MVTX2804 8-Port 1000 Mbps Ethernet Distributed Switch Data Sheet Features • October 2003 8 Gigabit Ports with GMII and PCS interface - Ordering Information Gigabit Port can also support 100/10 Mbps MII interface - Provide Hot plug support for GMII/PCS module - 2 Gigabit ports can be aggregated into 2Gbps Stacking port working with VTX2600 in stacking mode MVTX2804AG 596 Pin HSBGA -40°C to +85°C • Support IP Multicast with IGMP snooping up to 64K groups. • Traffic Classification • Classify traffic into 8 transmission priorities per port • High Performance Layer 2 Packet Forwarding (11.904M packets per second) and Filtering at Full-Wire Speed • Maximum throughput is 8 Gbps non-blocking • Centralized shared-memory architecture • Supports Delay Bounded, Strict Priority, and WFQ • Consists of two Memory Domains at 133 MHz • Provides 2 level dropping precedence with WRED mechanism - Frame Buffer Domain: Two banks of ZBT-SRAM with 2M/4MB total - Switch Database Domain with 256K/512K SRAM • • Up to 64K MAC addresses to provide large node aggregation in wiring closet switches • Provides Port based and ID Tagged VLAN (IEEE802.1Q) up to 4K VLAN Frame Data Buffer A ZBT-SRAM (1M/2MB) VTX2804 - • User controlled thresholds for WRED Classification based on layer 2, 3 markings - VLAN Priority field in VLAN tagged frame - DS/TOS field in IP packet The precedence of above two classifications can be programmable SRAM 256/512K SW Database MAC Table Frame Data Buffer B ZBT-SRAM (1M/2MB) 32bit 64bit 64bit FDB Interface SDB Interface LED Search Engine NM Database Frame Engine Scheduler Management Module GMII /PCS Port 0 GMII /PCS Port 1 GMII /PCS Port 2 GMII /PCS Port 3 GMII /PCS Port 4 GMII /PCS Port 5 GMII /PCS Port 6 GMII /PCS Port 7 16/8bitBus/ Serial Figure 1 - MVTX2804AG Functional Block Diagram 1 Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2003, Zarlink Semiconductor Inc. All Rights Reserved. CPU MVTX2804 Data Sheet QoS Support • • • • • • • • • • • Supports IEEE 802.1p/Q Quality of Service with 8 Priority Buffer Management: reserve buffers on per class and per port basis Port-based Priority: VLAN Priority with Tagged frame can be overwritten by the priority of PVID QoS features can be configured on a per port basis Packet Filtering and Port Security Static addressing filtering for source and/or destination MAC address Static learned MAC addresses will not be aged out Secure mode per port: Prevent learning for port in a secure mode Support per MAC per Port filtering Full Duplex Ethernet IEEE 802.3x Flow Control Provides Ethernet Multicast and Broadcast Control • • • • • • • • • • • 4 Port Trunking groups, 8 ports per group (Trunking can be based on source MAC and/or destination MAC and source port) LED signals provided by a serial or parallel interface CPU interface supports 16/8-bit CPU bus in managed mode and a synchronous Serial Interface and I2C interface in unmanaged mode SNMP/RMON support with CPU Built-in MIB counter Spanning tree with CPU Multiple Spanning trees (Per Spanning Tree Per VLAN) Hardware auto-negotiation through serial management interface (MDIO) for Gigabit Ethernet ports, supports 10/100/1000 Mbps BIST for internal and external SRAM-ZBT I2C EEPROM or synchronous serial port for configuration Packaged in 596-pin BGA Description The MVTX2800AG family is a group of 8-port 1000 Mbps non-blocking Ethernet switch chips with on-chip address memory. A single chip provides a maximum of eight 1000 Mbps ports and a dedicated CPU interface with a 16/8-bit bus for managed and unmanaged switch applications. The VTX2800 family consists of the following four products: • VTX2804 8 Gigabit ports Managed • VTX2803 8 Gigabit ports Unmanaged • VTX2802 4 Gigabit ports Managed • VTX2801 4 Gigabit ports Unmanaged The MVTX2804AG supports up to 64K MAC addresses to aggregate traffic from multiple wiring closet stacks. The centralized shared-memory architecture allows a very high performance packet-forwarding rate of 11.904M packets per second at full wire speed. The chip is optimized to provide a low-cost, high performance workgroup, and wiring closet, layer 2 switching solution with 8 Gigabit Ethernet ports. Two Frame Buffer Memory domains utilize cost effective, high-performance ZBT-SRAM with aggregated bandwidth of 16Gbps to support full wire speed on all external ports simultaneously. With Strict priority, Delay Bounded, and WRR transmission scheduling, plus WRED memory congestion scheme, the chip provides powerful QoS functions for convergent network multimedia and mission-critical applications. The chip provides 8 transmission priorities and 2 level drop precedence. Traffic is assigned its transmission priority and dropping precedence based on the frame VLAN Tag priority or DS/TOS fields in IP packets. IP multicast snooping provides up to 64k simultaneous IP Multicast groups. With 4K IEEE 802.1Q VLANs, the MVTX2804AG provides the ability to logically group users to control multicast traffic. 2 Zarlink Semiconductor Inc. MVTX2804 Data Sheet The MVTX2804AG supports port trunking/load sharing on the 1000 Mbps ports with fail-over capability. The port trunking/load sharing can be used to group ports between interlinked switches to increase the effective network bandwidth. In full-duplex mode, IEEE 802.3x flow control is provided. The Physical Coding Sublayer (PCS) is integrated onchip to provide a direct 10-bit GMII interface, or the PCS can be bypassed to provide an interface to existing fiberbased Gigabit Ethernet transceivers. Statistical information for Etherstat SNMP and Remote Monitoring Management Information Base (RMON MIB) are collected independently for each of the eight ports. Access to these statistical counter/registers is provided via the CPU interface. SNMP Management frames can be received and transmitted via the CPU interface, creating a complete network management solution. The MVTX2804AG is fabricated using 0.25mm technology. Inputs, however, are 3.3V tolerant and the outputs are capable of directly interfacing to LVTTL levels. The MVTX2804AG is packaged in a 596-pin Ball Grid Array package. 3 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Table of Contents 1.0 Block Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.1 Frame Data Buffer (FDB) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.2 Switch Database (SDB) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 GMII/PCS MAC Module (GMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 CPU Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 Management Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.8 LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.9 Internal Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.0 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Management and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Register Configuration, Frame Transmission, and Frame Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Ethernet Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Control Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Unmanaged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.3 Data Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5.6 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6.1 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6.2 Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.0 Data Forwarding Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 Unicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Multicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Frame Forwarding To and From CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.0 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Detailed Memory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.0 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.1 Search Engine Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 Search, Learning, and Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.1 MAC Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.3 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.4 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.5 VLAN Port Association Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.0 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.1 Data Forwarding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2 Frame Engine Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2.1 FCB Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2.2 Rx Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2.3 RxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2.4 TxQ Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.3 Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.4 TxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Table of Contents 7.0 Quality of Service and Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.1 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.2 Four QoS Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.3 Delay Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.4 Strict Priority and Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.5 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.6 Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.7 WRED Drop Threshold Management Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.8 Buffer Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.8.1 Dropping When Buffers Are Scarce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.9.1 Unicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.9.2 Multicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.10 Mapping to IETF Diffserv Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.0 Port Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.1 Features and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.2 Unicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.3 Multicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8.4 Preventing Multicast Packets from Looping Back to the Source Trunk. . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.0 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.2 Serial Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.3 Parallel Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.4 LED Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10.0 Hardware Statistics Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.1 Hardware Statistics Counters List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.2 IEEE 802.3 HUB Management (RFC 1213) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.2.1 Event Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.2.1.1 READABLEOCTET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.2.1.2 READABLEFRAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.2.1.3 FCSERRORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.2.1.4 ALIGNMENTERRORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.2.1.5 FRAMETOOLONGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.2.1.6 SHORTEVENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.2.1.7 RUNTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.2.1.8 COLLISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.2.1.9 LATEEVENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.2.1.10 VERYLONGEVENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.2.1.11 DATARATEMISATCHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.2.1.12 AUTOPARTITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.2.1.13 TOTALERRORS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.3 IEEE - 802.1 Bridge Management (RFC 1286) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.3.0.1 Event Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.3.0.3 OUTFRAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.3.0.4 INDISCARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.3.0.5 DELAYEXCEEDEDDISCARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.3.0.6 MTUEXCEEDEDDISCARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.4 RMON - Ethernet Statistic Group (RFC 1757) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.4.1 Event Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.4.1.1 DROP EVENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.4.1.2 OCTETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10.4.1.3 BROADCASTPKTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10.4.1.4 MULTICASTPKTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Table of Contents 10.4.1.5 CRCALIGNERRORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10.4.1.6 UNDERSIZEPKTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10.4.1.7 OVERSIZEPKTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10.4.1.8 FRAGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10.4.1.9 JABBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 10.4.1.10 COLLISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 10.4.1.11 PACKET COUNT FOR DIFFERENT SIZE GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 11.0 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 11.1 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 11.2 Directly Accessed Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 11.2.1 INDEX_REG0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 11.2.2 INDEX_REG1 (only needed for CPU 8-bit bus mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 11.2.3 DATA_FRAME_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 11.2.4 CONTROL_FRAME_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 11.2.5 COMMAND & STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 11.2.6 Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 11.2.7 Control Frame Buffer1 Access Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11.2.8 Control Frame Buffer2 Access Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11.3 Group 0 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11.3.1 MAC Ports Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11.3.1.1 ECR1PN: PORT N CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11.3.1.2 ECR2PN: PORT N CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 11.3.1.3 ECRMISC1 - CPU PORT CONTROL REGISTER MISC1 . . . . . . . . . . . . . . . . . . . . . . . . . . 55 11.3.1.4 ECRMISC2 - CPU PORT CONTROL REGISTER MISC2 . . . . . . . . . . . . . . . . . . . . . . . . . . 55 11.3.1.5 GGCONTROL 0- EXTRA GIGA PORT CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 11.3.1.6 GGCONTROL 1- EXTRA GIGA PORT CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 11.3.1.7 GGCONTROL 2- EXTRA GIGA PORT CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 11.3.1.8 GGCONTROL 3- EXTRA GIGA PORT CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 11.4 Group 1 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 11.4.1 VLAN Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 11.4.1.1 AVTCL - VLAN TYPE CODE REGISTER LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 11.4.1.2 AVTCH - VLAN TYPE CODE REGISTER HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 11.4.1.3 PVMAP00_0 - PORT 00 CONFIGURATION REGISTER 0 . . . . . . . . . . . . . . . . . . . . . . . . . 58 11.4.1.4 PVMAP00_1 - PORT 00 CONFIGURATION REGISTER 1 . . . . . . . . . . . . . . . . . . . . . . . . . 58 11.4.1.5 PVMAP00_3 - PORT 00 CONFIGURATION REGISTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . 59 11.5 Port VLAN Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 11.5.1 PVMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 11.6 Group 2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 11.6.1 Port Trunking Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 11.6.1.1 TRUNK0 - TRUNK GROUP 0 MEMBER (MANAGED MODE ONLY) . . . . . . . . . . . . . . . . . 61 11.6.1.2 TRUNK1 - TRUNK GROUP 1 MEMBER (MANAGED MODE ONLY) . . . . . . . . . . . . . . . . . 61 11.6.1.3 TRUNK2- TRUNK GROUP 2 MEMBER (MANAGED MODE ONLY) . . . . . . . . . . . . . . . . . 61 11.6.1.4 TRUNK3- TRUNK GROUP 3 MEMBER (MANAGED MODE ONLY) . . . . . . . . . . . . . . . . . 62 11.6.1.5 TRUNK_HASH_MODE - TRUNK HASH MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 11.6.1.6 TRUNK0_MODE - TRUNK GROUP 0 MODE (UNMANAGED MODE) . . . . . . . . . . . . . . . . 62 11.6.1.7 TRUNK0_HASH0 - TRUNK GROUP 0 HASH RESULT 0,1,2 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.6.1.8 TRUNK0_HASH1 - TRUNK GROUP 0 HASH RESULT 2,3,4,5 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.6.1.9 TRUNK0_HASH2 - TRUNK GROUP 0 HASH RESULT 5,6,7 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.6.1.10 TRUNK0_HASH3 - TRUNK GROUP 0 HASH RESULT 8,9,10 DESTINATION PORT 6 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Table of Contents NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.6.1.11 TRUNK0_HASH4 - TRUNK GROUP 0 HASH RESULT 10,11,12,13 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.6.1.12 TRUNK0_HASH5 - TRUNK GROUP 0 HASH RESULT 13,14,15 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 11.6.1.13 TRUNK1_MODE - TRUNK GROUP 1 MODE (UNMANAGED MODE) . . . . . . . . . . . . . . . 64 11.6.1.14 TRUNK1_HASH0 - TRUNK GROUP 1 HASH RESULT 0, 1, 2 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 11.6.1.15 TRUNK1_HASH1 - TRUNK GROUP 1 HASH RESULT 2, 3, 4, 5 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 11.6.1.16 TRUNK1_HASH2 - TRUNK GROUP 1 HASH RESULT 5, 6, 7 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 11.6.1.17 TRUNK1_HASH3 - TRUNK GROUP 1 HASH RESULT 8, 9, 10 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 11.6.1.18 TRUNK1_HASH4- TRUNK GROUP 1 HASH RESULT 11, 12, 13 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 11.6.1.19 TRUNK1_HASH5 - TRUNK GROUP 1 HASH RESULT 13, 14, 15 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 11.6.1.20 TRUNK2_HASH0 - TRUNK GROUP 2 HASH RESULT 0, 1, 2 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 11.6.1.21 TRUNK2_HASH1 - TRUNK GROUP 2 HASH RESULT 2, 3, 4, 5 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.1.22 TRUNK2_HASH2 - TRUNK GROUP 2 HASH RESULT 5, 6, 7 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.1.23 TRUNK2_HASH3 - TRUNK GROUP 2 HASH RESULT 8, 9, 10 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.1.24 TRUNK0_HASH3 - TRUNK GROUP 0 HASH RESULT 8,9,10 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.1.25 TRUNK0_HASH4 - TRUNK GROUP 0 HASH RESULT 10,11,12,13 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 11.6.1.26 TRUNK0_HASH5 - TRUNK GROUP 0 HASH RESULT 13,14,15 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 11.6.1.27 TRUNK1_MODE - TRUNK GROUP 1 MODE (UNMANAGED MODE) . . . . . . . . . . . . . . . 67 11.6.1.28 TRUNK1_HASH0 - TRUNK GROUP 1 HASH RESULT 0, 1, 2 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 11.6.1.29 TRUNK1_HASH1 - TRUNK GROUP 1 HASH RESULT 2, 3, 4, 5 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 11.6.1.30 TRUNK1_HASH2 - TRUNK GROUP 1 HASH RESULT 5, 6, 7 DESTINATION PORT NUMBER68 11.6.1.31 TRUNK1_HASH3 - TRUNK GROUP 1 HASH RESULT 8, 9, 10 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 11.6.1.32 TRUNK1_HASH4- TRUNK GROUP 1 HASH RESULT 11, 12, 13 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 11.6.1.33 TRUNK1_HASH5 - TRUNK GROUP 1 HASH RESULT 13, 14, 15 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 11.6.1.34 TRUNK2_HASH0 - TRUNK GROUP 2 HASH RESULT 0, 1, 2 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 11.6.1.35 TRUNK2_HASH1 - TRUNK GROUP 2 HASH RESULT 2, 3, 4, 5 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11.6.1.36 TRUNK2_HASH2 - TRUNK GROUP 2 HASH RESULT 5, 6, 7 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11.6.1.37 TRUNK2_HASH3 - TRUNK GROUP 2 HASH RESULT 8, 9, 10 DESTINATION PORT 7 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Table of Contents NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11.6.1.38 TRUNK2_HASH4 - TRUNK GROUP 2 HASH RESULT 10, 11, 12, 13 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11.6.1.39 TRUNK2_HASH5 - TRUNK GROUP 2 HASH RESULT 13, 14, 15 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11.6.1.40 TRUNK3_HASH0 - TRUNK GROUP 3 HASH RESULT 0, 1, 2 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11.6.1.41 TRUNK3_HASH1 - TRUNK GROUP 3 HASH RESULT 2, 3, 4, 5 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11.6.1.42 TRUNK3_HASH2 - TRUNK GROUP 3 HASH RESULT 5, 6, 7 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11.6.1.43 TRUNK3_HASH3 - TRUNK GROUP 3 HASH RESULT 8, 9, 10 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11.6.1.44 TRUNK3_HASH4 - TRUNK GROUP 3 HASH RESULT 10, 11, 12, 13 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11.6.1.45 TRUNK3_HASH5 - TRUNK GROUP 3 HASH RESULT 13, 14, 15 DESTINATION PORT NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 11.6.2 Multicast Hash Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 11.6.2.1 MULTICAST_HASH00 - MULTICAST HASH RESULT0 MASK BYTE [7:0] . . . . . . . . . . . . 71 11.6.2.2 MULTICAST_HASH01 - MULTICAST HASH RESULT1 MASK BYTE [7:0] . . . . . . . . . . . . 71 11.6.2.3 MULTICAST_HASH02 - MULTICAST HASH RESULT2 MASK BYTE [7:0] . . . . . . . . . . . . 71 11.6.2.4 MULTICAST_HASH03 - MULTICAST HASH RESULT3 MASK BYTE [7:0] . . . . . . . . . . . . 72 11.6.2.5 MULTICAST_HASH04 - MULTICAST HASH RESULT4 MASK BYTE [7:0] . . . . . . . . . . . . 72 11.6.2.6 MULTICAST_HASH05 - MULTICAST HASH RESULT5 MASK BYTE [7:0] . . . . . . . . . . . . 72 11.6.2.7 MULTICAST_HASH06 - MULTICAST HASH RESULT6 MASK BYTE [7:0] . . . . . . . . . . . . 72 11.6.2.8 MULTICAST_HASH07 - MULTICAST HASH RESULT7 MASK BYTE [7:0] . . . . . . . . . . . . 72 11.6.2.9 MULTICAST_HASH08 - MULTICAST HASH RESULT8 MASK BYTE [7:0] . . . . . . . . . . . . 72 11.6.2.10 MULTICAST_HASH09 - MULTICAST HASH RESULT9 MASK BYTE [7:0] . . . . . . . . . . . 72 11.6.2.11 MULTICAST_HASH10 - MULTICAST HASH RESULT10 MASK BYTE [7:0] . . . . . . . . . . 72 11.6.2.12 MULTICAST_HASH11 - MULTICAST HASH RESULT11 MASK BYTE [7:0] . . . . . . . . . . 73 11.6.2.13 MULTICAST_HASH12 - MULTICAST HASH RESULT12 MASK BYTE [7:0] . . . . . . . . . . 73 11.6.2.14 MULTICAST_HASH13 - MULTICAST HASH RESULT13 MASK BYTE [7:0] . . . . . . . . . . 73 11.6.2.15 MULTICAST_HASH14 - MULTICAST HASH RESULT14 MASK BYTE [7:0] . . . . . . . . . . 73 11.6.2.16 MULTICAST_HASH15 - MULTICAST HASH RESULT15 MASK BYTE [7:0] . . . . . . . . . . 73 11.6.2.17 MULTICAST_HASHML - MULTICAST HASH BIT[8] FOR RESULT7-0 . . . . . . . . . . . . . . 73 11.6.2.18 MULTICAST_HASHML - MULTICAST HASH BIT[8] FOR RESULT 15-8 . . . . . . . . . . . . . 73 11.7 Group 3 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 11.7.1 CPU Port Configuration Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 11.7.1.1 MAC0 - CPU MAC ADDRESS BYTE 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.7.1.2 MAC1 - CPU MAC ADDRESS BYTE 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.7.1.3 MAC2 - CPU MAC ADDRESS BYTE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.7.1.4 MAC3 - CPU MAC ADDRESS BYTE 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.7.1.5 MAC4 - CPU MAC ADDRESS BYTE 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.7.1.6 MAC5 - CPU MAC ADDRESS BYTE 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.7.1.7 INT_MASK0 - INTERRUPT MASK 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.7.1.8 INT_MASK1 - INTERRUPT MASK 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 11.7.1.9 INT_STATUS0 - MASKED INTERRUPT STATUS REGISTER0 . . . . . . . . . . . . . . . . . . . . . 