals and collision signals from the GPSI PHYs and shift them into the switch device. The switch device will drive out a signature to indicate the start of the sequence. After that, the CPLD should shift in the link and collision status of the PHYS as shown in the figure. The extra link status indicates the polarity of the link signal. One indicates the polarity of the link signal is active high. scan_clk scan_link/ scan_col 25 cycles for link/ 24 cycles for col Drived by MVTX260x Drived by VTX260x Drived by CPLD Drived by CPLD Total 32 cycles period Total 32 cycles period Figure 14 - SCAN LINK and SCAN COLLISON Status Diagram 12.0 LED Interface 12.1 LED Interface Introduction A serial output channel provides port status information from the MVTX2604 chips. It requires three additional pins. LED_CLK at 12.5 MHz LED_SYN a sync pulse that defines the boundary between status frames LED_DATA a continuous serial stream of data for all status LEDs that repeats once every frame time A non-serial interface is also allowed, but in this case, only the Gigabit ports will have status LEDs. A low cost external device (44 pin PAL) is used to decode the serial data and to drive an LED array for display. This device can be customized for different needs. 12.2 Port Status In the VTX2604, each port has 8 status indicators, each represented by a single bit. The 8 LED status indicators are: Bit 0: Flow control Bit 1:Transmit data Bit 2: Receive data Bit 3: Activity (where activity includes either transmission or reception of data) Bit 4: Link up Bit 5: Speed (1= 100 Mb/s; 0= 10 Mb/s) Bit 6: Full-duplex Bit 7: Collision 48 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Eight clocks are required to cycle through the eight status bits for each port. When the LED_SYN pulse is asserted, the LED interface will present 256 LED clock cycles with the clock cycles providing information for the following ports. Port 0 (10/100): cycles #0 to cycle #7 Port 1 (10/100): cycles#8 to cycle #15 Port 2 (10/100): cycle #16 to cycle #23 ... Port 22 (10/100): cycle #176 to cycle #183 Port 23 (10/100): cycle #184 to cycle #191 Port 24 (Gigabit 1): cycle #192 to cycle #199 Port 25 (Gigabit 2): cycle #200 to cycle #207 Byte 26 (additional status): cycle #208 to cycle #215 Byte 27 (additional status): cycle #216 to cycle #223 Cycles #224 to 256 present data with a value of zero. The first two bits of byte 26 provides the speed information for the Gigabit ports while the remainder of byte 26 and byte 27 provides bist status. 26[0]: G0 port (1= port 24 is operating at Gigabit speed; 0= speed is either 10 or 100 Mb/s depending on speed bit of Port 24) 26[1]: G1 port (1= port 25 is operating at Gigabit speed; 0= speed is either 10 or 100 Mb/s depending on speed bit of Port 25) 26[2]: initialization done 26[3]: initialization start 26[4]: checksum ok 26[5]: link_init_complete 26[6]: bist_fail 26[7]: ram_error 27[0]: bist_in_process 27[1]: bist_done 12.3 LED Interface Timing Diagram The signal from the MVTX2604 to the LED decoder is shown in Figure 15. Figure 15 - Timing Diagram of LED Interface 49 Zarlink Semiconductor Inc. MVTX2604 13.0 Hardware Statistics Counter 13.1 Hardware Statistics Counters List Data Sheet MVTX2604 hardware provides a full set of statistics counters for each Ethernet port. The CPU accesses these counters through the CPU interface. All hardware counters are rollover counters. When a counter rolls over the CPU is interrupted so that long-term statistics may be kept. The MAC detects all statistics except for the delay exceed discard counter (detected by buffer manager) and the filtering counter (detected by queue manager). The following is the wrapped signal sent to the CPU through the command block. 31 30 2 6 2 5 0 Status Wrapped Signal B[0] 0-d Bytes Sent (D) B[1] 1-L Unicast Frame Sent B[2] 1-U Frame Send Fail B[3] 2-I Flow Control Frames Sent B[4] 2-u Non-Unicast Frames Sent B[5] 3-d Bytes Received (Good and Bad) (D) B[6] 4-d Frames Received (Good and Bad) (D) B[7] 5-d Total Bytes Received (D) B[8] 6-L Total Frames Received B9] 6-U Flow Control Frames Received B[10] 7-l Multicast Frames Received B[11] 7-u Broadcast Frames Received B[12] 8-L Frames with Length of 64 Bytes B[13] 8-U Jabber Frames B[14] 9-L Frames with Length Between 65-127 Bytes B[15] 9-U Oversize Frames B[16] A-l Frames with Length Between 128-255 Bytes B[17] A-u Frames with Length Between 256-511 Bytes B[18] B-l Frames with Length Between 512-1023 Bytes B[19] B-u Frames with Length Between 1024-1528 Bytes B[20] C-l Fragments B[21] C-U1 Alignment Error B[22] C-U Undersize Frames B[23] D-l CRC 50 Zarlink Semiconductor Inc. MVTX2604 B[24] D-u Short Event B[25] E-l Collision B[26] E-u Drop B[27] F-l Filtering Counter B[28] F-U1 Delay Exceed Discard Counter B[29] F-U Late Collision B[30] Link Status Change B[31] Current link status Notation: X-Y X: Address in the contain memory Y: Size and bits for the counter d: D Word counter L: 24 bits counter bit[23:0] U: 8 bits counter bit[31:24] U1: 8 bits counter bit[23:16] l: 16 bits counter bit[15:0] u: 16 bits counter bit[31:16] 13.2 IEEE 802.3 HUB Management (RFC 1516) 13.2.1 13.2.1.1 Event Counters Readablectet Counts number of bytes (i.e. octets) contained in good valid frames received. Frame size: > 64 bytes, < 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No FCS (i.e. checksum) error No collisions 51 Zarlink Semiconductor Inc. Data Sheet MVTX2604 13.2.1.2 ReadableFrame Counts number of good valid frames received. Frame size: > 64 bytes, < 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No FCS error No collisions 13.2.1.3 FCSErrors Counts number of valid frames received with bad FCS. Frame size: > 64 bytes, < 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No framing error No collisions 13.2.1.4 AlignmentErrors Counts number of valid frames received with bad alignment (not byte-aligned). Frame size: > 64 bytes, < 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No framing error No collisions 13.2.1.5 FrameTooLongs Counts number of frames received with size exceeding the maximum allowable frame size. Frame size: > 64 bytes, > 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged FCS error: don’t care Framing error: don’t care No collisions 13.2.1.6 ShortEvents Counts number of frames received with size less than the length of a short event. Frame size: < 10 bytes FCS error: don’t care 52 Zarlink Semiconductor Inc. Data Sheet MVTX2604 Framing error: Data Sheet don’t care No collisions 13.2.1.7 Runts Counts number of frames received with size under 64 bytes, but greater than the length of a short event. Frame size: > 10 bytes, FCS error: don’t care Framing error: don’t care < 64 bytes No collisions 13.2.1.8 Collisions Counts number of collision events. Frame size: 13.2.1.9 any size LateEvents Counts number of collision events that occurred late (after LateEventThreshold = 64 bytes). Frame size: any size Events are also counted by collision counter 13.2.1.10 VeryLongEvents Counts number of frames received with size larger than Jabber Lockup Protection Timer (TW3). Frame size: 13.2.1.11 > Jabber DataRateMisatches For repeaters or HUB application only. 13.2.1.12 AutoPartitions For repeaters or HUB application only. 13.2.1.13 TotalErrors Sum of the following errors: FCS errors Alignment errors Frame too long Short events Late events Very long events 53 Zarlink Semiconductor Inc. MVTX2604 13.3 Data Sheet IEEE – 802.1 Bridge Management (RFC 1286) 13.3.1 Event Counters 13.3.1.1 InFrames Counts number of frames received by this port or segment. Note: A frame received by this port is only counted by this counter if and only if it is for a protocol being processed by the local bridge function. 13.3.1.2 OutFrames Counts number of frames transmitted by this port. Note: A frame transmitted by this port is only counted by this counter if and only if it is for a protocol being processed by the local bridge function. 13.3.1.3 InDiscards Counts number of valid frames received which were discarded (i.e. filtered) by the forwarding process. 13.3.1.4 DelayExceededDiscards Counts number of frames discarded due to excessive transmit delay through the bridge. 13.3.1.5 MtuExceededDiscards Counts number of frames discarded due to excessive size. 13.4 RMON – Ethernet Statistic Group (RFC 1757) 13.4.1 13.4.1.1 Event Counters Drop Events Counts number of times a packet is dropped, because of lack of available resources. DOES NOT include all packet dropping -- for example, random early drop for quality of service support. 13.4.1.2 Octets Counts the total number of octets (i.e. bytes) in any frames received. 13.4.1.3 BroadcastPkts Counts the number of good frames received and forwarded with broadcast address. Does not include non-broadcast multicast frames. 13.4.1.4 MulticastPkts Counts the number of good frames received and forwarded with multicast address. Does not include broadcast frames. 54 Zarlink Semiconductor Inc. MVTX2604 13.4.1.5 CRCAlignErrors Frame size: > 64 bytes, < 1522 bytes if VLAN tag (1518 if no VLAN) No collisions: Counts number of frames received with FCS or alignment errors 13.4.1.6 UndersizePkts Counts number of frames received with size less than 64 bytes. Frame size: < 64 bytes, No FCS error No framing error No collisions 13.4.1.7 OversizePkts Counts number of frames received with size exceeding the maximum allowable frame size. Frame size: 1522 bytes if VLAN tag (1518 bytes if no VLAN) FCS error don’t care Framing error don’t care No collisions 13.4.1.8 Fragments Counts number of frames received with size less than 64 bytes and with bad FCS. Frame size: < 64 bytes Framing error don’t care No collisions 13.4.1.9 Data Sheet Jabbers Counts number of frames received with size exceeding maximum frame size and with bad FCS. Frame size: > 1522 bytes if VLAN tag (1518 bytes if no VLAN) Framing error don’t care No collisions 55 Zarlink Semiconductor Inc. MVTX2604 13.4.1.10 Data Sheet Collisions Counts number of collision events detected. Only a best estimate since collisions can only be detected while in transmit mode, but not while in receive mode. Frame size: 13.4.1.11 any size Packet Count for Different Size Groups Six different size groups – one counter for each: Pkts64Octets for any packet with size = 64 bytes Pkts65to127Octets for any packet with size from 65 bytes to 127 bytes Pkts128to255Octets for any packet with size from 128 bytes to 255 bytes Pkts256to511Octets for any packet with size from 256 bytes to 511 bytes Pkts512to1023Octets for any packet with size from 512 bytes to 1023 bytes Pkts1024to1518Octets for any packet with size from 1024 bytes to 1518 bytes Counts both good and bad packets. 13.5 Miscellaneous Counters In addition to the statistics groups defined in previous sections, the MVTX2604 has other statistics counters for its own purposes. We have two counters for flow control – one counting the number of flow control frames received, and another counting the number of flow control frames sent. We also have two counters, one for unicast frames sent and one for non-unicast frames sent. A broadcast or multicast frame qualifies as non-unicast. Furthermore, we have a counter called “frame send fail.” This keeps track of FIFO under-runs, late collisions and collisions that have occurred 16 times. 56 Zarlink Semiconductor Inc. MVTX2604 14.0 Register Definition 14.1 MVTX2604 Register Description Register CPU Addr (Hex) Description Data Sheet R/W I2C Addr (Hex) Default 0. ETHERNET Port Control Registers Substitute [N] with Port number (0..1A) ECR1P”N” Port Control Register 1 for Port N 0000 + 2 x N R/W 000-01A 020 ECR2P”N” Port Control Register 2 for Port N 001 + 2 x N R/W 01B-035 000 GGC Extra GIGA bit control register 036 R/W NA 000 1. VLAN Control Registers Substitute [N] with Port number (0..1A) AVTCL VLAN Type Code Register Low 100 R/W 036 000 AVTCH VLAN Type Code Register High 101 R/W 037 081 PVMAP”N”_0 Port “N” Configuration Register 0 102 + 4N R/W 038-052 0FF PVMAP”N”_1 Port “N” Configuration Register 1 103 + 4N R/W 053-06D 0FF PVMAP”N”_2 Port “N” Configuration Register 2 104 + 4N R/W 06E-088 0FF PVMAP”N”_3 Port “N” Configuration Register 3 105 + 4N R/W 089-0A3 007 PVMODE VLAN Operating Mode 170 R/W 0A4 000 PVROUTE7-0 VLAN Router Group Enable 171-178 R/W NA 000 2. TRUNK Control Registers TRUNK0_L Trunk Group 0 Low 200 R/W NA 000 TRUNK0_M Trunk Group 0 Medium 201 R/W NA 000 TRUNK0_H Trunk Group 0 High 202 R/W NA 000 TRUNK0_ MODE Trunk Group 0 Mode 203 R/W 0A5 003 TRUNK0_ HASH0 Trunk Group 0 Hash 0 Destination Port 204 R/W NA 000 TRUNK0_ HASH1 Trunk Group 0 Hash 1 Destination Port 205 R/W NA 001 TRUNK0_ HASH2 Trunk Group 0 Hash 2 Destination Port 206 R/W NA 002 TRUNK0_ HASH3 Trunk Group 0 Hash 3 Destination Port 207 R/W NA 003 TRUNK1_L Trunk Group 1 Low 208 R/W NA 000 TRUNK1_M Trunk Group 1 Medium 209 R/W NA 000 57 Zarlink Semiconductor Inc. Notes MVTX2604 Register CPU Addr (Hex) Description Data Sheet R/W I2C Addr (Hex) Default TRUNK1_H Trunk Group 1 High 20A R/W NA 000 TRUNK1_ MODE Trunk Group 1 Mode 20B R/W 0A6 003 TRUNK1_ HASH0 Trunk Group 1 Hash 0 Destination Port 20C R/W NA 004 TRUNK1_ HASH1 Trunk Group 1 Hash 1 Destination Port 20D R/W NA 005 TRUNK1_ HASH2 Trunk Group 1 Hash 2 Destination Port 20E R/W NA 006 TRUNK1_ HASH3 Trunk Group 1 Hash 3 Destination Port 20F R/W NA 007 TRUNK2_ MODE Trunk Group 2 Mode 210 R/W NA 003 TRUNK2_ HASH0 Trunk Group 2 Hash 0 Destination Port 211 R/W NA 019 TRUNK2_ HASH1 Trunk Group 2 Hash 1 Destination Port 212 R/W NA 01A Multicast_ HASH0-0 Multicast hash result 0 mask byte 0 220 R/W NA 0FF Multicast_ HASH0-1 Multicast hash result 0 mask byte 1 221 R/W NA 0FF Multicast_ HASH0-2 Multicast hash result 0 mask byte 2 222 R/W NA 0FF Multicast_ HASH0-3 Multicast hash result 0 mask byte 3 223 R/W NA 0FF Multicast_ HASH1-0 Multicast hash result 1 mask byte 0 224 R/W NA 0FF Multicast_ HASH1-1 Multicast hash result 1 mask byte 1 225 R/W NA 0FF Multicast_ HASH1-2 Multicast hash result 1 mask byte 2 226 R/W NA 0FF Multicast_ HASH1-3 Multicast hash result 1 mask byte 3 227 R/W NA 0FF Multicast_ HASH2-0 Multicast hash result 2 mask byte 0 228 R/W NA 0FF Multicast_ HASH2-1 Multicast hash result 2 mask byte 1 229 R/W NA 0FF 58 Zarlink Semiconductor Inc. Notes MVTX2604 Register CPU Addr (Hex) Description Data Sheet R/W I2C Addr (Hex) Default Multicast_ HASH2-2 Multicast hash result 2 mask byte 2 22A R/W NA 0FF Multicast_ HASH2-3 Multicast hash result 2 mask byte 3 22B R/W NA 0FF Multicast_ HASH3-0 Multicast hash result 3 mask byte 0 22C R/W NA 0FF Multicast_ HASH3-1 Multicast hash result 3 mask byte 1 22D R/W NA 0FF Multicast_ HASH3-2 Multicast hash result 3 mask byte 2 22E R/W NA 0FF Multicast_ HASH3-3 Multicast hash result 3 mask byte 3 22F R/W NA 0FF 3. CPU Port Configuration MAC0 CPU MAC Address byte 0 300 R/W NA 000 MAC1 CPU MAC Address byte 1 301 R/W NA 000 MAC2 CPU MAC Address byte 2 302 R/W NA 000 MAC3 CPU MAC Address byte 3 303 R/W NA 000 MAC4 CPU MAC Address byte 4 304 R/W NA 000 MAC5 CPU MAC Address byte 5 305 R/W NA 000 INT_MASK0 Interrupt Mask 0 306 R/W NA 000 INTP_MASK”N” Interrupt Mask for MAC Port 2N, 2N+1 310+N (310 313) R/W NA 000 RQS Receive Queue Select 323 R/W NA 000 RQSS Receive Queue Status 324 RO NA N/A TX_AGE Transmission Queue Aging Time 325 R/W 0A7 008 4. Search Engine Configurations AGETIME_LOW MAC Address Aging Time Low 400 R/W 0A8 2M:05C/ 4M:02E AGETIME_ HIGH MAC Address Aging Time High 401 R/W 0A9 000 V_AGETIME VLAN to Port Aging Time 402 R/W NA 0FF SE_OPMODE Search Engine Operating Mode 403 R/W NA 000 SCAN Scan control register 404 R/W NA 000 59 Zarlink Semiconductor Inc. Notes MVTX2604 Register CPU Addr (Hex) Description Data Sheet R/W I2C Addr (Hex) Default 5. Buffer Control and QOS Control FCBAT FCB Aging Timer 500 R/W 0AA 0FF QOSC QOS Control 501 R/W 0AB 000 FCR Flooding Control Register 502 R/W 0AC 008 AVPML VLAN Priority Map Low 503 R/W 0AD 000 AVPMM VLAN Priority Map Middle 504 R/W 0AE 000 AVPMH VLAN Priority Map High 505 R/W 0AF 000 TOSPML TOS Priority Map Low 506 R/W 0B0 000 TOSPMM TOS Priority Map Middle 507 R/W 0B1 000 TOSPMH TOS Priority Map High 508 R/W 0B2 000 AVDM VLAN Discard Map 509 R/W 0B3 000 TOSDML TOS Discard Map 50A R/W 0B4 000 BMRC Broadcast/Multicast Rate Control 50B R/W 0B5 000 UCC Unicast Congestion Control 50C R/W 0B6 2M:008/ 4M:010 MCC Multicast Congestion Control 50D R/W 0B7 050 PR100 Port Reservation for 10/100 Ports 50E R/W 0B8 2M:024/ 4M:036 PRG Port Reservation for Giga Ports 50F R/W 0B9 2M:035/ 4M:058 SFCB Share FCB Size 510 R/W 0BA 2M:014/ 4M:064 C2RS Class 2 Reserve Size 511 R/W 0BB 000 C3RS Class 3 Reserve Size 512 R/W 0BC 000 C4RS Class 4 Reserve Size 513 R/W 0BD 000 C5RS Class 5 Reserve Size 514 R/W 0BE 000 C6RS Class 6 Reserve Size 515 R/W 0BF 000 C7RS Class 7 Reserve Size 516 R/W 0C0 000 QOSC”N” QOS Control (N=0 - 5) 517- 51C R/W 0C1-0C6 000 QOS Control (N=6 - 11) 51D- 522 R/W NA 000 60 Zarlink Semiconductor Inc. Notes MVTX2604 Register CPU Addr (Hex) Description Data Sheet R/W I2C Addr (Hex) Default QOS Control (N=12 - 23) 523- 52E R/W 0C7-0D2 000 QOS Control (N=24 - 59) 52F- 552 R/W NA 000 RDRC0 WRED Drop Rate Control 0 553 R/W 0FB 08F RDRC1 WRED Drop Rate Control 1 554 R/W 0FC 088 USER_ PORT”N”_LOW User Define Logical Port “N” Low (N=0-7) 580 + 2N R/W 0D6-0DD 000 USER_ PORT”N”_HIGH User Define Logical Port “N” High 581 + 2N R/W 0DE-0E5 000 USER_ PORT1:0_ PRIORITY User Define Logic Port 1 and 0 Priority 590 R/W 0E6 000 USER_ PORT3:2_ PRIORITY User Define Logic Port 3 and 2 Priority 591 R/W 0E7 000 USER_ PORT5:4_ PRIORITY User Define Logic Port 5 and 4 Priority 592 R/W 0E8 000 USER_ PORT7:6_PRI ORITY User Define Logic Port 7 and 6 Priority 593 R/W 0E9 000 USER_PORT_ ENABLE User Define Logic Port Enable 594 R/W 0EA 000 WLPP10 Well known Logic Port Priority for 1 and 0 595 R/W 0EB 000 WLPP32 Well known Logic Port Priority for 3 and 2 596 R/W 0EC 000 WLPP54 Well known Logic Port Priority for 5 and 4 597 R/W 0ED 000 WLPP76 Well-known Logic Port Priority for 7&6 598 R/W 0EE 000 WLPE Well known Logic Port Enable 599 R/W 0EF 000 RLOWL User Define Range Low Bit7:0 59A R/W 0F4 000 RLOWH User Define Range Low Bit 15:8 59B R/W 0F5 000 RHIGHL User Define Range High Bit 7:0 59C R/W 0D3 000 RHIGHH User Define Range High Bit 15:8 59D R/W 0D4 000 RPRIORITY User Define Range Priority 59E R/W 0D5 000 61 Zarlink Semiconductor Inc. Notes MVTX2604 Register CPUQOSC1~3 R/W I2C Addr (Hex) Default 5A0-5A2 R/W NA 000 CPU Addr (Hex) Description Byte limit for TxQ on CPU port Data Sheet 6. MISC Configuration Registers MII_OP0 MII Register Option 0 600 R/W 0F0 000 MII_OP1 MII Register Option 1 601 R/W 0F1 000 FEN Feature Registers 602 R/W 0F2 010 MIIC0 MII Command Register 0 603 R/W N/A 000 MIIC1 MII Command Register 1 604 R/W N/A 000 MIIC2 MII Command Register 2 605 R/W N/A 000 MIIC3 MII Command Register 3 606 R/W N/A 000 MIID0 MII Data Register 0 607 RO N/A N/A MIID1 MII Data Register 1 608 RO N/A N/A LED LED Control Register 609 R/W 0F3 000 DEVICE Device id and test 60A R/W N/A 000 SUM EEPROM Checksum Register 60B R/W 0FF 000 7. Port Mirroring Controls MIRROR1_SRC Port Mirror 1 Source Port 700 R/W N/A 07F MIRROR1_ DEST Port Mirror 1 Destination Port 701 R/W N/A 017 MIRROR2_SRC Port Mirror 2 Source Port 702 R/W N/A 0FF MIRROR2_ DEST Port Mirror 2 Destination Port 703 R/W N/A 000 F. Device Configuration Register GCR Global Control Register F00 R/W N/A 000 DCR Device Status and Signature Register F01 RO N/A N/A DCR1 Giga Port status F02 RO N/A N/A DPST Device Port Status Register F03 R/W N/A 000 DTST Data read back register F04 RO N/A N/A DA DA Register FFF RO N/A DA 62 Zarlink Semiconductor Inc. Notes MVTX2604 14.2 14.2.1 • • INDEX_REG1 (only needed for 8-bit mode) DATA_FRAME_REG Data of indirectly accessed registers. (8 bits) Address = 2 (read/write) 14.2.4 • • • INDEX_REG0 Address bits [15:8] for indirectly accessed register addresses Address = 1 (write only) 14.2.3 • • Directly Accessed Registers Address bits [7:0] for indirectly accessed register addresses Address = 0 (write only) 14.2.2 • • Data Sheet CONTROL_FRAME_REG CPU transmit/receive switch frames. (8/16 bits) Address = 3 (read/write) Format: - Send frame from CPU: In sequence) Frame Data (size should be in multiple of 8-byte) 8-byte of Frame status (Frame size, Destination port #, Frame O.K. status) - CPU Received frame: In sequence) 8-byte of Frame status (Frame size, Source port #, VLAN tag) Frame Data 14.2.5 • • • COMMAND&STATUS Register CPU interface commands (write) and status Address = 4 (read/write) When the CPU writes to this register Bit [0]: • Set Control Frame Receive buffer ready after CPU writes a complete frame into the buffer. This bit is self-cleared. Bit [1]: • Set Control Frame Transmit buffer1 ready after CPU reads out a complete frame from the buffer. This bit is self-cleared. Bit [2]: • Set Control Frame Transmit buffer2 ready after CPU reads out a complete frame from the buffer. This bit is self-cleared. Bit [3]: • Set this bit to indicate CPU received a whole frame (transmit FIFO frame receive done), and flushed the rest of frame fragment. This bit will be selfcleared. Bit [4]: • Set this bit to indicate that the following Write to the Receive FIFO is the last one (EOF). This bit will be self-cleared. 63 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Bit [5]: • Set this bit to re-start the data that is sent from the CPU to Receive FIFO (re-align). This feature can be used for software debug. For normal operation must be '0'. Bit [6]: • Do not use. Must be '0' Bit [7]: • Reserved When the CPU reads this register: Bit [0]: • Control Frame receive buffer ready, CPU can write a new frame • 1 – CPU can write a new control command 1 • 0 – CPU has to wait until this bit is 1 to write a new control command 1 Bit [1]: • Control Frame transmit buffer1 ready for CPU to read • 1 – CPU can read a new control command 1 • 0 – CPU has to wait until this bit is 1 to read a new control command Bit [2]: • Control Frame transmit buffer2 ready for CPU to read • 1 – CPU can read a new control command 1 • 0 – CPU has to wait until this bit is 1 to read a new control command Bit [3]: • Transmit FIFO has data for CPU to read (TXFIFO_RDY) Bit [4]: • Receive FIFO has space for incoming CPU frame (RXFIFO_SPOK) Bit [5]: • Transmit FIFO End Of Frame (TXFIFO_EOF) Bit [6]: • Reserve Bit [7]: • Reserve 64 Zarlink Semiconductor Inc. MVTX2604 14.2.6 • • • Data Sheet Interrupt Register Interrupt sources (8 bits) Address = 5 (read only) When CPU reads this register Bit [0]: • CPU frame interrupt Bit [1]: • Control Frame 1 interrupt. Control Frame receive buffer1 has data for CPU to read Bit [2]: • Control Frame 2 interrupt. Control Frame receive buffer2 has data for CPU to read Bit [3]: • Gigabit port A interrupt Bit [4]: • Gigabit port B interrupt Bit [7:5]: • Reserve Note: This register is not self-cleared. After reading CPU has to clear the bit writing 0 to it. 14.2.7 • • • Address = 6 (read/write) When CPU writes to this register, data is written to the Control Command Frame Receive Buffer When CPU reads this register, data is read from the Control Command Frame Transmit Buffer1 14.2.8 • • Control Command Frame Buffer1 Access Register Control Command Frame Buffer2 Access Register Address = 7 (read only) When CPU reads this register, data is read from the Control Command Frame Transmit Buffer1 14.3 Indirectly Accessed registers 14.4 Group 0 Address MAC Ports Group 14.4.1 ECR1Pn: Port N Control Register I2C Address 000 - 01A; CPU Address:0000+2xN (N = port number) Accessed by CPU, serial interface and I2C (R/W) 7 6 Sp State 5 4 2 A-FC Port Mode 3 1 0 65 Zarlink Semiconductor Inc. MVTX2604 Bit [0] Data Sheet 1 - Flow Control Off 0 - Flow Control On • • • • • • Bit [1] When Flow Control On: In half duplex mode the MAC transmitter applies back pressure for flow control. In full duplex mode the MAC transmitter sends Flow Control frames when necessary. The MAC receiver interprets and processes incoming flow control frames. The Flow Control Frame Received counter is incremented whenever a flow control is received. When Flow Control off: In half duplex mode the MAC Transmitter does not assert flow control by sending flow control frames or jamming collision. In full duplex mode the Mac transmitter does not send flow control frames. The MAC receiver does not interpret or process the flow control frames. The Flow Control Frame Received counter is not incremented. 1 - Half Duplex - Only in 10/100 mode 0 - Full Duplex Bit [2] 1 - 10 Mbps 0 - 100 Mbps Bit [4:3] 00 – Automatic Enable Auto Neg. - This enables hardware state machine for auto-negotiation. 01 - Limited Disable auto Neg. This disables hardware for speed auto-negotiation. Hardware Poll MII for link status. 10 - Link Down. Force link down (disable the port). 11 - Link Up. The configuration in ECR1[2:0] is used for (speed/half duplex/full duplex/flow control) setup. Bit [5] • Asymmetric Flow Control Enable. 0 – Disable asymmetric flow control 01 – Enable Asymmetric flow control Bit [7:6] • When this bit is set, and flow control is on (bit[0] = 0), don’t send out a flow control frame. But MAC receiver interprets and processes flow control frames. • SS - Spanning tree state (802.1D spanning tree protocol) Default is 11. 00 – Blocking: Frame is dropped 01 - Listening: Frame is dropped 10 - Learning: Frame is dropped. Source MAC address is learned. 11 - Forwarding: Frame is forwarded. Source MAC address is learned. 66 Zarlink Semiconductor Inc. MVTX2604 14.4.2 Data Sheet ECR2Pn: Port N Control Register I2C Address: 01B-035; CPU Address:0001+2xN (N = port number) Accessed by CPU and serial interface (R/W) 7 6 5 Security En Bit [0]: • 4 QoS Sel 3 Reserve 2 1 0 DisL Ftf Futf Filter untagged frame (Default 0) • 0: Disable • 1: All untagged frames from this port are discarded or follow security option when security is enable Bit [1]: • Filter Tag frame (Default 0) • 0: Disable • 1: All tagged frames from this port are discarded or follow security option when security is enable Bit [2]: • Learning Disable (Default 0) • 1 Learning is disabled on this port • 0 Learning is enabled on this port Bit [3]: • Must be ‘1’ Bit [5:4:] • • • QOS mode selection (Default 00) Determines which of the 4 sets of QoS settings is used for 10/100 ports. Note that there are 4 sets of per-queue byte thresholds, and 4 sets of WFQ ratios programmed. These bits select among the 4 choices for each 10/100 port. Refer to QOS Application Note. • • • • 00: select class byte limit set 0 and classes WFQ credit set 0 01: select class byte limit set 1 and classes WFQ credit set 1 10: select class byte limit set 2 and classes WFQ credit set 2 11: select class byte limit set 3 and classes WFQ credit set 3 67 Zarlink Semiconductor Inc. MVTX2604 Bit[7:6] • Data Sheet Security Enable (Default 00). The MVTX2604 checks the incoming data for one of the following conditions: 1. If the source MAC address of the incoming packet is in the MAC table and is defined as secure address but the ingress port is not the same as the port associated with the MAC address in the MAC table. A MAC address is defined as secure when its entry at MAC table has static status and bit 0 is set to 1. MAC address bit 0 (the first bit transmitted) indicates whether the address is unicast or multicast. As source addresses are always unicast bit 0 is not used (always 0). MVTX2600 uses this bit to define secure MAC addresses. 2. If the port is set as learning disable and the source MAC address of the incoming packet is not defined in the MAC address table. 3. If the port is configured to filter untagged frames and an untagged frame arrives or if the port is configured to filter tagged frames and a tagged frame arrives. If one of these three conditions occurs the packet will be handled according to one of the following specified options: • CPU installed • • • • 14.4.3 00 – Disable port security 01 – Discard violating packets 10 – Send packet to CPU and destination port 11 – Send packet to CPU only GGControl – Extra GIGA Port Control CPU Address:h036 Accessed by CPU and serial interface (R/W) 7 6 5 4 3 2 1 0 DF DI MiiB RstA DF DI MiiA RstA Bit [0]: • Reset GIGA port A • 0: Normal operation (default) • 1: Reset Gigabit port A. Normally used when a new Phy is connected (Hot swap). Bit [1]: • GIGA port A use MII interface (10/100M) • 0: Gigabit port operations at 1000 mode (default) • 1: Gigabit port operations at 10/100 mode Bit [2]: • Device information insertion enable for Gigabit port A • 0: Disable preamble stack device ID insertion (default). • 1: Insert stack device ID into the preamble (must be enabled for ring mode). Bit [3]: • GIGA port A direct flow control (MAC to MAC connection). The MVTX2604 supports direct flow control mechanism; the flow control frame is therefore not sent through the Gigabit port data path. • 0: Direct flow control disabled (default) • 1: Direct flow control enabled 68 Zarlink Semiconductor Inc. MVTX2604 Bit [4]: • Data Sheet Reset GIGA port B • 0: Normal operation (default) • 1: Reset Gigabit port B Bit [5]: • GIGA port B use MII interface (10/100M) • 0: Gigabit port operates at 1000 mode (default) • 1: Gigabit port operates at 10/100 mode Bit [6]: • Device information attach enable for Gigabit port B • 0: Disable preamble stack device ID insertion (default) • 1: Insert stack device ID into the preamble (must be enabled for ring mode). Bit [7]: • GIGA port B direct flow control (MAC to MAC connection). MVTX2604 supports direct flow control mechanism; the flow control frame is therefore not sent through the Gigabit port data path. • 0: Direct flow control disabled (default) • 1: Direct flow control enabled 14.5 14.5.1 Group 1 Address VLAN Group AVTCL – VLAN Type Code Register Low I2C Address 036; CPU Address:h100 Accessed by CPU, serial interface and I2C (R/W) Bit [7:0]: 14.5.2 VLANType_LOW: Lower 8 bits of the VLAN type code (Default 00) AVTCH – VLAN Type Code Register High I2C Address 037; CPU Address:h101 Accessed by CPU, serial interface and I2C (R/W) Bit [7:0]: 14.5.3 VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81) PVMAP00_0 – Port 00 Configuration Register 0 I2C Address 038, CPU Address:h102 Accessed by CPU, serial interface and I2C (R/W) In Port Based VLAN Mode Bit [7:0]: VLAN Mask for ports 7 to 0 (Default FF) This register indicates the legal egress ports. A “1” on bit 7 means that the packet can be sent to port 7. A “0” on bit 7 means that any packet destined to port 7 will be discarded. This register works with registers 1, 2 and 3 to form a 27 bit mask to all egress ports. 69 Zarlink Semiconductor Inc. MVTX2604 Data Sheet In Tag based VLAN Mode Bit [7:0]: PVID [7:0] (Default is FF) This is the default VLAN tag. It works with configuration register PVMAP00_1 [7:5] [3:0] to form a default VLAN tag. If the received packet is untagged, then the packet is classified with the default VLAN tag. If the received packet has a VLAN ID of 0, then PVID is used to replace the packet’s VLAN ID. 14.5.4 PVMAP00_1 – Port 00 Configuration Register 1 I2C Address h53, CPU Address:h103 Accessed by CPU, serial interface and I2C (R/W) In Port based VLAN Mode Bit [7:0]: VLAN Mask for ports 15 to 8 (Default is FF) In Tag based VLAN Mode 7 5 Unitag Port Priority 4 3 Ultrust PVID Bit [3:0]: PVID [11:8] (Default is F) Bit [4]: • 0 Untrusted Port. (Default is 1) This register is used to change the VLAN priority field of a packet to a predetermined priority. • 1 : VLAN priority field is changed to Bit[7:5] at ingress port • 0 : Keep VLAN priority field Bit [7:5]: 14.5.5 • Untag Port Priority (Default 7) PVMAP00_2 – Port 00 Configuration Register 2 I2C Address h6E, CPU Address:h104 Accessed by CPU, serial interface and I2C (R/W) In Port Based VLAN Mode Bit [7:0]: • VLAN Mask for ports 23 to 16 (Default FF) In Tag based VLAN Mode This registered is unused 14.5.6 PVMAP00_3 – Port 00 Configuration Register 3 I2C Address h89, CPU Address:h105 Accessed by CPU, serial interface and I2C (R/W) 70 Zarlink Semiconductor Inc. MVTX2604 Data Sheet In Port Based VLAN Mode 7 6 5 3 FP en Drop Default priority 2 tx 0 VLAN Mask Bit [2:0]: VLAN Mask for ports 26 to 24 (Default 7). Port 24 is the CPU port Bit [5:3]: Default Transmit priority. Used when Bit [7] = 1 (Default 0) • • • • • • • • Bit [6]: 000 001 010 011 100 101 110 111 Transmit Priority Level 0 (Lowest) Transmit Priority Level 1 Transmit Priority Level 2 Transmit Priority Level 3 Transmit Priority Level 4 Transmit Priority Level 5 Transmit Priority Level 6 Transmit Priority Level 7 (Highest) Default Discard priority. Used when Bit[7]=1 (Default 0) • 0 - Discard Priority Level 0 (Lowest) • 1 - Discard Priority Level 1(Highest) Bit [7]: Enable Fix Priority (Default 0) • 0 Disable fix priority. All frames are analyzed. Transmit Priority and Discard Priority are based on VLAN Tag, TOS or Logical Port. • 1 Transmit Priority and Discard Priority are based on values programmed in bit [6:3] In Tag-based VLAN Mode Bit [0]: • Not used Bit [1]: Ingress Filter Enable (Default 1) • 0 Disable Ingress Filter. Packets with VLAN not belonging to source port are forwarded, if destination port belongs to the VLAN. Symmetric VLAN. • 1 Enable Ingress Filter. Packets with VLAN not belonging to source port are filtered. Asymmetric VLAN. Bit [2]: Force untag out (VLAN tagging is based on 802.1q rule) (Default 1). • 0 Disable (Default) • 1 Force untagged output All packets transmitted from this port are untagged. This register is used when this port is connected to legacy equipment that does not support VLAN tagging. 71 Zarlink Semiconductor Inc. MVTX2604 Bit [5:3]: Default Transmit priority. Used when Bit [7] = 1 (Default 0) • • • • • • • • Bit [6]: Data Sheet 000 001 010 011 100 101 110 111 Transmit Priority Level 0 (Lowest) Transmit Priority Level 1 Transmit Priority Level 2 Transmit Priority Level 3 Transmit Priority Level 4 Transmit Priority Level 5 Transmit Priority Level 6 Transmit Priority Level 7 (Highest) Default Discard priority Used when Bit [7] =1 (Default 0) • 0 - Discard Priority Level 0 (Lowest) • 1 Discard Priority Level 1 (Highest) Bit [7]: Enable Fix Priority (Default 0) • 0 Disable fix priority. All frames are analyzed. Transmit Priority and Discard Priority are based on VLAN Tag, TOS or Logical Port. • 1 Transmit Priority and Discard Priority are based on values programmed in bit [6:3] 14.6 Port Configuration Registers PVMAP01_0,1,2,3 I2C Address h39,54,6F,8A; CPU Address:h106,107,108,109) PVMAP02_0,1,2,3 I2C Address h3A,55,70,8B; CPU Address:h10A, 10B, 10C, 10D) PVMAP03_0,1,2,3 I2C Address h3B,56,71,8C; CPU Address:h10E, 10F, 110, 111) PVMAP04_0,1,2,3 I2C Address h3C,57,72,8D; CPU Address:h112, 113, 114, 115) PVMAP05_0,1,2,3 I2C Address h3D,58,73,8E; CPU Address:h116, 117, 118, 119) PVMAP06_0,1,2,3 I2C Address h3E,59,74,8F; CPU Address:h11A, 11B, 11C, 11D) PVMAP07_0,1,2,3 I2C Address h3F,5A,75,90; CPU Address:h11E, 11F, 120, 121) PVMAP08_0,1,2,3 I2C Address h40,5B,76,91; CPU Address:h122, 123, 124, 125) PVMAP09_0,1,2,3 I2C Address h41,5C,77,92; CPU Address:h126, 127, 128, 129) PVMAP10_0,1,2,3 I2C Address h42,5D,78,93; CPU Address:h12A, 12B, 12C, 12D) PVMAP11_0,1,2,3 I2C Address h43,5E,79,94; CPU Address:h12E, 12F, 130, 131) PVMAP12_0,1,2,3 I2C Address h44,5F,7A,95; CPU Address:h132, 133, 134, 135) PVMAP13_0,1,2,3 I2C Address h45,60,7B,96; CPU Address:h136, 137, 138, 139) PVMAP14_0,1,2,3 I2C Address h46,61,7C,97; CPU Address:h13A, h13B, 13C, 13D) PVMAP15_0,1,2,3 I2C Address h47,62,7D,98; CPU Address:h13E, 13F, 140, 141) PVMAP16_0,1,2,3 I2C Address h48,63,7E,99; CPU Address:h142, 143, 144, 145) PVMAP17_0,1,2,3 I2C Address h49,64,7F,9A; CPU Address:h146, 147, 148, 149) PVMAP18_0,1,2,3 I2C Address h4A,65,80,9B; CPU Address:h14A, 14B, 14C, 14D) PVMAP19_0,1,2,3 I2C Address h4B,66,81,9C; CPU Address:h14E, 14F, 150, 151) 72 Zarlink Semiconductor Inc. MVTX2604 Data Sheet PVMAP20_0,1,2,3 I2C Address h4C,67,82,9D; CPU Address:h152, 153, 154, 155) PVMAP21_0,1,2,3 I2C Address h4D,68,83,9E; CPU Address:h156, 157, 158, 159) PVMAP22_0,1,2,3 I2C Address h4E,69,84,9F; CPU Address:h15A, 15B, 15C, 15D) PVMAP23_0,1,2,3 I2C Address h4F,6A,85,A0; CPU Address:h15E, 15F, 160, 161) PVMAP24_0,1,2,3 I2C Address h50,6B,86,A1; CPU Address:h162, 163, 164, 165) (CPU port) PVMAP25_0,1,2,3 I2C Address h51,6C,87,A2; CPU Address:h166, 167, 168, 169) (Giagabit port 1) PVMAP26_0,1,2,3 I2C Address h52,6D,88,A3; CPU Address:h16A, 16B, 16C, 16D) (Gigabit port 2) 14.6.1 PVMODE I2C Address: h0A4, CPU Address:h170 Accessed by CPU, serial interface (R/W) 7 6 5 4 3 2 1 0 MAC05 MMA STP SM0 rPCS DF SL Vmod Bit [0]: • VLAN Mode (Default = 0) • 1 Tag based VLAN Mode • 0 Port based VLAN Mode Bit [1]: • Slow learning (Default = 0) Same function as SE_OP MODE bit 7. Either bit can enable the function; both need to be turned off to disable the feature. Bit [2]: • Disable dropping of frames with destination MAC addresses 0180C2000001 to 0180C200000F (Default = 0) • 0: Drop all frames in this range • 1: Disable dropping of frames in this range Bit [3]: • Disable Reset PCS (Default = 0) • 0: Enable reset PCS. PCS FIFO will be reset when received a PCS symbol error. • 1: Disable reset PCS Bit [4]: • Support MAC address 0 (Default = 0) • 0: MAC address 0 is not learned. • 1: MAC address 0 is learned. Bit [5]: • Disable IEEE multicast control frame (0180C2000000 to 0180C20000FF) to CPU in managed mode (Default = 0) • 0: Packet is forwarded to CPU • 1: Packet is forwarded as multicast Bit [6]: • Multiple MAC addresses (Default = 0) • 0: Single MAC address is assigned to CPU. Registers MAC0 to MAC5 are used to program the CPU MAC address. • 1: One block of 32 MAC addresses are assigned to CPU. The block is defined in an increase way from the MAC address programmed in registers MAC0 to MAC5. 73 Zarlink Semiconductor Inc. MVTX2604 Bit [7]: • Data Sheet Disable registers MAC 5 – 0 (CPU MAC address) in comparison with Ethernet frame destination MAC address. When disable, unicast frames are not forward to CPU. (Default = 0) • 1: Disable • 0: Enable 14.6.2 PVROUTE 0 Registers PVROUTE0 to PVROUTE7 allows the VLAN Index to be assigned an address of a router group. This feature is useful during IP Multicast mode when data is being sent to the VLAN group and no member of the group registers. By assigning a router group the VLAN group always has a default address to handle the multicast traffic. CPU Address:h171 Accessed by CPU, serial interface (R/W) 14.6.3 Bit [0]: • VLAN Index 8’hC0 has router group and the router group is VLAN Index 8’h40 Bit [1]: • VLAN Index 8’hC1 has router group and the router group is VLAN Index 8’h41 Bit [2]: • VLAN Index 8’hC2 has router group and the router group is VLAN Index 8’h42 Bit [3]: • VLAN Index 8’hC3 has router group and the router group is VLAN Index 8’h43 Bit [4]: • VLAN Index 8’hC4 has router group and the router group is VLAN Index 8’h44 Bit [5]: • VLAN Index 8’hC5 has router group and the router group is VLAN Index 8’h45 Bit [6]: • VLAN Index 8’hC6 has router group and the router group is VLAN Index 8’h46 Bit [7]: • VLAN Index 8’hC7 has router group and the router group is VLAN Index 8’h47 PVROUTE1 CPU Address:h172 Accessed by CPU, serial interface (R/W) Bit [0]: • VLAN Index 8’hC8 has router group and the router group is VLAN Index 8’h48 Bit [1]: • VLAN Index 8’hC9 has router group and the router group is VLAN Index 8’h48 Bit [2]: • VLAN Index 8’hCA has router group and the router group is VLAN Index 8’h4A Bit [3]: • VLAN Index 8’hCB has router group and the router group is VLAN Index 8’h4B Bit [4]: • VLAN Index 8’hCC has router group and the router group is VLAN Index 8’h4C Bit [5]: • VLAN Index 8’hCD has router group and the router group is VLAN Index 8’h4D Bit [6]: • VLAN Index 8’hCE has router group and the router group is VLAN Index 8’h4E Bit [7]: • VLAN Index 8’hCF has router group and the router group is VLAN Index 8’h4F 74 Zarlink Semiconductor Inc. MVTX2604 14.6.4 Data Sheet PVROUTE2 CPU Address:h173 Accessed by CPU, serial interface (R/W) 14.6.5 Bit [0]: • VLAN Index 8’hD0 has router group and the router group is VLAN Index 8’h50 Bit [1]: • VLAN Index 8’hD1 has router group and the router group is VLAN Index 8’h51 Bit [2]: • VLAN Index 8’hD2 has router group and the router group is VLAN Index 8’h52 Bit [3]: • VLAN Index 8’hD3 has router group and the router group is VLAN Index 8’h53 Bit [4]: • VLAN Index 8’hD4 has router group and the router group is VLAN Index 8’h54 Bit [5]: • VLAN Index 8’hD5 has router group and the router group is VLAN Index 8’h55 Bit [6]: • VLAN Index 8’hD6 has router group and the router group is VLAN Index 8’h56 Bit [7]: • VLAN Index 8’hD7 has router group and the router group is VLAN Index 8’h57 PVROUTE3 CPU Address:h174 Accessed by CPU, serial interface (R/W) 14.6.6 Bit [0]: • VLAN Index 8’hD8 has router group and the router group is VLAN Index 8’h58 Bit [1]: • VLAN Index 8’hD9 has router group and the router group is VLAN Index 8’h59 Bit [2]: • VLAN Index 8’hDA has router group and the router group is VLAN Index 8’h5A Bit [3]: • VLAN Index 8’hDB has router group and the router group is VLAN Index 8’h5B Bit [4]: • VLAN Index 8’hDC has router group and the router group is VLAN Index 8’h5C Bit [5]: • VLAN Index 8’hDD has router group and the router group is VLAN Index 8’h5D Bit [6]: • VLAN Index 8’hDE has router group and the router group is VLAN Index 8’h5E Bit [7]: • VLAN Index 8’hDF has router group and the router group is VLAN Index 8’h5F PVROUTE4 CPU Address:h175 Accessed by CPU, serial interface (R/W) Bit [0]: • VLAN Index 8’hE0 has router group and the router group is VLAN Index 8’h60 Bit [1]: • VLAN Index 8’hE1 has router group and the router group is VLAN Index 8’h61 Bit [2]: • VLAN Index 8’hE2 has router group and the router group is VLAN Index 8’h62 Bit [3]: • VLAN Index 8’hE3 has router group and the router group is VLAN Index 8’h63 Bit [4]: • VLAN Index 8’hE4 has router group and the router group is VLAN Index 8’h64 Bit [5]: • VLAN Index 8’hE5 has router group and the router group is VLAN Index 8’h65 Bit [6]: • VLAN Index 8’hE6 has router group and the router group is VLAN Index 8’h66 Bit [7]: • VLAN Index 8’hE7 has router group and the router group is VLAN Index 8’h67 75 Zarlink Semiconductor Inc. MVTX2604 14.6.7 Data Sheet PVROUTE5 CPU Address:h176 Accessed by CPU, serial interface (R/W) 14.6.8 Bit [0]: • VLAN Index 8’hE8 has router group and the router group is VLAN Index 8’h68 Bit [1]: • VLAN Index 8’hE9 has router group and the router group is VLAN Index 8’h69 Bit [2]: • VLAN Index 8’hEA has router group and the router group is VLAN Index 8’h6A Bit [3]: • VLAN Index 8’hEB has router group and the router group is VLAN Index 8’h6B Bit [4]: • VLAN Index 8’hEC has router group and the router group is VLAN Index 8’h6C Bit [5]: • VLAN Index 8’hED has router group and the router group is VLAN Index 8’h6D Bit [6]: • VLAN Index 8’hEE has router group and the router group is VLAN Index 8’h6E Bit [7]: • VLAN Index 8’hEF has router group and the router group is VLAN Index 8’h6F PVROUTE6 CPU Address:h177 Accessed by CPU, serial interface (R/W) 14.6.9 Bit [0]: • VLAN Index 8’hF0 has router group and the router group is VLAN Index 8’h70 Bit [1]: • VLAN Index 8’hF1 has router group and the router group is VLAN Index 8’h71 Bit [2]: • VLAN Index 8’hF2 has router group and the router group is VLAN Index 8’h72 Bit [3]: • VLAN Index 8’hF3 has router group and the router group is VLAN Index 8’h73 Bit [4]: • VLAN Index 8’hF4 has router group and the router group is VLAN Index 8’h74 Bit [5]: • VLAN Index 8’hF5 has router group and the router group is VLAN Index 8’h75 Bit [6]: • VLAN Index 8’hF6 has router group and the router group is VLAN Index 8’h76 Bit [7]: • VLAN Index 8’hF7 has router group and the router group is VLAN Index 8’h77 PVROUTE7 CPU Address:h178 Accessed by CPU, serial interface (R/W) Bit [0]: • VLAN Index 8’hF8 has router group and the router group is VLAN Index 8’h78 Bit [1]: • VLAN Index 8’hF9 has router group and the router group is VLAN Index 8’h79 Bit [2]: • VLAN Index 8’hFA has router group and the router group is VLAN Index 8’h7A Bit [3]: • VLAN Index 8’hFB has router group and the router group is VLAN Index 8’h7B Bit [4]: • VLAN Index 8’hFC has router group and the router group is VLAN Index 8’h7C 76 Zarlink Semiconductor Inc. MVTX2604 14.7 Data Sheet Bit [5]: • VLAN Index 8’hFD has router group and the router group is VLAN Index 8’h7D Bit [6]: • VLAN Index 8’hFE has router group and the router group is VLAN Index 8’h7E Bit [7]: • VLAN Index 8’hFF has router group and the router group is VLAN Index 8’h7F Group 2 Address Port Trunking Groups Trunk Group 0 - Up to four 10/100 ports can be selected for trunk group 0. 