75 11.7.1.10 INT_STATUS1 - MASKED INTERRUPT STATUS REGISTER1 . . . . . . . . . . . . . . . . . . . . 75 11.7.1.11 INTP_MASK0 - INTERRUPT MASK FOR MAC PORT 0,1 . . . . . . . . . . . . . . . . . . . . . . . . 76 11.7.1.12 INTP_MASK1 - INTERRUPT MASK FOR MAC PORT 2,3 . . . . . . . . . . . . . . . . . . . . . . . . 76 11.7.1.13 INTP_MASK4 - INTERRUPT MASK FOR MAC PORT 4,5 . . . . . . . . . . . . . . . . . . . . . . . . 76 11.7.1.14 INTP_MASK5 - INTERRUPT MASK FOR MAC PORT 6,7 . . . . . . . . . . . . . . . . . . . . . . . . 77 8 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Table of Contents 11.7.2 RQS - Receive Queue Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 11.7.3 RQSS - Receive Queue Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 11.7.4 TX_AGE - Tx Queue Aging timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 11.8 Group 4 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 11.8.1 Search Engine Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 11.8.1.1 AGETIME_LOW - MAC ADDRESS AGING TIME LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 11.8.1.2 AGETIME_HIGH -MAC ADDRESS AGING TIME HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 11.8.1.3 V_AGETIME - VLAN TO PORT AGING TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 11.8.1.4 SE_OPMODE - SEARCH ENGINE OPERATION MODE . . . . . . . . . . . . . . . . . . . . . . . . . . 79 11.8.1.5 SCAN - SCAN CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 11.9 Group 5 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 11.9.1 Buffer Control/QOS Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 11.9.1.1 FCBAT - FCB AGING TIMER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 11.9.1.2 QOSC - QOS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 11.9.1.3 FCR - FLOODING CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 11.9.1.4 AVPML - VLAN PRIORITY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 11.9.1.5 AVPMM - VLAN PRIORITY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 11.9.1.6 AVPMH - VLAN PRIORITY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 11.9.1.7 TOSPML - TOS PRIORITY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 11.9.1.8 TOSPMM - TOS PRIORITY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 11.9.1.9 TOSPMH - TOS PRIORITY MAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 11.9.1.10 AVDM - VLAN DISCARD MAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 11.9.1.11 TOSDML - TOS DISCARD MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 11.9.2 BMRC - Broadcast/Multicast Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 11.9.3 UCC - Unicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 11.9.4 MCC - Multicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 11.9.5 PRG - Port Reservation for Giga ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 11.9.6 FCB Reservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 11.9.6.1 SFCB - SHARE FCB SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 11.9.6.2 C2RS - CLASS 2 RESERVED SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.9.6.3 C3RS - CLASS 3 RESERVED SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.9.6.4 C4RS - CLASS 4 RESERVED SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.9.6.5 C5RS - CLASS 5 RESERVED SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.9.6.6 C6RS - CLASS 6 RESERVED SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.6.7 C7RS - CLASS 7 RESERVED SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.7 Classes Byte Gigabit Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.7.1 QOSC00 - BYTE_C2_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.7.2 QOSC01 - BYTE_C3_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.7.3 QOSC02 - BYTE_C4_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 11.9.7.4 QOSC03 - BYTE_C5_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.9.7.5 QOSC04 - BYTE_C6_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.9.7.6 QOSC05 - BYTE_C7_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.9.8 Classes Byte Gigabit Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.9.8.1 QOSC06 - BYTE_C2_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.9.8.2 QOSC07 - BYTE_C3_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.9.8.3 QOSC08 - BYTE_C4_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.9.8.4 QOSC09 - BYTE_C5_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.8.5 QOSC0A - BYTE_C6_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.8.6 QOSC0B - BYTE_C7_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.9 Classes Byte Gigabit Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.9.1 QOSC0C - BYTE_C2_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.9.2 QOSC0D - BYTE_C3_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Table of Contents 11.9.9.3 QOSC0E - BYTE_C4_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 11.9.9.4 QOSC0F - BYTE_C5_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.9.9.5 QOSC10 - BYTE_C6_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.9.9.6 QOSC11 - BYTE_C7_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.9.10 Classes Byte Gigabit Port 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.9.10.1 QOSC12 - BYTE_C2_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.9.10.2 QOSC13 - BYTE_C3_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.9.10.3 QOSC14 - BYTE_C4_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.9.10.4 QOSC15 - BYTE_C5_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.10.5 QOSC16 - BYTE_C6_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.10.6 QOSC17 - BYTE_C7_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.11 Classes Byte Gigabit Port 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.11.1 QOSC18 - BYTE_C2_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.11.2 QOSC019 - BYTE_C3_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.11.3 QOSC1A - BYTE_C4_G4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.9.11.4 QOSC1B - BYTE_C5_G4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 11.9.11.5 QOSC1C - BYTE_C6_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 11.9.11.6 QOSC1D- BYTE_C7_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 11.9.12 Classes Byte Gigabit Port 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 11.9.12.1 QOSC1E- BYTE_C2_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 11.9.12.2 QOSC1F - BYTE_C3_G5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 11.9.12.3 QOSC20 - BYTE_C4_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 11.9.12.4 QOSC21 - BYTE_C5_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.12.5 QOSC22 - BYTE_C6_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.12.6 QOSC23 - BYTE_C7_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.13 Classes Byte Gigabit Port 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.13.1 QOSC24 - BYTE_C2_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.13.2 QOSC25 - BYTE_C3_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.13.3 QOSC26 - BYTE_C4_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.9.13.4 QOSC27 - BYTE_C5_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.9.13.5 QOSC28 - BYTE_C6_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.9.13.6 QOSC29 - BYTE_C7_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.9.14 Classes Byte Gigabit Port 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.9.14.1 QOSC2A - BYTE_C2_G7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.9.14.2 QOSC2B - BYTE_C3_G7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.9.14.3 QOSC2C - BYTE_C4_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.9.14.4 1QOSC2D - BYTE_C5_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.14.5 QOSC2E - BYTE_C6_G7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.14.6 QOSC2F - BYTE_C7_G7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.15 Classes Byte Limit CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.15.1 QOSC30 - BYTE_C01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.15.2 QOSC31 - BYTE_C02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.15.3 QOSC32 - BYTE_C03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.9.16 Classes WFQ Credit Set 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.9.16.1 QOSC33 - CREDIT_C0_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.9.16.2 QOSC34 - CREDIT_C1_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.9.16.3 QOSC35 - CREDIT_C2_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.9.16.4 QOSC36 - CREDIT_C3_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.9.16.5 QOSC37 - CREDIT_C4_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.9.16.6 QOSC38 - CREDIT_C5_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.9.16.7 QOSC39- CREDIT_C6_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.9.16.8 QOSC3A- CREDIT_C7_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 10 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Table of Contents 11.9.17 Classes WFQ Credit Port G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.9.17.1 QOSC3B - CREDIT_C0_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 11.9.17.2 QOSC3C - CREDIT_C1_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 11.9.17.3 QOSC3D - CREDIT_C2_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 11.9.17.4 QOSC3E - CREDIT_C3_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 11.9.17.5 QOSC3F - CREDIT_C4_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 11.9.17.6 QOSC40 - CREDIT_C5_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 11.9.17.7 QOSC41- CREDIT_C6_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 11.9.17.8 QOSC42- CREDIT_C7_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 11.9.18 Classes WFQ Credit Port G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11.9.18.1 QOSC43 - CREDIT_C0_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11.9.18.2 QOSC44 - CREDIT_C1_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11.9.18.3 QOSC45 - CREDIT_C2_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 11.9.18.4 QOSC46 - CREDIT_C3_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 11.9.18.5 QOSC47 - CREDIT_C4_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 11.9.18.6 QOSC48 - CREDIT_C5_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 11.9.18.7 QOSC49- CREDIT_C6_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 11.9.18.8 QOSC4A- CREDIT_C7_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 11.9.19 Classes WFQ Credit Port G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 11.9.19.1 QOSC4B - CREDIT_C0_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 11.9.19.2 QOSC4 - CREDIT_C1_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 11.9.19.3 QOSC4D - CREDIT_C2_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.9.19.4 QOSC4E - CREDIT_C3_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.9.19.5 QOSC4F - CREDIT_C4_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.9.19.6 QOSC50 - CREDIT_C5_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.9.19.7 QOSC51- CREDIT_C6_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.9.19.8 QOSC52- CREDIT_C7_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.9.20 Classes WFQ Credit Port G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 11.9.20.1 QOSC53 - CREDIT_C0_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 11.9.20.2 QOSC54 - CREDIT_C1_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 11.9.20.3 QOSC55 - CREDIT_C2_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 11.9.20.4 QOSC56 - CREDIT_C3_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 11.9.20.5 QOSC57 - CREDIT_C4_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 11.9.20.6 QOSC58 - CREDIT_C5_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 11.9.20.7 QOSC59- CREDIT_C6_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 11.9.20.8 QOSC5A- CREDIT_C7_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 11.9.20.9 Classes WFQ Credit Port G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 11.9.20.10 QOSC5B - CREDIT_C0_G5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 11.9.20.11 QOSC5C - CREDIT_C1_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 11.9.20.12 QOSC5D - CREDIT_C2_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 11.9.20.13 QOSC5E - CREDIT_C3_G5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 11.9.20.14 QOSC5F - CREDIT_C4_G5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 11.9.20.15 QOSC60 - CREDIT_C5_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 11.9.20.16 QOSC61- CREDIT_C6_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 11.9.20.17 QOSC62- CREDIT_C7_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 11.9.21 Classes WFQ Credit Port G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 11.9.21.1 QOSC63 - CREDIT_C0_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 11.9.21.2 QOSC64 - CREDIT_C1_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 11.9.21.3 QOSC65 - CREDIT_C2_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 11.9.21.4 QOSC66 - CREDIT_C3_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 11.9.21.5 QOSC67 - CREDIT_C4_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 11.9.21.6 QOSC68 - CREDIT_C5_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 11 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Table of Contents 11.9.21.7 QOSC69- CREDIT_C6_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 11.9.21.8 QOSC6A- CREDIT_C7_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 11.9.22 Classes WFQ Credit Port G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 11.9.22.1 QOSC6B - CREDIT_C0_G7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 11.9.22.2 QOSC6C - CREDIT_C1_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 11.9.22.3 QOSC6D - CREDIT_C2_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.9.22.4 QOSC6E - CREDIT_C3_G7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.9.22.5 QOSC6F - CREDIT_C4_G7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.9.22.6 QOSC70 - CREDIT_C5_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.9.22.7 QOSC71- CREDIT_C6_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.9.22.8 QOSC72- CREDIT_C7_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.9.23 Class 6 Shaper Control Port G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 11.9.23.1 QOSC73 - TOKEN_RATE_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 11.9.23.2 QOSC74 - TOKEN_LIMIT_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 11.9.23.3 Class 6 Shaper Control Port G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 11.9.23.4 QOSC75 - TOKEN_RATE_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 11.9.23.5 QOSC76 - TOKEN_LIMIT_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 11.9.24 Class 6 Shaper Control Port G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 11.9.24.1 QOSC77 - TOKEN_RATE_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 11.9.24.2 QOSC78 - TOKEN_LIMIT_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 11.9.25 Class 6 Shaper Control Port G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 11.9.25.1 QOSC79 - TOKEN_RATE_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 11.9.25.2 QOSC7A - TOKEN_LIMIT_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 11.9.26 Class 6 Shaper Control Port G4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 11.9.26.1 QOSC7B - TOKEN_RATE_G4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 11.9.26.2 QOSC7C - TOKEN_LIMIT_G4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 11.9.27 Class 6 Shaper Control Port G5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 11.9.27.1 QOSC7D - TOKEN_RATE_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 11.9.27.2 QOSC7E - TOKEN_LIMIT_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 11.9.28 Class 6 Shaper Control Port G6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 11.9.28.1 Accessed by CPU only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 11.9.28.2 QOSC7F - TOKEN_RATE_G6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 11.9.28.3 QOSC80 - TOKEN_LIMIT_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 11.9.29 Class 6 Shaper Control Port G7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 11.9.29.1 QOSC81 - TOKEN_RATE_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 11.9.29.2 QOSC82 - TOKEN_LIMIT_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 11.9.30 RDRC0 - WRED Rate Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 11.9.31 RDRC1 - WRED Rate Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 11.10 Group 6 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 11.10.1 MISC Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 11.10.1.1 MII_OP0 - MII REGISTER OPTION 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 11.10.1.2 MII_OP1 - MII REGISTER OPTION 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 11.10.1.3 FEN - FEATURE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 11.10.1.4 MIIC0 - MII COMMAND REGISTER 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 11.10.1.5 MIIC1 - MII COMMAND REGISTER 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 11.10.1.6 MIIC2 - MII COMMAND REGISTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 11.10.1.7 MIIC3 - MII COMMAND REGISTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 11.10.1.8 MIID0 - MII DATA REGISTER 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 11.10.1.9 MIID1 - MII DATA REGISTER 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 11.10.1.10 LED MODE - LED CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 11.10.2 CHECKSUM - EEPROM Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 11.10.3 LED User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 12 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Table of Contents 11.10.3.1 LEDUSER0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 11.10.3.2 LEDUSER1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 11.10.3.3 LEDUSER2/LEDSIG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 11.10.3.4 LEDUSER3/LEDSIG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 11.10.3.5 LEDUSER4/LEDSIG4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 11.10.3.6 LEDUSER5/LEDSIG5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 11.10.3.7 LEDUSER6/LEDSIG6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 11.10.3.8 LEDUSER7/LEDSIG1_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 11.10.4 MIINP0 - MII Next Page Data Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 11.10.5 MIINP1 - MII Next Page Data Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 11.11 Group F Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 11.11.1 CPU Access Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 11.11.1.1 GCR-GLOBAL CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 11.11.1.2 DCR-DEVICE STATUS AND SIGNATURE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . 126 11.11.1.3 DCR01-GIGA PORT STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 11.11.1.4 DCR23-GIGA PORT STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 11.11.1.5 DCR45-GIGA PORT STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 11.11.1.6 DCR67-GIGA PORT STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 11.11.1.7 DPST - DEVICE PORT STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 11.11.1.8 DTST - Data Read Back Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 12.0 BGA and Ball Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 12.1 BGA Views (Top-View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 12.2 Ball-Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 12.2.1 Ball Signal Description in Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 12.2.2 Ball - Signal Description in Unmanaged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 12.3 Ball Signal Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 12.4 Characteristics and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 12.4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 12.4.2 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 12.4.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 12.5 AC Characteristics and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 12.5.1 Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 12.5.2 Typical CPU Timing Diagram for a CPU Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 12.5.3 Typical CPU Timing Diagram for a CPU Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 12.5.4 Local Frame Buffer ZBT SRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 12.5.4.1 Local ZBT SRAM Memory Interface A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 12.5.4.2 Local ZBT SRAM Memory Interface B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 12.5.5 Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 12.5.5.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 12.5.6 Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 12.5.7 Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.5.8 PCS Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 12.5.9 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 12.5.10 MDIO Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 12.5.11 I2C Input Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 12.5.12 Serial Interface Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13 Zarlink Semiconductor Inc. MVTX2804 Data Sheet List of Figures Figure 1 - MVTX2804AG Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Overview of the MTVTX2804AG CPU Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 3 - Data Transfer Format for I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 4 - MVTX2804 SRAM Interface Block Diagram (DMAs for Gigaport Ports) . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 5 - Buffer Partition Scheme Used in the MVTX2804. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 6 - MVTX2804 Features Enabling IETF Diffserv Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 7 - Timing diagram for serial mode in LED interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 8 - Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Figure 9 - Typical CPU Timing Diagram for a CPU Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Figure 10 - Typical CPU Timing Diagram for a CPU Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Figure 11 - Local Memory Interface – Input setup and hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Figure 12 - Local Memory Interface - Output valid delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Figure 13 - Local Memory Interface – Input setup and hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Figure 14 - Local Memory Interface - Output valid delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Figure 15 - Local Memory Interface – Input setup and hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Figure 16 - Local Memory Interface - Output valid delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Figure 17 - AC Characteristics – Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Figure 18 - AC Characteristics – Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Figure 19 - AC Characteristics - GMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Figure 20 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Figure 21 - AC Characteristics – PCS Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Figure 22 - AC Characteristics – PCS Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Figure 23 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Figure 24 - MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Figure 25 - MDIO Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Figure 26 - I2C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Figure 27 - I2C Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Figure 28 - Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Figure 29 - Serial Interface Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 14 Zarlink Semiconductor Inc. MVTX2804 Data Sheet List of Tables Table 1 - Two-dimensional World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 2 - Four QoS configurations per port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 3 - WRED Dropping Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 4 - Mapping between MVTX2804 and IETF Diffserv Classes for Gigabit Ports . . . . . . . . . . . . . . . . . . . . . . 34 Table 5 - Reset & Bootstrap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Table 6 - CPU Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Table 7 - CPU Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Table 8 - AC Characteristics – Local frame buffer ZBT-SRAM Memory Interface A . . . . . . . . . . . . . . . . . . . . . . 163 Table 9 - AC Characteristics – Local frame buffer ZBT-SRAM Memory Interface B . . . . . . . . . . . . . . . . . . . . . . 164 Table 10 - AC Characteristics – Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . 165 Table 11 - AC Characteristics – Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Table 12 - AC Characteristics – Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Table 13 - AC Characteristics – PCS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Table 14 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Table 15 - MDIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Table 16 - I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Table 17 - Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 15 Zarlink Semiconductor Inc. MVTX2804 1.0 Block Functionality 1.1 Frame Data Buffer (FDB) Interfaces Data Sheet The FDB interface supports pipelined ZBT-SRAM memory at 133 MHz. To ensure a non-blocking switch, two memory domains are required. Each domain has a 64-bit wide memory bus. At 133 MHz, the aggregate memory bandwidth is 17 Gbps, which is enough to support 8 Gigabit ports at full wire speed switching. A patent pending scheme is used to access the FDB memory. Each slot has one tick to read or write 8 bytes. 1.2 Switch Database (SDB) Interface A pipelined synchronous burst SRAM (SBRAM) memory is used to store the switch database information including MAC Table, VLAN Table and IP Multicast Table. Search Engine accesses the switch database via SDB interface. The SDB memory has 32-bit wide bus at 133MHz. 1.3 GMII/PCS MAC Module (GMAC) The GMII/PCS Media Access Control (MAC) module provides the necessary buffers and control interface between the Frame Engine (FE) and the external physical device (PHY). The MVTX2804 has two interfaces, GMII or PCS. The MAC of the MVTX2804 meets the IEEE 802.3z specification and supports the MII interface. It is able to operate in 10M/100M/1G in Full Duplex mode with a flow control mechanism. It has the options to insert Source Address/CRC/VLAN ID to each frame. The GMII/PCS Module also supports hot plug detection. 1.4 CPU Interface Module One extra port is dedicated to the CPU via the CPU interface module. The CPU interface utilizes a 16/8-bit bus in managed mode. It also supports a serial and an I2C interface, which provides an easy way to configure the system if unmanaged. 1.5 Management Module The CPU can send a control frame to access or configure the internal network management database. The Management Module decodes the control frame and executes the functions requested by the CPU. 1.6 Frame Engine The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request, which is sent to the search engine to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch response from the search engine, the frame engine performs transmission scheduling based on the frame's priority. The frame engine forwards the frame to the MAC module when the frame is ready to be sent. 1.7 Search Engine The Search Engine resolves the frame's destination port or ports according to the destination MAC address (L2) or IP multicast address (IP multicast packet) by searching the database. It also performs MAC learning, priority assignment, and trunking functions. 1.8 LED Interface The LED interface can be operated in a serial mode or a parallel mode. In the serial mode, the LED interface uses 3 pins for carrying 8 port status signals. In the parallel mode, the interface can drive LEDs by 8 status pins. The LED port is shared with bootstrap pins. In order to avoid mis-reading a buffer must be used to isolate the LED circuitry from the bootstrap pins during bootstrap cycle (the bootstraps are sampled at the rising edge of the #Reset). 16 Zarlink Semiconductor Inc. MVTX2804 1.9 Data Sheet Internal Memory Several internal tables are required and are described as follows: • Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame stored in the FDB, e.g. frame size, read/write pointer, transmission priority, etc. • Network Management (NM) Database - The NM database contains the information in the statistics counters and MIB. • MCT Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the external MAC Table. • VLAN Port Aging Table - This table provides the aging status of VLAN Port association status. Search Engine maintains this table and informs the CPU when the entry is ready to age out. 2.0 System Configuration 2.1 Management and Configuration Two modes are supported in the MVTX2804: managed and unmanaged. In managed mode, the MVTX2804 uses an 8- or 16-bit CPU interface very similar to the Industry Standard Architecture (ISA) specification. In unmanaged mode, the MVTX2804 has no CPU but can be configured by EEPROM using an I2C interface at bootup, or via a synchronous serial interface otherwise. 2.2 Managed Mode In managed mode, the MVTX2804 uses an 8- or 16-bit CPU interface very similar to the ISA bus. The MVTX2804 CPU interface provides for easy and effective management of the switching system. The figure below provides an overview of the CPU interface. 17 Zarlink Semiconductor Inc. MVTX2804 Data Sheet CPU Interface 8/16-bit Data Bus 3-bit Addr Index Reg 1 (Addr = 001) Index Reg 0 (Addr = 000) Config Data Reg (Addr = 010) CPU Frame Data Reg (Addr = 011) 8-bit Data Bus 8/16-bit Data Bus 16-bit Address Synchronous Serial Interface I/O MUX Internal Registers Command/ Status Reg (Addr = 100) Interrupt Reg (Addr = 101) Control Frame Data Reg (Addr = 110) Response Reg (RO) (Addr = 111) 8/16-bit Data Bus CPU Frame CPU Frame Receiver Transmit FIFO FIFO Frame Recent FIFO Frame Transmit FIFO1 Frame Transmit FIFO2 Interrupt Process Search Engine Q0 Q1 MUX RD_CYC, WR_CYC To Rate Control RAM Statistic Counter RAM FCB RAM MCT RAM External SRAM VLAN Index Figure 2 - Overview of the MTVTX2804AG CPU Interface 2.3 Register Configuration, Frame Transmission, and Frame Reception The MVTX2804 has many programmable parameters, covering such functions as QoS weights, VLAN control. In managed mode, the CPU interface provides an easy way of configuring these parameters. The parameters are contained in 8-bit configuration registers. The MVTX2804 allows indirect access to these registers, as follows: • Two “index” registers (addresses 000 and 001) need to be written, to indicate the desired 16-bit register address. • To indirectly configure the register addressed by the two index registers, a “configure data” register (address 010) must be written with the desired 8-bit data. • Similarly, to read the value in the register addressed by the two index registers, the “configure data” register can now simply be read. In summary, access to the many internal registers is carried out simply by directly accessing only three registers – two registers to indicate the address of the desired parameter, and one register to read or write a value. Of course, 18 Zarlink Semiconductor Inc. MVTX2804 Data Sheet because there is only one bus master, there can never be any conflict between reading and writing the configuration registers. 2.3.1 Ethernet Frames The CPU interface is also responsible for receiving and transmitting standard Ethernet frames to and from the CPU. To transmit a frame from the CPU The CPU writes a “data frame” register (address 011) with the data it wants to transmit. After writing all the data, it then writes the frame size, destination port number, and frame status. The MVTX2804 forwards the Ethernet frame to the desired destination port, no longer distinguishing the fact that the frame originated from the CPU. To receive a frame into the CPU The CPU receives an interrupt when an Ethernet frame is available to be received. Frame information arrives first in the data frame register. This includes source port number, frame size, and VLAN tag. The actual data follows the frame information. The CPU uses the frame size information to read the frame out. In summary, receiving and transmitting frames to and from the CPU is a simple process that uses one direct access register only. 2.3.2 Control Frames In addition to standard Ethernet frames described in the preceding section, the CPU is also called upon to handle special “Control frames,” generated by the MVTX2804 and sent to the CPU. These proprietary frames are related to such tasks as statistics collection, MAC address learning, aging, etc. All Control frames are 64 bytes long. Transmitting and receiving these frames is similar to transmitting and receiving Ethernet frames, except that the register accessed is the “Control frame data” register (address 110). Specifically, there are eight types of control frames generated by the CPU and sent to the MVTX2804: • Memory read request • Memory write request • Learn MAC address • Delete MAC address • Search MAC address • Learn IP Multicast address • Delete IP Multicast address • Search IP Multicast address Note: Memory read and write requests by the CPU may include VLAN table, spanning tree, statistic counters, and similar updates. In addition, there are nine types of Control Frames generated by the MVTX2804 and sent to the CPU: • • • • • • • • • Interrupt CPU when statistics counter rolls over Response to memory read request from CPU Learn MAC address Delete MAC address Delete IP Multicast address New VLAN port Age out VLAN port Response to search MAC address request from CPU Response to search IP Multicast address request from CPU 19 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Note: Deleting IP Multicast address requests by the MVTX2804 occur when the CPU issues a Learn IP Multicast address command but the search engine discovers no RAM space for storage. The format of the Control Frame is described in the processor interface application note. 2.4 Unmanaged Mode In unmanaged mode, the MVTX2804 can be configured by EEPROM (24C02 or compatible) via an I2C interface at boot time, or via a synchronous serial interface during operation. When the bootstrap Td[8] is set to ‘0’ meaning EEPROM installed, the MVTX2804, acting as a master starts the data transfer from the memory to the switch. 2.5 I2C Interface The I2C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries the control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit serial and bi-directional, at 50 Kbps. Data transfer is performed between master and slave IC using a request / acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer. The figure below shows the data transfer format. START SLAVE ADDRESS R/W ACK DATA 1 (8 bits) ACK DATA 2 ACK DATA M ACK STOP Figure 3 - Data Transfer Format for I 2C Interface 2.5.1 Start Condition Generated by the master, the MVTX2804. The bus is considered to be busy after the Start condition is generated. The Start condition occurs if while the SCL line is High, there is a High-to-Low transition of the SDA line. Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I2C bus is free, both lines are High. 2.5.2 Address The first byte after the Start condition determines which slave the master will select. The slave in our case is the EEPROM. The first seven bits of the first data byte make up the slave address. 2.5.3 Data Direction The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master transmitter sets this bit to W; a master receiver sets this bit to R. 2.5.4 Acknowledgment Like all clock pulses, the master generates the acknowledgment-related clock pulse. However, the transmitter releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the SDA line during acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An acknowledgment pulse follows every byte transfer. If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the transfer. 20 Zarlink Semiconductor Inc. MVTX2804 Data Sheet If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to let the master generate the Stop condition. 2.5.5 Data After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an acknowledge bit. Data is transferred MSB-first. 2.5.6 Stop Condition Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop condition occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line. The I2C interface serves the function of configuring the MVTX2804 at boot time. The master is the MVTX2804, and the slave is the EEPROM memory. 2.6 Synchronous Serial Interface The synchronous serial interface serves the function of configuring the MVTX2804 not at boot time but via a PC. The PC serves as master and the MVTX2804 serves as slave. The protocol for the synchronous serial interface is nearly identical to the I2C protocol. The main difference is that there is no acknowledgment bit after each byte of data transferred. The unmanaged MVTX2804 uses a synchronous serial interface to program the internal registers. To reduce the number of signals required, the register address, command and data are shifted in serially through the PS_DI pin. PS_STROBE pin is used as the shift clock. PS_DO pin is used as data return path. Each command consists of four parts. • • • • START pulse Register Address Read or Write command Data to be written or read back Any command can be aborted in the middle by sending an ABORT pulse to the MVTX2804. A START command is detected when PS_DI is sampled high at PS_STROBE - leading edge, and PS_DI is sampled low when PS_STROBE- falls. An ABORT command is detected when PS_DI is sampled low at PS_STROBE - leading edge, and PS_DI is sampled high when PS_STROBE - falls. 21 Zarlink Semiconductor Inc. MVTX2804 2.6.1 Data Sheet Write Command PS-STROBE2 Extra clocks after last transfer A0 A1 A2 PS_DI START 2.6.2 ... A9 A11 A10 ADDRESS W D0 D1 D2 D3 D4 D5 D6 D7 COMMAND DATA Read Command PS_STROBE- PS_DI A0 A1 A2 START ... A9 ADDRESS PS_DO A10 A11 R COMMAND DATA D0 D1 D2 D3 D4 D5 D6 D7 All registers in the MVTX2804 can be modified through this synchronous serial interface. 3.0 Data Forwarding Protocol 3.1 Unicast Data Frame Forwarding When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). An FCB handle will always be available, because of advance buffer reservations. The memory (ZBT-SRAM) interface is two 64-bit buses, connected to two ZBT-SRAM domains, A and B. The Receive DMA (RxDMA) is responsible for multiplexing the data and the address. On a port's “turn,” the RxDMA will move 8 bytes (or up to the end-of-frame) from the port's associated RxFIFO into memory (Frame Data Buffer, or FDB). Once an entire frame has been moved to the FDB, and a good end-of-frame (EOF) has been received, the Rx interface makes a switch request. The RxDMA arbitrates among multiple switch requests. The switch request consists of the first 64 bytes of a frame, containing among other things, the source and destination MAC addresses of the frame. The search engine places a switch response in the switch response queue of the frame engine when done. Among other information, the search engine will have resolved the destination port of the frame and will have determined that the frame is unicast. After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has to decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ 22 Zarlink Semiconductor Inc. MVTX2804 Data Sheet occupancy at the destination. If the frame is not dropped, then the TxQ manager links the frame's FCB to the correct per-port-per-class TxQ. Unicast TxQ's are linked lists of transmission jobs, represented by their associated frames' FCBs. There is one linked list for each transmission class for each port. There are 8 classes for each of the 8 Gigabit ports - a total of 32 unicast queues. The TxQ manager is responsible for scheduling transmission among the queues representing different classes for a port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among the head-of-line (HOL) frames from the per-class queues for that port, using a Zarlink Semiconductor scheduling algorithm. As at the transmit end, each of the 8 ports has time slots devoted solely to reading data from memory at the address calculated by port control. The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address. On a port's turn, the TxDMA will move 8 bytes (or up to the EOF) from memory into the port's associated TxFIFO. After reading the EOF, the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple buffer release requests. The frame is transmitted from the TxFIFO to the line. 3.2 Multicast Data Frame Forwarding After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of the multicast packet's destinations. If so, then the frame is dropped at some destinations but not others, and the FCB is not released. If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the multicast queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast frames). There are 4 multicast queues for each of the 8 Gigabit ports. There is one multicast queue for every two unicast classes. During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one logical queue. The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to which the frame is destined. 3.3 Frame Forwarding To and From CPU Frame forwarding from the CPU port to a regular transmission port is nearly the same as forwarding between transmission ports. The only difference is that the physical destination port must be indicated in addition to the destination MAC address. If an invalid port is indicated the frame is forwarded accordingly to the destination MAC address. Frame forwarding to the CPU port is nearly the same as forwarding to a regular transmission port. The only difference is in frame scheduling. Instead of using the patent-pending scheduling algorithms, scheduling for the CPU port is simply based on strict priority. That is, a frame in a high priority queue will always be transmitted before a frame in a lower priority queue. There are four output queues to the CPU and one receive queue. 23 Zarlink Semiconductor Inc. MVTX2804 4.0 Memory Interface 4.1 Overview Data Sheet The figure below illustrates the first part of the ZBT-SRAM interface for the MVTX2804. As shown, two ZBT-SRAM banks A and B are used, with a 64-bit bus connected to each. Each DMA can read and write from both bank A and bank B. During each tick, two memory operations will take place in parallel - one for bank A, and one for bank B. Because the clock frequency is 133 MHz, the total memory bandwidth is 128 bits 133 MHz = 17 Gbps, for frame data buffer (FDB) access. In addition, the figure shows that the 8 Gigabit ports are actually grouped into sets of 4. If TxDMA 0 is using bank B during a given memory slot, then TxDMA's 1-3 will never be using bank A during this same slot. As a result, TxDMA's 0-3 can share the same bank selector. Not shown in the figure are the CPU port RxDMA's and TxDMA's, each separately connected to its own bank selector. ZBT-SRAM Bank A TxDMA 0-1 TxDMA 2-3 TxDMA 4-5 ZBT-SRAM Bank B TxDMA 6-7 RxDMA 0-1 RxDMA 2-3 RxDMA 4-5 RxDMA 6-7 Figure 4 - MVTX2804 SRAM Interface Block Diagram (DMAs for Gigaport Ports) 4.2 Detailed Memory Information Because the bus for each bank is 64 bits wide, frames are broken into 8-byte granules, written to and read from memory. The first 8-byte granule gets written to Bank A, the second 8-byte granule gets written to Bank B, and so on in alternating fashion. When reading frames from memory, the same procedure is followed, first from A, then from B, and so on. The reading and writing from alternating memory banks can be performed with minimal waste of memory bandwidth. What's the worst case? For any speed port, in the worst case, a 1-byte-long EOF granule gets written to Bank A. This means that a 7-byte segment of Bank A bandwidth is idle, and furthermore, the next 8-byte segment of Bank B bandwidth is idle, because the first 8 bytes of the next frame will be written to Bank A, not B. This scenario results in a maximum 15 bytes of waste per frame, which is always acceptable because the interframe gap is 20 bytes. The CPU management port gets treated like any other port, reading and writing to alternating memory banks starting with Bank A. Search engine data is written to both banks in parallel. In this way, a search engine read operation could be performed by either bank at any time without a problem. 24 Zarlink Semiconductor Inc. MVTX2804 5.0 Search Engine 5.1 Search Engine Overview Data Sheet The MVTX2804 search engine is optimized for high throughput searching, with enhanced features to support: • • • • • • • • • Up to 64K MAC addresses Up to 4K VLAN Up to 64K IP Multicast groups 4 groups of port trunking Traffic classification into 8 transmission priorities, and 2 drop precedence levels Packet filtering Security IP Multicast Per port, per VLAN Spanning Tree 5.2 Basic Flow Shortly after a frame enters the MVTX2804 and is written to the Frame Data Buffer (FDB), the frame engine generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of the frame, which contain all the necessary information for the search engine to perform its task. When the search engine is done, it writes to the Switch Response Queue, and the frame engine uses the information provided in that queue for scheduling and forwarding. In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch request. Among the information extracted are the source and destination MAC addresses, the transmission and discard priorities, whether the frame is unicast or multicast, and VLAN ID. Requests are sent to the external SRAM Switch Database to locate the associated entries in the external MCT table. When all the information has been collected from external SRAM, the search engine has to compare the MAC address on the current entry with the MAC address for which it is searching. If it is not a match, the process is repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained internal to the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address unknown) or flooding (destination MAC address unknown). In addition, VLAN information is used to select the correct set of destination ports for the frame (for multicast), or to verify that the frame's destination port is associated with the VLAN (for unicast). If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the source and destination MAC addresses. When all the information is compiled, the switch response is generated, as stated earlier. The search engine also interacts with the CPU with regard to learning and aging. 5.3 5.3.1 Search, Learning, and Aging MAC Search The search block performs source MAC address and destination MAC address (or destination IP address for IP multicast) searching. As we indicated earlier, if a match is not found, then the next entry in the linked list must be examined, and so on until a match is found or the end of the list is reached. In tag based VLAN mode, if the frame is unicast, and the destination port is not a member of the correct VLAN, then the frame is dropped; otherwise, the frame is forwarded. If the frame is multicast, this same table is used to 25 Zarlink Semiconductor Inc. MVTX2804 Data Sheet indicate all the ports to which the frame will be forwarded. Moreover, if port trunking is enabled, this block selects the destination port (among those in the trunk group). In port based VLAN mode, a bitmap is used to determine whether the frame should be forwarded to the outgoing port. The main difference in this mode is that the bitmap is not dynamic. Ports cannot enter and exit groups because of real-time learning made by a CPU. The MAC search block is also responsible for updating the source MAC address timestamp and the VLAN port association timestamp, used for aging. 5.3.2 Learning The learning module learns new MAC addresses and performs port change operations on the MCT database. The goal of learning is to update this database as the networking environment changes over time. When CPU reporting is enabled, learning and port change will be performed when the CPU request queue has room, and a memory slot is available, and a “Learn MAC Address” message is sent to the CPU. When CPU reporting is disabled, learning and port change will be performed based on memory slot availability only. In tag based VLAN mode, if the source port is not a member of a classified VLAN, a “New VLAN Port” message is sent to the CPU. The CPU can decide whether or not the source port can be added to the VLAN. 5.3.3 Aging Aging time is controlled by register 400h and 401h. The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we indicated earlier, the search module updates the source MAC address and VLAN port association timestamps for each frame it processes. When an entry is ready to be aged, the entry is removed from the table, and a “Delete MAC Address” message is sent to inform the CPU. Supported entry types are dynamic, static, source filter, destination filter, IP multicast, source and destination filter, and secure MAC address. Only dynamic entries can be aged; whether an entry is static or dynamic is maintained in the “status” field of the MCT data structure. 5.3.4 Data Structure The MCT data structure is used for searching for MAC addresses. The structure is maintained by hardware in the search engine. The CPU can make requests to add to, delete from, or search the MCT database. The database is essentially a hash table, with collisions resolved by chaining. The database is partially external, and partially internal, as described earlier: the first MCT entry of each linked list is always located in the external SRAM, and the subsequent MCTs are located internally. 5.3.5 VLAN Port Association Table 31 30 Valid Route 29 27 26 0 Reserved Port 8 to 0 is VLAN status Port 8 Port 7 Port 6 Port 5 Port 4 Port 3 Port 2 Port 1 Port 0 VLAN status VLAN status VLAN status VLAN status VLAN status VLAN status VLAN status VLAN status VLAN status 26 Zarlink Semiconductor Inc. MVTX2804 Data Sheet VLAN STATUS [2:0] • 000:Not a valid entry • 001:Blocking status, no RX and TX • 010:Not a VLAN member, spanning tree learn status • 011:VLAN member, spanning tree learn status • 100:Not a VLAN member, spanning tree forward status • 101:VLAN member and is subject to aging, spanning tree forward status (Don't use) • 110:VLAN member and is subject to aging, spanning tree forward status • 111:VLAN member and is not subject to aging, spanning tree forward status CPU can create static VLAN port by writing the static status to the VLAN- PORT status entry. Dynamic VLAN and Port association can be created by writing “110” to the VLAN STATUS. Hardware will age and refresh the entry based on the VLAN - PORT activity. When the VLAN - PORT is ready to be aged out, a message is sent to CPU and CPU can remove the VLAN - PORT association by writing “000” to the VLAN STATUS. As a result, the VLAN and PORT are no long associated and the VLAN domain is shrunk. 6.0 Frame Engine 6.1 Data Forwarding Summary • Enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB. Data is moved in 8-byte granules in conjunction with the scheme for the SRAM interface. • A switch request is sent to the Search Engine. The Search Engine processes the switch request. • A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast, and its destination port or ports. A VLAN table lookup is performed as well. • A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon receiving a Transmission Scheduling Request, the device will format an entry in the appropriate Transmission Scheduling Queue (TxSch Q) or Queues. There is 8 transmission queues per Gigabit port, one for each priority. Creation of a queue entry either involves linking a new job to the appropriate linked list if unicast, or adding an entry to a physical queue if multicast. • When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of one of the TxSch Qs, according to the transmission scheduling algorithm (so as to ensure per-class quality of service). The unicast linked list and the multicast queue for the same port-class pair are treated as one logical queue. • The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of the destination port. 6.2 Frame Engine Details This section briefly describes the functions of each of the modules of the MVTX2804 frame engine. 6.2.1 FCB Manager The FCB manager allocates FCB handles to incoming frames, and releases FCB handles upon frame departure. The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be determined by referring to Chapter 8. In addition, the FCB manager is responsible for buffer aging, and for linking unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin and the aging time is defined in register FCBAT. 27 Zarlink Semiconductor Inc. MVTX2804 6.2.2 Data Sheet Rx Interface The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch request. 6.2.3 RxDMA The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each frame for use by the search engine when the switch request has been made. 6.2.4 TxQ Manager First, the TxQ manager checks the per-class queue status and global Reserved resource situation, and using this information, makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the TxQ manager requests that the FCB manager link the unicast frame's FCB to the correct per-port-per-class TxQ. If multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also trigger source port flow control for the incoming frame's source if that port is flow control enabled. Second, the TxQ manager handles transmission scheduling; it schedules transmission among the queues representing different classes for a port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to the correct port control module. 6.3 Port Control The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control module requests that the buffer be released. 6.4 TxDMA The TxDMA multiplexes data and address from port control, and arbitrates among buffer release requests from the port control modules. 7.0 Quality of Service and Flow Control 7.1 Model Quality of service (QoS) is an all-encompassing term for which different people have different interpretations. In this chapter, by quality of service assurances, we mean the allocation of chip resources so as to meet the latency and bandwidth requirements associated with each traffic class. We do not presuppose anything about the offered traffic pattern. If the traffic load is light, then ensuring quality of service is straightforward. But if the traffic load is heavy, the MVTX2804 must intelligently allocate resources so as to assure quality of service for high priority data. We assume that the network manager knows his applications, such as voice, file transfer, or web browsing, and their relative importance. The manager can then subdivide the applications into classes and set up a service contract with each. The contract may consist of bandwidth or latency assurances per class. Sometimes it may even reflect an estimate of the traffic mix offered to the switch, though this is not required. The table below shows examples of QoS applications with eight transmission priorities, including best effort traffic for which we provide no bandwidth or latency assurances. 28 Zarlink Semiconductor Inc. MVTX2804 Class Example Assured Bandwidth (user defined) Low Drop Subclass (If class is oversubscribed, these packets are the last to be dropped.) Highest transmission priorities, P7 Latency < 200 µs 300 Mbps Sample application: control information Highest transmission priorities, P6 Latency < 200 µs 200 Mbps Middle transmission priorities, P5 Latency < 400 µs Data Sheet High Drop Subclass (If class is oversubscribed, these packets are the first to be dropped.) Sample applications: phone calls; circuit emulation Sample application: training video; other multimedia 125 Mbps Sample application: interactive activities Sample application: non-critical interactive activities Middle transmission priorities, P4 Latency < 800 µs 250 Mbps Sample application: web business Sample application: non-critical interactive activities Low transmission priorities, P3 Latency < 1600 µs 80 Mbps Sample application: file backups Low transmission priorities, P2 Latency < 3200 µs 45 Mbps Sample application: email Best effort, P1-P0 - TOTAL 1 Gbps Sample application: web research Sample application: casual web browsing Table 1 - Two-dimensional World Traffic In our model, it is possible that a class of traffic may attempt to monopolize system resources by sending data at a rate in excess of the contractually assured bandwidth for that class. A well-behaved class offers traffic at a rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed-upon rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link utilization, a misbehaving class is allowed to use any idle bandwidth. However, the quality of service (QoS) received by well-behaved classes must never suffer. As Table 1 illustrates, each traffic class may have its own distinct properties and applications. As shown, classes may receive bandwidth assurances or latency bounds. In the example, P7, the highest transmission class, requires that all frames be transmitted within 0.2 ms, and receives 30% of the 1 Gbps of bandwidth at that port. Best-effort (P1-P0) traffic forms a lower tier of service that only receives bandwidth when none of the other classes have any traffic to offer. In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should not lose packets. But poorly behaved users - users who send data at too high a rate - will encounter frame loss, and the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some low-drop frames are dropped as well. Table 1 shows that different types of applications may be placed in different boxes in the traffic table. For example, web search may fit into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the category of low-loss, low-latency traffic. 29 Zarlink Semiconductor Inc. MVTX2804 7.2 Data Sheet Four QoS Configurations There are four basic pieces to QoS scheduling in the MVTX2804: strict priority (SP), delay bound, weighted fair queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation, as shown in Table 2. P7 P6 P5 P4 Op1 (default) Delay Bound Op2 SP Delay Bound Op3 SP WFQ Op4 WFQ P3 P2 P1 P0 BE BE Table 2 - Four QoS configurations per port The default configuration is six delay-bounded queues and two best-effort queues. The delay bounds per class are 0.16 ms for P7 and P6, 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. Best effort traffic is only served when there is no delay-bounded traffic to be served. P1 has strict priority over P0. We have a second configuration in which there are two strict priority queues, four delay bounded queues, and two best effort queues. The delay bounds per class are 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. If the user is to choose this configuration, it is important that P7-P6 (SP) traffic be either policed or implicitly bounded (e.g. if the incoming SP traffic is very light and predictably patterned). Strict priority traffic, if not admission-controlled at a prior stage to the MVTX2804, can have an adverse effect on all other classes' performance. P7 and P6 are both SP classes, and P7 has strict priority over P6. The third configuration contains two strict priority queues and six queues receiving a bandwidth partition via WFQ. As in the second configuration, strict priority traffic needs to be carefully controlled. In the fourth configuration, all queues are served using a WFQ service discipline. 7.3 Delay Bound In the absence of a sophisticated QoS server and signalling protocol, the MVTX2804 may not be assured of the mix of incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically adjusts its scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (HOL) frames. As a result, we assure latency bounds for all admitted frames with high confidence, even in the presence of system-wide congestion. Our algorithm identifies misbehaving classes and intelligently discards frames at no detriment to well-behaved classes. Our algorithm also differentiates between high-drop and low-drop traffic with a weighted random early drop (WRED) approach. Random early dropping prevents congestion by randomly dropping a percentage of high-drop frames even before the chip's buffers are completely full, while still largely sparing low-drop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames. Finally, the delay bound algorithm also achieves bandwidth partitioning among classes. 7.4 Strict Priority and Best Effort When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is important that strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes. When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other classes have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for 30 Zarlink Semiconductor Inc. MVTX2804 Data Sheet best effort classes to be used for non-essential traffic, because we provide no assurances about best effort performance. However, in a typical network setting, much best effort traffic will indeed be transmitted, and with an adequate degree of expediency. Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before entering the MVTX2804, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To summarize, dropping to enforce quality of service (i.e. bandwidth or delay) does not apply to strict priority or best effort queues. We only drop frames from best effort and strict priority queues when global buffer resources become scarce. 7.5 Weighted Fair Queuing In some environments - for example, in an environment in which delay assurances are not required, but precise bandwidth partitioning on small time scales is essential - WFQ may be preferable to a delay-bounded scheduling discipline. The MVTX2804 provides the user with a WFQ option with the understanding that delay assurances cannot be provided if the incoming traffic pattern is uncontrolled. The user sets eight WFQ “weights” such that all weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with error within 2%. In WFQ mode, though we do not assure frame latency, the MVTX2804 still retains a set of dropping rules that helps to prevent congestion and trigger higher level protocol end-to-end flow control. As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do indeed drop frames from SP queues for global buffer management purposes. In addition, queues P1 and P0 are treated as best effort from a dropping perspective, though they still are assured a percentage of bandwidth from a WFQ scheduling perspective. What this means is that these particular queues are only affected by dropping when the global buffer count becomes low. 7.6 Shaper Although traffic shaping is not a primary function of the MVTX2804, the chip does implement a shaper for expedited forwarding (EF). Our goal in shaping is to control the peak and average rate of traffic exiting the MVTX2804. Shaping is limited to class P6 (the second highest priority). This means that class P6 will be the class used for EF traffic. (By contrast, we assume class P7 will be used for control packets only.) If shaping is enabled for P6, then P6 traffic must be scheduled using strict priority. With reference to Table 2, only the middle two QoS configurations may be used. Peak rate is set using a programmable whole number, no greater than 64 (register QOS-CREDIT_C6_Gn). For example, if the setting is 32, then the peak rate for shaped traffic is 32/64 1000 Mbps = 500 Mbps. Average rate is also a programmable whole number, no greater than 64, and no greater than the peak rate. For example, if the setting is 16, then the average rate for shaped traffic is 16/64 1000 Mbps = 250 Mbps. As a consequence of the above settings in our example, shaped traffic will exit the MVTX2804 at a rate always less than 500 Mbps, and averaging no greater than 250 Mbps. Also, when shaping is enabled, it is possible for a P6 queue to explode in length if fed by a greedy source. The reason is that a shaper is by definition not work-conserving; that is, it may hold back from sending a packet even if the line is idle. Though we do have global resource management, we do nothing to prevent this situation locally. We assume SP traffic is policed at a prior stage to the MVTX2804. 31 Zarlink Semiconductor Inc. MVTX2804 7.7 Data Sheet WRED Drop Threshold Management Support To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified parameters. The following table summarizes the behaviour of the WRED logic. P7 Level 1 N ≥ 240 Level 2 N ≥ 280 P7 ≥A KB P6 P5 P6 ≥B KB P5 ≥C KB P4 P4 ≥D KB P3 P3 ≥E KB Level 3 N ≥ 320 P2 P2 ≥F KB High Drop Low Drop X% 0% Y% Z% 100% 100% Table 3 - WRED Dropping Scheme In the table, |Px| is the byte count in queue Px. The WRED logic has three drop levels, depending on the value of N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals 16|P7| + 16|P6| + 8|P5| + 4|P4| + 2|P3| + |P2|. If WFQ scheduling is used, N equals |P7| + |P6| + |P5| + |P4| + |P3| + |P2|. Each drop level has defined high-drop and low-drop percentages, which indicate the percentage of high-drop and low-drop packets that will be dropped at that level. The X, Y, and Z percent parameters can be programmed using the registers RDRC0 and RDRC1. Parameters A-F are the byte count thresholds for each priority queue, and are also programmable. When using delay bound scheduling, the values selected for A-F also control the approximate bandwidth partition among the traffic classes; see application note. 7.8 Buffer Management Because the number of frame data buffer (FDB) slots is a scarce resource, and because we want to ensure that one misbehaving source port or class cannot harm the performance of a well-behaved source port or class, we introduce the concept of buffer management into the MVTX2804. Our buffer management scheme is designed to divide the total buffer space into numerous reserved regions and one shared pool, (see Figure 4). As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first enters the MVTX2804, its destination port and class are as yet unknown, and so the decision to drop or not needs to be temporarily postponed. This ensures that every frame can be received first before subjecting it to the frame drop discipline after classifying. Six reserved sections, one for each of the highest six priority classes, ensure a programmable number of FDB slots per class. The lowest two classes do not receive any buffer reservation. Another segment of the FDB reserves space for each of the 8 Gigabit ports and CPU port. These source port buffer reservations are programmable. These 9 reserved regions make sure that no well-behaved source port can be blocked by another misbehaving source port. In addition, there is a shared pool, which can store any type of frame. The registers related to the Buffer Management logic are • PRG- Port Reservation for Gigabit Ports and CPU port • SFCB- Share FCB Size • C2RS- Class 2 Reserved Size • C3RS- Class 3 Reserved Size • C4RS- Class 4 Reserved Size 32 Zarlink Semiconductor Inc. MVTX2804 • C5RS- Class 5 Reserved Size • C6RS- Class 6 Reserved Size • C7RS- Class 7 Reserved Size Data Sheet Temporary Reservation RTMP Shared Pool S Per-Class Reservations RP7, RP6,...RP2 Per-Source Reservations 8-R1G Figure 5 - Buffer Partition Scheme Used in the MVTX2804 7.8.1 Dropping When Buffers Are Scarce The following is a summary of the two examples of local dropping discussed earlier in this chapter: • If a queue is a delay-bounded queue, we have a multi-level WRED drop scheme, designed to control delay and partition bandwidth in case of congestion. • If a queue is a WFQ-scheduled queue, we have a multi-level WRED drop scheme, designed to prevent congestion. In addition to these reasons for dropping, the MVTX2804 also drops frames when global buffer space becomes scarce. The function of buffer management is to ensure that such droppings cause as little blocking as possible. 