14.7.1 TRUNK0_L – Trunk group 0 Low (Managed mode only) CPU Address:h200 Accessed by CPU, serial interface (R/W) Bit [7:0] Port7-0 bit map of trunk 0. (Default 00) 14.7.2 TRUNK0_M – Trunk group 0 Medium (Managed mode only) CPU Address:h201 Accessed by CPU, serial interface (R/W) Bit [7:0] Port15-8 bit map of trunk 0. (Default 00) 14.7.3 TRUNK0_H – Trunk group 0 High (Managed mode only) CPU Address:h202 Accessed by CPU, serial interface (R/W) Bit [7:0] Port23-16 bit map of trunk 0. (Default 00) TRUNK0_H, TRUNK0_M, and TRUNK0_L provide a trunk map for trunk0. If ports 0 and 2 are to be trunked together bit 0 and bit 2 of TRUNK0_L are set to 1. All others are clear at “0” to indicate that they are not part of trunk 0. Up to 4 ports can be selected for trunk group 0. B i t 0 B i t 7 TRUNK0_H P o r t 23 B i t 0 B i t 7 TRUNK0_M P o r t 16 P o r t 15 Zarlink Semiconductor Inc. B i t 0 TRUNK0_L P o r t 8 77 B i t 7 P o r t 7 P o r t 0 MVTX2604 14.7.4 Data Sheet TRUNK0_MODE– Trunk group 0 mode I2C Address h0A5; CPU Address:203 Accessed by CPU, serial interface and I2C (R/W) 7 4 3 2 Hash Select Bit [1:0]: • 1 0 Port Select Port selection in unmanaged mode. Input pin TRUNK0 enable/disable trunk group 0 in unmanaged mode. 00 Reserved 01 Port 0 and 1 are used for trunk0 10 Port 0,1 and 2 are used for trunk0 11 Port 0,1,2 and 3 are used for trunk0 Bit [3:2] • Hash Select. The Hash selected is valid for Trunk 0, 1 and 2. (Default 00) 00 Use Source and Destination Mac Address for hashing 01 Use Source Mac Address for hashing 10 Use Destination Mac Address for hashing 11 Use source destination MAC address and ingress physical port number for hashing 14.7.5 TRUNK0_HASH0 – Trunk group 0 hash result 0 destination port number CPU Address:h204 Accessed by CPU, serial interface (R/W) Bit [4:0] 14.7.6 Hash result 0 destination port number (Default 00) TRUNK0_HASH1 – Trunk group 0 hash result 1 destination port number CPU Address:h205 Accessed by CPU, serial interface (R/W) Bit [4:0] 14.7.7 Hash result 1 destination port number (Default 01) TRUNK0_HASH2 – Trunk group 0 hash result 2 destination port number CPU Address:h206 Accessed by CPU, serial interface (R/W) Bit [4:0] Hash result 2 destination port number (Default 02) 78 Zarlink Semiconductor Inc. MVTX2604 14.7.8 TRUNK0_HASH3 – Trunk group 0 hash result 3 destination port number CPU Address:h207 Accessed by CPU, serial interface (R/W) Bit [4:0] Hash result 3 destination port number (Default 03) Trunk Group 1 - Up to four 10/100 ports can be selected for trunk group 1. 14.7.9 TRUNK1_L – Trunk group 1 Low (Managed mode only) Port selection for trunk group 1. CPU Address:h208 Accessed by CPU, serial interface (R/W) Bit [7:0] Port7-0 bit map of trunk 1. (Default 00) 14.7.10 TRUNK1_M – Trunk group 1 Medium (Managed mode only) CPU Address:h209 Accessed by CPU, serial interface (R/W) Bit [7:0] Port15-8 bit map of trunk 1. (Default 00) 14.7.11 TRUNK1_H – Trunk group 1 High (Managed mode only) CPU Address:h20A Accessed by CPU, serial interface (R/W) Bit [7:0] Port23-16 bit map of trunk 1. (Default 00) 14.7.12 TRUNK1_MODE – Trunk group 1 mode I2C Address h0A6; CPU Address:20B Accessed by CPU, serial interface and I2C (R/W) 7 2 1 0 Port Select Bit [1:0]: • Port selection in unmanaged mode. Input pin TRUNK1 enable/disable trunk group 1 in unmanaged mode. • • • • 00 01 10 11 Reserved Port 4 and 5 are used for trunk1 Reserved Port 4,5,6 and 7 are used for trunk1 79 Zarlink Semiconductor Inc. Data Sheet MVTX2604 14.7.13 • • • TRUNK1_HASH0 – Trunk group 1 hash result 0 destination port number CPU Address:h20C Accessed by CPU, serial interface (R/W) Bit [4:0] Hash result 0 destination port number (Default 04) 14.7.14 TRUNK1_HASH1 – Trunk group 1 hash result 1 destination port number CPU Address:h20D Accessed by CPU, serial interface (R/W) Bit [4:0] 14.7.15 Hash result 1 destination port number (Default 05) TRUNK1_HASH2 – Trunk group 1 hash result 2 destination port number CPU Address:h20E Accessed by CPU, serial interface (R/W) Bit [4:0] 14.7.16 Hash result 1 destination port number (Default 06) TRUNK1_HASH3 – Trunk group 1 hash result 3 destination port number CPU Address:h20F Accessed by CPU, serial interface (R/W) Bit [4:0] Hash result 1 destination port number (Default 07) Trunk Group 2 14.7.17 TRUNK2_MODE – Trunk group 2 mode (Gigabit ports 1 and 2) CPU Address:210 Accessed by CPU, serial interface (R/W) 7 6 4 3 0 Ring/trunk Mode Bit [3:0] Reserved Bit [6:4] 000 Normal 001 Trunk Mode. Enable Trunk group for Gigabit port 1 and 2 in managed mode. In unmanaged mode Trunk 2 is enable/disable using input pin TRUNK2. • 010 Single Ring with G1 • 100 Single Ring with G2 • 111 Dual Ring Mode 80 Zarlink Semiconductor Inc. Data Sheet MVTX2604 14.7.18 Data Sheet TRUNK2_HASH0 – Trunk group 2 hash result 0 destination port number CPU Address:h211 Accessed by CPU, serial interface (R/W) Bit [4:0] Hash result 0 destination port number (Default 0x19) 0x19 = Gigabit port 1 0x1A = Gigabit port 2 14.7.19 TRUNK2_HASH1 – Trunk group 2 hash result 1 destination port number CPU Address:h211 Accessed by CPU, serial interface (R/W) Bit [4:0] Hash result 1 destination port number (Default 0x1A) 0x19 = Gigabit port 1 0x1A = Gigabit port 2 14.7.20 Multicast Hash Registers Multicast Hash registers are used to distribute multicast traffic. 16 registers are used to form a 4-entry array; each entry has 27 bits, with each bit representing one port. Any port not belonging to a trunk group should be programmed with 1. Ports belonging to the same trunk group should only have a single port set to “1” per entry. The port set to “1” is picked to transmit the multicast frame when the hash value is met. Hash Value =0 HASH0_3 HASH0_2 HASH0_1 HASH0_0 Hash Value =1 HASH1_3 HASH1_2 HASH1_1 HASH1_0 Hash Value =2 HASH2_3 HASH2_2 HASH2_1 HASH2_0 Hash Value =3 HASH3_3 HASH3_2 HASH3_1 HASH3_0 P o r t 26 P o r t 24 C P U P o r t 16 P o r t 23 Multicast_HASH0-0 – Multicast hash result 0 mask byte 0 CPU Address:h220 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 81 Zarlink Semiconductor Inc. P o r t 15 P P o o r r t t 7 8 P o r t 0 MVTX2604 14.7.20.1 Data Sheet Multicast_HASH0-1 – Multicast hash result 0 mask byte 1 CPU Address:h221 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.7.20.2 (Default FF) Multicast_HASH0-2 – Multicast hash result 0 mask byte 2 CPU Address:h222 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.7.20.3 (Default FF) MULTICAST_HASH0-3 – MULTICAST HASH RESULT 0 MASK BYTE 3 CPU Address:h223 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.7.20.4 (Default FF) Multicast_HASH1-0 – Multicast hash result 1 mask byte 0 CPU Address:h224 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.7.20.5 (Default FF) MULTICAST_HASH1-1 – MULTICAST HASH RESULT 1 MASK BYTE CPU Address:h225 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.7.20.6 (Default FF) Multicast_HASH1-2 – Multicast hash result 1 mask byte 2 CPU Address:h226 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.7.20.7 (Default FF) Multicast_HASH1-3 – Multicast hash result 1 mask byte 3 CPU Address:h227 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 82 Zarlink Semiconductor Inc. 1 MVTX2604 14.7.20.8 Data Sheet Multicast_HASH2-0 – Multicast hash result 2 mask byte 0 CPU Address:h228 Accessed by CPU, serial interface (R/W) Bit [7:0] 14.7.20.9 (Default FF) MULTICAST_HASH2-1 – MULTICAST HASH RESULT 2 MASK BYTE 1 CPU Address:h229 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 14.7.20.10 MULTICAST_HASH2-2 – MULTICAST HASH RESULT 2 MASK BYTE 2 HASH RESULT 2 MASK BYTE 3 HASH RESULT 3 MASK BYTE 0 HASH RESULT 3 MASK BYTE 1 HASH RESULT 3 MASK BYTE 2 CPU Address:h22A Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 14.7.20.11 MULTICAST_HASH2-3 – MULTICAST CPU Address:h22B Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 14.7.20.12 MULTICAST_HASH3-0 – MULTICAST CPU Address:h22C Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 14.7.20.13 MULTICAST_HASH3-1 – MULTICAST CPU Address:h22D Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 14.7.20.14 MULTICAST_HASH3-2 – MULTICAST CPU Address:h22E Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 83 Zarlink Semiconductor Inc. MVTX2604 14.7.20.15 Data Sheet Multicast_HASH3-3 – Multicast hash result 3 mask byte 3 CPU Address:h22F Accessed by CPU, serial interface (R/W) Bit [7:0] 14.8 (Default FF) Group 3 Address CPU Port Configuration Group 5 MAC5 0 MAC4 MAC3 MAC2 MAC1 MAC0 MAC5 to MAC0 registers form the CPU MAC address. When a packet with destination MAC address match MAC [5:0], the packet is forwarded to the CPU. 14.8.1 MAC0 – CPU Mac address byte 0 CPU Address:h300 Accessed by CPU Bit [7:0] Byte 0 of the CPU MAC address. (Default 00) 14.8.2 MAC1 – CPU Mac address byte 1 CPU Address:h301 Accessed by CPU Bit [7:0] Byte 1 of the CPU MAC address. (Default 00) 14.8.3 MAC2 – CPU Mac address byte 2 CPU Address:h302 Accessed by CPU Bit [7:0] Byte 2 of the CPU MAC address. (Default 00) 14.8.4 MAC3 – CPU Mac address byte 3 CPU Address:h303 Accessed by CPU Bit [7:0] Byte 3 of the CPU MAC address. (Default 00) 14.8.5 MAC4 – CPU Mac address byte 4 CPU Address:h304 Accessed by CPU Bit [7:0] Byte 4 of the CPU MAC address. (Default 00) 84 Zarlink Semiconductor Inc. MVTX2604 14.8.6 Data Sheet MAC5 – CPU Mac address byte 5 CPU Address:h305 Accessed by CPU Bit [7:0] Byte 5 of the CPU MAC address. (Default 00). 14.8.7 INT_MASK0 – Interrupt Mask 0 CPU Address:h306 Accessed by CPU, serial interface (R/W) The CPU can dynamically mask the interrupt when it is busy and doesn’t want to be interrupted. (Default 0xFF) Bit [7:0] MASK - 1: Mask the interrupt - 0: Unmask the interrupt (Enable interrupt) 14.8.8 Bit [0]: • CPU frame interrupt. CPU frame buffer has data for CPU to read Bit [1]: • Control Command 1 interrupt. Control Command Frame buffer1 has data for CPU to read Bit [2]: • Control Command 2 interrupt. Control command Frame buffer2 has data for CPU to read Bit [7:3]: • Reserved INTP_MASK0 – Interrupt Mask for MAC Port 0,1 CPU Address:h310 Accessed by CPU, serial interface (R/W) The CPU can dynamically mask the interrupt when it is busy and doesn’t want to be interrupted (Default 0xFF) 7 6 5 4 3 P1 2 1 0 P0 - 1: Mask the interrupt - 0: Unmask the interrupt Bit [0]: Port 0 statistic counter wrap around interrupt mask. An Interrupt is generated when a statistic counter wraps around. Refer to hardware statistic counter for interrupt sources. Bit [1]: Port 0 link change mask Bit [4]: Port 1 statistic counter wrap around interrupt mask. counter for interupt sources. Bit [5]: Port 1 link change mask 85 Zarlink Semiconductor Inc. Refer to hardware statistic MVTX2604 14.8.9 INTP_MASK1 – Interrupt Mask for MAC Port 2,3 CPU Address:h311 Accessed by CPU, serial interface (R/W) 14.8.10 INTP_MASK2 – Interrupt Mask for MAC Port 4,5 CPU Address:h312 Accessed by CPU, serial interface (R/W) 14.8.11 INTP_MASK3 – Interrupt Mask for MAC Port 6,7 CPU Address:h313 Accessed by CPU, serial interface (R/W) 14.8.12 INTP_MASK4 – Interrupt Mask for MAC Port 8,9 CPU Address:h314 Accessed by CPU, serial interface (R/W) 14.8.13 INTP_MASK5 – Interrupt Mask for MAC Port 10,11 CPU Address:h315 Accessed by CPU, serial interface (R/W) 14.8.14 INTP_MASK6 – Interrupt Mask for MAC Port 12,13 CPU Address:h316 Accessed by CPU, serial interface (R/W) 14.8.15 INTP_MASK7 – Interrupt Mask for MAC Port 14,15 CPU Address:h317 Accessed by CPU, serial interface (R/W) 14.8.16 INTP_MASK8 – Interrupt Mask for MAC Port 16,17 CPU Address:h318 Accessed by CPU, serial interface (R/W) 14.8.17 NTP_MASK9 – Interrupt Mask for MAC Port 18,19 CPU Address:h319 Accessed by CPU, serial interface (R/W) 86 Zarlink Semiconductor Inc. Data Sheet MVTX2604 14.8.18 Data Sheet INTP_MASK10 – Interrupt Mask for MAC Port 20,21 CPU Address:h31A Accessed by CPU, serial interface (R/W) 14.8.19 INTP_MASK11 – Interrupt Mask for MAC Port 22,23 CPU Address:h31B Accessed by CPU, serial interface (R/W) 14.8.20 INTP_MASK12 – Interrupt Mask for MAC Port G1,G2 CPU Address:h31C Accessed by CPU, serial interface (R/W) 14.8.21 RQS – Receive Queue Select CPU Address:h323) Accessed by CPU, serial interface (RW) Select which receive queue is used. 7 FQ3 6 5 4 FQ2 FQ1 FQ0 3 SQ3 2 SQ2 1 SQ1 0 SQ0 Bit [0]: Select Queue 0. If set to one this queue may be scheduled to CPU port. If set to zero, this queue will be blocked. If multiple queues are selected, a strict priority will be applied. Q3> Q2> Q1> Q0. Same applies to bits [3:1]. See QoS Application Note for more information. Bit [1]: Select Queue 1 Bit[2]: Select Queue 2 Bit [3]: Select Queue 3 Note: Strip priority applies between different selected queues (Q3>Q2>Q1>Q0) Bit [4]: Enable flush Queue 0 Bit [5]: Enable flush Queue 1 Bit [6]: Enable flush Queue 2 Bit [7]: Enable flush Queue 3 When flush (drop frames) is enable, it starts when queue is too long or entry is too old. A queue is too long when it reaches WRED thresholds. Queue 0 is not subject to early drop. Packets in queue 0 are dropped only when the queue is too old. An entry is too old when it is older than the time programmed in the register TX_AGE [5:0]. CPU can dynamically program this register reading register RQSS [7:4]. 87 Zarlink Semiconductor Inc. MVTX2604 14.8.22 Data Sheet RQSS – Receive Queue Status CPU Address:h324 Accessed by CPU, serial interface (RO) 7 LQ3 LQ2 5 4 3 LQ1 LQ0 NeQ3 0 NeQ2 NeQ1 NeQ0 CPU receive queue status Bit [3:0]: Queue 3 to 0 not empty Bit [4]: Head of line entry for Queue 0 is valid for too long. CPU Queue 0 has no WRED threshold. Bit [7:5]: Head of line entry for Queue 3 to 1 is valid for too long or Queue length is longer than WRED threshold. 14.8.23 TX_AGE – Tx Queue Aging timer I2C Address: h07;CPU Address:h324 Accessed by CPU, serial interface (RW) 7 6 5 0 Tx Queue Agent Bit [5:0]: Unit of 100ms (Default 8) Disable transmission queue aging if value is zero. Aging timer for all ports and queues. This register must be set to 0 for ‘No Packet Loss Flow Control Test’. 14.9 14.9.1 Group 4 Address Search Engine Group AGETIME_LOW – MAC address aging time Low I2C Address h0A8; CPU Address:h400 Accessed by CPU, serial interface and I2C (R/W) The MVTX2600 removes the MAC address from the data base and sends a Delete MAC Address Control Command to the CPU. MAC address aging is enable/disable by boot strap TSTOUT9. Bit [7:0] Low byte of the MAC address aging timer. 14.9.2 AGETIME_HIGH –MAC address aging time High I2C Address h0A9; CPU Address h401 Accessed by CPU, serial interface and I2C (R/W) Bit [7:0]: High byte of the MAC address aging timer. The default setting provide 300 seconds aging time. Aging time is based on the following equation: 88 Zarlink Semiconductor Inc. MVTX2604 Data Sheet {AGETIME_TIME,AGETIME_LOW} X (# of MAC entries in the memory X100µsec). Number of MAC entries = 32 K when 1 MB is used per Bank. Number of entries = 64 K when 2 MB is used per Bank. 14.9.3 V_AGETIME – VLAN to Port aging time CPU Address h402 Accessed by CPU (R/W) Bit [7:0] (Default FF) V_AGETIME X 256 X 100 msec is the age time for the VLAN. This timer is for controlling how long a port is associated to a particular VLAN. It can use dynamic shrinking of a VLAN domain if no packet arrives for the VLAN. The 2600 does not remove the port from the VLAN domain. It sends an Age VLAN Port Control Command to the CPU. The CPU has to remove the port. 14.9.4 SE_OPMODE – Search Engine Operation Mode CPU Address:h403 Accessed by CPU (R/W) Note: ECR2[2] enable/disable learning for each port. 7 6 5 4 3 2 1 0 SL DMS ARP DRA DA DRD DRN FL Bit [0]: 1 – Enable fast learning mode. In this mode, the hardware learns all the new MAC addresses at highest rate, and reports to the CPU while the hardware scans the MAC database. When the CPU report queue is full, the MAC address is learned and marked as “Not reported”. When the hardware scans the database and finds a MAC address marked as “Not Reported” it tries to report it to the CPU. The scan rate must be set. SCAN Control register sets the scan rate. (Default 0) 0 – Search Engine learns a new MAC address and sends a message to the CPU report queue. If queue is full, the learning is temporarily halted. Bit [1]: 1 – Disable report new VLAN port association(Default 0) 0 – Report new VLAN port association Bit [2]: Report control • 1 – Disable report MAC address deletion (Default 0) • 0 – Report MAC address deletion (MAC address is deleted from MCT after aging time) Bit [3]: Delete Control • 1 – Disable aging logic from removing MAC during aging (Default 0) • 0 – MAC address entry is removed when it is old enough to be aged. However, a report is still sent to the CPU in both cases, when bit[2] = 0 Bit [4]: 1 – Disable report aging VLAN port association (Default 0) 0 – Enable Report aging VLAN. VLAN is not removed by hardware. The CPU needs to remove the VLAN –port association. Bit [5]: 1 - Report ARP packet to CPU (Default 0) 89 Zarlink Semiconductor Inc. MVTX2604 Bit [6]: Data Sheet Disable MCT speedup aging (Default 0) • 1 – Disable speedup aging when MCT resource is low. • 0 – Enable speedup aging when MCT resource is low. Bit [7]: Slow Learning (Default 0) • 1– Enable slow learning. Learning is temporary disabled when search demand is high • 0 – Learning is performed independent of search demand 14.9.5 SCAN – SCAN Control Register (default 00) CPU Address h404 Accessed by CPU (R/W) 7 6 0 R Ratio SCAN is used when fast learning is enabled (SE_OPMODE bit 0). It is used for setting up the report rate for newly learned MAC addresses to the CPU. Bit [6:0]: • Ratio between database scanning and aging round (Default 00) Bit [7]: • Reverse the ratio between scanning round and aging round (Default 0) Examples: R= 0, Ratio = 0: All rounds are used for aging. Never scan for new MAC addresses. R= 0, Ratio = 1: Aging and scanning in every other aging round R= 1, Ratio = 7: In eight rounds, one is used for scanning and seven are used for aging R= 0, Ratio = 7: In eight rounds, one is used for aging and seven are used for scanning 14.10 14.10.1 Group 5 Address Buffer Control/QOS Group FCBAT – FCB Aging Timer I2C Address h0AA; CPU Address:h500 7 0 FCBAT Bit [7:0]: • • FCB Aging time. Unit of 1ms. (Default FF) This is for buffer aging control. It is used to configure the buffer aging time. This function can be enabled/disabled through bootstrap pin. It is not suggested to use this function for normal operation. 90 Zarlink Semiconductor Inc. MVTX2604 14.10.2 Data Sheet QOSC – QOS Control I2C Address h0AB; CPU Address:h501 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 3 Tos-d Tos-p PMCQ VF1c 1 0 L Bit [0]: • QoS frame lost is OK. Priority will be available for flow control enabled source only when this bit is set (Default 0) Bit [4]: • Per VLAN Multicast Flow Control (Default 0) • 0 – Disable • 1 – Enable Bit [5]: • Select processor multicast queue size • 0 = 16 entries • 1 = 64 entries Bit [6]: • Select TOS bits for Priority (Default 0) • 0 – Use TOS [4:2] bits to map the transmit priority • 1 – Use TOS [7:5] bits to map the transmit priority Bit [7]: • Select TOS bits for Drop priority(Default 0) • 0 – Use TOS [4:2] bits to map the drop priority • 1 – Use TOS [7:5] bits to map the drop priority 14.10.3 FCR – Flooding Control Register I2C Address h0AC; CPU Address:h502 Accessed by CPU, serial interface and I2C (R/W) 7 6 Tos TimeBase Bit [3:0]: 4 • 3 0 U2MR U2MR: Unicast to Multicast Rate. Units in terms of time base defined in bits [6:4]. This is used to limit the amount of flooding traffic. The value in U2MR specifies how many packets are allowed to flood within the time specified by bit [6:4]. To disable this function, program U2MR to 0. (Default = 8) 91 Zarlink Semiconductor Inc. MVTX2604 Bit [6:4]: Data Sheet Time Base: (Default = 000) 000 = 100 us 001 = 200 us 010 = 400 us 011 = 800 us 100 = 1.6 ms 101 = 3.2 ms 110 = 6.4 ms 111 = 100 us, same as 000. Bit [7]: Select VLAN tag or TOS (IP packets) to be preferentially picked to map transmit priority and drop priority (Default = 0). 0 – Select VLAN Tag priority field over TOS 1 – Select TOS over VLAN tag priority field 14.10.4 AVPML – VLAN Tag Priority Map I2C Address h0AD; CPU Address:h503 Accessed by CPU, serial interface and I2C (R/W) 7 6 VP2 5 3 2 0 VP1 VP0 Registers AVPML, AVPMM and AVPMH allow the eight VLAN Tag priorities to map into eight Internal level transmit priorities. Under the Internal transmit priority, seven is the highest priority where as zero is the lowest. This feature allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7 into bit 2:0 of the AVPML register would map packet VLAN priority 0 into Internal transmit priority 7. The new priority is used inside the 2600. When the packet goes out it carries the original priority. Bit [2:0]: Priority when the VLAN tag priority field is 0 (Default 0) Bit [5:3]: Priority when the VLAN tag priority field is 1 (Default 0) Bit [7:6]: Priority when the VLAN tag priority field is 2 (Default 0) 92 Zarlink Semiconductor Inc. MVTX2604 14.10.5 Data Sheet AVPMM – VLAN Priority Map I2C Address h0AE, CPU Address:h504 Accessed by CPU, serial interface and I2C (R/W) Map VLAN priority into eight level transmit priorities: 7 6 4 VP5 14.10.6 3 1 VP4 0 VP3 VP2 Bit [0]: Priority when the VLAN tag priority field is 2 (Default 0) Bit [3:1]: Priority when the VLAN tag priority field is 3 (Default 0) Bit [6:4]: Priority when the VLAN tag priority field is 4 (Default 0) Bit [7]: Priority when the VLAN tag priority field is 5 (Default 0) AVPMH – VLAN Priority Map I2C Address h0AF, CPU Address:h505 Accessed by CPU, serial interface and I2C (R/W) 7 5 4 VP7 2 1 VP6 0 VP5 Map VLAN priority into eight level transmit priorities: 14.10.7 Bit [1:0]: Priority when the VLAN tag priority field is 5 (Default 0) Bit [4:2]: Priority when the VLAN tag priority field is 6 (Default 0) Bit [7:5]: Priority when the VLAN tag priority field is 7 (Default 0) TOSPML – TOS Priority Map I2C Address h0B0, CPU Address:h506 Accessed by CPU, serial interface and I2C (R/W) 7 6 TP2 5 3 2 0 TP1 TP0 Map TOS field in IP packet into eight level transmit priorities Bit [2:0]: Priority when the TOS field is 0 (Default 0) Bit [5:3]: Priority when the TOS field is 1 (Default 0) Bit [7:6]: Priority when the TOS field is 2 (Default 0) 93 Zarlink Semiconductor Inc. MVTX2604 14.10.8 Data Sheet TOSPMM – TOS Priority Map I2C Address h0B1, CPU Address:h507 Accessed by CPU, serial interface and I2C (R/W) 7 6 4 TP5 1 3 TP4 0 TP3 TP2 Map TOS field in IP packet into eight level transmit priorities 14.10.9 Bit [0]: Priority when the TOS field is 2 (Default 0) Bit [3:1]: Priority when the TOS field is 3 (Default 0) Bit [6:4]: Priority when the TOS field is 4 (Default 0) Bit [7]: Priority when the TOS field is 5 (Default 0) TOSPMH – TOS Priority Map I2C Address h0B2, CPU Address:h508 Accessed by CPU, serial interface and I2C (R/W) 7 5 4 TP7 2 1 TP6 0 TP5 Map TOS field in IP packet into eight level transmit priorities: 14.10.10 Bit [1:0]: Priority when the TOS field is 5 (Default 0) Bit [4:2]: Priority when the TOS field is 6 (Default 0) Bit [7:5]: Priority when the TOS field is 7 (Default 0) AVDM – VLAN Discard Map I2C Address h0B3, CPU Address:h509 Accessed by CPU, serial interface and I2C (R/W) 7 FDV7 6 5 4 3 2 1 FDV6 FDV5 FDV4 FDV3 FDV2 FDV1 0 FDV0 Map VLAN priority into frame discard when low priority buffer usage is above threshold Bit [0]: Frame drop priority when VLAN Tag priority field is 0 (Default 0) Bit [1]: Frame drop priority when VLAN Tag priority field is 1 (Default 0) Bit [2]: Frame drop priority when VLAN Tag priority field is 2 (Default 0) Bit [3]: Frame drop priority when VLAN Tag priority field is 3 (Default 0) 94 Zarlink Semiconductor Inc. MVTX2604 14.10.11 Data Sheet Bit [4]: Frame drop priority when VLAN Tag priority field is 4 (Default 0) Bit [5]: Frame drop priority when VLAN Tag priority field is 5 (Default 0) Bit [6]: Frame drop priority when VLAN Tag priority field is 6 (Default 0) Bit [7]: Frame drop priority when VLAN Tag priority field is 7 (Default 0) TOSDML – TOS Discard Map I2C Address h0B4, CPU Address:h50A Accessed by CPU, serial interface and I2C (R/W) 7 FDT7 6 5 4 3 2 1 FDT6 FDT5 FDT4 FDT3 FDT2 FDT1 0 FDT0 Map TOS into frame discard when low priority buffer usage is above threshold 14.10.12 Bit [0]: Frame drop priority when TOS field is 0 (Default 0) Bit [1]: Frame drop priority when TOS field is 1 (Default 0) Bit [2]: Frame drop priority when TOS field is 2 (Default 0) Bit [3]: Frame drop priority when TOS field is 3 (Default 0) Bit [4]: Frame drop priority when TOS field is 4 (Default 0) Bit [5]: Frame drop priority when TOS field is 5 (Default 0) Bit [6]: Frame drop priority when TOS field is 6 (Default 0) Bit [7]: Frame drop priority when TOS field is 7 (Default 0) BMRC - Broadcast/Multicast Rate Control I2C Address h0B5, CPU Address:h50B) Accessed by CPU, serial interface and I2C (R/W) 7 4 Broadcast Rate 3 0 Multicast Rate This broadcast and multicast rate defines for each port, the number of packets allowed to be forwarded within a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit, program the field to 0. Time base is based on register FCR [6:4] Bit [3:0] : Multicast Rate Control. Number of multicast packets allowed within the time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0). 95 Zarlink Semiconductor Inc. MVTX2604 Bit [7:4] : 14.10.13 Data Sheet Broadcast Rate Control. Number of broadcast packets allowed within the time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0) UCC – Unicast Congestion Control I2C Address h0B6, CPU Address: 50C Accessed by CPU, serial interface and I2C (R/W) 7 0 Unicast congest threshold Bit [7:0] : 14.10.14 Number of frame count. Used for best effort dropping at B% when destination port’s best effort queue reaches UCC threshold and shared pool is all in use. Granularity 1 frame. (Default: h10 for 2 MB/bank or h08 for 1 MB/bank) MCC – Multicast Congestion Control I2C Address h0B7, CPU Address: 50D Accessed by CPU, serial interface and I2C (R/W) 7 5 FC reaction period 14.10.15 4 0 Multicast congest threshold Bit [4:0]: In multiples of two frames (granularity). Used for triggering MC flow control when destination port’s multicast best effort queue reaches MCC threshold.(Default 0x10) Bit [7:5]: Flow control reaction period (Default 2) Granularity 4uSec. PR100 – Port Reservation for 10/100 ports I2C Address h0B8, CPU Address 50E Accessed by CPU, serial interface and I2C (R/W) 7 4 Buffer low threshold Bit [3:0]: 3 0 SP Buffer reservation Per source port buffer reservation. Define the space in the FDB reserved for each 10/100 port and CPU. Expressed in multiples of 4 packets. For each packet 1536 bytes are reserved in the memory. 96 Zarlink Semiconductor Inc. MVTX2604 Bits [7:4]: Data Sheet Expressed in multiples of 4 packets. Threshold for dropping all best effort frames when destination port best efforts queues reaches UCC threshold, shared pool is all used and source port reservation is at or below the PR100[7:4] level. Also the threshold for initiating UC flow control. • Default: - h36 for 24+2 configuration with memory 2 MB/bank; - h24 for 24+2 configuration with 1MB/bank; 14.10.16 PRG – Port Reservation for Giga ports I2C Address h0B9, CPU Address 50F Accessed by CPU, serial interface and I2C (R/W) 7 4 Buffer low threshold Bit [3:0]: 3 0 SP buffer reservation Per source port buffer reservation. Define the space in the FDB reserved for each Gigabit port. Expressed in multiples of 16 packets. For each packet 1536 bytes are reserved in the memory. Bits [7:4]: Expressed in multiples of 16 packets. Threshold for dropping all best effort frames when destination port best effort queues reach UCC threshold, shared pool is all used and source port reservation is at or below the PRG[7:4] level. Also the threshold for initiating UC flow control. • Default: - h58 for memory 2 MB/bank; - h35 for 1 MB/bank; 14.10.17 SFCB – Share FCB Size I2C Address h0BA), CPU Address 510 Accessed by CPU, serial interface and I2C (R/W) 7 0 Shared pool buffer size Bits [7:0]: Expressed in multiples of 4 packets. Buffer reservation for shared pool. • Default: - h64 for 24+2 configuration with memory of 2 MB/bank; - h14 for 24+2 configuration with memory of 1 MB/bank; 97 Zarlink Semiconductor Inc. MVTX2604 14.10.18 Data Sheet C2RS – Class 2 Reserve Size I2C Address h0BB, CPU Address 511 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 2 FCB Reservation Buffer reservation for class 2 (third lowest priority). Granularity 1. (Default 0) 14.10.19 C3RS – Class 3 Reserve Size I2C Address h0BC, CPU Address 512 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 3 FCB Reservation Buffer reservation for class 3. Granularity 1. (Default 0) 14.10.20 C4RS – Class 4 Reserve Size I2C Address h0BD, CPU Address 513 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 4 FCB Reservation Buffer reservation for class 4. Granularity 1. (Default 0) 14.10.21 C5RS – Class 5 Reserve Size I2C Address h0BE; CPU Address 514 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 5 FCB Reservation Buffer reservation for class 5. Granularity 1. (Default 0) 14.10.22 C6RS – Class 6 Reserve Size I2C Address h0BF; CPU Address 515 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 6 FCB Reservation Buffer reservation for class 6 (second highest priority). Granularity 1. (Default 0) 98 Zarlink Semiconductor Inc. MVTX2604 14.10.23 Data Sheet C7RS – Class 7 Reserve Size I2C Address h0C0; CPU Address 516 Accessed by CPU, serial interface and I2C (R/W) 7 0 Class 7 FCB Reservation Buffer reservation for class 7 (highest priority). Granularity 1. (Default 0) 14.10.24 QOSCn - Classes Byte Limit Set 0 Accessed by CPU; serial interface and I2C (R/W): C — QOSC00 – BYTE_C01 (I2C Address h0C1, CPU Address 517) B — QOSC01 – BYTE_C02 (I2C Address h0C2, CPU Address 518) A — QOSC02 – BYTE_C03 (I2C Address h0C3, CPU Address 519) QOSC00 through QOSC02 represents one set of values A-C for a 10/100 port when using the Weighted Random Early Drop (WRED) Scheme described in Chapter 7. There are four such sets of values A-C specified in Classes Byte Limit Set 0, 1, 2, and 3. For CPU port A-C values are defined using register CPUQOSC1, 2 and 3. Each 10/ 100 port can choose one of the four Byte Limit Sets as specified by the QoS Select field located in bits 5 to 4 of the ECR2n register. The values A-C are per-queue byte thresholds for random early drop. QOSC02 represents A, and QOSC00 represents C. Granularity when Delay bound is used: QOSC02: 128 bytes, QOSC01: 256 bytes, QOSC00: 512 bytes. Granularity when WFQ is used: QOSC02: 512 bytes, QOSC01: 512 bytes, QOSC00: 512 bytes. 14.10.25 Classes Byte Limit Set 1 Accessed by CPU, serial interface and I2C (R/W): C - QOSC03 – BYTE_C11 (I2C Address h0C4, CPU Address 51a) B - QOSC04 – BYTE_C12 (I2C Address h0C5, CPU Address 51b) A - QOSC05 – BYTE_C13 (I2C Address h0C6, CPU Address 51c) QOSC03 through QOSC05 represents one set of values A-C for a 10/100 port when using the Weighted Random Early Drop (WRED) scheme. Granularity when Delay bound is used: QOSC05: 128 bytes, QOSC04: 256 bytes, QOSC03: 512 bytes. Granularity when WFQ is used: QOSC05: 512 bytes, QOSC04: 512 bytes, QOSC03: 512 bytes. 14.10.26 Classes Byte Limit Set 2 Accessed by CPU and serial interface (R/W): C - QOSC06 – BYTE_C21 (CPU Address 51d) B - QOSC07 – BYTE_C22 (CPU Address 51e) A - QOSC08 – BYTE_C23 (CPU Address 51f) QOSC06 through QOSC08 represents one set of values A-C for a 10/100 port when using the Weighted Random Early Drop (WRED) scheme. 99 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Granularity when Delay bound is used: QOSC08: 128 bytes, QOSC07: 256 bytes, QOSC06: 512 bytes. Granularity when WFQ is used: QOSC08: 512 bytes, QOSC07: 512 bytes, QOSC06: 512 bytes 14.10.27 Classes Byte Limit Set 3 Accessed by CPU and serial interface (R/W): C - QOSC09 – BYTE_C31 (CPU Address 520) B - QOSC10 – BYTE_C32 (CPU Address 521) A - QOSC11 – BYTE_C33 (CPU Address 522) QOSC09 through QOSC011 represents one set of values A-C for a 10/100 port when using the Weighted Random Early Drop (WRED) scheme. Granularity when Delay bound is used: QOSC11: 128 bytes, QOSC10: 256 bytes, QOSC09: 512 bytes. Granularity when WFQ is used: QOSC11: 512 bytes, QOSC10: 512 bytes, QOSC09: 512 bytes 14.10.28 Classes Byte Limit Giga Port 1 Accessed by CPU, serial interface and I2C (R/W): F - QOSC12 – BYTE_C2_G1 (I2C Address h0C7, CPU Address 523) E - QOSC13 – BYTE_C3_G1 (I2C Address h0C8, CPU Address 524) D - QOSC14 – BYTE_C4_G1 (I2C Address h0C9, CPU Address 525) C -QOSC15 – BYTE_C5_G1 (I2C Address h0CA, CPU Address 526) B - QOSC16 – BYTE_C6_G1 (I2C Address h0CB, CPU Address 527) A - QOSC17 – BYTE_C7_G1 (I2C Address h0CC, CPU Address 528) QOSC12 through QOSC17 represent the values A-F for Gigabit port 1. They are per-queue byte thresholds for random early drop. QOSC17 represents A, and QOSC12 represents F. Granularity when Delay bound is used: QOSC17 and QOSC16: 256 bytes, QOSC15 and QOSC14: 512 bytes, QOSC13 and QOSC12: 1024 bytes. Granularity when WFQ is used: QOSC17 to QOSC12: 1024 bytes 14.10.29 Classes Byte Limit Giga Port 2 Accessed by CPU, serial interface and I2C (R/W) F - QOSC18 – BYTE_C2_G2 (I2C Address h0CD, CPU Address 529) E - QOSC19 – BYTE_C3_G2 (I2C Address h0CE, CPU Address 52a) D - QOSC20 – BYTE_C4_G2 (I2C Address h0CF, CPU Address 52b) C - QOSC21 – BYTE_C5_G2 (I2C Address h0D0, CPU Address 52c) B - QOSC22 – BYTE_C6_G2 (I2C Address h0D1, CPU Address 52d) A - QOSC23 – BYTE_C7_G2 (I2C Address h0D2, CPU Address 52e) QOSC12 through QOSC17 represent the values A-F for Gigabit port 2. They are per-queue byte thresholds for random early drop. QOSC17 represents A, and QOSC12 represents F. 100 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Granularity when Delay bound is used: QOSC17 and QOSC16: 256 bytes, QOSC15 and QOSC14: 512 bytes, QOSC13 and QOSC12: 1024 bytes. Granularity when WFQ is used: QOSC17 to QOSC12: 1024 bytes 14.10.30 Classes WFQ Credit Set 0 Accessed by CPU and serial interface W0 - QOSC24[5:0] – CREDIT_C00 (CPU Address 52f) W1 - QOSC25[5:0] – CREDIT_C01 (CPU Address 530) W2 - QOSC26[5:0] – CREDIT_C02 (CPU Address 531) W3 - QOSC27[5:0] – CREDIT_C03 (CPU Address 532) QOSC24 through QOSC27 represents one set of WFQ parameters for a 10/100 port. There are four such sets of values. The granularity of the numbers is 1, and their sum must be 64. QOSC27 corresponds to W3 and QOSC24 corresponds to W0. QOSC24[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4. QOSC25[7]: Priority service allow flow control for the ports select this parameter set. QOSC25[6]: Flow control pause best effort traffic only Both flow control allow and flow control best effort only can take effect only the priority type is WFQ. 14.10.31 Classes WFQ Credit Set 1 Accessed by CPU and serial interface W0 - QOSC28[5:0] – CREDIT_C10 (CPU Address 533) W1 - QOSC29[5:0] – CREDIT_C11 (CPU Address 534) W2 - QOSC30[5:0] – CREDIT_C12 (CPU Address 535) W3 - QOSC31[5:0] – CREDIT_C13 (CPU Address 536) QOSC28 through QOSC31 represents one set of WFQ parameters for a 10/100 port. There are four such sets of values. The granularity of the numbers is 1, and their sum must be 64. QOSC31 corresponds to W3 and QOSC28 corresponds to W0. QOSC28[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4. QOSC29[7]: Priority service allow flow control for the ports select this parameter set. QOSC29[6]: Flow control pause best effort traffic only 14.10.32 Classes WFQ Credit Set 2 Accessed by CPU and serial interface W0 - QOSC32[5:0] – CREDIT_C20 (CPU Address 537) W1 - QOSC33[5:0] – CREDIT_C21 (CPU Address 538) W2 - QOSC34[5:0] – CREDIT_C22 (CPU Address 539) W3 - QOSC35[5:0] – CREDIT_C23 (CPU Address 53a) 101 Zarlink Semiconductor Inc. MVTX2604 Data Sheet QOSC35 through QOSC32 represents one set of WFQ parameters for a 10/100 port. There are four such sets of values. The granularity of the numbers is 1 and their sum must be 64. QOSC35 corresponds to W3 and QOSC32 corresponds to W0. QOSC32[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4. QOSC33[7]: Priority service allow flow control for the ports select this parameter set. QOSC33[6]: Flow control pause for best effort traffic only 14.10.33 Classes WFQ Credit Set 3 Accessed by CPU and serial interface W0 - QOSC36[5:0] – CREDIT_C30 (CPU Address 53b) W1 - QOSC37[5:0] – CREDIT_C31 (CPU Address 53c) W2 - QOSC38[5:0] – CREDIT_C32 (CPU Address 53d) W3 - QOSC39[5:0] – CREDIT_C33 (CPU Address 53e) QOSC39 through QOSC36 represents one set of WFQ parameters for a 10/100 port. There are four such sets of values. The granularity of the numbers is 1 and their sum must be 64. QOSC39 corresponds to W0 and QOSC36 corresponds to W0. QOSC36[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4. QOSC37[7]: Priority service allow flow control for the ports select this parameter set. QOSC37[6]: Flow control pause best effort traffic only 14.10.34 Classes WFQ Credit Port G1 Accessed by CPU and serial interface W0 - QOSC40[5:0] - CREDIT_C0_G1(CPU Address 53f) [7:6]: Priority service type. Option 1 to 4. W1 - QOSC41[5:0] – CREDIT_C1_G1 (CPU Address 540) [7]: Priority service allow flow control for the ports select this parameter set. [6]: Flow control pause best effort traffic only W2 - QOSC42[5:0] – CREDIT_C2_G1 (CPU Address 541) W3 - QOSC43[5:0] – CREDIT_C3_G1 (CPU Address 542) W4 - QOSC44[5:0] – CREDIT_C4_G1 (CPU Address 543) W5 - QOSC45[5:0] – CREDIT_C5_G1 (CPU Address 544) W6 - QOSC46[5:0] – CREDIT_C6_G1 (CPU Address 545) W7 - QOSC47[5:0] – CREDIT_C7_G1 (CPU Address 546) QOSC40 through QOSC47 represents the set of WFQ parameters for Gigabit port 24. The granularity of the numbers is 1 and their sum must be 64. QOSC47 corresponds to W7 and QOSC40 corresponds to W0. In the 2G trunk configuration, the sum of all values QOSC40 through QOSC47 must be equal to 128. 102 Zarlink Semiconductor Inc. MVTX2604 14.10.35 Data Sheet Classes WFQ Credit Port G2 Accessed by CPU and serial interface W0 - QOSC48[5:0] – CREDIT_C0_G2(CPU Address 547) [7:6]: Priority service type. Option 1 to 4 W1 - QOSC49[5:0] – CREDIT_C1_G2(CPU Address 548) [7]: Priority service allow flow control for the ports select this parameter set. [6]: Flow control pause best effort traffic only W2 - QOSC50[5:0] – CREDIT_C2_G2(CPU Address 549) W3 - QOSC51[5:0] – CREDIT_C3_G2(CPU Address 54a) W4 - QOSC52[5:0] – CREDIT_C4_G2(CPU Address 54b) W5 - QOSC53[5:0] – CREDIT_C5_G2(CPU Address 54c) W6 - QOSC54[5:0] – CREDIT_C6_G2(CPU Address 54d) W7 - QOSC55[5:0] – CREDIT_C7_G2(CPU Address 54e) QOSC48 through QOSC55 represents the set of WFQ parameters for Gigabit port 2. The granularity of the numbers is 1 and their sum must be 64. QOSC55 corresponds to W7 and QOSC48 corresponds to W0. In the 2G trunk configuration, the sum of all values QOSC48 through QOSC55 must be equal to 128. 14.10.36 Class 6 Shaper Control Port G1 Accessed by CPU and serial interface QOSC56[5:0] – TOKEN_RATE_G1 (CPU Address 54f). Programs de average rate for gigabit port 1. When equal to 0, shaper is disable. Granularity is 1. QOSC57[7:0] – TOKEN_LIMIT_G1 (CPU Address 550). Programs the maximum counter for gigabit port 1. Granularity is 16 bytes. Shaper is implemented to control the peak and average rate for outgoing traffic with priority 6 (queue 6). Shaper is limited to gigabit ports and queue P6 when it is in strict priority. QOSC41 programs the peak rate for gigabit port 1. See Programming QoS Registers Application Note for more information. 14.10.37 Class 6 Shaper Control Port G2 Accessed by CPU and serial interface QOSC58[5:0] – TOKEN_RATE_G2 (CPU Address 551). Programs de average rate for gigabit port 2. When equal to 0, shaper is disable. Granularity is 1. QOSC59[7:0] – TOKEN_LIMIT_G2 (CPU Address 552). Programs the maximum counter for gigabit port 2. Granularity is 16 bytes. Shaper is implemented to control the peak and average rate for outgoing traffic with priority 6 (queue 6). Shaper is limited to gigabit ports and queue P6 when it is in strict priority. QOSC49 programs the peak rate for gigabit port 2. See Programming QoS Register application note for more information. 