7.9 Flow Control Basics Because frame loss is unacceptable for some applications, the MVTX2804 provides a flow control option. When flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a source port, sending a packet to this switch, to temporarily hold off. While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved or not, are halted. A single packet destined for a congested output can block other packets destined for uncongested outputs. The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high confidence when flow control is enabled. In the MVTX2804, each source port can independently have flow control enabled or disabled. For flow control enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports 33 Zarlink Semiconductor Inc. MVTX2804 Data Sheet feed to only one queue at the destination, the queue of lowest priority. What this means is that if flow control is enabled for a given source port, then we can guarantee that no packets originating from that port will be lost, but at the possible expense of minimum bandwidth or maximum delay assurances. In addition, these “downgraded” frames may only use the shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not use reserved FDB slots for the highest six classes (P2-P7). The MVTX2804 does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for frames originating from flow control enabled ports. When this programmable option is active, it is possible that some packets may be dropped, even though flow control is on. The reason is that intelligent packet dropping is a major component of the MVTX2804's approach to ensuring bounded delay and minimum bandwidth for high priority flows. 7.9.1 Unicast Flow Control For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2804's buffer management scheme allocates a reserved number of FDB slots for each source port. If a programmed number of a source port's reserved FDB slots have been used, then flow control Xoff is triggered. Xon is triggered when a port is currently being flow controlled, and all of that port's reserved FDB slots have been released. Note that the MVTX2804's per-source-port FDB reservations assure that a source port that sends a single frame to a congested destination will not be flow controlled. 7.9.2 Multicast Flow Control In unmanaged mode, a global buffer counter triggers flow control for multicast frames. When the system exceeds a programmable threshold of multicast packets, Xoff is triggered. Xon is triggered when the system returns below this threshold. MCC register programs the threshold. In managed mode, per-VLAN flow control is used for multicast frames. In this case, flow control is triggered by congestion at the destination. The MVTX2804 checks each destination to which a multicast packet is headed. For each destination port, the occupancy of the lowest-priority transmission queue (measured in number of frames) is compared against a programmable congestion threshold. If congestion is detected at even one of the packet's destinations, then Xoff is triggered. In addition, each source port has an 8-bit port map recording which port or ports of the multicast frame's fanout were congested at the time Xoff was triggered. All ports are continuously monitored for congestion, and a port is identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were originally marked as congested in the port map have become uncongested, then Xon is triggered, and the 8-bit vector is reset to zero. The MVTX2804 also provides the option of disabling multicast flow control. Note: If port flow control is on, QoS performance will be affected. 7.10 Mapping to IETF Diffserv Classes The mapping between priority classes discussed in this chapter and elsewhere is shown below. MVTX2804 IETF P7 P6 P5 P4 P3 P2 P1 P0 NM EF AF0 AF1 AF2 AF3 BE0 BE1 Table 4 - Mapping between MVTX2804 and IETF Diffserv Classes for Gigabit Ports As the table illustrates, P7 is used solely for network management (NM) frames. P6 is used for expedited forwarding service (EF). Classes P2 through P5 correspond to an assured forwarding (AF) group of size 4. Finally, P0 and P1 are two best effort (BE) classes. 34 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Features of the MVTX2804 that correspond to the requirements of their associated IETF classes are summarized in the table below. Network management (NM) and Expedited forwarding (EF) • • • • Global buffer reservation for NM and EF Shaper for EF traffic Option of strict priority scheduling No dropping if admission controlled Assured forwarding (AF) • • • Four AF classes Programmable bandwidth partition, with option of WFQ service Option of delay-bounded service keeps delay under fixed levels even if not admission-controlled Random early discard, with programmable levels Global buffer reservation for each AF class • • Best effort (BE) • • • • Two BE classes Service only when other queues are idle means that QoS not adversely affected Random early discard, with programmable levels Traffic from flow control enabled ports automatically classified as BE Figure 6 - MVTX2804 Features Enabling IETF Diffserv Standards 8.0 Port Trunking 8.1 Features and Restrictions A port group (i.e. trunk) can include up to 8 physical ports, but all of the ports in a group must be in the same MVTX2804. In managed mode, there are four trunk groups total. In unmanaged mode, the MVTX2804 provides several pre-assigned trunk group options, containing as many as 4 ports per group, or alternatively, as many as 4 total groups. Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address and destination MAC address. The other options include source MAC address only, destination MAC address only. Load distribution for multicast is performed similarly. If a VLAN includes any of the ports in a trunk group, all the ports in that trunk group should be in the same VLAN member map. The MVTX2804 also provides a safe fail-over mode for port trunking automatically. If one of the ports in the trunking group goes down, the MVTX2804 will automatically redistribute the traffic over to the remaining ports in the trunk in unmanaged mode. In managed mode, the software can perform similar tasks. 8.2 Unicast Packet Forwarding The search engine finds the destination MCT entry, and if the status field says that the destination address found belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the source address belongs to a trunk, then the source port's trunk membership register is checked to determine if the address has moved. A hash key is used to determine the appropriate forwarding port, based on some combination of the source and destination MAC addresses for the current packet. 35 Zarlink Semiconductor Inc. MVTX2804 Data Sheet The search engine retrieves the VLAN member ports from the VLAN index table, which consists of 4K entries. The search engine retrieves the VLAN member ports from the ingress port's VLAN map. Based on the destination MAC address, the search engine determines the egress port from the MCT database. If the egress port is a member of a trunk group, the packet can be distributed to the other members of that trunk group. The VLAN map is used to check whether the egress port is a member of the VLAN, based on the ingress port. If it is a member, the packet is forwarded otherwise it is discarded. 8.3 Multicast Packet Forwarding For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the packet based on the VLAN index and hash key. Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port trunking environment. • • Determining one forwarding port per group. For multicast packets, all but one port per group, the forwarding port, must be excluded. 8.4 Preventing Multicast Packets from Looping Back to the Source Trunk The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with the source port. This is because, when we select the primary forwarding port for each group, we do not take the source port into account. To prevent this, we simply apply one additional filter, so as to block that forwarding port for this multicast packet. 9.0 LED Interface 9.1 Introduction The MVTX2804 LED block provides two interfaces: a serial output channel, and a parallel time-division interface. The serial output channel provides port status information from the MVTX2804 chip in a continuous serial stream. This means that a low cost external device must be used to decode the serial data and to drive an LED array for display. By contrast, the parallel time-division interface supports a glueless LED module. Indeed, the parallel interface can directly drive low-current LEDs without any extra logic. The pin LED_PM is used to select serial or parallel mode. For some LED signals, the interface also provides a blinking option. Blinking may be enabled for LED signals TxD, RxD, COL, and FC (to be described later). The pin LED_BLINK is used to enable blinking, and the blinking frequency is around 160 ms. 9.2 Serial Mode In serial mode, the following pins are utilized: • LED_SYNCO - a sync pulse that defines the boundary between status frames • LED_CLKO - the clock signal • LED_DO - a continuous serial stream of data for all status LEDs that repeats once every frame time In each cycle (one frame of status information, or one sync pulse), 16x8 bits of data are transmitted on the LED_DO signal. The sequence of transmission of data bits is as shown in the figure below: 36 Zarlink Semiconductor Inc. MVTX2804 Data Sheet LE_SYNCO LE_DO P0 info P1 info P2 info P3 info P4 info P5 info P6 info P7 info U0 U1 U2 U3 0 1 2 3 4 5 6 7 FC TxD RxD LNK SP0 SP1 FDX COL U4 U5 U6 U7 LE_CLKO Figure 7 - Timing diagram for serial mode in LED interface The status bits shown in here are flow control (FC), transmitting data (TxD), receiving data (RxD), link up (LNK), speed (SP0 and SP1), full duplex (FDX), and collision (COL). Note that SP[1:0] is defined as 10 for 1 Gbps, 01 for 100 Mbps, and 00 for 10 Mbps. Also note that U0-U7 represent user-defined sub-frames in which additional status information may be embedded. We will see later that the MVTX2804 provides registers that can be written by the CPU to indicate this additional status information as it becomes available. 9.3 Parallel Mode In parallel mode, the following pins are utilized: • LED_PORT_SEL[9:0] - indicates which of the 8 Gigabit port status bytes or 2 user-defined status bytes is being read out • LED_BYTEOUT_[7:0] - provides 8 bits for 8 different port status indicators. Note that these bits are active low. By default, the system is in parallel mode. In parallel mode, the 10 status bytes are scanned in a continuous loop, with one byte read out per clock cycle, and the appropriate port select bit asserted. 9.4 LED Control Registers An LED Control Register can be used for programming the LED clock rate, sample hold time, and pattern in parallel mode. In addition, the MVTX2804 provides 8 registers called LEDUSER[7:0] for user-defined status bytes. During operation, the CPU can write values to these registers, which will be read out to the LED interface output (serial or parallel). Only LEDUSER[1:0] are used in parallel mode. The content of the LEDUSER registers will be sent out by the LED serial shift logic, or in parallel mode, a byte at a time. Because in parallel mode there are only two user-defined registers, LEDUSER[7:2] is shared with LEDSIG[7:2]. For LEDSIG[j], where j = 2, 3, …, 6, the corresponding register is used for programming the LED pin LED_BYTEOUT_[j]. The format is as follows: 7 COL FDX SP1 4 3 SP0 COL Bits [3:0]Signal polarity: 0: do not invert polarity (high true) 1: invert polarity 37 Zarlink Semiconductor Inc. 0 FDX SP1 SP0 MVTX2804 Data Sheet Bits [7:4]Signal select: 0: do not select 1: select the corresponding bit For j = 2, 3, …, 5, the value of LED_BYTEOUT_[j] equals the logical AND of all selected bits. For j = 6, the value is equal to the logical OR. Therefore, the programmable LEDSIG[5:2] registers allow any conjunctive formula including any of the 4 status bits (COL, FDX, SP1, SP0) or their negations to be sent to the LED_BYTEOUT_[5:2] pins. Similarly, the programmable LEDSIG[6] register allows any disjunctive formula including any of the 4 status bits or their negations to be sent to pin LED_BYTEOUT_[6]. LEDSIG[7] is used for programming both LED_BYTEOUT_[1] and LED_BYTEOUT_[0]. As we will see, it has other functions as well. The format is as follows: 7 GP Bits [7] • RxD TxD 4 3 FC P6 0 RxD TxD FC Global output polarity: this bit controls the output polarity of all LED_BYTEOUT_ and LED_PORT_SEL pins. (Default 0) - 0: do not invert polarity (LED_BYTEOUT_[7:0] are high activated; LED_PORT_SEL[9:0] are low activated) - 1: invert polarity (LED_BYTEOUT_[7:0] are low activated; LED_PORT_SEL[9:0] are high activated) Bits [6:4] • Signal select: - 0: do not select - 1: select the corresponding bit Bit [3] • The value of LED_BYTEOUT_[1] equals the logical OR of all selected bits. (Default 110) • Polarity control of LED_BYTEOUT_[6] (Default 0) - 0: do not invert - 1: invert Bits [2:0] • Signal select: - 0: do not select - 1: select the corresponding bit • The value of LED_BYTEOUT_[0] equals the logical OR of all selected bits. (Default 001) 10.0 Hardware Statistics Counter 10.1 Hardware Statistics Counters List MVTX2804 hardware provides a full set of statistics counters for each Ethernet port. The CPU accesses these counters through the CPU interface. All hardware counters are rollover counters. When a counter rolls over, the CPU is interrupted, so that long-term statistics may be kept. The MAC detects all statistics, except for the delay exceed discard counter (detected by buffer manager) and the filtering counter (detected by queue manager). The following is the wrapped signal sent to the CPU through the command block. 38 Zarlink Semiconductor Inc. MVTX2804 31 30 26 25 0 Status Wrapped Signal B[0] 0-d B[1] 1-L Unicast Frame Sent B[2] 1-U Frame Send Fail Bytes Sent (D) B[3] 2-I Flow Control Frames Sent B[4] 2-u Non-Unicast Frames Sent B[5] 3-d Bytes Received (Good and Bad) (D) B[6] 4-d Frames Received (Good and Bad) (D) B[7] 5-d Total Bytes Received (D) B[8] 6-L Total Frames Received B[9] 6-U Flow Control Frames Received B[10] 7-l Multicast Frames Received B[11] 7-u Broadcast Frames Received B[12] 8-L Frames with Length of 64 Bytes B[13] 8-U Jabber Frames B[14] 9-L Frames with Length Between 65-127 Bytes B[15] 9-U Oversize Frames B[16] A-l Frames with Length Between 128-255 Bytes B[17] A-u Frames with Length Between 256-511 Bytes B[18] B-l Frames with Length Between 512-1023 Bytes B[19] B-u Frames with Length Between 1024-1528 Bytes B[20] C-l Fragments B[21] C-U1 Alignment Error B[22] C-U Undersize Frames B[23] D-l CRC B[24] D-u Short Event B[25] E-l Collision B[26] E-u Drop B[27] F-l Filtering Counter B[28] F-U1 Delay Exceed Discard Counter B[29] F-U Late Collision B[30] Link Status Change B[31] Current link status Notation: X-Y X: Address in the contain memory Y: Size and bits for the counter d: L: U: U1: l: u: Data Sheet D Word counter 24 bits counter bit[23:0] 8 bits counter bit[31:24] 8 bits counter bit[23:16] 16 bits counter bit[15:0] 16 bits counter bit[31:16] 39 Zarlink Semiconductor Inc. MVTX2804 10.2 IEEE 802.3 HUB Management (RFC 1213) 10.2.1 10.2.1.1 Event Counters READABLEOCTET Counts number of bytes (i.e. octets) contained in good valid frames received. Frame size:≥ 64 bytes,< 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No FCS (i.e. checksum) error No collisions 10.2.1.2 READABLEFRAME Counts number of good valid frames received. Frame size:≥ 64 bytes,< 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No FCS error No collisions 10.2.1.3 FCSERRORS Counts number of valid frames received with bad FCS. Frame size:≥ 64 bytes,≤ 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No framing error No collisions 10.2.1.4 ALIGNMENTERRORS Counts number of valid frames received with bad alignment (not byte-aligned). Frame size:≥ 64 bytes,≤ 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged No framing error No collisions 10.2.1.5 FRAMETOOLONGS Counts number of frames received with size exceeding the maximum allowable frame size. Frame size:≥ 64 bytes,≤ 1522 bytes if VLAN Tagged; 1518 bytes if not VLAN Tagged FCS error:don't care 40 Zarlink Semiconductor Inc. Data Sheet MVTX2804 Data Sheet Framing error:don't care No collisions 10.2.1.6 SHORTEVENTS Counts number of frames received with size less than the length of a short event. Frame size:≥ 64 bytes,≤ 10 bytes FCS error:don't care Framing error:don't care No collisions 10.2.1.7 RUNTS Counts number of frames received with size under 64 bytes, but greater than the length of a short event. Frame size:≥ 10 bytes,≤ 64 bytes FCS error:don't care Framing error:don't care No collisions 10.2.1.8 COLLISIONS Counts number of collision events. Frame size:any size 10.2.1.9 LATEEVENTS Counts number of collision events that occurred late (after LateEventThreshold = 64 bytes). Frame size:any size Events are also counted by collision counter 10.2.1.10 VERYLONGEVENTS Counts number of frames received with size larger than Jabber Lockup Protection Timer (TW3). Frame size:> Jabber 10.2.1.11 DATARATEMISATCHES For repeaters or HUB application only. 10.2.1.12 AUTOPARTITIONS For repeaters or HUB application only. 41 Zarlink Semiconductor Inc. MVTX2804 10.2.1.13 Data Sheet TOTALERRORS Sum of the following errors: FCS errors Alignment errors Frame too long Short events Late events Very long events 10.3 IEEE - 802.1 Bridge Management (RFC 1286) 10.3.0.1 Event Counters 10.3.0.2 INFRAMES Counts number of frames received by this port or segment. Note: this counter only counts a frame received by this port if and only if it is for a protocol being processed by the local bridge function. 10.3.0.3 OUTFRAMES Counts number of frames transmitted by this port. Note: this counter only counts a frame transmitted by this port if and only if it is for a protocol being processed by the local bridge function. 10.3.0.4 INDISCARDS Counts number of valid frames received which were discarded (i.e., filtered) by the forwarding process. 10.3.0.5 DELAYEXCEEDEDDISCARDS Counts number of frames discarded due to excessive transmit delay through the bridge. 10.3.0.6 MTUEXCEEDEDDISCARDS Counts number of frames discarded due to excessive size. 10.4 RMON - Ethernet Statistic Group (RFC 1757) 10.4.1 10.4.1.1 Event Counters DROP EVENTS Counts number of times a packet is dropped, because of lack of available resources. DOES NOT include all packet dropping -- for example, random early drop for quality of service support. 42 Zarlink Semiconductor Inc. MVTX2804 10.4.1.2 OCTETS Counts the total number of octets (i.e. bytes) in any frames received. 10.4.1.3 BROADCASTPKTS Counts the number of good frames received and forwarded with broadcast address. Does not include non-broadcast multicast frames. 10.4.1.4 MULTICASTPKTS Counts the number of good frames received and forwarded with multicast address. Does not include broadcast frames. 10.4.1.5 CRCALIGNERRORS Frame size:≥ 64 bytes,< 1522 bytes if VLAN tag (1518 if no VLAN) No collisions: Counts number of frames received with FCS or alignment errors 10.4.1.6 UNDERSIZEPKTS Counts number of frames received with size less than 64 bytes. Frame size:< 64 bytes, No FCS error No framing error No collisions 10.4.1.7 OVERSIZEPKTS Counts number of frames received with size exceeding the maximum allowable frame size. Frame size:>1522 bytes if VLAN tag (1518 bytes if no VLAN) FCS errordon't care Framing errordon't care No collisions 10.4.1.8 FRAGMENTS Counts number of frames received with size less than 64 bytes and with bad FCS. Frame size:< 64 bytes Framing error don't care No collisions 43 Zarlink Semiconductor Inc. Data Sheet MVTX2804 10.4.1.9 Data Sheet JABBERS Counts number of frames received with size exceeding maximum frame size and with bad FCS. Frame size:> 1522 bytes if VLAN tag (1518 bytes if no VLAN) Framing errordon't care No collisions 10.4.1.10 COLLISIONS Counts number of collision events detected. Only a best estimate since collisions can only be detected while in transmit mode, but not while in receive mode. Frame size:any size 10.4.1.11 PACKET COUNT FOR DIFFERENT SIZE GROUPS Six different size groups - one counter for each: Pkts64Octetsfor any packet with size = 64 bytes Pkts65to127Octetsfor any packet with size from 65 bytes to 127 bytes Pkts128to255Octetsfor any packet with size from 128 bytes to 255 bytes Pkts256to511Octetsfor any packet with size from 256 bytes to 511 bytes Pkts512to1023Octetsfor any packet with size from 512 bytes to 1023 bytes Pkts1024to1518Octetsfor any packet with size from 1024 bytes to 1518 bytes counts both good and bad packets. Miscellaneous Counters In addition to the statistics groups defined in previous sections, the MVTX2804 has other statistics counters for its own purposes. We have two counters for flow control - one counting the number of flow control frames received, and another counting the number of flow control frames sent. We also have two counters, one for unicast frames sent, and one for non-unicast frames sent. A broadcast or multicast frame qualifies as non-unicast. Furthermore, we have a counter called “frame send fail.” This keeps track of FIFO under-runs, late collisions, and collisions that have occurred 16 times. 