103 Zarlink Semiconductor Inc. MVTX2604 14.10.38 Data Sheet RDRC0 – WRED Rate Control 0 I2C Address 0FB, CPU Address 553 Accessed by CPU, Serial Interface and IcC (R/W) 7 4 3 X Rate 0 Y Rate Bits [7:4]: Corresponds to the frame drop percentage X% for WRED. Granularity 6.25%. Bits [3:0]: Corresponds to the frame drop percentage Y% for WRED. Granularity 6.25%. See Programming QoS Registers application note for more information 14.10.39 RDRC1 – WRED Rate Control 1 I2C Address 0FC, CPU Address 554 Accessed by CPU, Serial Interface and I2C (R/W) 7 Z Rate 4 3 0 B Rate Bits [7:4]: Corresponds to the frame drop percentage Z% for WRED. Granularity 6.25%. Bits [3:0]: Corresponds to the best effort frame drop percentage B%, when shared pool is all in use and destination port best effort queue reaches UCC. Granularity 6.25%. See Programming QoS Registers application note for more information 14.10.40 User Defined Logical Ports and Well Known Ports The MVTX2600AG supports classifying packet priority through layer 4 logical port information. It can be setup by 8 Well Known Ports, 8 User Defined Logical Ports, and 1 User Defined Range. The 8 Well Known Ports supported are: • • • • • • • • 0:23 1:512 2:6000 3:443 4:111 5:22555 6:22 7:554 Their respective priority can be programmed via Well_Known_Port [7:0] priority register. Enable can individually turn on/off each Well Known Port if desired. 104 Zarlink Semiconductor Inc. Well_Known_Port_ MVTX2604 Data Sheet Similarly, the User Defined Logical Port provides the user programmability to the priority, plus the flexibility to select specific logical ports to fit the applications. The 8 User Logical Ports can be programmed via User_Port 0-7 registers. Two registers are required to be programmed for the logical port number. The respective priority can be programmed to the User_Port [7:0] priority register. The port priority can be individually enabled/disabled via User_Port_Enable register. The User Defined Range provides a range of logical port numbers with the same priority level. Programming is similar to the User Defined Logical Port. Instead of programming a fixed port number, an upper and lower limit need to be programmed, they are: {RHIGHH, RHIGHL} and {RLOWH, RLOWL} respectively. If the value in the upper limit is smaller or equal to the lower limit, the function is disabled. Any IP packet with a logical port that is less than the upper limit and more than the lower limit will use the priority specified in RPRIORITY. 14.10.40.1 USER_PORT0_(0~7) – USER DEFINE LOGICAL PORT (0~7) USER_PORT_0 - I2C Address h0D6 + 0DE; CPU Address 580(Low) + 581(high) USER_PORT_1 - I2C Address h0D7 + 0DF; CPU Address 582 + 583 USER_PORT_2 - I2C Address h0D8 + 0E0; CPU Address 584 + 585 USER_PORT_3 - I2C Address h0D9 + 0E1; CPU Address 586 + 587 USER_PORT_4 - I2C Address h0DA + 0E2; CPU Address 588 + 589 USER_PORT_5 - I2C Address h0DB + 0E3; CPU Address 58A + 58B USER_PORT_6 - I2C Address h0DC + 0E4; CPU Address 58C + 58D USER_PORT_7 - I2C Address h0DD + 0E5; CPU Address 58E + 58F Accessed by CPU, serial interface and I2C (R/W) 7 0 TCP/UDP Logic Port Low 7 0 TCP/UDP Logic Port High (Default 00) This register is duplicated eight times from PORT 0 through PORT 7 and allows the CPU to define eight separate ports. 14.10.40.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority I2C Address h0E6, CPU Address 590 Accessed by CPU, serial interface and I2C (R/W) 7 Priority 1 5 4 3 1 Drop Priority 0 0 Drop The chip allows the CPU to define the priority Bits [3:0]: Priority setting, transmission + dropping, for logic port 0 Bits [7:4]: Priority setting, transmission + dropping, for logic port 1 (Default 00) 105 Zarlink Semiconductor Inc. MVTX2604 14.10.40.3 Data Sheet USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority I2C Address h0E7, CPU Address 591 Accessed by CPU, serial interface and I2C (R/W) 7 5 Priority 3 14.10.40.4 4 3 1 Drop Priority 2 0 Drop USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority I2C Address h0E8, CPU Address 592 Accessed by CPU, serial interface and I2C (R/W) 7 5 Priority 5 4 3 1 Drop Priority 4 0 Drop (Default 00) 14.10.40.5 USER_PORT_[7:6]_PRIORITY - USER DEFINE LOGIC PORT 7 AND 6 PRIORITY I2C Address h0E9, CPU Address 593 Accessed by CPU, serial interface and I2C (R/W) 7 5 Priority 7 4 3 1 Drop Priority 6 0 Drop (Default 00) 14.10.40.6 USER_PORT_ENABLE[7:0] – User Define Logic 7 to 0 Port Enables I2C Address h0EA, CPU Address 594 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 (Default 00) 14.10.40.7 WELL_KNOWN_PORT[1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority I2C Address h0EB, CPU Address 595 Accessed by CPU, serial interface and I2C (R/W) 7 Priority 1 5 4 3 1 Drop Priority 0 0 Drop Priority 0 - Well known port 23 for telnet applications. 106 Zarlink Semiconductor Inc. MVTX2604 Data Sheet Priority 1 - Well Known port 512 for TCP/UDP. (Default 00) 14.10.40.8 WELL_KNOWN_PORT[3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority I2C Address h0EC, CPU Address 596 Accessed by CPU, serial interface and I2C (R/W) 7 5 Priority 3 4 3 1 Drop Priority 2 0 Drop Priority 2 - Well known port 6000 for XWIN. Priority 3 - Well known port 443 for http.sec (Default 00) 14.10.40.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority I2C Address h0ED, CPU Address 597 Accessed by CPU, serial interface and I2C (R/W) 7 5 Priority 5 4 3 1 Drop Priority 4 0 Drop Priority 4 - Well Known port 111 for sun remote procedure call. Priority 5 - Well Known port 22555 for IP Phone call setup. (Default 00) 14.10.40.10 WELL_KNOWN_PORT [7:6] PRIORITY- WELL KNOWN LOGIC PORT 7 I2C Address h0EE, CPU Address 598 Accessed by CPU, serial interface and I2C (R/W) 7 Priority 7 5 4 3 1 Drop Priority 6 0 Drop Priority 6 - well know port 22 for ssh. Priority 7 – well Known port 554 for rtsp. (Default 00) 107 Zarlink Semiconductor Inc. AND 6 PRIORITY MVTX2604 14.10.40.11 Data Sheet WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables I2C Address h0EF, CPU Address 599 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 3 2 1 0 P7 P6 P5 P4 P3 P2 P1 P0 1 – Enable 0 - Disable (Default 00) 14.10.40.12 RLOWL – USER DEFINE RANGE LOW BIT 7:0 I2C Address h0F4, CPU Address: 59a Accessed by CPU, serial interface and I2C (R/W) (Default 00) 14.10.40.13 RLOWH – User Define Range Low Bit 15:8 I2C Address h0F5, CPU Address: 59b Accessed by CPU, serial interface and I2C (R/W) (Default 00) 14.10.40.14 RHIGHL – User Define Range High Bit 7:0 I2C Address h0D3, CPU Address: 59c Accessed by CPU, serial interface and I2C (R/W) (Default 00) 14.10.40.15 RHIGHH – User Define Range High Bit 15:8 I2C Address h0D4, CPU Address: 59d Accessed by CPU, serial interface and I2C (R/W) (Default 00) 14.10.40.16 RPRIORITY – User Define Range Priority I2C Address h0D5, CPU Address: 59e Accessed by CPU, serial interface and I2C (R/W) 7 4 3 0 Range Transmit Priority Drop 108 Zarlink Semiconductor Inc. MVTX2604 Data Sheet RLOW and RHIGH form a range for logical ports to be classified with priority specified in RPRIORITY. 14.10.41 Bit[3:1] Transmit Priority Bits[0]: Drop Priority CPUQOSC123 CPU Address: 5a0, 5a1, 5a2 Accessed by CPU and serial interface (R/W) C - CPUQOSC1 – CPU BYTE_C1 I2C Address h0C1, CPU Address 517) B - CPUQOSC2 – CPU BYTE_C2 I2C Address h0C2, CPU Address 518) A - CPUQOSC3 – CPU BYTE_C3 I2C Address h0C3, CPU Address 519) Represents values A-C for a CPU port. The values A-C are per-queue byte thresholds for random early drop. QOSC3 represents A, and QOSC1 represents C. Granularity: 256 bytes 14.11 14.11.1 Group 6 Address MISC Group MII_OP0 – MII Register Option 0 I2C Address F0, CPU Address:h600 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 hfc 1prst DisJ Vendor Spc. Reg Addr Bits [7]: 0 Half duplex flow control feature 0 = Half duplex flow control always enable 1 = Half duplex flow control by negotiation Bits [6]: Link partner reset auto-negotiate disable Bits [5]: Disable jabber detection. This is for HomePNA applications or any serial operation slower than 10 Mbps. 0 = Enable 1 = Disable Bit [4:0]: Vendor specified link status register address (null value means don’t use it) (Default 00). This is used if the Linkup bit position in the PHY is nonstandard. 109 Zarlink Semiconductor Inc. MVTX2604 14.11.2 Data Sheet MII_OP1 – MII Register Option 1 I2C Address F1, CPU Address:h601 Accessed by CPU, serial interface and I2C (R/W) 7 4 3 Speed bit location 0 Duplex bit location Bits [3:0]: Duplex bit location in vendor specified register Bits [7:4]: Speed bit location in vendor specified register (Default 00) 14.11.3 FEN – Feature Register I2C Address F2, CPU Address:h602) Accessed by CPU, serial interface and I2C (R/W) 7 DML Bits [0]: 6 5 4 3 2 1 Mii Rp IP Mul V-Sp DS RC 0 SC Statistic Counter Enable (Default 0) • • 0 – Disable 1 – Enable (all ports) When statistic counter is enable, an interrupt control frame is generated to the CPU, every time a counter wraps around. This feature requires an external CPU. Bits [1]: Rate Control Enable (Default 0) • • 0 – Disable 1 – Enable; Must also set ECR2Pn[3] = 1 This bit enables/disables the rate control for all 10/100 ports. To start rate control in a 10/100 port the rate control memory must be programmed. This feature requires an external CPU. See Programming QoS Registers Application Note and Processor Interface Application Note for more information. Bit [2]: Support DS EF Code. (Default 0) • • 0 – Disable 1 – Enable (all ports) When 101110 is detected in DS field (TOS[7:2]), the frame priority is set for 110 and drop is set for 0. 110 Zarlink Semiconductor Inc. MVTX2604 Bit [3]: Data Sheet Enable VLAN spanning tree support (Default 0) • • 0 – Disable 1 – Enable When VLAN spanning tree is enable the registers ECR1Pn are NOT used to program the port spanning tree status. The port status is programmed using the Control Command Frame. Bit [4]: Disable IP Multicast Support (Default 1) • • 0 – Enable IP Multicast Support 1 – Disable IP Multicast Support When enable, IGMP packets are identified by search engine and are passed to the CPU for processing. IP multicast packets are forwarded to the IP multicast group members according to the VLAN port mapping table. Bit [5]: Enable report to CPU(Default 0) • • 0 – Disable report to CPU 1 – Enable report to CPU When disable new VLAN port association report, new MAC address report or aging reports are disable for all ports. When enable, register SE_OPEMODE is used to enable/disable selectively each function. Bit [6]: Disable MII Management State Machine (Default 0) • • Bit [7]: 0: Enable MII Management State Machine 1: Disable MII Management State Machine Disable using MCT Link List structure (Default 0) 0 – Enable using MCT Link structure 1 - Disable using MCT Link List structure 14.11.4 MIIC0 – MII Command Register 0 CPU Address:h603 Accessed by CPU and serial interface only (R/W) Bit [7:0] - MII Data [7:0] Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then program MII command. 14.11.5 MIIC1 – MII Command Register 1 CPU Address:h604 Accessed by CPU and serial interface only (R/W) Bit [7:0] - MII Data [15:8] Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. 111 Zarlink Semiconductor Inc. MVTX2604 14.11.6 Data Sheet MIIC2 – MII Command Register 2 CPU Address:h605 Accessed by CPU and serial interface only (R/W) 7 6 5 4 Mii OP 0 Register address Bit [4:0] - REG_AD – Register PHY Address Bit [6:5] - OP – Operation code “10” for read command and “01” for write command Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. 14.11.7 MIIC3 – MII Command Register 3 CPU Address:h606 Accessed by CPU and serial interface only (R/W) 7 Rdy 6 Valid 5 4 0 PHY address Bits [4:0] - PHY_AD – 5 Bit PHY Address Bit [6] - VALID – Data Valid from PHY (Read Only) Bit [7] - RDY – Data is returned from PHY (Ready Only) Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. Writing this register will initiate a serial management cycle to the MII management interface. 14.11.8 MIID0 – MII Data Register 0 CPU Address:h607 Accessed by CPU and serial interface only (RO) Bit [7:0] - MII Data [7:0] 14.11.9 MIID1 – MII Data Register 1 CPU Address:h608 Accessed by CPU and serial interface only (RO) Bit [7:0] - MII Data [15:8] 112 Zarlink Semiconductor Inc. MVTX2604 14.11.10 Data Sheet LED Mode – LED Control CPU Address:h609 Accessed by CPU, serial interface and I2C (R/W) 7 5 4 3 Clock rate 2 1 Hold Time Bit [0] Reserved(Default 0) Bit [2:1]: Hold time for LED signal (Default 00) 00=8 msec 10=32 msec Bit [4:3]: 0 01=16 msec 11=64 msec LED clock frequency (Default 0) For 100MHz SCLK 00 = 100 M/8 = 12.5 MHz 10 = 100 M/32 = 3.125 MHz 01 = 100 M/16 = 6.25 MHz 11 = 100 M/64 = 1.5625 MHz For 125 MHz SCLK 00 = 125 M/64 = 1953 KHz 10 = 125 M/512 = 244 KHz Bit [7:5]: 14.11.11 01 = 125 M/128 = 977 KHz 11 = 125 M/1024 = 122 KHz Reserved. Must be set to ‘0’ (Default 0) DEVICE Mode CPU Address:h60a Accessed by CPU and serial interface (R/W) 7 4 3 0 Device ID Bit [1:0]: Reserved. Must be set to ‘0’ (Default 0) Bit [2]: Support < = 1536 frames 0: < = 1518 bytes (< = 1522 bytes with VLAN tag) (Default) 1: < = 1536 bytes 14.11.12 Bit [3:0]: Reserved. Must be set to ‘0’ (Default 0) Bit [7:4]: DEVICE ID (Default 0). This is for stacking operation. This is the stack ID for loop topology. CHECKSUM - EEPROM Checksum I2C Address FF, CPU Address:h60b Accessed by CPU, serial interface and I2C (R/W) Bit [7:0]: (Default 0) 113 Zarlink Semiconductor Inc. MVTX2604 Data Sheet This register is used in unmanaged mode only. Before requesting that the MVTX2604 updates the EEPROM device, the correct checksum needs to be calculated and written into this checksum register. The checksum formula is: FF Σ i2C register = 0 i=0 When the MVTX2604 boots from the EEPROM the checksum is calculated and the value must be zero. If the checksum is not zeroed the MVTX2604 does not start and pin CHECKSUM_OK is set to zero. 14.12 Group 7 Address Port Mirroring Group 14.12.1 MIRROR1_SRC - Port Mirror source port CPU Address 700 Accessed by CPU and serial interface (R/W) (Default 7F) 7 6 5 4 0 I/O Src Port Select Bit [4:0]: Source port to be mirrored. Use illegal port number to disable mirroring Bit [5]: 1 - select ingress data 0 - select egress data Bit [6]: Reserved Bit [7]: Reserved must be se to '1' 14.12.2 MIRROR1_DEST – Port Mirror destination CPU Address 701 Accessed by CPU, serial interface (R/W) (Default 17) 7 5 4 0 Dest Port Select Bit [4:0]: Port Mirror Destination When port mirroring is enable, destination port can not serve as a data port. 14.12.3 MIRROR2_SRC – Port Mirror source port CPU Address 702 Accessed by CPU, serial interface (R/W) (Default FF) 7 6 5 4 0 I/O Src Port Select 114 Zarlink Semiconductor Inc. MVTX2604 Bit [4:0]: Source port to be mirrored. Use illegal port number to disable mirroring Bit [5]: 1 – select ingress data Data Sheet 0 – select egress data 14.12.4 Bit [6] Reserved Bit [7] Reserved must be set to '1' MIRROR2_DEST – Port Mirror destination CPU Address 703 Accessed by CPU, serial interface (R/W) (Default 00) 7 5 4 0 Dest Port Select Bit [4:0]: Port Mirror Destination When port mirroring is enable, destination port can not serve as a data port. 14.13 14.13.1 Group F Address CPU Access Group GCR-Global Control Register CPU Address: hF00 Accessed by CPU and serial interface. (R/W) 7 5 4 Init Bit [0]: 3 2 1 Reset Bist SR 0 SC Store configuration (Default = 0) Write ‘1’ followed by ‘0’ to store configuration into external EEPROM Bit [1]: Store configuration and reset (Default = 0) Write ‘1’ to store configuration into external EEPROM and reset chip Bit [2]: Start BIST (Default = 0) Write ‘1’ followed by ‘0’ to start the device’s built-in self-test. The result is found in the DCR register. Bit [3]: Soft Reset (Default = 0) Write ‘1’ to reset chip 115 Zarlink Semiconductor Inc. MVTX2604 Bit [4]: Data Sheet Initialization Done (Default = 0). This bit is meaningless in unmanaged mode. In managed mode, CPU write this bit with ‘1’ to indicate initialization is completed and ready to forward packets. 1 = Initialization is done. 0 = Initialization is not complete. 14.13.2 DCR-Device Status and Signature Register CPU Address: hF01 Accessed by CPU and serial interface. (RO) 7 6 Revision Bit [0]: 5 4 Signature 3 RE 2 1 BinP BR 0 BW 1: Busy writing configuration to I2C 0: Not busy (not writing configuration to I2C) Bit [1]: 1: Busy reading configuration from I2C 0: Not busy ( not reading configuration from I2C) Bit [2]: 1: BIST in progress 0: BIST not running Bit [3]: 1: RAM Error 0: RAM OK Bit [5:4]: Device Signature 11: MVTX2604 device Bit [7:6]: Revision 00: Initial Silicon 01: XA1 Silicon 10: Production Silicon 116 Zarlink Semiconductor Inc. MVTX2604 14.3.13 Data Sheet DCR1-Giga port status CPU Address: hF02 Accessed by CPU and serial interface. (RO) 7 6 4 CIC Bit [1:0]: 3 2 1 GIGA1 0 GIGA0 Giga port 0 strap option - 00 – 100 Mb MII mode - 01 – 2 G mode - 10 – GMII - 11 – PCS Bit [3:2] Giga port 1 strap option - 00 – 100 Mb MII mode - 01 – 2 G mode - 10 – GMII - 11 – PCS Bit [7] Chip initialization completed 117 Zarlink Semiconductor Inc. MVTX2604 14.3.14 Data Sheet DPST – Device Port Status Register CPU Address:hF03 Accessed by CPU and serial interface (R/W) Bit [4:0]: Read back index register. This is used for selecting what to read back from DTST. (Default 00) - 5’b00000 - Port 0 Operating mode and Negotiation status - 5’b00001 - Port 1 Operating mode and Negotiation status - 5’b00010 - Port 2 Operating mode and Negotiation status - 5’b00011 - Port 3 Operating mode and Negotiation status - 5’b00100 - Port 4 Operating mode and Negotiation status - 5’b00101 - Port 5 Operating mode and Negotiation status - 5’b00110 - Port 6 Operating mode and Negotiation status - 5’b00111 - Port 7 Operating mode and Negotiation status - 5’b01000 - Port 8 Operating mode and Negotiation status - 5’b01001 - Port 9 Operating mode and Negotiation status - 5’b01010 - Port 10 Operating mode and Negotiation status - 5’b01011 - Port 11 Operating mode and Negotiation status - 5’b01100 - Port 12 Operating mode and Negotiation status - 5’b01101 - Port 13 Operating mode and Negotiation status - 5’b01110 - Port 14 Operating mode and Negotiation status - 5’b01111 - Port 15 Operating mode and Negotiation status - 5’b10000 - Port 16 Operating mode and Negotiation status - 5’b10001 - Port 17 Operating mode and Negotiation status - 5’b10010 - Port 18 Operating mode and Negotiation status - 5’b00011 - Port 19 Operating mode and Negotiation status - 5’b10100 - Port 20 Operating mode and Negotiation status - 5’b10101 - Port 21 Operating mode and Negotiation status - 5’b10110 - Port 22 Operating mode and Negotiation status - 5’b10111 - Port 23 Operating mode and Negotiation status - 5’b11000 - Port 24 Operating mode/Neg status (CPU port) - 5’b11001 - Port 25 Operating mode/Neg status (Gigabit 1) - 5’b11010 - Port 26 Operating mode/Neg status (Gigabit 2) 118 Zarlink Semiconductor Inc. MVTX2604 14.3.15 Data Sheet DTST – Data read back register CPU Address: hF04 Accessed by CPU and serial interface (RO) This register provides various internal information as selected in DPST bit[4:0]. Application Note. 7 6 5 MD Info Sig 4 3 Giga Inkdn 2 FE Refer to the PHY Control 1 0 Fdpx FcEn When bit is 1: Bit [0] – Flow control enable Bit [1] – Full duplex port Bit [2] – Fast Ethernet port (if not gigabit port) Bit [3] – Link is down Bit [4] – Giga port Bit [5] – Signal detect (when PCS interface mode) Bit [6] - 2G signal detect (2G mode only) Bit [7] – Module detected (for hot swap purpose) 14.3.16 DA – DA Register CPU Address: hFFF Accessed by CPU and serial interface (RO) Always return 8’h DA. Indicate the CPU interface or serial port connection is good. 14.4 TBI Registers Two sets of TBI registers are used for configure the two Gigabit ports if they are operating in TBI mode. These TBI registers are located inside the switching chip and they are accessed through the MII command and MII data registers. 14.4.1 Control Register MII Address: h00 Read/Write Bit [15] Reset PCS logic and all TBI registers 1 = Reset. 0 = Normal operation. Bit [14] Reserved. Must be programmed with “0”. Bit [13] Speed selection (See bit 6 for complete details) 119 Zarlink Semiconductor Inc. MVTX2604 Bit [12] Auto Negotiation Enable 1 = Enable auto-negotiation process. 0 = Disable auto-negotiation process (Default). Bit [11:10] Reserved. Must be programmed with “0” Bit [9] Restart Auto Negotiation. 1 = Restart auto-negotiation process. 0 = Normal operation (Default). Bit [8:7] Reserved. Bit [6] Speed Selection Bit[6][13] 1 1 = Reserved 1 0 =1000 Mb/s (Default) 0 1 =100 Mb/s 0 0 =10 Mb/s Bit [5:0] 14.4.2 Reserved. Must be programmed with “0”. Status Register MII Address: h01 Read Only Bit [15:9] Reserved. Always read back as “0”. Bit [8] Reserved. Always read back as “1”. Bit [7:6] Reserved. Always read back as “0”. Bit [5] Auto-Negotiation Complete 1 = Auto-negotiation process completed. 0 = Auto-negotiation process not completed. Bit [4] Reserved. Always read back as “0” Bit [3] Reserved. Always read back as “1” Bit [2] Link Status 1 = Link is up. 0 = Link is down. Bit [1] Reserved. Always read back as “0”. Bit [0] Reserved. Always read back as “1”. 120 Zarlink Semiconductor Inc. Data Sheet MVTX2604 14.4.3 Advertisement Register MII Address: h04 Read/Write 14.4.4 Bit [15] Next Page 1 = Has next page capabilities. 0 = Do not has next page capabilities (Default). Bit [14] Reserved. Always read back as “0”. Read Only. Bit [13:12] Remote Fault. Default is “0”. Bit [11:9] Reserved. Always read back as “0”. Read Only. Bit [8:7] Pause. Default is “00” Bit [6] Half Duplex 1 = Support half duplex (Default). 0 = Do not support half duplex. Bit [5] Full duplex 1 = Support full duplex (Default). 0 = Do not support full duplex. Bit [4:0] Reserved. Always read back as “0”. Read Only. Link Partner Ability Register MII Address: h05 Read Only Bit [15] Next Page 1 = Has next page capabilities. 0 = Do not has next page capabilities. Bit [14] Acknowledge Bit [13:12] Remote Fault. Bit [11:9] Reserved. Always read back as “0”. Bit [8:7] Pause. Bit [6] Half Duplex 1 = Support half duplex. 0 = Do not support half duplex. Bit [5] Full duplex 1 = Support full duplex. 0 = Do not support full duplex. Bit [4:0] Reserved. Always read back as “0”. 121 Zarlink Semiconductor Inc. Data Sheet MVTX2604 14.4.5 Expansion Register MII Address: h06 Read Only Bit [15:2] Reserved. Always read back as “0”. Bit [1] Page Received. 1 = A new page has been received. 0 = A new page has not been received. Bit [0] 14.4.6 Reserved. Always read back as “0”. Extended Status Register MII Address: h15 Read Only Bit [15] 1000 Full Duplex 1 = Support 1000 full duplex operation (Default). 0 = Do not support 1000 full duplex operation. Bit [14] 1000 Half Duplex 1 = Support 1000 half duplex operation (Default). 0 = Do not support 1000 half duplex operation. Bit [13:0] Reserved. Always read back as “0”. 122 Zarlink Semiconductor Inc. Data Sheet MVTX2604 15.0 BGA and Ball Signal Descriptions 15.1 BGA Views (Top-View) 15.1.1 1 Data Sheet Encapsulated view in unmanaged mode 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 LA_D LA_D LA_D LA_D LA_D LA_A LA_O LA_A LA_A LA_A LA_A LA_D LA_D LA_D LA_D LA_D OE_C LA_C TRUN MIRR MIRR SCL 4 7 10 13 15 4 E0_ 8 13 16 19 33 36 39 42 45 LK0 LK0 K1 OR4 OR1 A 25 26 LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_O LA_A LA_A LA_A LA_A LA_D LA_D LA_D LA_D LA_D OE_C LA_C LA_D MIRR MIRR TRUN RESE D0 1 3 6 9 12 14 DSC_ E1_ 7 12 15 18 32 35 38 41 44 LK1 LK1 62 OR5 OR2 K2 RVED B 27 28 29 RO TSTO SDA ST BE UT7 TSTO TSTO UT8 UT3 C LA_C LA_D LA_D LA_D LA_D LA_D LA_A LA_O LA_W T_MO LA_A LA_A LA_A LA_A LA_D LA_D LA_D LA_D OE_C LA_C P_D TRUN MIRR MIRR AUTO TSTO TSTO TSTO TSTO LK 0 2 5 8 11 3 E_ E_ DE1 11 14 17 20 34 37 40 43 LK2 LK2 K0 OR3 OR0 FD UT11 UT9 UT4 UT0 D AGN LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_A LA_W LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D SCAN SCAN TSTO TSTO TSTO TSTO TSTO TSTO 17 19 21 23 25 27 29 31 6 10 E0_ 49 51 53 55 57 59 61 63 47 COL CLK UT14 UT13 UT12 UT10 UT5 UT1 D S C A N T S T O M 2 6 _ M 2 6 _ SMCOADN LINK UT15 CRS TXER E M26_ M26_ M26_ TXCL TXEN MTX K CLK M26_ M26_ M26_ TXD1 TXD1 RXD1 4 5 5 M26_ M26_ M26_ TXD1 TXD1 RXD1 2 3 2 M26_ M26_ M26_ TXD1 TXD1 R XD9 0 1 _D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_A LA_W LA_D LA_D LA_D LA_D LA_D LA_D LA_D RESE LA_D E SCLK LA 16 18 20 22 24 26 28 30 5 9 E1_ 48 50 52 54 56 58 60 RVED 46 F AVC C RESI SCAN LB_D LB_D N_ EN 63 62 VCC VCC VCC VCC VCC ESE LB_D LB_D LB_D B _ C TRO G LL UT 4 7 K 61 60 _ H LB_D LB_D LB_D LB_D LB_D 46 45 44 59 58 _D LB_D LB_D LB_D LB_D J LB 43 42 41 57 56 _D LB_D LB_D LB_D LB_D K LB 40 39 38 55 54 VDD VDD TSTO TSTO UT6 UT2 M26_ M26_ RXD RXCL V K M26_ M26_ RXER COL M26_ RXD1 3 M26_ RXD1 0 M26_ RXD1 4 M26_ RXD1 1 M26_ M26_ M26_ M26_ M26_ TXD9 TXD8 RXD6 RXD7 RXD8 VDD VDD L LB_D LB_D LB_D LB_D LB_D 37 36 35 53 52 M26_ M26_ M26_ M26_ M26_ TXD4 TXD6 RXD3 RXD4 RXD5 M26_ M26_ M26_ M26_ M26_ TXD7 TXD5 RXD0 RXD1 RXD2 M LB_D LB_D LB_D LB_D LB_D 34 33 32 51 50 VDD VSS VSS VSS VSS VSS VSS VSS VDD N LB_A LB_A LB_A LB_D LB_D VCC 18 19 20 49 48 VDD VSS VSS VSS VSS VSS VSS VSS VDD P LB_A LB_A LB_A LB_W LB_ VCC 15 16 17 E0_ WE1_ VSS VSS VSS VSS VSS VSS VSS VCC M26_ M26_ TXD0 TXD1 GREF _CLK 1 GREF MDIO _CLK 0 _A LB_A LB_A LB_A LB_A R LB VCC 10 11 12 13 14 VSS VSS VSS VSS VSS VSS VSS 25_ M25_ VCC M CRS TXER M D C M _KC L M25_ M25_ M25_ M25_ M25_ VCC TXCL TXEN MTX RXD RXCL K CLK V K T L B5_ A L B6_ A L B7_ A L B8_ A L B9_ A V C C LB_O LB_O T_MO LB_D LB_D VCC U E0_ E1_ DE0 31 30 LB_A LB_O LB_W LB_D LB_D V DSC_ E_ E_ 29 28 W LB_D LB_A LB_A LB_D LB_D 15 3 4 27 26 Y LB_D LB_D LB_D LB_D LB_D 14 13 12 25 24 VSS VSS VSS VSS VSS VSS VSS VDD VSS VSS VSS VSS VSS VSS VSS VDD VDD VSS VSS VSS VSS VSS VSS VSS VDD VDD VDD VCC M26_ M26_ TXD2 TXD3 M25_ VCC TXD1 4 M25_ TXD1 2 M25_ TXD1 0 M25_ TXD1 5 M25_ TXD1 3 M25_ TXD1 1 M25_ RXD1 5 M25_ RXD1 2 M25_ M25_ RXER COL M25_ RXD1 3 M25_ M25_ R X D 9 R X0D 1 M25_ RXD1 4 M25_ RXD1 1 M25_ M25_ M25_ M25_ M25_ RXD6 TXD8 RXD9 RXD7 RXD8 VDD VDD A LB_D LB_D LB_D LB_D LB_D 11 10 9 23 22 A M25_ M25_ M25_ M25_ M25_ TXD6 TXD7 RXD3 RXD4 RXD5 A LB_D LB_D LB_D LB_D LB_D 8 7 6 21 20 B M25_ M25_ M25_ M25_ M25_ TXD4 TXD5 RXD0 RXD1 RXD2 A LB_D LB_D LB_D LB_D LB_D 5 4 3 19 18 C M25_ M25_ M23_ M23_ M23_ TXD2 TXD3 CRS RXD0 RXD1 A LB_D LB_D LB_D LB_D LB_D 2 1 0 17 16 D VCC VCC VCC VCC M25_ M25_ M23_ M23_ M23_ TXD0 TXD1 TXD1 TXD0 TXEN VCC A M0_T M0_T M0_T M3_T M3_T M3_R M5_T M5_T M5_R M8_T M8_T M8_R M10_ M10_ M10_ M13_ M16_ M15_ M16_ M15_ M15_ M18_ M18_ M18_ M20_ M20_ M20_ M22_ E XEN XD0 XD1 XD1 XEN XD0 XD1 XEN XD0 XD1 XEN XD0 TXD1 TXEN RXD0 TXD1 TXD0 TXD1 RXD1 TXEN RXD0 TXD1 TXEN RXD0 TXD1 TXEN RXD0 RXD1 0_R M0_R M0_C M3_T M3_C M3_R M5_T M5_C M5_R M8_T M8_C M8_R M10_ M10_ M10_ M13_ M13_ M13_ M14_ M16R M15_ M17_ M17_ M18_ M20_ M20_ M20_ M22_ M22_ AF M XD1 XD0 RS XD0 RS XD1 XD0 RS XD1 XD0 RS XD1 TXD0 CRS RXD1 TXD0 CRS RXD1 CRS XD0 RXD1 RXD0 CRS RXD1 TXD0 CRS RXD1 RXD0 CRS A M1_T M1_T M1_T M2_T M2_C M4_T M4_C M6_T M6_C M7_T M7_C M9_T M9_C M11_ M11_ M12_ M12_ M14_ M15_ M16_ M16_ M18_ M18_ M19_ M19_ M21_ M21_ M22_ M22_ RS XD1 RS XD1 RS XD1 RS XD1 RS TXD1 CRS TXD1 CRS TXD1 TXD0 TXD1 CRS TXD0 CRS TXD1 CRS TXD1 CRS TXEN TXD0 G XEN XD0 XD1 XD1 A H M1_R M1_C M2_T M2_R M4_T M4_R M6_T M6_R M7_T M7_R M9_T M9_R M11_ M11_ M12_ M12_ M14_ M14_ M13_ M15_ M17_ M17_ M19_ M19_ M21_ M21_ M22_ XD0 RS XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 TXD0 RXD0 TXD0 RXD0 TXD0 RXD0 RXD0 CRS TXD0 RXD1 TXD0 RXD0 TXD0 RXD0 TXD1 AJ M1_R M2_T M2_R M4_T M4_R M6_T M6_R M7_T M7_R M9_T M9_R M11_ M11_ M12_ M12_ M14_ M14_ M16_ M13_ M17_ M17_ M19_ M19_ M21_ M21_ XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 TXEN RXD1 TXEN RXD1 TXEN RXD1 TXEN TXEN TXEN TXD1 TXEN RXD1 TXEN RXD1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 123 Zarlink Semiconductor Inc. 18 19 20 21 22 23 24 25 26 27 28 29 MVTX2604 15.1.2 1 Data Sheet Encapsulated view in managed mode 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 A LA_D LA_D LA_D LA_D LA_D LA_A LA_O LA_A LA_A LA_A LA_A LA_D LA_D LA_D LA_D LA_D P_DA P_DA P_DA P_DA P_DA P_A0 P_A1 P_WE T STO UT7 4 7 10 13 15 4 E0_ 8 13 16 19 33 36 39 42 45 TA13 TA10 TA7 TA4 TA1 B LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_O LA_A LA_A LA_A LA_A LA_D LA_D LA_D LA_D LA_D P_DA P_DA LA_D P_DA P_DA P_DA P_IN TSTO TSTO P_RD 1 3 6 9 12 14 DSC_ E1_ 7 12 15 18 32 35 38 41 44 TA14 TA11 62 TA5 TA2 TA6 T UT8 UT3 29 PDA P_CS TSTO TSTO TSTO TSTO C L A _ C L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ W T _ M O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D P _ D A P _ D A P _ D A P _ A 2 D A T A PT_A UT11 UT9 UT4 UT0 0 LK 0 2 5 8 11 3 E_ E_ DE1 11 14 17 20 34 37 40 43 TA15 TA12 TA9 3 D AGN LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_A LA_W LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D SCAN SCAN TSTO TSTO TSTO TSTO TSTO TSTO 17 19 21 23 25 27 29 31 6 10 E0_ 49 51 53 55 57 59 61 63 47 COL CLK UT14 UT13 UT12 UT10 UT5 UT1 D SCAN SCAN TSTO M26_ M26_ MOD LINK UT15 CRS TXER E M26_ M26_ M26_ MTX TXCL TXEN CLK K M26_ M26_ M26_ TXD1 TXD1 RXD1 4 5 5 M26_ M26_ M26_ TXD1 TXD1 RXD1 2 3 2 M26_ M26_ M26_ TXD1 TXD1 R XD9 1 0 E SCLK LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_D LA_A LA_A LA_W LA_D LA_D LA_D LA_D LA_D LA_D LA_D P_DA LA_D 16 18 20 22 24 26 28 30 5 9 E1_ 48 50 52 54 56 58 60 TA8 46 F AVC C RESI SCAN LB_D LB_D N_ EN 63 62 VCC VCC VCC VCC VCC RESE G LB_ C T O UT LB_ D LB_ D LB_ D LK 47 61 60 _ H LB_D LB_D LB_D LB_D LB_D 46 45 44 59 58 J LB_D LB_D LB_D LB_D LB_D 43 42 41 57 56 K LB_D LB_D LB_D LB_D LB_D 40 39 38 55 54 VDD VDD TSTO TSTO UT6 UT2 M26_ M26_ RXD RXCL K V M26_ M26_ RXER COL M26_ RXD1 3 M26_ RXD1 0 M26_ RXD1 4 M26_ RXD1 1 M26_ M26_ M26_ M26_ M26_ TXD9 TXD8 RXD6 RXD7 RXD8 VDD VDD M26_ M26_ M26_ M26_ M26_ TXD4 TXD6 RXD3 RXD4 RXD5 L LB_D LB_D LB_D LB_D LB_D 37 36 35 53 52 M LB_D LB_D LB_D LB_D LB_D 34 33 32 51 50 VDD VSS VSS VSS VSS VSS VSS VSS VDD N LB_A LB_A LB_A LB_D LB_D VCC 18 19 20 49 48 VDD VSS VSS VSS VSS VSS VSS VSS VDD P LB_A LB_A LB_A LB_W LB_ VCC 15 16 17 E0_ WE1_ VSS VSS VSS VSS VSS VSS VSS VCC M26_ M26_ TXD0 TXD1 _A LB_A LB_A LB_A LB_A R LB VCC 10 11 12 13 14 VSS VSS VSS VSS VSS VSS VSS VCC M25_ M25_ M25_ M25_ M25_ VCC TXCL TXEN MTX RXD RXCL K V CLK K T L B5_ A L B6_ A L B7_ A L B8_ A L B9_ A V C C LB_O LB_O T_MO LB_D LB_D VCC U E0_ E1_ DE0 31 30 LB_A LB_O LB_W LB_D LB_D V DSC_ E_ E_ 29 28 W LB_D LB_A LB_A LB_D LB_D 15 3 4 27 26 Y LB_D LB_D LB_D LB_D LB_D 14 13 12 25 24 VSS VSS VSS VSS VSS VSS VSS VDD VSS VSS VSS VSS VSS VSS VSS VDD VDD VSS VSS VSS VSS VSS VSS VSS VDD VDD VDD M26_ M26_ M26_ M26_ M26_ TXD7 TXD5 RXD0 RXD1 RXD2 GREF _CLK 1 GREF MDIO _CLK 0 VCC M26_ M26_ TXD2 TXD3 M25_ M25_ CRS TXER M25_ VCC TXD1 4 M25_ TXD1 2 M25_ TXD1 0 M25_ TXD1 5 M25_ TXD1 3 M25_ TXD1 1 MDC M25_ RXD1 5 M25_ RXD1 2 M_CL K M25_ M25_ RXER COL M25_ RXD1 3 M25_ M25_ RXD1 RXD9 0 M25_ RXD1 4 M25_ RXD1 1 M25_ M25_ M25_ M25_ M25_ RXD6 TXD8 RXD9 RXD7 RXD8 VDD VDD A LB_D LB_D LB_D LB_D LB_D 11 10 9 23 22 A M25_ M25_ M25_ M25_ M25_ TXD6 TXD7 RXD3 RXD4 RXD5 A LB_D LB_D LB_D LB_D LB_D 8 7 6 21 20 B M25_ M25_ M25_ M25_ M25_ TXD4 TXD5 RXD0 RXD1 RXD2 A LB_D LB_D LB_D LB_D LB_D 5 4 3 19 18 C M25_ M25_ M23_ M23_ M23_ TXD2 TXD3 CRS RXD0 RXD1 A LB_D LB_D LB_D LB_D LB_D 2 1 0 17 16 D VCC VCC VCC VCC M25_ M25_ M23_ M23_ M23_ TXD0 TXD1 TXD1 TXD0 TXEN VCC A M0_T M0_T M0_T M3_T M3_T M3_R M5_T M5_T M5_R M8_T M8_T M8_R M10_ M10_ M10_ M13_ M16_ M15_ M16_ M15_ M15_ M18_ M18_ M18_ M20_ M20_ M20_ M22_ E XEN XD0 XD1 XD1 XEN XD0 XD1 XEN XD0 XD1 XEN XD0 TXD1 TXEN RXD0 TXD1 TXD0 TXD1 RXD1 TXEN RXD0 TXD1 TXEN RXD0 TXD1 TXEN RXD0 RXD1 M0_R M0_R M0_C M3_T M3_C M3_R M5_T M5_C M5_R M8_T M8_C M8_R M10_ M10_ M10_ M13_ M13_ M13_ M14_ M16R M15_ M17_ M17_ M18_ M20_ M20_ M20_ M22_ M22_ AF XD1 XD0 RS XD0 RS XD1 XD0 RS XD1 XD0 RS XD1 TXD0 CRS RXD1 TXD0 CRS RXD1 CRS XD0 RXD1 RXD0 CRS RXD1 TXD0 CRS RXD1 RXD0 CRS A M1_T M1_T M1_T M2_T M2_C M4_T M4_C M6_T M6_C M7_T M7_C M9_T M9_C M11_ M11_ M12_ M12_ M14_ M15_ M16_ M16_ M18_ M18_ M19_ M19_ M21_ M21_ M22_ M22_ RS XD1 RS XD1 RS XD1 RS XD1 RS TXD1 CRS TXD1 CRS TXD1 TXD0 TXD1 CRS TXD0 CRS TXD1 CRS TXD1 CRS TXEN TXD0 G XEN XD0 XD1 XD1 A H M1_R M1_C M2_T M2_R M4_T M4_R M6_T M6_R M7_T M7_R M9_T M9_R M11_ M11_ M12_ M12_ M14_ M14_ M13_ M15_ M17_ M17_ M19_ M19_ M21_ M21_ M22_ XD0 RS XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 XD0 TXD0 RXD0 TXD0 RXD0 TXD0 RXD0 RXD0 CRS TXD0 RXD1 TXD0 RXD0 TXD0 RXD0 TXD1 AJ M1_R M2_T M2_R M4_T M4_R M6_T M6_R M7_T M7_R M9_T M9_R M11_ M11_ M12_ M12_ M14_ M14_ M16_ M13_ M17_ M17_ M19_ M19_ M21_ M21_ XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 XEN XD1 TXEN RXD1 TXEN RXD1 TXEN RXD1 TXEN TXEN TXEN TXD1 TXEN RXD1 TXEN RXD1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 124 Zarlink Semiconductor Inc. 18 19 20 21 22 23 24 25 26 27 28 29 MVTX2604 15.2 Data Sheet Ball – Signal Descriptions in Managed Mode All pins are CMOS type; all Input Pins are 5 Volt tolerance; and all Output Pins are 3.3 CMOS drive. 15.2.1 Ball Signal Descriptions in Managed Mode Ball No(s) Symbol I/O Description CPU BUS Interface in Managed Mode C19, B19, A19, C20, B20, A20, C21, E20, A21, B24, B22, A22, C23, B23, A23, C24 P_DATA[15:0] I/O-TS with pull up Except P_DATA[7:6] I/O-TS with pull down Processor Bus Data Bit [15:0]. P_DATA[7:0] is used in 8-bit mode. C22, A24, A25 P_A[2:0] Input Processor Bus Address Bit [2:0] A26 P_WE# Input with weak internal pull up CPU Bus-Write Enable B26 P_RD# Input with weak internal pull up CPU Bus-Read Enable C25 P_CS# Input with weak internal pull up Chip Select B25 P_INT# Output CPU Interrupt Frame Buffer Interface D20, B21, D19, E19,D18, E18, D17, E17, D16, E16, D15, E15, D14, E14, D13, E13, D21, E21, A18, B18, C18, A17, B17, C17, A16, B16, C16, A15, B15, C15, A14, B14, D9, E9, D8, E8, D7, E7, D6, E6, D5, E5, D4, E4, D3, E3, D2, E2, A7, B7, A6, B6, C6, A5, B5, C5, A4, B4, C4, A3, B3, C3, B2, C2 LA_D[63:0] C14, A13, B13, C13, A12, B12, C12, A11, B11, C11, D11, E11, A10, B10, D10, E10, A8, C7 LA_A[20:3] I/O-TS with pullup Output Frame Bank A– Data Bit [63:0] Frame Bank A – Address Bit [20:3] 125 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol I/O Data Sheet Description B8 LA_ADSC# Output with pull up Frame Bank A Address Status Control C1 LA_CLK Output Frame Bank A Clock Input C9 LA_WE# Output with pull up Frame Bank A Write Chip Select for one layer SRAM configuration D12 LA_WE0# Output with pull up Frame Bank A Write Chip Select for lower layer of two layers SRAM configuration E12 LA_WE1# Output with pull up Frame Bank A Write Chip Select for upper layer of two layers SRAM configuration C8 LA_OE# Output with pull up Frame Bank A Read Chip Select for one bank SRAM configuration A9 LA_OE0# Output with pull up Frame Bank A Read Chip Select for lower layer of two layers SRAM configuration B9 LA_OE1# Output with pull up Frame Bank A Read Chip Select for upper layer of two layers SRAM configuration F4, F5, G4, G5, H4, H5, J4, J5, K4, K5, L4, L5, M4, M5, N4, N5, G3, H1, H2, H3, J1, J2, J3, K1, K2, K3, L1, L2, L3, M1, M2, M3, U4, U5, V4, V5, W4, W5, Y4, Y5, AA4, AA5, AB4, AB5, AC4, AC5, AD4, AD5, W1, Y1, Y2, Y3, AA1, AA2, AA3, AB1, AB2, AB3, AC1, AC2, AC3, AD1, AD2, AD3 LB_D[63:0] I/O-TS with pullup. Frame Bank B– Data Bit [63:0] N3, N2, N1, P3, P2, P1, R5, R4, R3, R2, R1, T5, T4, T3, T2, T1, W3, W2 LB_A[20:3] Output Frame Bank B – Address Bit [20:3] V1 LB_ADSC# Output with pull up Frame Bank B Address Status Control G1 LB_CLK Output with pull up Frame Bank B Clock Input V3 LB_WE# Output with pull up Frame Bank B Write Chip Select for one layer SRAM configuration 126 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol I/O Data Sheet Description P4 LB_WE0# Output with pull up Frame Bank B Write Chip Select for lower layer of two layer SRAM configuration P5 LB_WE1# Output with pull up Frame Bank B Write Chip Select for upper layer of two layers SRAM configuration V2 LB_OE# Output with pull up Frame Bank B Read Chip Select for one layer SRAM configuration U1 LB_OE0# Output with pull up Frame Bank B Read Chip Select for lower layer of two layers SRAM configuration U2 LB_OE1# Output with pull up Frame Bank B Read Chip Select for upper layer of two layers SRAM configuration Fast Ethernet Access Ports [23:0] RMII R28 M_MDC Output MII Management Data Clock – (Common for all MII Ports [23:0]) P28 M_MDIO I/O-TS with pull up MII Management Data I/O – (Common for all MII Ports –[23:0])) R29 M_CLKI Input Reference Input Clock AC29, AE28, AJ27, AF27, AJ25, AF24, AH23, AE19, AF21, AJ19, AF18, AJ17, AJ15, AF15, AJ13, AF12, AJ11, AJ9, AF9, AJ7, AF6, AJ5, AJ3, AF1 M[23:0]_RXD[1] Input with weak internal pull up resistors. Ports [23:0] – Receive Data Bit [1] AC28, AF28, AH27, AE27, AH25, AE24, AF22, AF20, AE21, AH19, AH20, AH17, AH15, AE15, AH13, AE12, AH11, AH9, AE9, AH7, AE6, AH5, AH2, AF2 M[23:0]_RXD[0] Input with weak internal pull up resistors Ports [23:0] – Receive Data Bit [0] 127 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol I/O Data Sheet Description AC27, AF29, AG27, AF26, AG25, AG23, AF23, AG21, AH21, AF19, AF17, AG17, AG15, AF14, AG13, AF11, AG11, AG9, AF8, AG7, AF5, AG5, AH3, AF3 M[23:0]_CRS_DV Input with weak internal pull down resistors. Ports [23:0] – Carrier Sense and Receive Data Valid AD29, AG28, AJ26, AE26, AJ24, AE23, AJ22, AJ20, AE20, AJ18, AJ21, AJ16, AJ14, AE14, AJ12, AE11, AJ10, AJ8, AE8, AJ6, AE5, AJ4, AG1, AE1 M[23:0]_TXEN I/O- TS with pull up , slew Ports [23:0] – Transmit Enable Strap option for RMII/GPSI AD27, AH28, AG26, AE25, AG24, AE22, AJ23, AG20, AE18, AG18, AE16, AG16, AG14, AE13, AG12, AE10, AG10, AG8, AE7, AG6, AE4, AG4, AG3, AE3 M[23:0]_TXD[1] Output, slew Ports [23:0] – Transmit Data Bit [1] AD28, AG29, AH26, AF25, AH24, AG22, AH22, AE17, AG19, AH18, AF16, AH16, AH14, AF13, AH12, AF10, AH10, AH8, AF7, AH6, AF4, AH4, AG2, AE2 M[23:0]_TXD[0] Output, slew Ports [23:0] – Transmit Data Bit [0] GMII/TBI GiGabit Ethernet Access Ports 0 & 1 U26, U25, V26, V25, W26, W25, Y27, Y26, AA26, AA25, AB26, AB25, AC26, AC25, AD26, AD25 M25_TXD[15:0] Output Transmit Data Bit [15:0] [7:0] - GMII [9:0] - TBI [15:0] - 2G T28 M25_RX_DV Input w/ pull down Receive Data Valid U28 M25_RX_ER Input w/ pull up Receive Error R25 M25_CRS Input w/ pull down Carrier Sense 128 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol I/O Data Sheet Description U29 M25_COL Input w/ pull up Collision Detected T29 M25_RXCLK Input w/ pull up Receive Clock U27, V29, V28, V27, W29, W28, W27, Y29, Y28, Y25, AA29, AA28, AA27, AB29, AB28, AB27 M25_RXD[15:0] Input w/ pull up Receive Data Bit [15:0] [7:0] - GMII [9:0] - TBI [15:0] - 2G T26 M25_TX_EN Output w/ pull up Transmit Data Enable R26 M25_TX_ER Output w/ pull up Transmit Error T27 M25_ MTXCLK Input w/ pull down MII Mode Transmit Clock T25 M25_ TXCLK Output Gigabit Transmit Clock P29 GREF_CLK0 Input w/ pull up Gigabit Reference Clock G26, G25, H26, H25, J26, J25, K25, K26, M25, L26, M26, L25, N26, N25, P26, P25 M26_TXD[15:0] Output Transmit Data Bit [15:0] [7:0] - GMII [9:0] - TBI [15:0] - 2G F28 M26_RX_DV Input w/ pull down Receive Data Valid G28 M26_RX_ER Input w/ pull up Receive Error E25 M26_CRS Input w/ pull down Carrier Sense G29 M26_COL Input w/ pull up Collision Detected F29 M26_RXCLK Input w/ pull up Receive Clock G27,H29, H28, H27, J29, J28, J27, K29, K28, K27, L29, L28, L27, M29, M28, M27 M26_RXD[15:0] Input w/ pull up Receive Data Bit [15:0] [7:0] - GMII [9:0] - TBI [15:0] - 2G F26 M26_TX_EN Output w/ pull up Transmit Data Enable E26 M26_TX_ER Output w/ pull up Transmit Error F27 M26_ MTXCLK Input w/ pull down MII Mode Transmit Clock F25 M26_ TXCLK Output Gigabit Transmit Clock N29 GREF_CLK1 Input w/ pull up Gigabit Reference Clock C29 LED_CLK/TSTOUT0 I/O- TS with pull up LED Serial Interface Output Clock D29 LED_SYN/TSTOUT1 I/O- TS with pull up LED Output Data Stream Envelope LED Interface 129 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol I/O Data Sheet Description E29 LED_BIT/TSTOUT2 I/O- TS with pull up LED Serial Data Output Stream B28 G1_RXTX#/TSTOUT 3 I/O- TS with pull up LED for Gigabit port 1 (receive + transmit) C28 G1_DPCOL#/TSTO UT4 I/O- TS with pull up LED for Gigabit port 1 (full duplex + collision) D28 G1_LINK#/TSTOUT 5 I/O- TS with pull up LED for Gigabit port 1 E28 G2_RXTX#/TSTOUT 6 I/O- TS with pull up LED for Gigabit port 2 (receive + transmit) A27 G2_DPCOL#/TSTO UT7 I/O- TS with pull up LED for Gigabit port 2 (full duplex + collision) B27 G2_LINK#/TSTOUT 8 I/O- TS with pull up LED for Gigabit port 2 C27 INIT_DONE/TSTOU T9 I/O- TS with pull up System start operation D27 INIT_START/TSTOU T10 I/O- TS with pull up Start initialization C26 CHECKSUM_OK/TS TOUT11 I/O- TS with pull up EEPROM read OK D26 FCB_ERR/TSTOUT 12 I/O- TS with pull up FCB memory self test fail D25 MCT_ERR/TSTOUT 13 I/O- TS with pull up MCT memory self test fail D24 BIST_IN_PRC/TSTO UT14 I/O- TS with pull up Processing memory self test E24 BIST_DONE/TSTOU T15 I/O- TS with pull up Memory self test done U3, C10 T_MODE0, T_MODE1 I/O-TS Test Pins 00 – Test mode – Set Mode upon Reset, and provides NAND Tree test output during test mode 01 - Reserved - Do not use 10 - Reserved - Do not use 11 – Normal mode. Use external pull up for normal mode F3 SCAN_EN Input with pull down Scan Enable E27 SCANMODE Input with pull down 1 – Enable Test mode 0 - Normal mode (open) Test Facility 130 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol Data Sheet I/O Description System Clock, Power, and Ground Pins E1 SCLK Input System Clock at 100 MHz K12, K13, K17,K18 M10, N10, M20, N20, U10, V10, U20, V20, Y12, Y13, Y17, Y18 VDD Power +2.5 Volt DC Supply F13, F14, F15, F16, F17, N6, P6, R6, T6, U6, N24, P24, R24, T24, U24, AD13, AD14, AD15, AD16, AD17 VCC Power +3.3 Volt DC Supply M12, M13, M14, M15, M16, M17, M18, N12, N13, N14, N15, N16, N17, N18, P12, P13, P14, P15, P16, P17, P18, R12, R13, R14, R15, R16, R17, R18, T12, T13, T14, T15, T16, T17, T18, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V18, VSS Power Ground Ground F1 AVCC Analog Power Analog +2.5 Volt DC Supply D1 AGND Analog Ground Analog Ground D22 SCANCOL Input/ output Scans the Collision signal of Home PHY D23 SCANCLK Output Clock for scanning Home PHY collision and link E23 SCANLINK Input/ output Link up signal from Home PHY F2 RESIN# Input Reset Input G2 RESETOUT# Output Reset PHY MISC Bootstrap Pins (Default = pull up, 1= pull up 0= pull down) After reset TSTOUT0 to TSTOU15 are used by the LED interface. C29 TSTOUT0 Default 1 131 Zarlink Semiconductor Inc. GIGA Link polarity 0 – active low 1 – active high MVTX2604 Ball No(s) Symbol Data Sheet I/O Description D29 TSTOUT1 Default 1 RMII MAC Power Saving Enable 0 – No power saving 1 – power saving E29 TSTOUT2 Default: Enable (1) Recommend disable (0) with pull-down Giga Half Duplex Support 0 - Disable 1 - Enable B28 TSTOUT3 Default 1 Module detect enable 0 – Hot swap enable 1 – Hot swap disable C28 TSTOUT4 Default 1 Memory is SBRAM/ZBT 0 – ZBT 1 – Pipeline SBRAM D28 TSTOUT5 Default 1 Scan Speed: ¼ SCLK or SCLK 0 – ¼ SCLK (HPNA) 1 - SCLK E28 TSTOUT6 Default 1 CPU Port Mode 0 - 8 bit Bus Mode 1 - 16 