44 Zarlink Semiconductor Inc. MVTX2804 11.0 Register Definition 11.1 Register Description Data Sheet Register Description Table Register CPU Addr (Hex) Description R/W I2C Addr (Hex) Default Notes 0. ETHERNET Port Control Registers - Substitute [N] with Port number (0..7) ECR1P"N" Port Control Register 1 for Port N (N=0-7) 000 + 2N R/W 000+2N c0 ECR2P"N" Port Control Register 2 for Port N (N=0-7) 001 + 2N R/W 001+2N 00 ECRMISC1 Port Control Misc1 010 R/W 010 c0 ECRMISC2 Port Control Misc 2 011 R/W 011 00 GGCONTROL0 Extra Gigabit Port Control -port 0,1 012 R/W N/A 00 GGCONTROL1 Extra Gigabit Port Control -port 2,3 013 R/W N/A 00 GGCONTROL2 Extra Gigabit Port Control -port 4,5 014 R/W N/A 00 GGCONTROL3 Extra Gigabit Port Control -port 6,7 015 R/W N/A 00 ACTIVELINK Active Link status port 7:0 016 R/W N/A 00 1. VLAN Control Registers - Substitute [N] with Port number (0..8) AVTCL VLAN Type Code Register Low 100 R/W 012 00 AVTCH VLAN Type Code Register High 101 R/W 013 81 PVMAP"N"_0 Port "N" Configuration Register 0 (N=0-8) 102 + 4N R/W 014+4N ff PVMAP"N"_1 Port "N" Configuration Register 1 (N=0-8) 103 + 4N R/W 015+4N ef PVMAP"N"_3 Port "N" Configuration Register 3 (N=0-8) 105 + 4N R/W 017+4N 00 PVMODE VLAN Operating Mode 126 R/W 038 00 2. TRUNK Control Registers TRUNK0 Trunk group 0 Member 200 R/W NA 00 TRUNK1 Trunk group 1 Member 201 R/W NA 00 TRUNK2 Trunk group 2 Member 202 R/W NA 00 TRUNK3 Trunk group 3 Member 203 R/W NA 00 SINGLE_RING Single ring port map 204 R/W NA Reserved TRUNK_RING Trunk ring port map 205 R/W NA Reserved TRUNK_HASH_MODE Trunk hash mode 206 R/W NA 00 TRUNK0_MODE 207 R/W 039 00 Trunk Group 0 Mode 45 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Register Description Table (continued) Register CPU Addr (Hex) Description R/W I2C Addr (Hex) Default TRUNK0_HASH0 Trunk Group 0 Hash 0, 1, 2 Destination Port 208 R/W NA 08 TRUNK0_HASH1 Trunk Group 0 Hash 2, 3, 4, 5 Destination Port 209 R/W NA 82 TRUNK0_HASH2 Trunk Group 0 Hash 5, 6, 7 Destination Port 20A R/W NA 20 TRUNK0_HASH3 Trunk Group 0 Hash 8, 9, 10 Destination Port 20B R/W NA 08 TRUNK0_HASH4 Trunk Group 0 Hash 10, 11, 12, 13 Destination Port 20C R/W NA 82 TRUNK0_HASH5 Trunk Group 0 Hash 13, 14, 15 Destination Port 20D R/W NA 20 TRUNK1_MODE Trunk Group 1 Mode 20E R/W 03A 00 TRUNK1_HASH0 Trunk Group 1 Hash 0, 1, 2 Destination Port 20F R/W NA 08 TRUNK1_HASH1 Trunk Group 1 Hash 2, 3, 4, 5 Destination Port 210 R/W NA 82 TRUNK1_HASH2 Trunk Group 1 Hash 5, 6, 7 Destination Port 211 R/W NA 20 TRUNK1_HASH3 Trunk Group 1 Hash 8, 9, 10 Destination Port 212 R/W NA 08 TRUNK1_HASH4 Trunk Group 1 Hash 10, 11, 12, 13 Destination 213 R/W NA 82 TRUNK1_HASH5 Trunk Group 1 Hash 13, 14, 15 Destination 214 R/W NA 20 TRUNK2_HASH0 Trunk Group 2 Hash 0, 1, 2 Destination Port 215 R/W NA 2c TRUNK2_HASH1 Trunk Group 2 Hash 2, 3, 4, 5 Destination Port 216 R/W NA cb TRUNK2_HASH2 Trunk Group 2 Hash 5, 6, 7 Destination Port 217 R/W NA b2 TRUNK2_HASH3 Trunk Group 2 Hash 8, 9, 10 Destination Port 218 R/W NA 2c TRUNK2_HASH4 Trunk Group 2 Hash 10, 11, 12, 13 Destination Port 219 R/W NA cb TRUNK2_HASH5 Trunk Group 2 Hash 13, 14, 15 Destination Port 21A R/W NA b2 TRUNK3_HASH0 Trunk Group 3 Hash 0, 1, 2 Destination Port 21B R/W NA 2c TRUNK3_HASH1 Trunk Group 3 Hash 2, 3, 4, 5 Destination Port 21C R/W NA cb TRUNK3_HASH2 Trunk Group 3 Hash 5, 6, 7 Destination Port 21D R/W NA b2 46 Zarlink Semiconductor Inc. Notes MVTX2804 Data Sheet Register Description Table (continued) Register CPU Addr (Hex) Description R/W I2C Addr (Hex) Default TRUNK3_HASH3 Trunk Group 3 Hash 8, 9, 10 Destination Port 21E R/W NA 2c TRUNK3_HASH4 Trunk Group 3 Hash 10, 11, 12, 13 Destination Port 21F R/W NA Bc TRUNK3_HASH5 Trunk Group 3 Hash 13, 14, 15 Destination Port 220 R/W NA b2 Multicast_HASH00 Multicast hash result 0 mask bit[7:0] 221 R/W NA ff Multicast_HASH01 Multicast hash result 1 mask bit[7:0] 222 R/W NA ff Multicast_HASH02 Multicast hash result 2 mask bit[7:0] 223 R/W NA ff Multicast_HASH03 Multicast hash result 3 mask bit[7:0] 224 R/W NA ff Multicast_HASH04 Multicast hash result 4 mask bit[7:0] 225 R/W NA ff Multicast_HASH05 Multicast hash result 5 mask bit[7:0] 226 R/W NA ff Multicast_HASH06 Multicast hash result 6 mask bit[7:0] 227 R/W NA ff Multicast_HASH07 Multicast hash result 7 mask bit[7:0] 228 R/W NA ff Multicast_HASH08 Multicast hash result 8 mask bit[7:0] 229 R/W NA ff Multicast_HASH09 Multicast hash result 9 mask bit[7:0] 22A R/W NA fff Multicast_HASH10 Multicast hash result 10 mask bit[7:0] 22B R/W NA ff Multicast_HASH11 Multicast hash result 11 mask bit[7:0] 22C R/W NA ff Multicast_HASH12 Multicast hash result 12 mask bit[7:0] 22D R/W NA ff Multicast_HASH13 Multicast hash result 13 mask bit[7:0] 22E R/W NA ff Multicast_HASH14 Multicast hash result 14 mask bit[7:0] 22F R/W NA ff Multicast_HASH15 Multicast hash result 15 mask bit[7:0] 230 R/W NA ff Multicast_HASHML Multicast hash bit[8] for result 7-0 231 R/W NA ff Multicast_HASHMH Multicast hash bit[8] for result 15-8 R/W NA ff 232 47 Zarlink Semiconductor Inc. Notes MVTX2804 Data Sheet Register Description Table (continued) Register CPU Addr (Hex) Description R/W I2C Addr (Hex) Default Notes 00 3. CPU Port Configuration MAC0 CPU MAC Address byte 0 300 R/W NA MAC1 CPU MAC Address byte 1 301 R/W NA 00 MAC2 CPU MAC Address byte 2 302 R/W NA 00 MAC3 CPU MAC Address byte 3 303 R/W NA 00 MAC4 CPU MAC Address byte 4 304 R/W NA 00 MAC5 CPU MAC Address byte 5 305 R/W NA 00 INT_MASK0 Interrupt Mask 0 306 R/W NA ff INT_MASK1 Interrupt Mask 1 307 R/W NA ff INT_MASK2 Interrupt Mask 2 308 R/W NA ff INT_MASK3 Interrupt Mask 3 309 R/W NA ff INT_STATUS0 Status of Masked Interrupt Register0 30A RO NA INT_STATUS1 Status of Masked Interrupt Register1 30B RO NA INTP_MASK"N" Interrupt Mask for MAC Port 2n, 2n+1 ( n=0-3) 30C-30F R/W NA ff RQS Receive Queue Select 310 R/W NA 00 RQSS Receive Queue Status 311 RO TX_AGE Transmission Queue Aging Time 312 R/W 03B 08 NA 4. Search Engine Configurations AGETIME_LOW MAC Address Aging Time Low 400 R/W 03C 2c AGETIME_HIGH MAC Address Aging Time High 401 R/W 03D 00 V_AGETIME VLAN to Port Aging Time 402 R/W NA ff SE_OPMODE Search Engine operation mode 403 R/W NA 00 SCAN Scan Control Register 404 R/W NA 00 5. Buffer Control and QOS Control FCBAT FCB Aging Timer 500 R/W 03E ff QOSC QOS Control 501 R/W 03F 00 FCR Flooding Control Register 502 R/W 040 08 AVPML VLAN Priority Map Low 503 R/W 041 88 AVPMM VLAN Priority Map Middle 504 R/W 042 c6 AVPMH VLAN Priority Map High 505 R/W 043 fa TOSPML TOS Priority Map Low 506 R/W 044 88 TOSPMM TOS Priority Map Middle 507 R/W 045 c6 TOSPMH TOS Priority Map High 508 R/W 046 fa AVDM VLAN Discard Map 509 R/W 047 00 TOSDML TOS Discard Map 50A R/W 048 00 48 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Register Description Table (continued) Register CPU Addr (Hex) Description R/W I2C Addr (Hex) Default BMRC Broadcast/Multicast Rate Control 50B R/W 049 00 UCC Unicast Congestion Control 50C R/W 04A 07 MCC Multicast Congestion Control 50D R/W 04B 48 PR100 Port Reservation for 10/100 Ports 50E R/W 04C 00 PRG Port Reservation for Giga Ports 50F R/W 04D 26 SFCB Share FCB Size 510 R/W 04E 37 C2RS Class 2 Reserved Size 511 R/W 04F 00 C3RS Class 3 Reserved Size 512 R/W 050 00 C4RS Class 4 Reserved Size 513 R/W 051 00 C5RS Class 5 Reserved Size 514 R/W 052 00 C6RS Class 6 Reserved Size 515 R/W 053 00 C7RS Class 7 Reserved Size 516 R/W 054 00 QOSC"N" QOS Control (N=0 - 2F) 517-546 R/W 055-084 QOSC"N" QOS Control (N=30 - 82) 547-599 R/W NA RDRC0 WRED Rate Control 0 59A R/W 085 8e RDRC1 WRED Rate Control 1 59B R/W 086 68 6. MISC Configuration Registers MII_OP0 MII Register Option 0 600 R/W 0B1 00 MII_OP1 MII Register Option 1 601 R/W 0B2 00 FEN Feature Registers 602 R/W 0B3 10 MIIC0 MII Command Register 0 603 R/W N/A 00 MIIC1 MII Command Register 1 604 R/W N/A 00 MIIC2 MII Command Register 2 605 R/W N/A 00 MIIC3 MII Command Register 3 606 R/W N/A 00 MIID0 MII Data Register 0 607 RO N/A 00 MIID1 MII Data Register 1 608 RO N/A 00 LED LED Control Register 609 R/W 0B4 38 CHECKSUM EEPROM Checksum Register 60B R/W 0C5 00 LEDUSER0 LED User Define Register 0 60C R/W 0BB 00 LEDUSER1 LED User Define Register 1 60D R/W 0BC 00 LEDUSER2 LED User Define Reg. 2/LED_byte pin 2 60E R/W 0BD 80 LEDUSER3 LED User Define Reg. 3/LED_byte pin 3 60F R/W 0BE 33 LEDUSER4 LED User Define Reg. 4/LED_byte pin 4 610 R/W 0BF 32 LEDUSER5 LED User Define Reg. 5/LED_byte pin 5 611 R/W 0C0 20 49 Zarlink Semiconductor Inc. Notes MVTX2804 Data Sheet Register Description Table (continued) Register CPU Addr (Hex) Description R/W I2C Addr (Hex) Default LEDUSER6 LED User Define Reg. 6/LED_byte pin 6 612 R/W 0C1 40 LEDUSER7 LED User Define Reg. 7/LED_byte pin 1 & 0 613 R/W 0C2 61 MIINP0 MII NEXT PAGE DATA REGISTER0 614 R/W 0C3 00 MIINP1 MII NEXT PAGE DATA REGISTER1 615 R/W 0C4 00 DTSRL Test Register Low E00 R/W N/A 00 DTSRM Test Register Medium E01 R/W N/A 01 DTSRH Test Register High E02 R/W N/A 00 TDRB0 TEST MUX read back register [7:0] E03 RO N/A TDRB1 TEST MUX read back register [15:8] E04 RO N/A DTCR Test Counter Register E05 R/W N/A 00 MASK0 MASK Timeout 0 E06 R/W 0B6 00 MASK1 MASK Timeout 1 E07 R/W 0B7 00 MASK2 MASK Timeout 2 E08 R/W 0B8 00 MASK3 MASK Timeout 3 E09 R/W 0B9 00 MASK4 MASK Timeout 4 E0A R/W 0BA 00 00 Notes E. Test Group Control F. Device Configuration Register GCR Global Control Register F00 R/W N/A DCR Device Status and Signature Register F01 RO N/A DCR01 Gigabit Port0 Port1 Status Register F02 RO NA DCR23 Gigabit Port2 Port3 Status Register F03 RO NA DCR45 Gigabit Port4 Port5 Status Register F04 RO NA DCR67 Gigabit Port6 Port7 Status Register F05 RO NA DPST Device Port Status Register F06 R/W N/A DTST Data read back register F07 RO PLLCR PLL Control Register F08 R/W N/A Reserved LCLKCR LCLK Control Register F09 R/W N/A Reserved BCLKCR BCLK Control Register F0A R/W N/A Reserved 50 Zarlink Semiconductor Inc. 00 N/A MVTX2804 Data Sheet Register Description Table (continued) Register Default Notes F0B RO N/A Reserved BSTRRB1 BOOT STRAP read back register 1 F0C RO N/A Reserved BSTRRB2 BOOT STRAP read back register 2 F0D RO N/A Reserved BSTRRB3 BOOT STRAP read back register 3 F0E RO N/A Reserved BSTRRB4 BOOT STRAP read back register 4 F0F RO N/A Reserved BSTRRB5 BOOT STRAP read back register 5 F10 RO N/A Reserved DA DA Register FFF RO N/A 1: 2: 3: 4: 5: 11.2.1 se = Search Engine fe = Frame Engine pgs = Port Group01, 23, 45, and 67 mc = MAC Control tm = timer Directly Accessed Registers INDEX_REG0 Address bits [7:0] for indirectly accessed register addresses Address = 0 (write only) 11.2.2 INDEX_REG1 (only needed for CPU 8-bit bus mode) Address bits [15:8] for indirectly accessed register addresses Address = 1 (write only) 11.2.3 • • I2C Addr (Hex) BOOT STRAP read back register 0 11.2 • • R/W BSTRRB0 Note Note Note Note Note • • CPU Addr (Hex) Description DATA_FRAME_REG Data of indirectly accessed registers. (8 bits) Address = 2 (read/write) 11.2.4 CONTROL_FRAME_REG • CPU transmit/receive switch frames. (8/16 bits) • Address = 3 (read/write) • Format: (see processor interface application note for more information) - Send frame from CPU: (In sequence) Frame Data (size should be in multiple of 8-byte) 8-byte of Frame status (Frame size, Destination port #, Frame O.K. status) - CPU Received frame: (In sequence) 51 Zarlink Semiconductor Inc. DA MVTX2804 Data Sheet 8-byte of Frame status (Frame size, Source port #, VLAN tag) Frame Data 11.2.5 COMMAND & STATUS • CPU interface commands (write) and status • Address = 4 (read/write) • When the CPU reads this register: • - Bit [0]: Transmit Control Command 1 Ready; Must read true before CPU writes new Control Command 1. - Bit [1]: Receive Control Command 1 Ready; Must read true before CPU reads a new Control Command 1. - Bit [2]: Receive Control Command 2 Ready; Must read true before CPU reads a new Control Command 2. - Bit [3]: Receive CPU Frame Ready; Must read true before receiving a CPU frame and at every 8-byte boundary within a CPU frame. - Bit [4]: Transmit CPU Frame Ready; Must read true before transmitting a CPU frame and at every 16-byte boundary within a CPU frame. - Bit [5]: End of Receive CPU Frame to indicate that the last 8 bytes need to be read. - Bit [15:6]: Reserved. When the CPU writes to this register: - Bit [0]: End of Transmit Control Command indicator; Set after CPU writes a Control Command Frame into Rx buffer. - Bit [1]: End of Receive Control Command 1 indicator; Set after CPU reads out a Control Command 1 Frame from Tx buffer 1. - Bit [2]: End of Receive Control Command 2 indicator; Set after CPU reads out a Control Command 2 Frame from Tx buffer 2. - Bit [3]: End of Receive CPU Frame indicator. Set after CPU reads out a CPU frame or to flush out the rest of CPU frame. - Bit [4]: End of Transmit CPU Frame indicator. Set before writing the last byte of CPU frame. - Bit [7:5]: Reserved and always write 0's. - Bit [15:8]: Reserved and write 0's in 16-bit mode. 11.2.6 Interrupt Register • Interrupt sources (8 bits) • Address = 5 (read only) • When CPU reads this register Bit [0]: ·CPU frame interrupt Bit [1]:·Control Frame 1 interrupt. Control Frame receive buffer1 has data for CPU to read Bit [2]:·Control Frame 2 interrupt. Control Frame receive buffer2 has data for CPU to read Bit [3]··From any of the gigabit port interrupt Bit [7:4]:·Reserve Note: This register is not self-cleared. After reading CPU has to clear the bit writing 0 to it 52 Zarlink Semiconductor Inc. MVTX2804 11.2.7 Data Sheet Control Frame Buffer1 Access Register • Address = 6 (read/write) • When CPU writes to this register, data is written to the Control Command Frame Receive Buffer • When CPU reads this register, data is read from the Control Command Frame Transmit Buffer1 11.2.8 • • Control Frame Buffer2 Access Register Address = 7 (read only) When CPU reads this register, data is read from the Control Command Frame transmit Buffer 2 Indirectly Accessed Registers 11.3 Group 0 Address 11.3.1 11.3.1.1 • • MAC Ports Group ECR1PN: PORT N CONTROL REGISTER I2C Address h00+2n; CPU Address:h000+2n (n=0 to 7) Accessed by CPU, serial interface and I2C (R/W) 7 6 5 Sp State Bit [4:0] • 4 3 2 A-FC 1 0 Port Mode Port Mode (Default 2'b00) Bit [4:3] • 00 - Automatic Enable Auto-Negotiation - This enables hardware state machine for auto-negotiation. • 01 - Limited Disable auto-Negotiation - This disables hardware auto-negotiation. Hardware only Polls MII for link status. Use bit [2:0] for config. • 10 - Link Down - Force link down (disable the port). Does not talk to PHY. • 11 - Link Up - Does not talk to PHY. User ERC1 [2:0] for config. Bit [2] • 1 - 10Mbps (Default 1'b0) • 0 - 100Mbps Bit 2 is used only when the port is in MII mode. Bit [1] • 1 - Half Duplex (Do not use) (Default 1'b0) • 0 - Full Duplex Bit [0] • 1 - Flow Control Off (Default 1'b0) • 0 - Flow Control On • When flow control is on: • In full duplex mode, the MAC transmitter sends Flow Control Frames when necessary. The MAC receiver interprets and processes incoming flow control frames. The Flow Control Frame Received counter is incremented whenever a flow control frame is received. • When flow control is off: • In full duplex mode, the MAC transmitter does not send flow control frames. The MAC receiver does not interpret or process the flow control frames. The Flow Control Frame Receiver counter is not incremented. 53 Zarlink Semiconductor Inc. MVTX2804 Bit [5] • Data Sheet Asymmetric Flow Control Enable. • 0 - Disable asymmetric flow control • 1 - Enable asymmetric flow control Bit [7:6] • When this bit is set, and flow control is on (bit[0] = 0), don't send out a flow control frame. But MAC receiver interprets and process flow control frames. (Default is 0) • SS - Spanning tree state (802.1D spanning tree protocol). (Default 2'b11) • • • • 11.3.1.2 • • 00 - Blocking: Frame is dropped 01 - Listening: Frame is dropped 10 - Learning: Frame is dropped. Source MAC address is learned. 11 - Forwarding: Frame is forwarded. Source MAC address is learned. ECR2PN: PORT N CONTROL REGISTER I2C Address: 01+2n; CPU Address:h001+2n (n=0to7) Accessed by CPU and serial interface (R/W): 7 6 5 3 Security EN Bit[0] • 2 1 0 DisL Ftf Futf Filter untagged frame (Default 0) • 0: Disable • 1: Enable - All untagged frames from this port are discarded or follow security option when security is enable Bit[1] • Filter Tag frame (Default 0) • 0: Disable • 1: Enable - All tagged frames from this port are discarded or follow security option when security is enable Bit[2] • Learning Disable (Default 0) • 0: Learning is enabled on this port • 1: Learning is disabled on this port Bit [5:3:] • Bit[7:6] • Reserved Security Enable (Default 00). The MVTX2804 checks the incoming data for one of the following conditions: 1. If the source MAC address of the incoming packet is in the MAC table and is defined as secure address but the ingress port is not the same as the port associated with the MAC address in the MAC table. A MAC address is defined as secure when its entry at MAC table has static status and bit 0 is set to 1. MAC address bit 0 (the first bit transmitted) indicates whether the address is unicast or multicast. As source addresses are always unicast bit 0 is not used (always 0). MVTX2804 uses this bit to define secure MAC addresses. 2. If the port is set as learning disable and the source MAC address of the incoming packet is not defined in the MAC address table. 3. If the port is configured to filter untagged frames and an untagged frame arrives or if the port is configured to filter tagged frames and a tagged frame arrives. If one of these three conditions occurs, the packet will be handled according to one of the following specified options: 54 Zarlink Semiconductor Inc. MVTX2804 • CPU installed • • • • • • • 00 - Disable port security 01 - Discard violating packets 10 - Send packet to CPU and destination port 11 - Send packet to CPU only CPU not installed • • • • 11.3.1.3 00 - Disable port security 01 - Enable port security. Port will be disabled when security violation is detected 10 - N/A 11 - N/A ECRMISC1 - CPU PORT CONTROL REGISTER MISC1 I2C Address h10, CPU Address:h010 Access by CPU, serial interface and I2C (R/W) 7 6 5 0 SS state Reserved Bit [5:0] • Reserved Bit [7:6] • SS - Spanning tree state (802.1D spanning tree protocol). (Default 2'b11) • • • • 11.3.1.4 • • Data Sheet 00 - Blocking: Frame is dropped 01 - Listening: Frame is dropped 10 - Learning: Frame is dropped. Source MAC address is learned. 11 - Forwarding: Frame is forwarded. Source MAC address is learned. ECRMISC2 - CPU PORT CONTROL REGISTER MISC2 (I2C Address h11, CPU Address:h011) Access by CPU, serial interface and I2C (R/W) 7 6 5 3 Security EN Bit [0] • 2 1 DisL Ftf 0 Futf Filter untagged frame (Default 0) • 0: Disable • 1: Enable - All untagged frames from the CPU are discarded or follow security option when security is enable Security does not make much sense for CPU! Bit[1] • Filter Tagged frame (Default 0) • 0: Disable • 1: Enable - All tagged frames from the CPU are discarded or follow security option when security is enable Security does not make much sense for CPU! Bit[2] • Learning Disable (Default 0) • 1 - Learning is disabled on this port • 0 - Learning is enabled on this port Bit [5:3] • Reserved (Default 0) Bit[7:6] • Security Enable (Default 2'b00) 55 Zarlink Semiconductor Inc. MVTX2804 • CPU installed • • • • 11.3.1.5 • • Data Sheet 00 - Disable port security 01 - Discard violation packet 10 - Send packet to CPU and port 11 - Send packet to CPU only GGCONTROL 0- EXTRA GIGA PORT CONTROL CPU Address:h012 Accessed by CPU and serial interface (R/W) 7 Bit[0]: • 6 5 4 MII1 Rst1 3 2 1 MII0 0 Rst0 Reset GIGA port 0 Default is 0 • 0: Normal operation • 1: Reset Gigabit port 0. Example: used when a new Why is connected (Hot swap) Bit[1]: • GIGA port 0 use MII interface (10/100M) Default is 0 • 0: Gigabit port operation at 1000M mode • 1: Gigabit port operation at 10/100M mode (MII) Bit[3:2]: • Reserved - Must be '0' Bit[4]: • Reset GIGA port 1 Default is 0 • 0: Normal operation • 1: Reset Gigabit port 1. Example: used when a new Phy is connected (Hot swap) Bit[5]: • GIGA port 1 use MII interface (10/100M) Default is 0 • 0: Gigabit port operation at 1000M mode • 1: Gigabit port operation at 10/100M mode (MII) Bit[7:6]: 11.3.1.6 • • • Reserved - Must be '0' GGCONTROL 1- EXTRA GIGA PORT CONTROL CPU Address:h013 Accessed by CPU and serial interface (R/W) 7 Bit[0]: • 6 5 4 MII3 Rst3 3 2 1 MII2 0 Rst2 Reset GIGA port 2 Default is 0 • 0: Normal operation • 1: Reset Gigabit port 2. Example: used when a new Phy is connected (Hot swap) Bit[1]: • GIGA port 2 use MII interface (10/100M) Default is 0 • 0: Gigabit port operation at 1000M mode • 1: Gigabit port operation at 10/100M mode (MII) Bit[3:2]: • Reserved - must be '0' Bit[4]: • Reset GIGA port 3 Default is 0 • 0: Normal operation • 1: Reset Gigabit port 3. Example: used when a new Phy is connected (Hot swap) 56 Zarlink Semiconductor Inc. MVTX2804 Bit[5]: • Data Sheet GIGA port 3 use MII interface (10/100M) Default is 0 • 0: Gigabit port operation at 1000M mode • 1: Gigabit port operation at 10/100M mode (MII) Bit[7:6]: 11.3.1.7 • • • Reserved - Must be '0' GGCONTROL 2- EXTRA GIGA PORT CONTROL CPU Address:h014 Accessed by CPU and serial interface (R/W) 7 Bit[0]: • 6 5 4 MII5 Rst5 3 2 1 MII4 0 Rst4 Reset GIGA port 4 Default is 0 • 0: Normal operation • 1: Reset Gigabit port 4. Example: used when a new Phy is connected (Hot swap) Bit[1]: • GIGA port 4 use MII interface (10/100M) Default is 0 • 0: Gigabit port operation at 1000M mode • 1: Gigabit port operation at 10/100M mode (MII) Bit[3:2]: • Reserved - Must be '0 Bit[4]: • Reset GIGA port 5 Default is 0 • 0: Normal operation • 1: Reset Gigabit port 5. Example: used when a new Phy is connected (Hot swap) Bit[5] • GIGA port 5 use MII interface (10/100M) Default is 0 • 0: Gigabit port operation at 1000M mode • 1: Gigabit port operation at 10/100M mode (MII) Bit[7:6]: 11.3.1.8 • • • Reserved - Must be '0' GGCONTROL 3- EXTRA GIGA PORT CONTROL CPU Address:h015 Accessed by CPU and serial interface (R/W) 7 Bit[0]: • 6 5 4 MII7 Rst7 3 2 1 MII6 0 Rst6 Reset GIGA port 6 Default is 0 • 0: Normal operation • 1: Reset Gigabit port 6. Example: used when a new Phy is connected (Hot swap) Bit[1]: • GIGA port 6 use MII interface (10/100M) Default is 0 • 0: Gigabit port operation at 1000M mode • 1: Gigabit port operation at 10/100M mode (MII) Bit[3:2]: • Reserved - Must be '0 Bit[4]: • Reset GIGA port 7 Default is 0 • 0: Normal operation • 1: Reset Gigabit port 7. Example: used when a new Phy is connected (Hot swap) 57 Zarlink Semiconductor Inc. MVTX2804 Bit[5] • Data Sheet GIGA port 7 use MII interface (10/100M) Default is 0 • 0: Gigabit port operation at 1000M mode • 1: Gigabit port operation at 10/100M mode (MII) Bit[7:6]: 11.4 • Reserved - Must be '0' Group 1 Address 11.4.1 11.4.1.1 VLAN Group AVTCL - VLAN TYPE CODE REGISTER LOW • I2C Address h12; CPU Address:h100 • Accessed by CPU, serial interface and I 2C (R/W) Bit[7:0]:VLANType_LOW: Lower 8 bits of the VLAN type code (Default 00) 11.4.1.2 • • Bit I2C Address h13; CPU Address:h101 Accessed by CPU, serial interface and I 2C (R/W) [7:0] VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81) 11.4.1.3 • • AVTCH - VLAN TYPE CODE REGISTER HIGH PVMAP00_0 - PORT 00 CONFIGURATION REGISTER 0 I2C Address h14, CPU Address:h102) Accessed by CPU, serial interface and I 2C (R/W) In Port Based VLAN Mode This register indicates the legal egress ports. Example: A “1” on bit 7 means that packets arriving on port 0 can be sent to port 7. A “0” on bit 7 means that any packet destined to port 7 will be discarded. Bit[7:0]: VLAN Mask for ports 7 to 0 (Default FF) 0 - Disable 1 - Enable In Tag Based VLAN Mode This is the default VLAN tag. It works with configuration register PVMAP00_1 [7:5] [3:0] to form the default VLAN tag. If the received packed is untagged, it receives the default VLAN tag. If the packet has a VLAN ID of 0, then PVID is used to replace the packet's VLAN. Bit[7:0]: 11.4.1.4 • • PVID [7:0] (Default is FF) PVMAP00_1 - PORT 00 CONFIGURATION REGISTER 1 I2C Address h15, CPU Address:h103 Accessed by CPU, serial interface and I 2C (R/W) In Port Based VLAN Mode Bit[7:0]: VLAN Mask for port 8 - CPU port (Default is FF) 58 Zarlink Semiconductor Inc. MVTX2804 Data Sheet In Tag Based VLAN Mode 7 5 Unitag Port Priority 4 3 0 Ultrust PVID Bit[3:0]: • PVID [11:8] (Default is F) Bit [4]: • Untrusted Port. (Default is 0) This register is used to change the VLAN priority field of a packet