bit Bus Mode A27 TSTOUT7 Default 1 Memory Size 0 - 256 K x 32 or 256 K x 64 (4 M total) 1 - 128 K x 32 or 128 K x 64 (2 M total) B27 TSTOUT8 Default 1 EEPROM Installed 0 – EEPROM installed 1 – EEPROM not installed C27 TSTOUT9 Default 1 MCT Aging 0 – MCT aging disable 1 – MCT aging enable D27 TSTOUT10 Default 1 FCB Aging 0 - FCB aging disable 1 – FCB aging enable C26 TSTOUT11 Default 1 Timeout Reset 0 – Time out reset disable 1 – Time out reset enable. Issue reset if any state machine did not go back to idle for 5sec. D26 TSTOUT12 D25 TSTOUT13 Default 1 FDB RAM depth (1 or 2 layers) 0 – 2 layer 1 – 1 layer D24 TSTOUT14 Default 1 CPU installed 0 – CPU installed 1 – CPU not installed E24 TSTOUT15 Default 1 SRAM Test Mode 0 – Enable test mode 1 – Normal operation Reserved 132 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol Data Sheet I/O Description T26, R26 G0_TXEN, G0_TXER Default: PCS Giga0 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 2G 1 0 GMII 1 1 PCS F26, E26 G1_TXEN, G1_TXER Default: PCS Giga1 Mode: G1_TXEN G1_TXER 0 0 MII 0 1 2G 1 0 GMII 1 1 PCS AD29, AG28, AJ26, AE26, AJ24, AE23, AJ22, AJ20, AE20, AJ18, AJ21, AJ16, AJ14, AE14, AJ12, AE11, AJ10, AJ8, AE8, AJ6, AE5, AJ4, AG1, AE1 M[23:0] TXEN Default: RMII 0 – GPSI 1 – RMII C21 P_D[9] Must be pulled-down Reserved. Must be pulled-down. C19, B19, A19 P_D[15:13] Default: 111 Programmable delay for internal OE_CLK from SCLK input. The OE_CLK is used for generating the OE0 and OE1 signals Suggested value is 001. C20, B20, A20 P_D[12:10] Default: 111 Programmable delay for LA_CLK and LB_CLK from internal OE_CLK. The LA_CLK and LB_CLK delay from SCLK is the sum of the delay programmed in here and the delay in P_D[15:13]. Suggested value is 011. B22, A22, C23, B23, A23, C24 P_D[5:0] Default: 111111 Dedicated Port Mirror Mode. The first 5 bits select the port to be mirrored. The last bit selects either ingress or egress data. Notes # = Active low signal Input = Input signal In-ST = Input signal with Schmitt-Trigger Output = Output signal (Tri-State driver) Out-OD = Output signal with Open-Drain driver I/O-TS = Input & Output signal with Tri-State driver I/O-OD = Input & Output signal with Open-Drain driver 133 Zarlink Semiconductor Inc. MVTX2604 15.2.2 Data Sheet Ball – Signal Descriptions in Unmanaged Mode Ball No(s) Symbol I/O Description I2C Interface Note: In unmanaged mode, Use I2C and Serial control interface to configure the system A24 SCL Output I2C Data Clock A25 SDA I/O-TS with internal pull up I2C Data I/O Serial Control Interface A26 STROBE Input with weak internal pull up Serial Strobe Pin B26 D0 Input with weak internal pull up Serial Data Input C25 AUTOFD Output with pull up Serial Data Output (AutoFD) Frame Buffer Interface D20, B21, D19, E19,D18, E18, D17, E17, D16, E16, D15, E15, D14, E14, D13, E13, D21, E21, A18, B18, C18, A17, B17, C17, A16, B16, C16, A15, B15, C15, A14, B14, D9, E9, D8, E8, D7, E7, D6, E6, D5, E5, D4, E4, D3, E3, D2, E2, A7, B7, A6, B6, C6, A5, B5, C5, A4, B4, C4, A3, B3, C3, B2, C2 LA_D[63:0] I/O-TS with pull up C14, A13, B13, C13, A12, B12, C12, A11, B11, C11, D11, E11, A10, B10, D10, E10, A8, C7 LA_A[20:3] Output Frame Bank A – Address Bit [20:3] B8 LA_ADSC# Output with pull up Frame Bank A Address Status Control C1 LA_CLK Output with pull up Frame Bank A Clock Input C9 LA_WE# Output with pull up Frame Bank A Write Chip Select for one layer SRAM application 134 Zarlink Semiconductor Inc. Frame Bank A– Data Bit [63:0] MVTX2604 Ball No(s) Symbol I/O Data Sheet Description D12 LA_WE0# Output with pull up Frame Bank A Write Chip Select for lower layer of two bank SRAM application E12 LA_WE1# Output with pull up Frame Bank A Write Chip Select for upper bank of two layer SRAM application C8 LA_OE# Output with pull up Frame Bank A Read Chip Select for one layer SRAM application A9 LA_OE0# Output with pull up Frame Bank A Read Chip Select for lower layer of two layers SRAM application B9 LA_OE1# Output with pull up Frame Bank A Read Chip Select for upper layer of two layers SRAM application F4, F5, G4, G5, H4, H5, J4, J5, K4, K5, L4, L5, M4, M5, N4, N5, G3, H1, H2, H3, J1, J2, J3, K1, K2, K3, L1, L2, L3, M1, M2, M3, U4, U5, V4, V5, W4, W5, Y4, Y5, AA4, AA5, AB4, AB5, AC4, AC5, AD4, AD5, W1, Y1, Y2, Y3, AA1, AA2, AA3, AB1, AB2, AB3, AC1, AC2, AC3, AD1, AD2, AD3 LB_D[63:0] I/O-TS with pull up. Frame Bank B– Data Bit [63:0] N3, N2, N1, P3, P2, P1, R5, R4, R3, R2, R1, T5, T4, T3, T2, T1, W3, W2 LB_A[20:3] Output Frame Bank B – Address Bit [20:3] V1 LB_ADSC# Output with pull up Frame Bank B Address Status Control G1 LB_CLK Output with pull up Frame Bank B Clock Input V3 LB_WE# Output with pull up Frame Bank B Write Chip Select for one layer SRAM application 135 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol I/O Data Sheet Description P4 LB_WE0# Output with pull up Frame Bank B Write Chip Select for lower layer of two layers SRAM application P5 LB_WE1# Output with pull up Frame Bank B Write Chip Select for upper layer of two layers SRAM application V2 LB_OE# Output with pull up Frame Bank B Read Chip Select for one layer SRAM application U1 LB_OE0# Output with pull up Frame Bank B Read Chip Select for lower layer of two layers SRAM application U2 LB_OE1# Output with pull up Frame Bank B Read Chip Select for upper layer of two layers SRAM application Fast Ethernet Access Ports [23:0] RMII R28 M_MDC Output MII Management Data Clock – (Common for all MII Ports [23:0]) P28 M_MDIO I/O-TS with pull up MII Management Data I/O – (Common for all MII Ports – [23:0]) R29 M_CLKI Input Reference Input Clock AC29, AE28, AJ27, AF27, AJ25, AF24, AH23, AE19, AF21, AJ19, AF18, AJ17, AJ15, AF15, AJ13, AF12, AJ11, AJ9, AF9, AJ7, AF6, AJ5, AJ3, AF1 M[23:0]_RXD[1] Input with weak internal pull up resistors. Ports [23:0] – Receive Data Bit [1] AC28, AF28, AH27, AE27, AH25, AE24, AF22, AF20, AE21, AH19, AH20, AH17, AH15, AE15, AH13, AE12, AH11, AH9, AE9, AH7, AE6, AH5, AH2, AF2 M[23:0]_RXD[0] Input with weak internal pull up resistors Ports [23:0] – Receive Data Bit [0] 136 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol I/O Data Sheet Description AC27, AF29, AG27, AF26, AG25, AG23, AF23, AG21, AH21, AF19, AF17, AG17, AG15, AF14, AG13, AF11, AG11, AG9, AF8, AG7, AF5, AG5, AH3, AF3 M[23:0]_CRS_DV Input with weak internal pull down resistors. Ports [23:0] – Carrier Sense and Receive Data Valid AD29, AG28, AJ26, AE26, AJ24, AE23, AJ22, AJ20, AE20, AJ18, AJ21, AJ16, AJ14, AE14, AJ12, AE11, AJ10, AJ8, AE8, AJ6, AE5, AJ4, AG1, AE1 M[23:0]_TXEN I/O- TS with pull up , slew Ports [23:0] – Transmit Enable Strap option for RMII/GPSI AD27, AH28, AG26, AE25, AG24, AE22, AJ23, AG20, AE18, AG18, AE16, AG16, AG14, AE13, AG12, AE10, AG10, AG8, AE7, AG6, AE4, AG4, AG3, AE3 M[23:0]_TXD[1] Output, slew Ports [23:0] – Transmit Data Bit [1] AD28, AG29, AH26, AF25, AH24, AG22, AH22, AE17, AG19, AH18, AF16, AH16, AH14, AF13, AH12, AF10, AH10, AH8, AF7, AH6, AF4, AH4, AG2, AE2 M[23:0]_TXD[0] Output, slew Ports [23:0] – Transmit Data Bit [0] 137 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol I/O Data Sheet Description GMII/TBI GiGabit Ethernet Access Ports 0 & 1 U26, U25, V26, V25, W26, W25, Y27, Y26, AA26, AA25, AB26, AB25, AC26, AC25, AD26, AD25 M25_TXD[15:0] Output Transmit Data Bit [15:0] [7:0] - GMII [9:0] - TBI [15:0] - 2G T28 M25_RX_DV Input w/ pulldown Receive Data Valid U28 M25_RX_ER Input w/ pullup Receive Error R25 M25_CRS Input w/ pulldown Carrier Sense U29 M25_COL Input w/ pullup Collision Detected T29 M25_RXCLK Input w/ pullup Receive Clock U27, V29, V28, V27, W29, W28, W27, Y29, Y28, Y25, AA29, AA28, AA27, AB29, AB28, AB27 M25_RXD[15:0] Input w/ pullup Receive Data Bit [15:0] [7:0] - GMII [9:0] - TBI [15:0] - 2G T26 M25_TX_EN Output w/ pullup Transmit Data Enable R26 M25_TX_ER Output w/ pullup Transmit Error T25 M25_ TXCLK Output Gigabit Transmit Clock P29 GREF_CLK0 Input w/ pullup Gigabit Reference Clock G26, G25, H26, H25, J26, J25, K25, K26, M25, L26, M26, L25, N26, N25, P26, P25 M26_TXD[15:0] Output Transmit Data Bit [15:0] [7:0] - GMII [9:0] - TBI [15:0] - 2G F28 M26_RX_DV Input w/ pulldown Receive Data Valid G28 M26_RX_ER Input w/ pullup Receive Error E25 M26_CRS Input w/ pulldown Carrier Sense G29 M26_COL Input w/ pullup Collision Detected F29 M26_RXCLK Input w/ pullup Receive Clock G27,H29, H28, H27, J29, J28, J27, K29, K28, K27, L29, L28, L27, M29, M28, M27 M26_RXD[15:0] Input w/ pullup Receive Data Bit [15:0] [7:0] - GMII [9:0] - TBI [15:0] - 2G 138 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol I/O Data Sheet Description F26 M26_TX_EN Output w/ pullup Transmit Data Enable E26 M26_TX_ER Output w/ pullup Transmit Error F25 M26_ TXCLK Output Gigabit Transmit Clock N29 GREF_CLK1 Input w/ pullup Gigabit Reference Clock C29 LED_CLK/TSTOUT0 I/O- TS with pull up LED Serial Interface Output Clock D29 LED_SYN/TSTOUT1 I/O- TS with pull up LED Output Data Stream Envelope E29 LED_BIT/TSTOUT2 I/O- TS with pull up LED Serial Data Output Stream B28 G1_RXTX#/TSTOUT3 I/O- TS with pull up LED for Gigabit port 1 (receive + transmit) C28 G1_DPCOL#/TSTOUT4 I/O- TS with pull up LED for Gigabit port 1 (full duplex + collision) D28 G1_LINK#/TSTOUT5 I/O- TS with pull up LED for Gigabit port 1 E28 G2_RXTX#/TSTOUT6 I/O- TS with pull up LED for Gigabit port 2 (receive + transmit) A27 G2_DPCOL#/TSTOUT7 I/O- TS with pull up LED for Gigabit port 2 (full duplex + collision) B27 G2_LINK#/TSTOUT8 I/O- TS with pull up LED for Gigabit port 2 C27 INIT_DONE/TSTOUT9 I/O- TS with pull up System start operation D27 INIT_START/TSTOUT10 I/O- TS with pull up Start initialization C26 CHECKSUM_OK/TSTOU T11 I/O- TS with pull up EEPROM read OK D26 FCB_ERR/TSTOUT12 I/O- TS with pull up FCB memory self test fail D25 MCT_ERR/TSTOUT13 I/O- TS with pull up MCT memory self test fail D24 BIST_IN_PRC/TSTOUT14 I/O- TS with pull up Processing memory self test E24 BIST_DONE/TSTOUT15 I/O- TS with pull up Memory self test done C22 TRUNK0 Input w/ weak internal pull down resistors Trunk Port Enable in unmanaged mode In managed mode doesn't care A21 TRUNK1 Input w/ weak internal pull down resistors Trunk Port Enable in unmanaged mode In managed mode doesn't care B24 TRUNK2 Input w/ weak internal pull down resistors Trunk Port Enable in unmanaged mode In managed mode doesn't care LED Interface Trunk Enabale 139 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol Data Sheet I/O Description Test Facility U3, C10 T_MODE0, T_MODE1 I/O-TS Test Pins 00 – Test mode – Set Mode upon Reset, and provides NAND Tree test output during test mode 01 - Reserved - Do not use 10 - Reserved - Do not use 11 – Normal mode. Use external pull up for normal mode F3 SCAN_EN Input with pull down Scan Enable 0 - Normal mode (open) E27 SCANMODE Input with pull down 1 – Enable Test mode 0 - Normal mode (open) System Clock, Power, and Ground Pins E1 SCLK Input System Clock at 100 MHz K12, K13, K17,K18 M10, N10, M20, N20, U10, V10, U20, V20, Y12, Y13, Y17, Y18 VDD Power +2.5 Volt DC Supply F13, F14, F15, F16, F17, N6, P6, R6, T6, U6, N24, P24, R24, T24, U24, AD13, AD14, AD15, AD16, AD17 VCC Power +3.3 Volt DC Supply M12, M13, M14, M15, M16, M17, M18, N12, N13, N14, N15, N16, N17, N18, P12, P13, P14, P15, P16, P17, P18, R12, R13, R14, R15, R16, R17, R18, T12, T13, T14, T15, T16, T17, T18, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V18, VSS Power Ground Ground 140 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol Data Sheet I/O Description F1 AVCC Analog Power Analog +2.5 Volt DC Supply D1 AGND Analog Ground Analog Ground D22 SCANCOL Input Scans the Collision signal of Home PHY D23 SCANCLK Input/ output Clock for scanning Home PHY collision and link E23 SCANLINK Input Link up signal from Home PHY F2 RESIN# Input Reset Input G2 RESETOUT# Output Reset PHY E20, B25 RESERVED N/A Reserved Pins. Leave unconnected. MISC Bootstrap Pins (Default = pull up, 1= pull up 0= pull down) After reset TSTOUT0 to TSTOU15 are used by the LED interface. C29 TSTOUT0 Default 1 GIGA Link polarity 0 – active low 1 – active high D29 TSTOUT1 Default 1 RMII MAC Power Saving Enable 0 – No power saving 1 – power saving E29 TSTOUT2 B28 TSTOUT3 Default 1 Module detect enable 0 – Hot swap enable 1 – Hot swap disable C28 TSTOUT4 Default 1 Memory is SBRAM/ZBT 0 – ZBT 1 – Pipeline SBRAM D28 TSTOUT5 Default 1 Scan Speed: ¼ SCLK or SCLK 0 – ¼ SCLK (HPNA) 1 - SCLK E28 TSTOUT6 Default 1 CPU Port Mode 0 - 8 bit Bus Mode 1 - 16 bit Bus Mode A27 TSTOUT7 Default 1 Memory Size 0 - 256 K x 32 or 256 K x 64 (4 M total) 1 - 128 K x 32 or 128 K x 64 (2 M total) Reserved 141 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol Data Sheet I/O Description B27 TSTOUT8 Default 1 EEPROM Installed 0 – EEPROM installed 1 – EEPROM not installed C27 TSTOUT9 Default 1 MCT Aging 0 – MCT aging disable 1 – MCT aging enable D27 TSTOUT10 Default 1 FCB Aging 0 - FCB aging disable 1 – FCB aging enable C26 TSTOUT11 Default 1 Timeout Reset 0 – Time out reset disable 1 – Time out reset enable. Issue reset if any state machine did not go back to idle for 5sec. D26 TSTOUT12 D25 TSTOUT13 Default 1 FDB RAM depth (1 or 2 layers) 0 – 2 layer 1 – 1 layer D24 TSTOUT14 Default 1 CPU installed 0 – CPU installed 1 – CPU not installed E24 TSTOUT15 Default 1 SRAM Test Mode 0 – Enable test mode 1 – Normal operation T26, R26 G0_TXEN, G0_TXER Default: PCS Giga0 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 2G 1 0 GMII 1 1 PCS F26, E26 G1_TXEN, G1_TXER Default: PCS Giga1 Mode: G1_TXEN G1_TXER 0 0 MII 0 1 2G 1 0 GMII 1 1 PCS Reserved 142 Zarlink Semiconductor Inc. MVTX2604 Ball No(s) Symbol Data Sheet I/O Description AD29, AG28, AJ26, AE26, AJ24, AE23, AJ22, AJ20, AE20, AJ18, AJ21, AJ16, AJ14, AE14, AJ12, AE11, AJ10, AJ8, AE8, AJ6, AE5, AJ4, AG1, AE1, M[23:0]_TXEN Default: RMII 0 – GPSI 1 - RMII C21 P_D Must be pulled-down Reserved. Must be pulleddown. C19, B19, A19 OE_CLK[2:0] Default: 111 Programmable delay for internal OE_CLK from SCLK input. The OE_CLK is used for generating the OE0 and OE1 signals Suggested value is 001. C20, B20, A20 LA_CLK[2:0] Default: 111 Programmable delay for LA_CLK and LB_CLK from internal OE_CLK. The LA_CLK and LB_CLK delay from SCLK is the sum of the delay programmed in here and the delay in P_D[15:13]. Suggested value is 011. B22, A22, C23, B23, A23, C24 MIRROR[5:0] Default: 111111 Dedicated Port Mirror Mode. The first 5 bits select the port to be mirrored. The last bit selects either ingress or egress data. Note: # = Active low signal Input = Input signal In-ST = Input signal with Schmitt-Trigger Output = Output signal (Tri-State driver) Out-OD = Output signal with Open-Drain driver I/O-TS = Input & Output signal with Tri-State driver I/O-OD = Input & Output signal with Open-Drain driver 143 Zarlink Semiconductor Inc. MVTX2604 15.3 Data Sheet Ball – Signal Name in Unmanaged Mode Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name D20 LA_D[63] D3 LA_D[19] A9 LA_OE0# B21 LA_D[62] E3 LA_D[18] B9 LA_OE1# D19 LA_D[61] D2 LA_D[17] F4 LB_D[63] E19 LA_D[60] E2 LA_D[16] F5 LB_D[62] D18 LA_D[59] A7 LA_D[15] G4 LB_D[61] E18 LA_D[58] B7 LA_D[14] G5 LB_D[60] D17 LA_D[57] A6 LA_D[13] H4 LB_D[59] E17 LA_D[56] B6 LA_D[12] H5 LB_D[58] D16 LA_D[55] C6 LA_D[11] J4 LB_D[57] E16 LA_D[54] A5 LA_D[10] J5 LB_D[56] D15 LA_D[53] B5 LA_D[9] K4 LB_D[55] E15 LA_D[52] C5 LA_D[8] K5 LB_D[54] D14 LA_D[51] A4 LA_D[7] L4 LB_D[53] E14 LA_D[50] B4 LA_D[6] L5 LB_D[52] D13 LA_D[49] C4 LA_D[5] M4 LB_D[51] E13 LA_D[48] A3 LA_D[4] M5 LB_D[50] D21 LA_D[47] B3 LA_D[3] N4 LB_D[49] E21 LA_D[46] C3 LA_D[2] N5 LB_D[48] A18 LA_D[45] B2 LA_D[1] G3 LB_D[47] B18 LA_D[44] C2 LA_D[0] H1 LB_D[46] C18 LA_D[43] C14 LA_A[20] H2 LB_D[45] A17 LA_D[42] A13 LA_A[19] H3 LB_D[44] B17 LA_D[41] B13 LA_A[18] J1 LB_D[43] C17 LA_D[40] C13 LA_A[17] J2 LB_D[42] A16 LA_D[39] A12 LA_A[16] J3 LB_D[41] B16 LA_D[38] B12 LA_A[15] K1 LB_D[40] C16 LA_D[37] C12 LA_A[14] K2 LB_D[39] A15 LA_D[36] A11 LA_A[13] K3 LB_D[38] B15 LA_D[35] B11 LA_A[12] L1 LB_D[37] C15 LA_D[34] C11 LA_A[11] L2 LB_D[36] 144 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name A14 LA_D[33] D11 LA_A[10] L3 LB_D[35] B14 LA_D[32] E11 LA_A[9] M1 LB_D[34] D9 LA_D[31] A10 LA_A[8] M2 LB_D[33] E9 LA_D[30] B10 LA_A[7] M3 LB_D[32] D8 LA_D[29] D10 LA_A[6] U4 LB_D[31] E8 LA_D[28] E10 LA_A[5] U5 LB_D[30] D7 LA_D[27] A8 LA_A[4] V4 LB_D[29] E7 LA_D[26] C7 LA_A[3] V5 LB_D[28] D6 LA_D[25] B8 LA_DSC# W4 LB_D[27] E6 LA_D[24] C1 LA_CLK W5 LB_D[26] D5 LA_D[23] C9 LA_WE# Y4 LB_D[25] E5 LA_D[22] D12 LA_WE0# Y5 LB_D[24] D4 LA_D[21] E12 LA_WE1# AA4 LB_D[23] E4 LA_D[20] C8 LA_OE# AA5 LB_D[22] AB4 LB_D[21] U2 LB_OE1# AH7 M[4]_RXD[0] AB5 LB_D[20] R28 MDC AE6 M[3]_RXD[0] AC4 LB_D[19] P28 MDIO AH5 M[2]_RXD[0] AC5 LB_D[18] R29 M_CLK AH2 M[1]_RXD[0] AD4 LB_D[17] AC29 M[23]_RXD[1] AF2 M[0]_RXD[0] AD5 LB_D[16] AE28 M[22]_RXD[1] AC27 M[23]_CRS_DV W1 LB_D[15] AJ27 M[21]_RXD[1] AF29 M[22]_CRS_DV Y1 LB_D[14] AF27 M[20]_RXD[1] AG27 M[21]_CRS_DV Y2 LB_D[13] AJ25 M[19]_RXD[1] AF26 M[20]_CRS_DV Y3 LB_D[12] AF24 M[18]_RXD[1] AG25 M[19]_CRS_DV AA1 LB_D[11] AH23 M[17]_RXD[1] AG23 M[18]_CRS_DV AA2 LB_D[10] AE19 M[16]_RXD[1] AF23 M[17]_CRS_DV AA3 LB_D[9] AF21 M[15]_RXD[1] AG21 M[16]_CRS_DV AB1 LB_D[8] AJ19 M[14]_RXD[1] AH21 M[15]_CRS_DV AB2 LB_D[7] AF18 M[13]_RXD[1] AF19 M[14]_CRS_DV AB3 LB_D[6] AJ17 M[12]_RXD[1] AF17 M[13]_CRS_DV AC1 LB_D[5] AJ15 M[11]_RXD[1] AG17 M[12]_CRS_DV 145 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AC2 LB_D[4] AF15 M[10]_RXD[1] AG15 M[11]_CRS_DV AC3 LB_D[3] AJ13 M[9]_RXD[1] AF14 M[10]_CRS_DV AD1 LB_D[2] AF12 M[8]_RXD[1] AG13 M[9]_CRS_DV AD2 LB_D[1] AJ11 M[7]_RXD[1] AF11 M[8]_CRS_DV AD3 LB_D[0] AJ9 M[6]_RXD[1] AG11 M[7]_CRS_DV N3 LB_A[20] AF9 M[5]_RXD[1] AG9 M[6]_CRS_DV N2 LB_A[19] AJ7 M[4]_RXD[1] AF8 M[5]_CRS_DV N1 LB_A[18] AF6 M[3]_RXD[1] AG7 M[4]_CRS_DV P3 LB_A[17] AJ5 M[2]_RXD[1] AF5 M[3]_CRS_DV P2 LB_A[16] AJ3 M[1]_RXD[1] AG5 M[2]_CRS_DV P1 LB_A[15] AF1 M[0]_RXD[1] AH3 M[1]_CRS_DV R5 LB_A[14] AC28 M[23]_RXD[0] AF3 M[0]_CRS_DV R4 LB_A[13] AF28 M[22]_RXD[0] AD29 M[23]_TXEN R3 LB_A[12] AH27 M[21]_RXD[0] AG28 M[22]_TXEN R2 LB_A[11] AE27 M[20]_RXD[0] AJ26 M[21]_TXEN R1 LB_A[10] AH25 M[19]_RXD[0] AE26 M[20]_TXEN T5 LB_A[9] AE24 M[18]_RXD[0] AJ24 M[19]_TXEN T4 LB_A[8] AF22 M[17]_RXD[0] AE23 M[18]_TXEN T3 LB_A[7] AF20 M[16]_RXD[0] AJ22 M[17]_TXEN T2 LB_A[6] AE21 M[15]_RXD[0] AJ20 M[16]_TXEN T1 LB_A[5] AH19 M[14]_RXD[0] AE20 M[15]_TXEN W3 LB_A[4] AH20 M[13]_RXD[0] AJ18 M[14]_TXEN W2 LB_A[3] AH17 M[12]_RXD[0] AJ21 M[13]_TXEN V1 LB_ADSC# AH15 M[11]_RXD[0] AJ16 M[12]_TXEN G1 LB_CLK AE15 M[10]_RXD[0] AJ14 M[11]_TXEN V3 LB_WE# AH13 M[9]_RXD[0] AE14 M[10]_TXEN P4 LB_WE0# AE12 M[8]_RXD[0] AJ12 M[9]_TXEN P5 LB_WE1# AH11 M[7]_RXD[0] AE11 M[8]_TXEN V2 LB_OE# AH9 M[6]_RXD[0] AJ10 M[7]_TXEN U1 LB_OE0# AE9 M[5]_RXD[0] AJ8 M[6]_TXEN AE8 M[5]_TXEN AH8 M[6]_TXD[0] G27 M26_RXD[15] 146 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AJ6 M[4]_TXEN AF7 M[5]_TXD[0] H29 M26_RXD[14] AE5 M[3]_TXEN AH6 M[4]_TXD[0] H28 M26_RXD[13] AJ4 M[2]_TXEN AF4 M[3]_TXD[0] H27 M26_RXD[12] AG1 M[1]_TXEN AH4 M[2]_TXD[0] J29 M26_RXD[11] AE1 M[0]_TXEN AG2 M[1]_TXD[0] J28 M26_RXD[10] AD27 M[23]_TXD[1] AE2 M[0]_TXD[0] J27 M26_RXD[9] AH28 M[22]_TXD[1] U26 M25_TXD[15] K29 M26_RXD[8] AG26 M[21]_TXD[1] U25 M25_TXD[14] K28 M26_RXD[7] AE25 M[20]_TXD[1] V26 M25_TXD[13] K27 M26_RXD[6] AG24 M[19]_TXD[1] V25 M25_TXD[12] L29 M26_RXD[5] AE22 M[18]_TXD[1] W26 M25_TXD[11] L28 M26_RXD[4] AJ23 M[17]_TXD[1] W25 M25_TXD[10] L27 M26_RXD[3] AG20 M[16]_TXD[1] Y27 M25_TXD[9] M29 M26_RXD[2] AE18 M[15]_TXD[1] Y26 M25_TXD[8] M28 M26_RXD[1] AG18 M[14]_TXD[1] AA26 M25_TXD[7] M27 M26_RXD[0] AE16 M[13]_TXD[1] AA25 M25_TXD[6] G26 M26_TXD[15] AG16 M[12]_TXD[1] AB26 M25_TXD[5] G25 M26_TXD[14] AG14 M[11]_TXD[1] AB25 M25_TXD[4] H26 M26_TXD[13] AE13 M[10]_TXD[1] AC26 M25_TXD[3] H25 M26_TXD[12] AG12 M[9]_TXD[1] AC25 M25_TXD[2] J26 M26_TXD[11] AE10 M[8]_TXD[1] AD26 M25_TXD[1] J25 M26_TXD[10] AG10 M[7]_TXD[1] AD25 M25_TXD[0] K25 M26_TXD[9] AG8 M[6]_TXD[1] U27 M25_RXD[15] K26 M26_TXD[8] AE7 M[5]_TXD[1] V29 M25_RXD[14] M25 M26_TXD[7] AG6 M[4]_TXD[1] V28 M25_RXD[13] L26 M26_TXD[6] AE4 M[3]_TXD[1] V27 M25_RXD[12] M26 M26_TXD[5] AG4 M[2]_TXD[1] W29 M25_RXD[11] L25 M26_TXD[4] AG3 M[1]_TXD[1] W28 M25_RXD[10] N26 M26_TXD[3] AE3 M[0]_TXD[1] W27 M25_RXD[9] N25 M26_TXD[2] AD28 M[23]_TXD[0] Y29 M25_RXD[8] P26 M26_TXD[1] AG29 M[22]_TXD[0] Y28 M25_RXD[7] P25 M26_TXD[0] 147 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AH26 M[21]_TXD[0] Y25 M25_RXD[6] F28 M26_RX_DV AF25 M[20]_TXD[0] AA29 M25_RXD[5] G28 M26_RX_ER AH24 M[19]_TXD[0] AA28 M25_RXD[4] E25 M26_CRS AG22 M[18]_TXD[0] AA27 M25_RXD[3] G29 M26_COL AH22 M[17]_TXD[0] AB29 M25_RXD[2] F29 M26_RXCLK AE17 M[16]_TXD[0] AB28 M25_RXD[1] F26 M26_TX_EN AG19 M[15]_TXD[0] AB27 M25_RXD[0] E26 M26_TX_ER AH18 M[14]_TXD[0] R26 M25_TX_ER F25 M26_TXCLK AF16 M[13]_TXD[0] T25 M25_TXCLK E24 BIST_DONE/TSTO UT[15] AH16 M[12]_TXD[0] T26 M25_TX_EN D24 BIST_IN_PRC/TST0 UT[14] AH14 M[11]_TXD[0] T28 M25_RX_DV D25 MCT_ERR/TSTOUT [13] AF13 M[10]_TXD[0] U28 M25_RX_ER D26 FCB_ERR/TSTOUT[ 12] AH12 M[9]_TXD[0] R25 M25_CRS C26 CHECKSUM_OK/TS TOUT[11] AF10 M[8]_TXD[0] U29 M25_COL D27 INIT_START/TSTOU T[10] AH10 M[7]_TXD[0] T29 M25_RXCLK C27 INIT_DONE/TSTOU T[9] B27 G2_LINK#/TSTOUT[8] U18 VSS N12 VSS A27 G2_DPCOL#/TSTOUT [7] V12 VSS N13 VSS E28 G2_RXTX#/TSTOUT[ 6] V13 VSS K17 VDD D28 G1_LINK#/TSTOUT[5] V14 VSS K18 VDD C28 G1_DPCOL#/TSTOUT [4] V15 VSS M10 VDD B28 G1_RXTX#/TSTOUT[ 3] V16 VSS N10 VDD E29 LED_BIT/TSTOUT[2] V17 VSS M20 VDD D29 LED_SYN/TSTOUT[1] V18 VSS N20 VDD C29 LED_CLK/TSTOUT[0] N14 VSS U10 VDD N29 GREF_CLK1 N15 VSS V10 VDD 148 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name P29 GREF_CLK0 N16 VSS U20 VDD F3 SCAN_EN N17 VSS V20 VDD E1 SCLK N18 VSS Y12 VDD U3 T_MODE0 P12 VSS Y13 VDD C10 T_MODE1 P13 VSS Y17 VDD B24 TRUNK2 P14 VSS Y18 VDD A21 TRUNK1 P15 VSS K12 VDD C22 TRUNK0 P16 VSS K13 VDD A26 STROBE C19 OE_CLK2 M16 VSS B26 D0 B19 OE_CLK1 M17 VSS C25 AUTOFD A19 OE_CLK0 M18 VSS A24 SCL R13 VSS F16 VCC A25 SDA R14 VSS F17 VCC F1 AVCC R15 VSS N6 VCC D1 AGND R16 VSS P6 VCC D22 SCANCOL R17 VSS R6 VCC E23 SCANLINK R18 VSS T6 VCC E27 SCANMODE T12 VSS U6 VCC N28 T13 VSS N24 VCC N27 T14 VSS P24 VCC F2 RESIN# T15 VSS R24 VCC G2 RESETOUT# T16 VSS T24 VCC B22 MIRROR5 T17 VSS U24 VCC A22 MIRROR4 T18 VSS AD13 VCC C23 MIRROR3 U12 VSS AD14 VCC B23 MIRROR2 U13 VSS AD15 VCC A23 MIRROR1 U14 VSS AD16 VCC C24 MIRROR0 U15 VSS AD17 VCC D23 SCANCLK U16 VSS F13 VCC T27 M25_MTXCLK U17 VSS F14 VCC F27 M26_MTXCLK M12 VSS F15 VCC 149 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name C20 LA_CLK2 M13 VSS B20 LA_CLK1 M14 VSS A20 LA_CLK0 M15 VSS C21 P_D P17 VSS E20 RESERVED P18 VSS B25 RESERVED R12 VSS 15.4 Data Sheet Ball No. Signal Name Ball – Signal Name in Managed Mode Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name D20 LA_D[63] D3 LA_D[19] A9 LA_OE0# B21 LA_D[62] E3 LA_D[18] B9 LA_OE1# D19 LA_D[61] D2 LA_D[17] F4 LB_D[63] E19 LA_D[60] E2 LA_D[16] F5 LB_D[62] D18 LA_D[59] A7 LA_D[15] G4 LB_D[61] E18 LA_D[58] B7 LA_D[14] G5 LB_D[60] D17 LA_D[57] A6 LA_D[13] H4 LB_D[59] E17 LA_D[56] B6 LA_D[12] H5 LB_D[58] D16 LA_D[55] C6 LA_D[11] J4 LB_D[57] E16 LA_D[54] A5 LA_D[10] J5 LB_D[56] D15 LA_D[53] B5 LA_D[9] K4 LB_D[55] E15 LA_D[52] C5 LA_D[8] K5 LB_D[54] D14 LA_D[51] A4 LA_D[7] L4 LB_D[53] E14 LA_D[50] B4 LA_D[6] L5 LB_D[52] D13 LA_D[49] C4 LA_D[5] M4 LB_D[51] E13 LA_D[48] A3 LA_D[4] M5 LB_D[50] D21 LA_D[47] B3 LA_D[3] N4 LB_D[49] E21 LA_D[46] C3 LA_D[2] N5 LB_D[48] A18 LA_D[45] B2 LA_D[1] G3 LB_D[47] B18 LA_D[44] C2 LA_D[0] H1 LB_D[46] C18 LA_D[43] C14 LA_A[20] H2 LB_D[45] A17 LA_D[42] A13 LA_A[19] H3 LB_D[44] 150 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name B17 LA_D[41] B13 LA_A[18] J1 LB_D[43] C17 LA_D[40] C13 LA_A[17] J2 LB_D[42] A16 LA_D[39] A12 LA_A[16] J3 LB_D[41] B16 LA_D[38] B12 LA_A[15] K1 LB_D[40] C16 LA_D[37] C12 LA_A[14] K2 LB_D[39] A15 LA_D[36] A11 LA_A[13] K3 LB_D[38] B15 LA_D[35] B11 LA_A[12] L1 LB_D[37] C15 LA_D[34] C11 LA_A[11] L2 LB_D[36] A14 LA_D[33] D11 LA_A[10] L3 LB_D[35] B14 LA_D[32] E11 LA_A[9] M1 LB_D[34] D9 LA_D[31] A10 LA_A[8] M2 LB_D[33] E9 LA_D[30] B10 LA_A[7] M3 LB_D[32] D8 LA_D[29] D10 LA_A[6] U4 LB_D[31] E8 LA_D[28] E10 LA_A[5] U5 LB_D[30] D7 LA_D[27] A8 LA_A[4] V4 LB_D[29] E7 LA_D[26] C7 LA_A[3] V5 LB_D[28] D6 LA_D[25] B8 LA_DSC# W4 LB_D[27] E6 LA_D[24] C1 LA_CLK W5 LB_D[26] D5 LA_D[23] C9 LA_WE# Y4 LB_D[25] E5 LA_D[22] D12 LA_WE0# Y5 LB_D[24] D4 LA_D[21] E12 LA_WE1# AA4 LB_D[23] E4 LA_D[20] C8 LA_OE# AA5 LB_D[22] AB4 LB_D[21] U2 LB_OE1# AH7 M[4]_RXD[0] AB5 LB_D[20] R28 MDC AE6 M[3]_RXD[0] AC4 LB_D[19] P28 MDIO AH5 M[2]_RXD[0] AC5 LB_D[18] R29 M_CLK AH2 M[1]_RXD[0] AD4 LB_D[17] AC29 M[23]_RXD[1] AF2 M[0]_RXD[0] AD5 LB_D[16] AE28 M[22]_RXD[1] AC27 M[23]_CRS_DV W1 LB_D[15] AJ27 M[21]_RXD[1] AF29 M[22]_CRS_DV Y1 LB_D[14] AF27 M[20]_RXD[1] AG27 M[21]_CRS_DV Y2 LB_D[13] AJ25 M[19]_RXD[1] AF26 M[20]_CRS_DV 151 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name Y3 LB_D[12] AF24 M[18]_RXD[1] AG25 M[19]_CRS_DV AA1 LB_D[11] AH23 M[17]_RXD[1] AG23 M[18]_CRS_DV AA2 LB_D[10] AE19 M[16]_RXD[1] AF23 M[17]_CRS_DV AA3 LB_D[9] AF21 M[15]_RXD[1] AG21 M[16]_CRS_DV AB1 LB_D[8] AJ19 M[14]_RXD[1] AH21 M[15]_CRS_DV AB2 LB_D[7] AF18 M[13]_RXD[1] AF19 M[14]_CRS_DV AB3 LB_D[6] AJ17 M[12]_RXD[1] AF17 M[13]_CRS_DV AC1 LB_D[5] AJ15 M[11]_RXD[1] AG17 M[12]_CRS_DV AC2 LB_D[4] AF15 M[10]_RXD[1] AG15 M[11]_CRS_DV AC3 LB_D[3] AJ13 M[9]_RXD[1] AF14 M[10]_CRS_DV AD1 LB_D[2] AF12 M[8]_RXD[1] AG13 M[9]_CRS_DV AD2 LB_D[1] AJ11 M[7]_RXD[1] AF11 M[8]_CRS_DV AD3 LB_D[0] AJ9 M[6]_RXD[1] AG11 M[7]_CRS_DV N3 LB_A[20] AF9 M[5]_RXD[1] AG9 M[6]_CRS_DV N2 LB_A[19] AJ7 M[4]_RXD[1] AF8 M[5]_CRS_DV N1 LB_A[18] AF6 M[3]_RXD[1] AG7 M[4]_CRS_DV P3 LB_A[17] AJ5 M[2]_RXD[1] AF5 M[3]_CRS_DV P2 LB_A[16] AJ3 M[1]_RXD[1] AG5 M[2]_CRS_DV P1 LB_A[15] AF1 M[0]_RXD[1] AH3 M[1]_CRS_DV R5 LB_A[14] AC28 M[23]_RXD[0] AF3 M[0]_CRS_DV R4 LB_A[13] AF28 M[22]_RXD[0] AD29 M[23]_TXEN R3 LB_A[12] AH27 M[21]_RXD[0] AG28 M[22]_TXEN R2 LB_A[11] AE27 M[20]_RXD[0] AJ26 M[21]_TXEN R1 LB_A[10] AH25 M[19]_RXD[0] AE26 M[20]_TXEN T5 LB_A[9] AE24 M[18]_RXD[0] AJ24 M[19]_TXEN T4 LB_A[8] AF22 M[17]_RXD[0] AE23 M[18]_TXEN T3 LB_A[7] AF20 M[16]_RXD[0] AJ22 M[17]_TXEN T2 LB_A[6] AE21 M[15]_RXD[0] AJ20 M[16]_TXEN T1 LB_A[5] AH19 M[14]_RXD[0] AE20 M[15]_TXEN W3 LB_A[4] AH20 M[13]_RXD[0] AJ18 M[14]_TXEN W2 LB_A[3] AH17 M[12]_RXD[0] AJ21 M[13]_TXEN 152 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name V1 LB_ADSC# AH15 M[11]_RXD[0] AJ16 M[12]_TXEN G1 LB_CLK AE15 M[10]_RXD[0] AJ14 M[11]_TXEN V3 LB_WE# AH13 M[9]_RXD[0] AE14 M[10]_TXEN P4 LB_WE0# AE12 M[8]_RXD[0] AJ12 M[9]_TXEN P5 LB_WE1# AH11 M[7]_RXD[0] AE11 M[8]_TXEN V2 LB_OE# AH9 M[6]_RXD[0] AJ10 M[7]_TXEN U1 LB_OE0# AE9 M[5]_RXD[0] AJ8 M[6]_TXEN AE8 M[5]_TXEN AH8 M[6]_TXD[0] G27 M26_RXD[15] AJ6 M[4]_TXEN AF7 M[5]_TXD[0] H29 M26_RXD[14] AE5 M[3]_TXEN AH6 M[4]_TXD[0] H28 M26_RXD[13] AJ4 M[2]_TXEN AF4 M[3]_TXD[0] H27 M26_RXD[12] AG1 M[1]_TXEN AH4 M[2]_TXD[0] J29 M26_RXD[11] AE1 M[0]_TXEN AG2 M[1]_TXD[0] J28 M26_RXD[10] AD27 M[23]_TXD[1] AE2 M[0]_TXD[0] J27 M26_RXD[9] AH28 M[22]_TXD[1] U26 M25_TXD[15] K29 M26_RXD[8] AG26 M[21]_TXD[1] U25 M25_TXD[14] K28 M26_RXD[7] AE25 M[20]_TXD[1] V26 M25_TXD[13] K27 M26_RXD[6] AG24 M[19]_TXD[1] V25 M25_TXD[12] L29 M26_RXD[5] AE22 M[18]_TXD[1] W26 M25_TXD[11] L28 M26_RXD[4] AJ23 M[17]_TXD[1] W25 M25_TXD[10] L27 M26_RXD[3] AG20 M[16]_TXD[1] Y27 M25_TXD[9] M29 M26_RXD[2] AE18 M[15]_TXD[1] Y26 M25_TXD[8] M28 M26_RXD[1] AG18 M[14]_TXD[1] AA26 M25_TXD[7] M27 M26_RXD[0] AE16 M[13]_TXD[1] AA25 M25_TXD[6] G26 M26_TXD[15] AG16 M[12]_TXD[1] AB26 M25_TXD[5] G25 M26_TXD[14] AG14 M[11]_TXD[1] AB25 M25_TXD[4] H26 M26_TXD[13] AE13 M[10]_TXD[1] AC26 M25_TXD[3] H25 M26_TXD[12] AG12 M[9]_TXD[1] AC25 M25_TXD[2] J26 M26_TXD[11] AE10 M[8]_TXD[1] AD26 M25_TXD[1] J25 M26_TXD[10] AG10 M[7]_TXD[1] AD25 M25_TXD[0] K25 M26_TXD[9] AG8 M[6]_TXD[1] U27 M25_RXD[15] K26 M26_TXD[8] 153 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AE7 M[5]_TXD[1] V29 M25_RXD[14] M25 M26_TXD[7] AG6 M[4]_TXD[1] V28 M25_RXD[13] L26 M26_TXD[6] AE4 M[3]_TXD[1] V27 M25_RXD[12] M26 M26_TXD[5] AG4 M[2]_TXD[1] W29 M25_RXD[11] L25 M26_TXD[4] AG3 M[1]_TXD[1] W28 M25_RXD[10] N26 M26_TXD[3] AE3 M[0]_TXD[1] W27 M25_RXD[9] N25 M26_TXD[2] AD28 M[23]_TXD[0] Y29 M25_RXD[8] P26 M26_TXD[1] AG29 M[22]_TXD[0] Y28 M25_RXD[7] P25 M26_TXD[0] AH26 M[21]_TXD[0] Y25 M25_RXD[6] F28 M26_RX_DV AF25 M[20]_TXD[0] AA29 M25_RXD[5] G28 M26_RX_ER AH24 M[19]_TXD[0] AA28 M25_RXD[4] E25 M26_CRS AG22 M[18]_TXD[0] AA27 M25_RXD[3] G29 M26_COL AH22 M[17]_TXD[0] AB29 M25_RXD[2] F29 M26_RXCLK AE17 M[16]_TXD[0] AB28 M25_RXD[1] F26 M26_TX_EN AG19 M[15]_TXD[0] AB27 M25_RXD[0] E26 M26_TX_ER AH18 M[14]_TXD[0] R26 M25_TX_ER F25 M26_TXCLK AF16 M[13]_TXD[0] T25 M25_TXCLK E24 BIST_DONE/TSTOUT[15] AH16 M[12]_TXD[0] T26 M25_TX_EN D24 BIST_IN_PRC/TST0UT[1 4] AH14 M[11]_TXD[0] T28 M25_RX_DV D25 MCT_ERR/TSTOUT[13] AF13 M[10]_TXD[0] U28 M25_RX_ER D26 FCB_ERR/TSTOUT[12] AH12 M[9]_TXD[0] R25 M25_CRS C26 CHECKSUM_OK/TSTOU T[11] AF10 M[8]_TXD[0] U29 M25_COL D27 INIT_START/TSTOUT[10] AH10 M[7]_TXD[0] T29 M25_RXCLK C27 INIT_DONE/TSTOUT[9] B27 G2_LINK#/TSTOUT[8] U18 VSS N12 VSS A27 G2_DPCOL#/TSTOUT[7] V12 VSS N13 VSS E28 G2_RXTX#/TSTOUT[6] V13 VSS K17 VDD D28 G1_LINK#/TSTOUT[5] V14 VSS K18 VDD C28 G1_DPCOL#/TSTOUT[4] V15 VSS M10 VDD B28 G1_RXTX#/TSTOUT[3] V16 VSS N10 VDD E29 LED_BIT/TSTOUT[2] V17 VSS M20 VDD 154 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name D29 LED_SYN/TSTOUT[1] V18 VSS N20 VDD C29 LED_CLK/TSTOUT[0] N14 VSS U10 VDD N29 GREF_CLK1 N15 VSS V10 VDD P29 GREF_CLK0 C19 P_DATA15 U20 VDD F3 SCAN_EN B19 P_DATA14 V20 VDD E1 SCLK A19 P_DATA13 Y12 VDD U3 T_MODE0 P12 VSS Y13 VDD C10 T_MODE1 P13 VSS Y17 VDD B24 P_DATA6 P14 VSS Y18 VDD A21 P_DATA7 P15 VSS K12 VDD C22 P_A2 P16 VSS K13 VDD A26 P_WE N16 VSS M16 VSS B26 P_RD N17 VSS M17 VSS C25 P_CS N18 VSS M18 VSS A24 P_A1 R13 VSS F16 VCC A25 P_A0 R14 VSS F17 VCC F1 AVCC R15 VSS N6 VCC D1 AGND R16 VSS P6 VCC D22 SCANCOL R17 VSS R6 VCC E23 SCANLINK R18 VSS T6 VCC E27 SCANMODE T12 VSS U6 VCC N28 T13 VSS N24 VCC N27 T14 VSS P24 VCC F2 RESIN# T15 VSS R24 VCC G2 RESETOUT# T16 VSS T24 VCC B22 P_DATA5 T17 VSS U24 VCC A22 P_DATA4 T18 VSS AD13 VCC C23 P_DATA3 U12 VSS AD14 VCC B23 P_DATA2 U13 VSS AD15 VCC A23 P_DATA1 U14 VSS AD16 VCC C24 P_DATA0 U15 VSS AD17 VCC 155 Zarlink Semiconductor Inc. MVTX2604 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name D23 SCANCLK U16 VSS F13 VCC T27 M25_MTXCLK U17 VSS F14 VCC F27 M26_MTXCLK M12 VSS F15 VCC C20 P_DATA12 M13 VSS B20 P_DATA11 M14 VSS A20 P_DATA10 M15 VSS C21 P_DATA9 P17 VSS E20 P_DATA8 P18 VSS B25 P_INT R12 VSS 15.5 15.5.1 AC/DC Timing Absolute Maximum Ratings Storage Temperature -65°C to +150°C Operating Temperature -40°C to +85°C Maximum Junction Temperature +125°C Supply Voltage VCC with Respect to VSS +3.0 V to +3.6 V Supply Voltage VDD with Respect to VSS +2.38 V to +2.75 V Voltage on Input Pins -0.5 V to (VCC + 3.3 V) Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for extended periods may affect device reliability. Functionality at or above these limits is not implied. 15.5.2 DC Electrical Characteristics VCC = 3.0 V to 3.6 V (3.3v +/- 10%)TAMBIENT = -40°C to +85°C VDD = 2.5 V +10% - 5% 156 Zarlink Semiconductor Inc. MVTX2604 15.5.3 Data Sheet Recommended Operating Conditions Symbol Parameter Description Min. Typ. Max. Unit fosc Frequency of Operation ICC Supply Current – @ 100 MHz (VCC=3.3 V) 450 mA IDD Supply Current – @ 100 MHz (VDD=2.5 V) 1500 mA VOH Output High Voltage (CMOS) VOL Output Low Voltage (CMOS) VIH-TTL Input High Voltage (TTL 5 V tolerant) VIL-TTL 100 MHz 2.4 V 0.4 V VCC + 2.0 V Input Low Voltage (TTL 5 V tolerant) 0.8 V IIL Input Leakage Current (0.1 V < VIN < VCC) (all pins except those with internal pull-up/pulldown resistors) 10 µA IOL Output Leakage Current (0.1 V < VOUT < VCC) 10 µA CIN Input Capacitance 5 pF COUT Output Capacitance 5 pF CI/O I/O Capacitance 7 pF θja Thermal resistance with 0 air flow 11.2 C/W θja Thermal resistance with 1 m/s air flow 10.2 C/W θja Thermal resistance with 2 m/s air flow 8.9 C/W θjc Thermal resistance between junction and case 3.1 C/W θjb Thermal resistance between junction and board 6.6 C/W 2.0 157 Zarlink Semiconductor Inc. MVTX2604 15.5.4 Data Sheet Typical Reset & Bootstrap Timing Diagram RESIN# RESETOUT# Tri-Stated R1 R3 Bootstrap Pins Outputs Inputs Outputs R2 Figure 16 - Typical Reset & Bootstrap Timing Diagram Symbol Parameter Min. R1 Delay until RESETOUT# is tri-stated R2 Bootstrap stabilization R3 RESETOUT# assertion 1 µs Typ. Note: 10 ns RESETOUT# state is then determined by the external pull-up/down resistor 10 µs Bootstrap pins sampled on rising edge of RESIN#a 2 ms Table 14 - Reset & Bootstrap Timing a. The TSTOUT[8:0] pins will switch over to the LED interface functionality in 3 SCLK cycles after RESIN# goes high 158 Zarlink Semiconductor Inc. MVTX2604 15.5.5 Data Sheet Typical CPU Timing Diagram for a CPU Write Cycle P_ADDR ADDR1 ADDR0 P_CS# TWA at least 2 SCLKs TWS P_WE# TWA at least 2 SCLKs TWS TWH TWR Recovery Time TDH TDH DATA 0 DATA to VTX2600 TWH DATA 1 TDS TDS Hold time Set up time Figure 17 - Typical CPU Timing Diagram for a CPU Write Cycle Description Write Cycle (SCLK=100 Mhz) Symbol Min. (SCLK=125 Mhz) Max. Min. Write Set up Time TWS 10 10 Write Active Time TWA 20 16 Write Hold Time TWH 2 2 Write Recovery time TWR 30 24 Data Set Up time TDS 10 10 Data Hold time TDH 2 2 159 Zarlink Semiconductor Inc. Refer to Figure 17 Max. At least 2 SCLK At least 3 SCLK MVTX2604 15.5.6 Data Sheet Typical CPU Timing Diagram for a CPU Read Cycle P_ADDR ADDR1 ADDR0 P_CS# TRA at least 2 SCLKs TRS P_RD# DATA to CPU TRH TRS TRA at least 2 SCLKs TRR Recovery Time at least 3 SCLKs DATA 0 TDV TRH DATA 1 TDI Valid time TDV 2ns TDI Invalid time Figure 18 - Typical CPU Timing Diagram for a CPU Read Cycle Description (SCLK=100 Mhz) (SCLK=125 Mhz) Min. Read Cycle Symbol Min. Read Set up Time TRS 10 10 Read Active Time TRA 20 16 Read Hold Time TRH 2 2 Read Recovery time TRR 30 24 Data Valid time TDv 10 10 Data Invalid time TDI 6 6 15.6 15.6.1 Max. Refer to Figure 18 Max. At least 2 SCLK At least 3 SCLK Local Frame Buffer SBRAM Memory Interface Local SBRAM Memory Interface LA_CLK L1 LA_D[63:0] L2 Figure 19 - Local Memory Interface – Input Setup and Hold Timing 160 Zarlink Semiconductor Inc. MVTX2604 Data Sheet LA_CLK L3-max L3-min LA_D[63:0] L4-max L4-min LA_A[20:3] L6-max L6-min LA_ADSC# L7-max L7-min LA_WE[1:0]# L8-max L8-min LA_OE[1:0]# L9-max L9-min LA_WE# L10-max L10-min LA_OE# Figure 20 - Local Memory Interface - Output Valid Delay Timing -100 MHz Symbol Parameter Note Min. (ns) Max. (ns) L1 LA_D[63:0] input set-up time 4 L2 LA_D[63:0] input hold time 1.5 L3 LA_D[63:0] output valid delay 1.5 7 CL = 25 pf L4 LA_A[20:3] output valid delay 2 7 CL = 30 pf L6 LA_ADSC# output valid delay 1 7 CL = 30 pf L7 LA_WE[1:0]#output valid delay 1 7 CL = 25 pf L8 LA_OE[1:0]# output valid delay -1 1 CL = 25 pf L9 LA_WE# output valid delay 1 7 CL = 25 pf L10 LA_OE# output valid delay 1 5 CL = 25 pf Table 15 - AC Characteristics – Local Frame Buffer SBRAM Memory Interface 161 Zarlink Semiconductor Inc. MVTX2604 15.7 15.7.1 Data Sheet Local Switch Database SBRAM Memory Interface Local SBRAM Memory Interface LB_CLK L1 LB_D[63:0] L2 Figure 21 - Local Memory Interface – Input Setup and Hold Timing LB_CLK L3-max L3-min LB_D[31:0] L4-max L4-min LB_A[21:2] L6-max L6-min LB_ADSC# L8-max L8-min LB_WE[1:0]# L9-max L9-min LB_OE[1:0]# L10-max L10-min LB_WE# L11-max L11-min LB_OE# Figure 22 - Local Memory Interface - Output Valid Delay Timing 162 Zarlink Semiconductor Inc. MVTX2604 Data Sheet -100 MHz Symbol Parameter Note: Min. (ns) Max. (ns) L1 LB_D[63:0] input set-up time 4 L2 LB_D[63:0] input hold time 1.5 L3 LB_D[63:0] output valid delay 1.5 7 CL = 25 pf L4 LB_A[20:3] output valid delay 2 7 CL = 30 pf L6 LB_ADSC# output valid delay 1 7 CL = 30 pf L8 LB_WE[1:0]#output valid delay 1 7 CL = 25 pf L9 LB_OE[1:0]# output valid delay -1 1 CL = 25 pf L10 LB_WE# output valid delay 1 7 CL = 25 pf L11 LB_OE# output valid delay 1 5 CL = 25 pf Table 16 - AC Characteristics – Local Switch Database SBRAM Memory Interface 163 Zarlink Semiconductor Inc. MVTX2604 15.8 15.8.1 Data Sheet AC Characteristics Reduced Media Independent Interface M_CLKI M6-max M6-min M[23:0]_TXEN M7-max M7-min M[23:0] _TXD[1:0] Figure 23 - AC Characteristics – Reduced Media Independent Interface M_CLKI M2 M[23:0]_RXD M4 M[23:0]_CRS_DV M3 M5 Figure 24 - AC Characteristics – Reduced Media Independent Interface -50 MHz Symbol Parameter Note Min. (ns) Max. (ns) M2 M[23:0]_RXD[1:0] Input Setup Time 4 M3 M[23:0]_RXD[1:0] Input Hold Time 1 M4 M[23:0]_CRS_DV Input Setup Time 4 M5 M[23:0]_CRS_DV Input Hold Time 1 M6 M[23:0]_TXEN Output Delay Time 2 11 CL = 20 pF M7 M[23:0]_TXD[1:0] Output Delay Time 2 11 CL = 20 pF Table 17 - AC Characteristics – Reduced Media Independent Interface 164 Zarlink Semiconductor Inc. MVTX2604 15.8.2 Data Sheet Gigabit Media Independent Interface - Port A M25_TXCLK G12-max G12-min M25_TXD [15:0] G13-max G13-min M25_TX_EN] G14-max G14-min M25_TX_ER Figure 25 - AC Characteristics- GMII M25_RXCLK G1 G2 M25_RXD[15:0] G3 G4 M25_RX_DV G5 G6 M25_RX_ER G7 G8 M25_RX_CRS Figure 26 - AC Characteristics – Gigabit Media Independent Interface Symbol -125 Mhz Parameter Min. (ns) Max. (ns) Note G1 M[25]_RXD[15:0] Input Setup Times 2 G2 M[25]_RXD[15:0] Input Hold Times 1 G3 M[25]_RX_DV Input Setup Times 2 G4 M[25]_RX_DV Input Hold Times 1 G5 M[25]_RX_ER Input Setup Times 2 G6 M[25]_RX_ER Input Hold Times 1 G7 M[25]_CRS Input Setup Times 2 G8 M[25]_CRS Input Hold Times 1 G12 M[25]_TXD[15:0] Output Delay Times 1 6 CL = 20 pf G13 M[25]_TX_EN Output Delay Times 1 6.5 CL = 20 pf G14 M[25]_TX_ER Output Delay Times 1 6 CL = 20 pf Table 18 - AC Characteristics – Gigabit Media Independent Interface 165 Zarlink Semiconductor Inc. MVTX2604 15.8.3 Data Sheet Ten Bit Interface - Port A M25_TXCLK TIMIN M25_TXD [9:0] TIMAX Figure 27 - Gigabit TBI Interface Transmit Timing M25_RXCLK M25_COL T2 T2 M25_RXD[9:0] T3 T3 Figure 28 - Gigabit TBI Interface Receive Timing Symbol T1 Parameter Min. (ns) Max. (ns) 1 6 M25_TXD[9:0] Output Delay Time Note CL = 20 pf Table 19 - Output Delay Timing Symbol Parameter Min. (ns) T2 M25_RXD[9:0] Input Setup Time 3 T3 M25_RXD[9:0] Input Hold Time 3 Ma.x (ns) Table 20 - Input Setup Timing 15.8.4 Gigabit Media Independent Interface - Port B M26_TXCLK G12-max G12-min M26_TXD [15:0] G13-max G13-min M26_TX_EN] G14-max G14-min M26_TX_ER Figure 29 - AC Characteristics- GMII 166 Zarlink Semiconductor Inc. Note MVTX2604 Data Sheet M26_RXCLK G1 G2 M26_RXD[15:0] G3 G4 M26_RX_DV G5 G6 M26_RX_ER G7 G8 M26_RX_CRS Figure 30 - AC Characteristics – Gigabit Media Independent Interface -125 Mhz Symbol Parameter Note Min. (ns) Max. (ns) G1 M[26]_RXD[15:0] Input Setup Times 2 G2 M[26]_RXD[15:0] Input Hold Times 1 G3 M[26]_RX_DV Input Setup Times 2 G4 M[26]_RX_DV Input Hold Times 1 G5 M[26]_RX_ER Input Setup Times 2 G6 M[26]_RX_ER Input Hold Times 1 G7 M[26]_CRS Input Setup Times 2 G8 M[26]_CRS Input Hold Times 1 G12 M[26]_TXD[15:0] Output Delay Times 1 6 CL = 20 pf G13 M[26]_TX_EN Output Delay Times 1 6.5 CL = 20 pf G14 M[26]_TX_ER Output Delay Times 1 6 CL = 20 pf Table 21 - AC Characteristics – Gigabit Media Independent Interface 15.8.5 Ten Bit Interface - Port B M26_TXCLK TIMIN M26_TXD [9:0] TIMAX Figure 31 - Gigabit TBI Interface Transmit Timing 167 Zarlink Semiconductor Inc. MVTX2604 Data Sheet M26_RXCLK M26_COL T2 T2 M26_RXD[9:0] T3 T3 Figure 32 - Gigabit TBI Interface Timing Symbol T1 Parameter M26_TXD[9:0] Output Delay Time Min. (ns) Max. (ns) 1 6 Note CL = 20 pf Table 22 - Output Delay Timing Symbol Parameter Min. (ns) T2 M26_RXD[9:0] Input Setup Time 3 T3 M26_RXD[9:0] Input Hold Time 3 Table 23 - Input Setup Timing 168 Zarlink Semiconductor Inc. Max. (ns) Note MVTX2604 15.8.6 Data Sheet LED Interface LED_CLK LED_SYN LED_BIT LE5-max LE5-min LE6-max LE6-min Figure 33 - AC Characteristics – LED Interface Variable FREQ. Symbol Parameter Note Min. (ns) Max. (ns) LE5 LED_SYN Output Valid Delay -1 7 CL = 30 pf LE6 LED_BIT Output Valid Delay -1 7 CL = 30 pf Table 24 - AC Characteristics – LED Interface 169 Zarlink Semiconductor Inc. MVTX2604 15.8.7 Data Sheet SCANLINK SCANCOL Output Delay Timing SCANCLK C5-max C5-min SCANLINK C7-max C7-min SCANCOL Figure 34 - SCANLINK SCANCOL Output Delay Timing SCANCLK C1 C2 SCANLINK C3 C4 SCANCOL Figure 35 - SCANLINK, SCANCOL Setup Timing -25 MHz Symbol Parameter Note Min. (ns) Max. (ns) C1 SCANLINK input set-up time 20 C2 SCANLINK input hold time 2 C3 SCANCOL input setup time 20 C4 SCANCOL input hold time 1 C5 SCANLINK output valid delay 0 10 CL = 30pf C7 SCANCOL output valid delay 0 10 CL = 30pf Table 25 - SCANLINK, SCANCOL Timing 170 Zarlink Semiconductor Inc. MVTX2604 15.9 Data Sheet MDIO Input Setup and Hold Timing MDC D1 D2 MDIO Figure 36 - MDIO Input Setup and Hold Timing MDC MDIO D3-max D3-min Figure 37 - MDIO Output Delay Timing 1 MHz Symbol Parameter Note: Min. (ns) D1 MDIO input setup time 10 D2 MDIO input hold time 2 D3 MDIO output delay time 1 Table 26 - MDIO Timing 171 Zarlink Semiconductor Inc. Max. (ns) 20 CL = 50 pf MVTX2604 15.9.1 Data Sheet I2C Input Setup Timing SCL S2 S1 SDA Figure 38 - I 2C Input Setup Timing SCL S3-max S3-min SDA Figure 39 - I2C Output Delay Timing 50 KHz Symbol Parameter Note Min. (ns) S1 SDA input setup time 20 S2 SDA input hold time 1 S3* SDA output delay time 4 usec Max. (ns) 6 usec * Open Drain Output. Low to High transistor is controlled by external pullup resistor. Table 27 - I2C Timing 172 Zarlink Semiconductor Inc. CL = 30 pf MVTX2604 15.9.2 Data Sheet Serial Interface Setup Timing STROBE D4 D5 D1 D1 D2 D0 D2 Figure 40 - Serial Interface Setup Timing STROBE AutoFd D3-max D3-min Figure 41 - Serial Interface Output Delay Timing Symbol Parameter Min. (ns) D1 D0 setup time 20 D2 D0 hold time 3 µs D3 AutoFd output delay time D4 Strobe low time 5 µs D5 Strobe high time 5 µs Max. (ns) 1 Table 28 - Serial Interface Timing 173 Zarlink Semiconductor Inc. 50 Note CL = 100 pf E1 DIMENSION A A1 A2 D D1 E E1 b e MIN MAX 2.20 2.46 0.50 0.70 1.17 REF 37.70 37.30 34.50 REF 37.70 37.30 34.50 REF 0.60 0.90 1.27 553 Conforms to JEDEC MS - 034 E e D D1 A2 b NOTE: 1. CONTROLLING DIMENSIONS ARE IN MM 2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER 3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 4. N IS THE NUMBER OF SOLDER BALLS 5. NOT TO SCALE. 6. SUBSTRATE THICKNESS IS 0.56 MM Package Code ISSUE ACN DATE APPRD. Previous package codes: For more information about all Zarlink products visit our Web Site at www.zarlink.com Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request. Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved. TECHNICAL DOCUMENTATION - NOT FOR RESALE