to a predetermined priority. • 1: VLAN priority field is changed to Bit[7:5] at ingress port • 0: Keep VLAN priority field Bit [7:5]: 11.4.1.5 • Untag Port Priority (Default 7) PVMAP00_3 - PORT 00 CONFIGURATION REGISTER 3 • I2C Address h17, CPU Address:h105 • Accessed by CPU, serial interface and I 2C (R/W) In Port Based Mode 7 6 FP en 5 Drop 3 Default TX priority Bit [1:0]: Reserved (Default 0) Bit [2]: Force untagged out (Default 0) 2 1 FNT IF 0 Reserved • 0 Disable • 1 Force untag output All packets transmitted from this port are untagged. This register is used when this port is connected to legacy equipment that does not support VLAN tagging. Bit [5:3]: Fixed Transmit priority. Used when bit[7] = 1 (Default 0) • • • • • • • • Bit [6]: 000 001 010 011 100 101 110 111 Transmit Priority Level 0 (Lowest) Transmit Priority Level 1 Transmit Priority Level 2 Transmit Priority Level 3 Transmit Priority Level 4 Transmit Priority Level 5 Transmit Priority Level 6 Transmit Priority Level 7 (Highest) Fixed Discard priority (Default 0) • 0 - Discard Priority Level 0 (Lowest) • 1 - Discard Priority Level 7(Highest) Bit [7]: Enable Fix Priority (Default 0) • 0 Disable fix priority. All frames are analyzed. Transmit Priority and Drop Priority are based on VLAN Tag or TOS. • 1 Transmit Priority and Discard Priority are based on values programmed in bit [6:3] 59 Zarlink Semiconductor Inc. MVTX2804 Data Sheet In Tag based VLAN Mode Bit [1]: Ingress filter enable (Default 1) • 0 Disable - Ingress filter. Packets with VLAN not belonging to source port are forwarded if destination port belongs to the VLAN. Symmetric VLAN. • Enable - Packets are discarded when source port is not a VLAN member. Asymmetric VLAN. Bit [2]: Force untagged out (Default 1). • 0 Disable • 1 Force untagged output. All packets transmitted from this port are untagged. This register is used when this port is connected to legacy equipment that does not support VLAN tagging. Bit [5:3]: Fixed Transmit priority (Default 0) Used When Bit [7] = 1 • • • • • • • • Bit [6]: 000 001 010 011 100 101 110 111 Transmit Priority Level 0 (Lowest) Transmit Priority Level 1 Transmit Priority Level 2 Transmit Priority Level 3 Transmit Priority Level 4 Transmit Priority Level 5 Transmit Priority Level 6 Transmit Priority Level 7 (Highest) Fixed Discard priority (Default 0) Used When Bit [7] = 1 • 0 - Discard Priority Level 0 (Lowest) • 1 Discard Priority Level 1 (Highest) Bit [7]: Enable Fix Priority (Default 0) • 0 Disable fix priority. All frames are analyzed. Transmit Priority and Drop Priority are based on VLAN Tag or TOS. • 1 Transmit Priority and Discard Priority are based on values programmed in bit [6:3] 11.5 Port VLAN Map PVMAP00_0,1,3 I2C Address h14,15,17; CPU Address:h102,103,105) PVMAP01_0,1,3 I2C Address h18,19,1B; CPU Address:h106,107,109) PVMAP02_0,1,3 I2C Address h1C,1D,1F; CPU Address:h10A, 10B,10D) PVMAP03_0,1,3 I2C Address h20,21,23; CPU Address:h10E, 10F,111) PVMAP04_0,1,3 I2C Address h24,25,27; CPU Address:h112, 113,115) PVMAP05_0,1,3 I2C Address h28,29,2B; CPU Address:h116, 117,119) PVMAP06_0,1,3 I2C Address h2C,2D,2F; CPU Address:h11A, 11B,11D) PVMAP07_0,1,3 I2C Address h30,31,33; CPU Address:h11E, 11F,121) 60 Zarlink Semiconductor Inc. MVTX2804 11.5.1 • • Data Sheet PVMODE I2C Address: h038, CPU Address:h126 Accessed by CPU, serial interface (R/W) 7 RO Bit [0]: • 6 5 4 MP BPDU 3 DM 1 Reserved 0 Vmod VLAN Mode (vlan_enable) (Default = 0) • 1: Tag Based VLAN Mode • 0: Port Based VLAN Mode Bit [4]: • Disable MAC address 0 • 0: MAC address 0 is not leaned. • 1: MAC address 0 is leaned. Bit [5]: • Force BPDU as multicast frame (Default 0) • 1: Enable. • 0: Disable. BPDU packet is forwarded to CPU. Bit [6]: • MAC/PORT • 0: Single MAC address per system • 1: Single MAC address per port Bit [7]: • Routing option (force frame as switched frame) • 1: Routing Frame to CPU is independent of ingress port spanning tree state • 0: Routing Frame to CPU is dependent of ingress port spanning tree state 11.6 Group 2 Address 11.6.1 11.6.1.1 • • • • TRUNK1 - TRUNK GROUP 1 MEMBER (MANAGED MODE ONLY) CPU Address:h201 Accessed by CPU, serial interface (R/W) Bit [7:0] Port7-0 bit map of trunk 1. (Default 00) 11.6.1.3 • • • TRUNK0 - TRUNK GROUP 0 MEMBER (MANAGED MODE ONLY) CPU Address:h200 Accessed by CPU, serial interface (R/W) Bit [7:0] Port7-0 bit map of trunk 0. (Default 00) TRUNK0 provides a bitmap for trunk0 membership. Example: To trunk ports 0 and 2 in trunk group 0, bits 0 and 2 of TRUNK0 must be set to 1. All others must be cleared to “0” to indicate that they are not members of the trunk 0. 11.6.1.2 • • • Port Trunking Group TRUNK2- TRUNK GROUP 2 MEMBER (MANAGED MODE ONLY) CPU Address:h202 Accessed by CPU, serial interface (R/W) Bit [7:0] Port7-0 bit map of trunk 2. (Default 00) 61 Zarlink Semiconductor Inc. MVTX2804 11.6.1.4 • • • Data Sheet TRUNK3- TRUNK GROUP 3 MEMBER (MANAGED MODE ONLY) CPU Address:h203 Accessed by CPU, serial interface (R/W) Bit [7:0] Port7-0 bit map of trunk 3. (Default 00) 11.6.1.5 TRUNK_HASH_MODE - TRUNK HASH MODE • CPU Address:h206 • Accessed by CPU, serial interface (R/W) Hash Select. The hash selected is valid for Trunk 0, 1, 2 and 3. 7 2 1 0 Hash sel Bit [1:0] • (Default 2'b00) • • • • 11.6.1.6 00 - Use Source and Destination Mac address for hashing. 01 - Use Source Mac Address for hashing. 10 - Use Destination Mac Address for hashing. 11 - Not Used. TRUNK0_MODE - TRUNK GROUP 0 MODE (UNMANAGED MODE) • I2C Address: h039, CPU Address:h207 • Accessed by serial interface and I2C (R/W) Port Selection in unmanaged mode. Trunk group 0 and trunk group 1 are enable accordingly to bits [1:0] when input pin P_D[9] = 0 (external pull down). 7 2 1 0 Port sel Bit [1:0] • Port member selection for Trunk 0 and 1 in unmanaged mode (Default 2'b00) • • • • 00 - Only trunk group 0 is enable. Port 0 and 1 are used for trunk group0 01 - Only trunk group 0 is enable. Port 0,1 and 2 are used for trunk group0 10 - Only trunk group 0 is enable. Port 0,1,2 and 3 are used for trunk group0 11 - Trunk group 0 and 1 are enable. Port 0, 1 are used for trunk group0, and port 2 and 3 are used for trunk group1 TRUNK HASH • • • • Trunk Trunk Trunk Trunk group group group group 0 1 2 3 achieve achieve achieve achieve load load load load balance balance balance balance by by by by TRUNK0_HASH0 TRUNK1_HASH0 TRUNK2_HASH0 TRUNK3_HASH0 to to to to 5. 5. 5. 5. 62 Zarlink Semiconductor Inc. (only (only (only (only in in in in managed managed managed managed mode) mode) mode) mode) MVTX2804 11.6.1.7 • • Bit [2:0]: • Hash result 0 destination port number[2:0] (Default 000) Bit [5:3] • Hash result 1 destination port number[2:0] (Default 001) Bit [7:6] • Hash result 2 destination port number[1:0] (Default 00) Bit [0]: • Hash result 2 destination port number[2] (Default 0) Bit [3:1]: • Hash result 3 destination port number[2:0] (Default 001) Bit [6:4]: • Hash result 4 destination port number[2:0] (Default 000) Bit [7]: • Hash result 5 destination port number[0] (Default 1) Bit [1:0]: • Hash result 5 destination port number[2:1] (Default 00) Bit [4:2] • Hash result 6 destination port number[2:0] (Default 000) Bit [7:5] • Hash result 7 destination port number[2:0] (Default 001) TRUNK0_HASH3 - TRUNK GROUP 0 HASH RESULT 8,9,10 DESTINATION PORT NUMBER CPU Address:h20B Accessed by CPU, serial interface (R/W) Bit [2:0]: • Hash result 8 destination port number[2:0] (Default 000) Bit [5:3] • Hash result 9 destination port number[2:0] (Default 001) Bit [7:6] • Hash result 10 destination port number[1:0] (Default 00) 11.6.1.11 • • TRUNK0_HASH2 - TRUNK GROUP 0 HASH RESULT 5,6,7 DESTINATION PORT NUMBER CPU Address:h20A Accessed by CPU, serial interface (R/W) 11.6.1.10 • • TRUNK0_HASH1 - TRUNK GROUP 0 HASH RESULT 2,3,4,5 DESTINATION PORT NUMBER CPU Address:h209 Accessed by CPU, serial interface (R/W) 11.6.1.9 • • TRUNK0_HASH0 - TRUNK GROUP 0 HASH RESULT 0,1,2 DESTINATION PORT NUMBER CPU Address:h208 Accessed by CPU, serial interface (R/W) 11.6.1.8 • • Data Sheet TRUNK0_HASH4 - TRUNK GROUP 0 HASH RESULT 10,11,12,13 DESTINATION PORT NUMBER CPU Address:h20C Accessed by CPU, serial interface (R/W) Bit [0]: • Hash result 10 destination port number[2] (Default 0) Bit [3:1] • Hash result 11 destination port number[2:0] (Default 001) Bit[6:4] • Hash result 12 destination port number[2:0] (Default (000) Bit [7] • Hash result 13 destination port number[2:0] (Default (1) 63 Zarlink Semiconductor Inc. MVTX2804 11.6.1.12 • • TRUNK0_HASH5 - TRUNK GROUP 0 HASH RESULT 13,14,15 DESTINATION PORT NUMBER CPU Address:h20D Accessed by CPU, serial interface (R/W) Bit [1:0]: Hash result 13 destination port number[2:1] (Default 00) Bit [4:2] Hash result 14 destination port number[2:0] (Default 000) Bit [7:5] Hash result 15 destination port number[2:0] (Default 001) 11.6.1.13 • • • Data Sheet TRUNK1_MODE - TRUNK GROUP 1 MODE (UNMANAGED MODE) I2C Address h03A; CPU Address:20E Accessed by CPU, serial interface and I 2C (R/W) Port Selection in unmanaged mode. Trunk group 2 and trunk group 3 are enable accordingly to bits [1:0] when input pin P_D[10] = 0. 7 2 1 0 Port Select Bit [1:0]: • Port member selection for Trunk 2 and 3 in unmanaged mode • • • • 11.6.1.14 • • TRUNK1_HASH0 - TRUNK GROUP 1 HASH RESULT 0, 1, 2 DESTINATION PORT NUMBER CPU Address:h20F Accessed by CPU, serial interface (R/W) Bit [2:0]: • Hash result 0 destination port number[2:0] (Default 000) Bit [7:6] • Hash result 2 destination port number[1:0] (Default 00) Bit [5:3] • Hash result 1 destination port number[2:0] (Default 001) 11.6.1.15 • • 00 - Only trunk group 2 is enable. Port 4 and 5 are used for trunk group 2 01 - Only trunk group 2 is enable. Port 4, 5 and 6 are used for trunk group 2 10 - Only trunk group 2 is enable. Port 4, 5, 6 and 7 are used for trunk group 2 11 - Trunk group 2 and trunk group 3 are enable. Port 4 and 5 are used for trunk group 2, and port 6 and 7 are used for trunk group 3 TRUNK1_HASH1 - TRUNK GROUP 1 HASH RESULT 2, 3, 4, 5 DESTINATION PORT NUMBER CPU Address:h210 Accessed by CPU, serial interface (R/W) Bit [0]: • Hash result 2 destination port number[2] (Default 0) Bit [3:1 • Hash result 3 destination port number[2:0] (Default 001) Bit [6:4] • Hash result 4 destination port number[2:0] (Default 000) Bit [7] • Hash result 5 destination port number[0] (Default 1) 64 Zarlink Semiconductor Inc. MVTX2804 11.6.1.16 • • Bit [1:0]: • Hash result 5 destination port number[2:1] (Default 00) Bit [4:2] • Hash result 6 destination port number[2:0] (Default 000) Bit [7:5] • Hash result 7 destination port number[2:0] (Default 001) Bit [2:0] • Hash result 8 destination port number[2:0] (Default 000) Bit [5:3] • Hash result 9 destination port number[2:0] (Default 001) Bit [7:6] • Hash result 10 destination port number[1:0] (Default 00) Bit [0]: • Hash result 10 destination port number[2] (Default 0) Bit [3:1] • Hash result 11 destination port number[2:0] (Default 001) Bit [6:4] • Hash result 12 destination port number[2:0] (Default (000) Bit [7] • Hash result 13 destination port number[0] (Default (1) TRUNK1_HASH5 - TRUNK GROUP 1 HASH RESULT 13, 14, 15 DESTINATION PORT NUMBER CPU Address:h214 Accessed by CPU, serial interface (R/W) Bit [1:0]: • Hash result 13 destination port number[2:1] (Default 00) Bit [4:2] • Hash result 14 destination port number[2:0] (Default 000) Bit [7:5] • Hash result 15 destination port number[2:0] (Default 001) 11.6.1.20 • • TRUNK1_HASH4- TRUNK GROUP 1 HASH RESULT 11, 12, 13 DESTINATION PORT NUMBER CPU Address:h213 Accessed by CPU, serial interface (R/W) 11.6.1.19 • • TRUNK1_HASH3 - TRUNK GROUP 1 HASH RESULT 8, 9, 10 DESTINATION PORT NUMBER CPU Address:h212 Accessed by CPU, serial interface (R/W) 11.6.1.18 • • TRUNK1_HASH2 - TRUNK GROUP 1 HASH RESULT 5, 6, 7 DESTINATION PORT NUMBER CPU Address:h211 Accessed by CPU, serial interface (R/W) 11.6.1.17 • • Data Sheet TRUNK2_HASH0 - TRUNK GROUP 2 HASH RESULT 0, 1, 2 DESTINATION PORT NUMBER CPU Address:h215 Accessed by CPU, serial interface (R/W) Bit [2:0]: • Hash result 0 destination port number[2:0] (Default 100) Bit [5:3] • Hash result 1 destination port number[2:0] (Default 101) Bit [7:6] • Hash result 2 destination port number[1:0] (Default 00) 65 Zarlink Semiconductor Inc. MVTX2804 11.6.1.21 • • Bit [0]: • Hash result 2 destination port number[2] (Default 1) Bit [3:1] • Hash result 3 destination port number[2:0] (Default 101) Bit [6:4] • Hash result 4 destination port number[2:0] (Default 100) Bit [7] • Hash result 5 destination port number[0] (Default 1) Bit [1:0]: • Hash result 5 destination port number[2:1] (Default 10) Bit [4:2] • Hash result 6 destination port number[2:0] (Default 100) Bit [7:5] • Hash result 7 destination port number[2:0] (Default 101) Bit [2:0]: • Hash result 8 destination port number[2:0] (Default 000) Bit [5:3] • Hash result 9 destination port number[2:0] (Default 001) Bit [7:6] • Hash result 10 destination port number[1:0] (Default 00) TRUNK0_HASH3 - TRUNK GROUP 0 HASH RESULT 8,9,10 DESTINATION PORT NUMBER CPU Address:h20B Accessed by CPU, serial interface (R/W) Bit [2:0]: • Hash result 8 destination port number[2:0] (Default 000) Bit [5:3] • Hash result 9 destination port number[2:0] (Default 001) Bit [7:6] • Hash result 10 destination port number[1:0] (Default 00) 11.6.1.25 • • TRUNK2_HASH3 - TRUNK GROUP 2 HASH RESULT 8, 9, 10 DESTINATION PORT NUMBER CPU Address:h218 Accessed by CPU, serial interface (R/W) 11.6.1.24 • • TRUNK2_HASH2 - TRUNK GROUP 2 HASH RESULT 5, 6, 7 DESTINATION PORT NUMBER CPU Address:h217 Accessed by CPU, serial interface (R/W) 11.6.1.23 • • TRUNK2_HASH1 - TRUNK GROUP 2 HASH RESULT 2, 3, 4, 5 DESTINATION PORT NUMBER CPU Address:h216 Accessed by CPU, serial interface (R/W) 11.6.1.22 • • Data Sheet TRUNK0_HASH4 - TRUNK GROUP 0 HASH RESULT 10,11,12,13 DESTINATION PORT NUMBER CPU Address:h20C Accessed by CPU, serial interface (R/W) Bit [0]: • Hash result 10 destination port number[2] (Default 0) Bit [3:1] • Hash result 11 destination port number[2:0] (Default 001) Bit[6:4] • Hash result 12 destination port number[2:0] (Default (000) Bit [7] • Hash result 13 destination port number[2:0] (Default (1) 66 Zarlink Semiconductor Inc. MVTX2804 11.6.1.26 • • TRUNK0_HASH5 - TRUNK GROUP 0 HASH RESULT 13,14,15 DESTINATION PORT NUMBER CPU Address:h20D Accessed by CPU, serial interface (R/W) Bit [1:0]: Hash result 13 destination port number[2:1] (Default 00) Bit [4:2] Hash result 14 destination port number[2:0] (Default 000) Bit [7:5] Hash result 15 destination port number[2:0] (Default 001) 11.6.1.27 • • • Data Sheet TRUNK1_MODE - TRUNK GROUP 1 MODE (UNMANAGED MODE) I2C Address h03A; CPU Address:20E Accessed by CPU, serial interface and I 2C (R/W) Port Selection in unmanaged mode. Trunk group 2 and trunk group 3 are enable accordingly to bits [1:0] when input pin P_D[10] = 0. 7 2 1 0 Port Select Bit [1:0]: • Port member selection for Trunk 2 and 3 in unmanaged mode • • • • 11.6.1.28 • • TRUNK1_HASH0 - TRUNK GROUP 1 HASH RESULT 0, 1, 2 DESTINATION PORT NUMBER CPU Address:h20F Accessed by CPU, serial interface (R/W) Bit [2:0]: • Hash result 0 destination port number[2:0] (Default 000) Bit [7:6] • Hash result 2 destination port number[1:0] (Default 00) Bit [5:3] • Hash result 1 destination port number[2:0] (Default 001) 11.6.1.29 • • 00 - Only trunk group 2 is enable. Port 4 and 5 are used for trunk group 2 01 - Only trunk group 2 is enable. Port 4, 5 and 6 are used for trunk group 2 10 - Only trunk group 2 is enable. Port 4, 5, 6 and 7 are used for trunk group 2 11 - Trunk group 2 and trunk group 3 are enable. Port 4 and 5 are used for trunk group 2, and port 6 and 7 are used for trunk group 3 TRUNK1_HASH1 - TRUNK GROUP 1 HASH RESULT 2, 3, 4, 5 DESTINATION PORT NUMBER CPU Address:h210 Accessed by CPU, serial interface (R/W) Bit [0]: • Hash result 2 destination port number[2] (Default 0) Bit [3:1 • Hash result 3 destination port number[2:0] (Default 001) Bit [6:4] • Hash result 4 destination port number[2:0] (Default 000) Bit [7] • Hash result 5 destination port number[0] (Default 1) 67 Zarlink Semiconductor Inc. MVTX2804 11.6.1.30 • • Bit [1:0]: • Hash result 5 destination port number[2:1] (Default 00) Bit [4:2] • Hash result 6 destination port number[2:0] (Default 000) Bit [7:5] • Hash result 7 destination port number[2:0] (Default 001) Bit [2:0] • Hash result 8 destination port number[2:0] (Default 000) Bit [5:3] • Hash result 9 destination port number[2:0] (Default 001) Bit [7:6] • Hash result 10 destination port number[1:0] (Default 00) Bit [0]: • Hash result 10 destination port number[2] (Default 0) Bit [3:1] • Hash result 11 destination port number[2:0] (Default 001) Bit [6:4] • Hash result 12 destination port number[2:0] (Default (000) Bit [7] • Hash result 13 destination port number[0] (Default (1) TRUNK1_HASH5 - TRUNK GROUP 1 HASH RESULT 13, 14, 15 DESTINATION PORT NUMBER CPU Address:h214 Accessed by CPU, serial interface (R/W) Bit [1:0]: • Hash result 13 destination port number[2:1] (Default 00) Bit [4:2] • Hash result 14 destination port number[2:0] (Default 000) Bit [7:5] • Hash result 15 destination port number[2:0] (Default 001) 11.6.1.34 • • TRUNK1_HASH4- TRUNK GROUP 1 HASH RESULT 11, 12, 13 DESTINATION PORT NUMBER CPU Address:h213 Accessed by CPU, serial interface (R/W) 11.6.1.33 • • TRUNK1_HASH3 - TRUNK GROUP 1 HASH RESULT 8, 9, 10 DESTINATION PORT NUMBER CPU Address:h212 Accessed by CPU, serial interface (R/W) 11.6.1.32 • • TRUNK1_HASH2 - TRUNK GROUP 1 HASH RESULT 5, 6, 7 DESTINATION PORT NUMBER CPU Address:h211 Accessed by CPU, serial interface (R/W) 11.6.1.31 • • Data Sheet TRUNK2_HASH0 - TRUNK GROUP 2 HASH RESULT 0, 1, 2 DESTINATION PORT NUMBER CPU Address:h215 Accessed by CPU, serial interface (R/W) Bit [2:0]: • Hash result 0 destination port number[2:0] (Default 100) Bit [5:3] • Hash result 1 destination port number[2:0] (Default 101) Bit [7:6] • Hash result 2 destination port number[1:0] (Default 00) 68 Zarlink Semiconductor Inc. MVTX2804 11.6.1.35 • • Bit [0]: • Hash result 2 destination port number[2] (Default 1) Bit [3:1] • Hash result 3 destination port number[2:0] (Default 101) Bit [6:4] • Hash result 4 destination port number[2:0] (Default 100) Bit [7] • Hash result 5 destination port number[0] (Default 1) Bit [1:0]: • Hash result 5 destination port number[2:1] (Default 10) Bit [4:2] • Hash result 6 destination port number[2:0] (Default 100) Bit [7:5] • Hash result 7 destination port number[2:0] (Default 101) Bit [2:0]: • Hash result 8 destination port number[2:0] (Default 000) Bit [5:3] • Hash result 9 destination port number[2:0] (Default 001) Bit [7:6] • Hash result 10 destination port number[1:0] (Default 00) TRUNK2_HASH4 - TRUNK GROUP 2 HASH RESULT 10, 11, 12, 13 DESTINATION PORT NUMBER CPU Address:h219 Accessed by CPU, serial interface (R/W) Bit [0]: • Hash result 10 destination port number[2] (Default 1) Bit [3:1] • Hash result 11 destination port number[2:0] (Default 101) Bit [6:4] • Hash result 12 destination port number[2:0] (Default 1000) Bit [7] • Hash result 13 destination port number[2:0] (Default (1) 11.6.1.39 • • TRUNK2_HASH3 - TRUNK GROUP 2 HASH RESULT 8, 9, 10 DESTINATION PORT NUMBER CPU Address:h218 Accessed by CPU, serial interface (R/W) 11.6.1.38 • • TRUNK2_HASH2 - TRUNK GROUP 2 HASH RESULT 5, 6, 7 DESTINATION PORT NUMBER CPU Address:h217 Accessed by CPU, serial interface (R/W) 11.6.1.37 • • TRUNK2_HASH1 - TRUNK GROUP 2 HASH RESULT 2, 3, 4, 5 DESTINATION PORT NUMBER CPU Address:h216 Accessed by CPU, serial interface (R/W) 11.6.1.36 • • Data Sheet TRUNK2_HASH5 - TRUNK GROUP 2 HASH RESULT 13, 14, 15 DESTINATION PORT NUMBER CPU Address:h21A Accessed by CPU, serial interface (R/W) Bit [1:0]: • Hash result 13 destination port number[2:1] (Default 10) Bit [4:2] • Hash result 14 destination port number[2:0] (Default 100) Bit [7:5] • Hash result 15 destination port number[2:0] (Default 101) 69 Zarlink Semiconductor Inc. MVTX2804 11.6.1.40 • • Bit [2:0]: • Hash result 0 destination port number[2:0] (Default 100) Bit [5:3] • Hash result 1 destination port number[2:0] (Default 101) Bit [7:6] • Hash result 2 destination port number[1:0] (Default 00) Bit [0]: • Hash result 2 destination port number[2] (Default 1) Bit [3:1] • Hash result 3 destination port number[2:0] (Default 101) Bit [6:4] • Hash result 4 destination port number[2:0] (Default 100) Bit [7] • Hash result 5 destination port number[0] (Default 1) Bit [1:0]: • Hash result 5 destination port number[2:1] (Default 10) Bit [4:2] • Hash result 6 destination port number[2:0] (Default 100) Bit [7:5] • Hash result 7 destination port number[2:0] (Default 101) TRUNK3_HASH3 - TRUNK GROUP 3 HASH RESULT 8, 9, 10 DESTINATION PORT NUMBER CPU Address:h21E Accessed by CPU, serial interface (R/W) Bit [2:0]: • Hash result 8 destination port number[2:0] (Default 100) Bit [5:3] • Hash result 9 destination port number[2:0] (Default 101) Bit [7:6] • Hash result 10 destination port number[1:0] (Default 00) 11.6.1.44 • • TRUNK3_HASH2 - TRUNK GROUP 3 HASH RESULT 5, 6, 7 DESTINATION PORT NUMBER CPU Address:h21D Accessed by CPU, serial interface (R/W) 11.6.1.43 • • TRUNK3_HASH1 - TRUNK GROUP 3 HASH RESULT 2, 3, 4, 5 DESTINATION PORT NUMBER CPU Address:h21C Accessed by CPU, serial interface (R/W) 11.6.1.42 • • TRUNK3_HASH0 - TRUNK GROUP 3 HASH RESULT 0, 1, 2 DESTINATION PORT NUMBER CPU Address:h21B Accessed by CPU, serial interface (R/W) 11.6.1.41 • • Data Sheet TRUNK3_HASH4 - TRUNK GROUP 3 HASH RESULT 10, 11, 12, 13 DESTINATION PORT NUMBER CPU Address:h21F Accessed by CPU, serial interface (R/W) Bit [0]: • Hash result 10 destination port number[2] (Default 1) Bit [3:1] • Hash result 11 destination port number[2:0] (Default 101) Bit [6:4] • Hash result 12 destination port number[2:0] (Default (100) Bit [7] • Hash result 13 destination port number[2:0] (Default (1) 70 Zarlink Semiconductor Inc. MVTX2804 11.6.1.45 • • Data Sheet TRUNK3_HASH5 - TRUNK GROUP 3 HASH RESULT 13, 14, 15 DESTINATION PORT NUMBER CPU Address:h220 Accessed by CPU, serial interface (R/W) Bit [1:0]: • Hash result 13 destination port number[2:1] (Default 10) Bit [4:2] • Hash result 14 destination port number[2:0] (Default 100) Bit [7:5] • Hash result 15 destination port number[2:0] (Default 101) 11.6.2 Multicast Hash Registers Multicast Hash registers are used to distribute multicast traffic. 16 + 2 registers are used to form a 16-entry array; each entry has 9 bits, with each bit representing one port. Any port not belonging to a trunk group should be programmed with 1. Ports belonging to the same trunk group should only have a single port set to “1” per entry. The port set to “1” is picked to transmit the multicast frame when the hash value is met. 5 4 3 2 1 0 Port 4 Port 3 Port 2 Port 1 Port 0 6 Port 5 7 Port 6 8 Port 7 Bit Hash Result = 0 Hash Result = 1 Hash Result = 2 ... Hash Result = 13 Hash Result = 14 Hash Result = 15 CPU Port 11.6.2.1 • • • CPU Address:h221 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.2 • • • MULTICAST_HASH01 - MULTICAST HASH RESULT1 MASK BYTE [7:0] CPU Address:h222 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.3 • • • MULTICAST_HASH00 - MULTICAST HASH RESULT0 MASK BYTE [7:0] MULTICAST_HASH02 - MULTICAST HASH RESULT2 MASK BYTE [7:0] CPU Address:h223 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 71 Zarlink Semiconductor Inc. MVTX2804 11.6.2.4 • • • CPU Address:h224 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.5 • • • MULTICAST_HASH09 - MULTICAST HASH RESULT9 MASK BYTE [7:0] CPU Address:h22A Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.11 • • • MULTICAST_HASH08 - MULTICAST HASH RESULT8 MASK BYTE [7:0] CPU Address:h229 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.10 • • • MULTICAST_HASH07 - MULTICAST HASH RESULT7 MASK BYTE [7:0] CPU Address:h228 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.9 • • • MULTICAST_HASH06 - MULTICAST HASH RESULT6 MASK BYTE [7:0] CPU Address:h227 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.8 • • • MULTICAST_HASH05 - MULTICAST HASH RESULT5 MASK BYTE [7:0] CPU Address:h226 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.7 • • • MULTICAST_HASH04 - MULTICAST HASH RESULT4 MASK BYTE [7:0] CPU Address:h225 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.6 • • • MULTICAST_HASH03 - MULTICAST HASH RESULT3 MASK BYTE [7:0] MULTICAST_HASH10 - MULTICAST HASH RESULT10 MASK BYTE [7:0] CPU Address:h22B Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 72 Zarlink Semiconductor Inc. Data Sheet MVTX2804 11.6.2.12 • • • MULTICAST_HASHML - MULTICAST HASH BIT[8] FOR RESULT7-0 CPU Address:h231 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.18 • • • MULTICAST_HASH15 - MULTICAST HASH RESULT15 MASK BYTE [7:0] CPU Address:h230 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.17 • • • MULTICAST_HASH14 - MULTICAST HASH RESULT14 MASK BYTE [7:0] CPU Address:h22F Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.16 • • • MULTICAST_HASH13 - MULTICAST HASH RESULT13 MASK BYTE [7:0] CPU Address:h22E Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.15 • • • MULTICAST_HASH12 - MULTICAST HASH RESULT12 MASK BYTE [7:0] CPU Address:h22D Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.14 • • • MULTICAST_HASH11 - MULTICAST HASH RESULT11 MASK BYTE [7:0] CPU Address:h22C Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.6.2.13 • • • Data Sheet MULTICAST_HASHML - MULTICAST HASH BIT[8] FOR RESULT 15-8 CPU Address:h232 Accessed by CPU, serial interface (R/W) Bit [7:0] (Default FF) 11.7 11.7.1 Group 3 Address CPU Port Configuration Group MAC5 to MAC0 registers form the CPU address. When a packet with destination address equal to MAC5[5:0] arrives, it is forwarded to the CPU. (MC bit) MAC5 MAC4 MAC3 MAC2 73 Zarlink Semiconductor Inc. MAC1 MAC0 MVTX2804 11.7.1.1 • • • MAC4 - CPU MAC ADDRESS BYTE 4 CPU Address:h304 Accessed by CPU Bit [7:0] Byte 4 of the CPU MAC address. (Default 8'00) 11.7.1.6 • • • MAC3 - CPU MAC ADDRESS BYTE 3 CPU Address:h303 Accessed by CPU Bit [7:0] Byte 3 of the CPU MAC address. (Default 8'00) 11.7.1.5 • • • MAC2 - CPU MAC ADDRESS BYTE 2 CPU Address:h302 Accessed by CPU Bit [7:0] Byte 2 of the CPU MAC address. (Default 8'00) 11.7.1.4 • • • MAC1 - CPU MAC ADDRESS BYTE 1 CPU Address:h301 Accessed by CPU Bit [7:0] Byte 1 of the CPU MAC address. (Default 8'00) 11.7.1.3 • • • MAC0 - CPU MAC ADDRESS BYTE 0 CPU Address:h300 Accessed by CPU Bit [7:0] Byte 0 of the CPU MAC address. (Default 8'00) 11.7.1.2 • • • Data Sheet MAC5 - CPU MAC ADDRESS BYTE 5 CPU Address:h305 Accessed by CPU Bit [7:0] Byte 5 of the CPU MAC address. (Default 8'00). These registers form the CPU MAC address 11.7.1.7 INT_MASK0 - INTERRUPT MASK 0 • CPU Address:h306 • Accessed by CPU, serial interface (R/W) • Mask off the interrupt source The CPU can dynamically mask the interruption when it is busy and doesn't want to be interrupted Bit [0]: • CPU frame interrupt. CPU frame buffer has data for CPU to read (Default 1'b1) Bit [1]: • Control Command Frame 1 interrupt. Control Command Frame buffer1 has data for CPU to read (Default 1'b1) Bit [2]: • Control Command Frame 2 interrupt. Control Command Frame buffer2 has data for CPU to read (Default 1'b1) Bit [7:3]: • Reserved • • 1 - Mask the interrupt 0 - Unmask the interrupt (Enable interrupt) 74 Zarlink Semiconductor Inc. MVTX2804 11.7.1.8 • • • INT_MASK1 - INTERRUPT MASK 1 CPU Address:h307 Accessed by CPU, serial interface (R/W) Mark off the interrupt source Bit [0]: • From Gigabit port 0 interrupt (Default 1'b1) Bit [1]: • From Gigabit port 1 interrupt (Default 1'b1) Bit [2]: • From Gigabit port 2 interrupt (Default 1'b1) Bit [3]: • From Gigabit port 3 interrupt (Default 1'b1) Bit [4]: • From Gigabit port 4 interrupt (Default 1'b1) Bit [5]: • From Gigabit port 5 interrupt (Default 1'b1) Bit [6]: • From Gigabit port 6 interrupt (Default 1'b1) Bit [7]: • From Gigabit port 7 interrupt (Default 1'b1) • 1 - Mask the interrupt • 0 - Unmask the interrupt (Enable interrupt) 11.7.1.9 • • • CPU Address:h30A Access by CPU, serial interface (RO) Indicate the source of the masked interrupt. Bit [0]: • CPU frame interrupt. Bit [1]: • Control Command Frame 1 interrupt. Bit [2]: • Control Command Frame 2 interrupt. Bit [3]: • From any of the Gigabit port interrupt. Bit [7:4]: • Reserved. 11.7.1.10 • • • INT_STATUS0 - MASKED INTERRUPT STATUS REGISTER0 INT_STATUS1 - MASKED INTERRUPT STATUS REGISTER1 (CPU Address:h30B) Access by CPU, serial interface (RO) Indicate the source of the masked interrupt. Bit [0]: • From Gigabit port 0 interrupt Bit [1]: • From Gigabit port 1 interrupt Bit [2]: • From Gigabit port 2 interrupt Bit [3]: • From Gigabit port 3 interrupt Bit [4]: • From Gigabit port 4 interrupt Bit [5]: • From Gigabit port 5 interrupt Bit [6]: • From Gigabit port 6 interrupt Bit [7]: • From Gigabit port 7 interrupt 75 Zarlink Semiconductor Inc. Data Sheet MVTX2804 11.7.1.11 • • Data Sheet INTP_MASK0 - INTERRUPT MASK FOR MAC PORT 0,1 CPU Address:h30C Accessed by CPU, serial interface (R/W) The CPU can dynamically mask the interruption when it is busy and doesn't want to be interrupted 7 6 5 4 3 2 1 0 P1 P0 1 - Mask the Interrupt 0 - Unmask the Interrupt (Enable interrupt) Bit[0]: Port 0 statistic counter Wrap around interrupt mask. An interrupt is generated when a statistic counter gets to its maximum value and wraps around. Refer to hardware statistic counter for interrupt sources. (Default 1'b1) Bit [1]: Port 0 Link change mask. (Default 1'b1) Bit [4]: Port 1 statistic counter Wrap around interrupt mask. (Default 1'b1) Bit [5]: Port 1 Link change mask. (Default 1'b1) 11.7.1.12 • • INTP_MASK1 - INTERRUPT MASK FOR MAC PORT 2,3 CPU Address:h30D Accessed by CPU, serial interface (R/W) 7 6 5 4 3 2 1 P3 • • P2 Bit [0]: • Port 2 WAS mask (Default 1'b1) Bit [1]: • Port 2 link change mask (Default 1'b1) Bit [4]: • Port 3 WAS mask (Default 1'b1) Bit [5]: • Port 3 link change mask (Default 1'b1) 11.7.1.13 0 INTP_MASK4 - INTERRUPT MASK FOR MAC PORT 4,5 CPU Address:h30E Accessed by CPU, serial interface (R/W) 7 6 5 4 3 P4 2 1 0 P5 Bit [0]: • Port 4 WAS mask (Default 1'b1) Bit [1]: • Port 4 link change mask (Default 1'b1) Bit [4]: • Port 5 WAS mask (Default 1'b1) Bit [5]: • Port 5 link change mask (Default 1'b1) 76 Zarlink Semiconductor Inc. MVTX2804 11.7.1.14 • • Data Sheet INTP_MASK5 - INTERRUPT MASK FOR MAC PORT 6,7 CPU Address:h30F Accessed by CPU, serial interface (R/W) 7 6 5 4 3 2 1 0 P6 Bit [0]: • Port 6 WAS mask (Default 1'b1) Bit [1]· • Port 6 link change mask (Default 1'b1) Bit [4]· • Port 7 WAS mask (Default 1'b1) Bit [5]: • Port 7 link change mask (Default 1'b1) 11.7.2 • • • P7 RQS - Receive Queue Select CPU Address:h310 Accessed by CPU, serial interface (RW) This register selects which receive queue is enable to send data to the CPU. 7 6 5 4 3 2 1 0 FQ3 FQ2 FQ1 FQ0 SQ3 SQ2 SQ1 SQ0 Bit[0]: • Select Queue 0. If set to one, this queue may be scheduled to CPU port. If set to zero, this queue will be blocked. If multiple queues are selected, a strict priority will be applied. Q3> Q2> Q1> Q0. Same applies to bits [3:1]. See QoS application note for more information. Bit[1]: • Select Queue 1 Bit[2]: • Select Queue 2 Bit[3]: • Select Queue 3 Note: Strip priority applies between different selected queues (Q3>Q2>Q1>Q0) Bit[4]: • Enable flush Queue 0 Bit[5]: • Enable flush Queue 1 Bit[6]: • Enable flush Queue 2 Bit[7]: • Enable flush Queue 3 When flush (drop frames) is enable, it starts when queue is too long or entry is too old. A queue is too long when it reaches WRED thresholds. Queue 0 is not subject to early drop. Packets in queue 0 are dropped only when the queue is too old. An entry is too old when it is older than the time programmed in the register TX_AGE [5:0]. CPU can dynamically program this register reading register RQSS [7:4]. 11.7.3 • • RQSS - Receive Queue Status CPU Address:h311 Accessed by CPU, serial interface (RO) 7 6 5 4 3 2 1 0 LQ3 LQ2 LQ1 LQ0 NeQ3 NeQ2 NeQ1 NeQ0 77 Zarlink Semiconductor Inc. MVTX2804 Data Sheet CPU queue status: Bit[3:0]: • Queue 3 to 0 not empty Bit[4]: • Head of line entry for Queue 3 to 0 is valid for too long. CPU queue 0 has no WRED threshold Bit[7:5]: • Head of line entry for Queue 3 to 0 is valid for too long or Queue length is longer than WRED threshold 11.7.4 • • TX_AGE - Tx Queue Aging timer I2C Address: h03B;CPU Address:h312 Accessed by CPU, serial interface (RO) 7 6 5 4 0 Tx Queue Agent Bit[4:0]: • Unit of 100ms (Default 8)Disable transmission queue aging if value is zero. Bit[5] • Must be set to '0' Bit[7:6]: • Reserved 11.8 Group 4 Address 11.8.1 11.8.1.1 • • • • Search Engine Group AGETIME_LOW - MAC ADDRESS AGING TIME LOW I2C Address h03C; CPU Address:h400 Accessed by CPU, serial interface and I 2C (R/W) Bit [7:0] Low byte of the MAC address aging timer. (Default 2c) The 2800 removes the MAC address from the data base and sends a Delete MAC Address Control Command to the CPU. Mac address aging is enable/disable by boot strap T_D[9]. 11.8.1.2 AGETIME_HIGH -MAC ADDRESS AGING TIME HIGH • I2C Address h03D; CPU Address:h401 • Accessed by CPU, serial interface and I 2C (R/W) • Bit [7:0]: High byte of the MAC address aging timer. (Default 00) • Aging time is based on the following equation: {AGETIME_HIGH,AGETIME_LOW} X (# of MAC entries X100µsec) Note: the number of entries= 66K when T_D[5] is pull down (SRAM memory size = 512K) and 34K when T_D[5] is pull up (SRAM memory size = 256K). 11.8.1.3 • • • V_AGETIME - VLAN TO PORT AGING TIME CPU Address:h402 Accessed by CPU (R/W) Bit [7:0] - 2msec/unit. (Default FF) 78 Zarlink Semiconductor Inc. MVTX2804 11.8.1.4 • • Data Sheet SE_OPMODE - SEARCH ENGINE OPERATION MODE CPU Address:h403 Accessed by CPU (R/W) Bit [0]: • • 7 6 5 4 3 2 1 0 SL DMS ARP DRA DA DRD DRN FL 1 - Enable fast learning mode. In this mode, the hardware learns all the new MAC addresses at highest rate, and reports to the CPU while the hardware scans the MAC database. When the CPU report queue is full, the MAC address is learned and marked as “Not reported”. When the hardware scans the database and finds a MAC address marked as “Not Reported” it tries to report it to the CPU. The scan rate must be set. SCAN Control register sets the scan rate. (Default 0) 0 - Search Engine learns a new MAC address and sends a message to the CPU report queue. If queue is full, the learning is temporarily halted. Bit [1]: • • Bit [2]: Report control • • Bit [3]: 1 - Disable report new VLAN port association (Default 0) 0 - Report new VLAN port association 1 - Disable report MAC address deletion (Default 0) 0 - Report MAC address deletion (MAC address is deleted from MCT after aging time) Delete Control • 1 - Disable aging logic from removing MAC during aging (Default 0) • 0 - MAC address entry is removed when it is old enough to be aged. However, a report is still sent to the CPU in both cases, when bit[2] = 0 Bit [4]: • • 1 - Disable report aging VLAN port association (Default 0) 0 - Enable Report aging VLAN. VLAN is not removed by hardware. The CPU needs to remove the VLAN -port association. Bit [5]: • 1 - Report ARP packet to CPU (Default 0) Bit [6]: • Disable MCT speedup aging (Default 0) • 1 - Disable speedup aging when MCT resource is low. • 0 - Enable speedup aging when MCT resource is low. Bit [7]: • Slow Learning (Default 0) • 1- Enable slow learning. Learning is temporary disabled when search demand is high • 0 - Learning is performed independent of search demand 11.8.1.5 • • SCAN - SCAN CONTROL REGISTER CPU Address:h404 Accessed by CPU (R/W) 7 6 0 R Ratio 79 Zarlink Semiconductor Inc. MVTX2804 Data Sheet SCAN is used when fast learning is enabled (SE_OP MODE bit 0). It is used for setting up the report rate for newly learned MAC addresses to the CPU. Bit [6:0]: • Ratio between database scanning and aging round (Default 00) Bit [7]: • Reverse the ratio between scanning round and aging round (Default 0) Examples: R= 0, Ratio = 0: All aging rounds are used for aging R= 0, Ratio = 1: Aging and scanning in every other aging round R= 1, Ratio = 7: In eight rounds, one is used for scanning and seven is used for aging R= 0, Ratio = 7: In eight rounds, one is used for aging and seven is used for scanning 11.9 Group 5 Address 11.9.1 11.9.1.1 • Buffer Control/QOS Group FCBAT - FCB AGING TIMER I2C Address h03E; CPU Address:h500 7 0 FCBAT Bit [7:0]: 11.9.1.2 • • • • FCB Aging time. Unit of 1ms. (Default FF) FCBAT define the aging time out interval of FCB handle QOSC - QOS CONTROL I2C Address h03F; CPU Address:h501 Accessed by CPU, serial interface and I 2C (R/W) 7 6 5 4 Tos-d Tos-p CPUQ VF1c 3 1 0 Bit [0]: • QoS frame lost is OK. Priority will be available for flow control enabled source only when this bit is set (Default 0) Bit [4]: • Per VLAN Multicast Flow Control (Default 0) • 0 - Disable • 1 - Enable Bit [5]: • CPU multicast queues size • 0 = 16 entries • 1 = 160 entries Bit [6]: • Select TOS bits for Priority (Default 0) • 0 - Use TOS [4:2] bits to map the transmit priority • 1 - Use TOS [5:3] bits to map the transmit priority 80 Zarlink Semiconductor Inc. MVTX2804 Bit [7]: • Data Sheet select TOS bits for Drop (Default 0) • 0 - Use TOS [4:2] bits to map the drop priority • 1 - Use TOS [5:3] bits to map the drop priority 11.9.1.3 • • FCR - FLOODING CONTROL REGISTER I2C Address h040; CPU Address:h502 Accessed by CPU, serial interface and I 2C (R/W) 7 6 Tos 5 4 TimeBase 3 0 U2MR Bit [3:0]: • U2MR: Unicast to Multicast Rate. Units in terms of time base defined in bits [6:4]. This is used to limit the amount of flooding traffic. The value in U2MR specifies how many packets are allowed to flood within the time specified by bit [6:4]. To disable this function, program U2MR to 0. (Default = 4'h8) Bit [6:4]: • TimeBase: (Default = 000) • • • • • • • • Bit [7]: • 000 = 10us 001 = 20us 010 = 40us 011 = 80us 100 = 160us 01 = 320us 110 = 640us 111 = 10us, same as 000. Select VLAN tag or TOS field (IP packets) to be preferentially picked to map transmit priority and drop priority (Default = 0). • 0 - Select VLAN tag priority field over TOS field • 1 - Select TOS field over VLAN tag priority field 11.9.1.4 • • AVPML - VLAN PRIORITY MAP I2C Address h041; CPU Address:h503 Accessed by CPU, serial interface and I 2C (R/W) 7 6 5 VP2 3 2 VP1 0 VP0 Registers AVPML, AVPMM, and AVPMH allow the eight VLAN priorities to map into eight internal level transmit priorities. Under the internal transmit priority, “seven” is the highest priority where as “zero” is the lowest. This feature allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7 into bit 2:0 of the AVPML register would map packet VLAN priority) into internal transmit priority 7. The new priority is used only inside the 2804. When the packet goes out it carries the original priority. Bit [2:0]: • Mapped priority of 0 (Default 000) Bit [5:3]: • Mapped priority of 1 (Default 001) Bit [7:6]: • Mapped priority of 2 (Default 10) 81 Zarlink Semiconductor Inc. MVTX2804 11.9.1.5 • • Data Sheet AVPMM - VLAN PRIORITY MAP I2C Address h042, CPU Address:h504 Accessed by CPU, serial interface and I 2C (R/W) 7 6 4 VP5 3 1 VP4 0 VP3 VP2 Map VLAN priority into eight level transmit priorities: Bit [0]: • Mapped priority of 2 (Default 0) Bit [3:1]: • Mapped priority of 3 (Default 011) Bit [6:4]: • Mapped priority of 4 (Default 100) Bit [7]: • Mapped priority of 5 (Default 1) 11.9.1.6 • • AVPMH - VLAN PRIORITY MAP I2C Address h043, CPU Address:h505 Accessed by CPU, serial interface and I 2C (R/W) 7 5 4 VP2 2 1 VP6 0 VP5 Map VLAN priority into eight level transmit priorities: Bit [1:0]: • Mapped priority of 5 (Default 10) Bit [4:2]: • Mapped priority of 6 (Default 110) Bit [7:5]: • Mapped priority of 7 (Default 111) 11.9.1.7 • • TOSPML - TOS PRIORITY MAP I2C Address h044, CPU Address:h506 Accessed by CPU, serial interface and I 2C (R/W) 7 6 5 TP2 3 2 TP1 0 TP0 Map TOS field in IP packet into four level transmit priorities Bit [2:0]: • Mapped priority when TOS is 0 (Default 000) Bit [5:3]: • Mapped priority when TOS is 1 (Default 001) Bit [7:6] • Mapped priority when TOS is 2 (Default 10) 11.9.1.8 • • TOSPMM - TOS PRIORITY MAP I2C Address h045, CPU Address:h507 Accessed by CPU, serial interface and I 2C (R/W) 7 6 TP5 5 4 3 TP4 1 TP3 82 Zarlink Semiconductor Inc. 0 TP2 MVTX2804 Data Sheet Map TOS field in IP packet into four level transmit priorities Bit [0]: • Mapped priority when TOS is 2 (Default 0) Bit [3:1]: • Mapped priority when TOS is 3 (Default 011) Bit [6:4]: • Mapped priority when TOS is 4 (Default 100) Bit [7]: • Mapped priority when TOS is 5 (Default 1) 11.9.1.9 • • TOSPMH - TOS PRIORITY MAP I2C Address h046, CPU Address:h508 Accessed by CPU, serial interface and I 2C (R/W) 7 5 4 2 TP7 1 TP6 0 TP5 Map TOS field in IP packet into four level transmit priorities: Bit [1:0]: • Mapped priority when TOS is 5 (Default 01) Bit [4:2]: • Mapped priority when TOS is 6 (Default 110) Bit [7:5]: • Mapped priority when TOS is 7 (Default 111) 11.9.1.10 • • AVDM - VLAN DISCARD MAP I2C Address h047, CPU Address:h509 Accessed by CPU, serial interface and I2C (R/W) 7 6 5 4 3 2 1 0 FDV7 FDV6 FDV5 FDV4 FDV3 FDV2 FDV1 FDV0 Map VLAN priority into frame discard when low priority buffer usage is above threshold. Frames with high discard (drop) priority will be discarded (dropped) before frames with low drop priority. • • 0 - Low discard priority 1 - High discard priority Bit [0]: • Frame discard priority for frames with VLAN transmit priority 0 (Default 0) Bit [1]: • Frame discard priority for frames with VLAN transmit priority 1 (Default 0) Bit [2]: • Frame discard priority for frames with VLAN transmit priority 2 (Default 0) Bit [3]: • Frame discard priority for frames with VLAN transmit priority 3 (Default 0) Bit [4]: • Frame discard priority for frames with VLAN transmit priority 4 (Default 0) Bit [5]: • Frame discard priority for frames with VLAN transmit priority 5 (Default 0) Bit [6]: • Frame discard priority for frames with VLAN transmit priority 6 (Default 0) Bit [7]: • Frame discard priority for frames with VLAN transmit priority 7 (Default 0) 83 Zarlink Semiconductor Inc. MVTX2804 11.9.1.11 • • Data Sheet TOSDML - TOS DISCARD MAP I2C Address h048, CPU Address:h50A Accessed by CPU, serial interface and I 2C (R/W) 7 6 5 4 3 2 1 0 FDT7 FDT6 FDT5 FDT4 FDT3 FDT2 FDT1 FDT0 Map TOS into frame discard when low priority buffer usage is above threshold Bit [0]: Frame discard priority for frames with TOS transmit priority 0 (Default 0) Bit [1]: Frame discard priority for frames with TOS transmit priority 1 (Default 0) Bit [2]: Frame discard priority for frames with TOS transmit priority 2 (Default 0) Bit [3]: Frame discard priority for frames with TOS transmit priority 3 (Default 0) Bit [4]: Frame discard priority for frames with TOS transmit priority 4 (Default 0) Bit [5]: Frame discard priority for frames with TOS transmit priority 5 (Default 0) Bit [6]: Frame discard priority for frames with TOS transmit priority 6 (Default 0) Bit [7]: Frame discard priority for frames with TOS transmit priority 7 (Default 0) 11.9.2 • • BMRC - Broadcast/Multicast Rate Control I2C Address h049, CPU Address:h50B) Accessed by CPU, serial interface and I 2C (R/W) 7 4 Broadcast Rate 3 0 Multicast Rate This broadcast and multicast rate defines for each port the number of incoming packet allowed to be forwarded within a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit, program the field to 0. Bit [3:0]: Multicast Rate Control Number of multicast packets allowed within the time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0). Bit [7:4]: Broadcast Rate Control Number of broadcast packets allowed within the time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0) 11.9.3 • • UCC - Unicast Congestion Control I2C Address h04A, CPU Address:h50C Accessed by CPU, serial interface and I 2C (R/W) 7 0 Unicast congest threshold Bit [7:0]: Number of frame count. Used for best effort dropping at B% when destination port's best effort queue reaches UCC threshold and shared pool is all in use. Granularity 16 frame. (Default: h07) 84 Zarlink Semiconductor Inc. MVTX2804 11.9.4 • • MCC - Multicast Congestion Control I2C Address h0B7, CPU Address:h50D Accessed by CPU, serial interface and I 2C (R/W) 7 0 FC reaction prd Multicast congest threshold Bit [3:0]: In multiples of two. Used for triggering MC flow control when destination port's multicast best effort queue reaches MCC threshold. (Default 5'h08) Bit [4]: Must be 0 Bit [7:5]: Flow control reaction period. ([7:5] *4 uSec)+3 uSec (Default 3'h2). 11.9.5 • • Data Sheet PRG - Port Reservation for Giga ports I2C Address h0B9, CPU Address:h50F Accessed by CPU, serial interface and I 2C (R/W) 7 7 7 Buffer low thd Bit [3:0]: 0 Per source buffer Reservation Per source buffer reservation. Define the space in the FDB reserved for each port. Expressed in multiples of 16 packets. For each packet 1536 bytes are reserved in the memory. Default: 4'hA for 4MB memory 4'h6 for 2MB memory 4'h3 for 1MB memory Bits [7:4]: Expressed in multiples of 16 packets. Threshold for dropping all best effort frames when destination port best effort queues reach UCC threshold and shared pool is all used and source port reservation is at or below the PRG[7:4] level. Also the threshold for initiating UC flow control. Default: 4'h6 for 4MB memory 4'h2 for 2MB memory 4'h1 for 1MB memory 11.9.6 11.9.6.1 • • FCB Reservation SFCB - SHARE FCB SIZE I2C Address h04E), CPU Address:h510 Accessed by CPU, serial interface and I 2C (R/W) 7 0 Shared buffer size 85 Zarlink Semiconductor Inc. MVTX2804 Bits [7:0]: Data Sheet • Expressed in multiples of 8. Buffer reservation for shared pool. (Default 4G & 4M = 8'd62) (Default 4G & 2M = 8'd20) (Default 4G & 1M = 8'd08 (Default 8G & 4M = 8'd150) (Default 8G & 2M = 8'd55) (Default 8G & 1M = 8'd25 11.9.6.2 • • C2RS - CLASS 2 RESERVED SIZE I2C Address h04F, CPU Address:h511 Accessed by CPU, serial interface and I 2C (R/W) 7 0 Class 2 FCB Reservation Bits [7:0]: 11.9.6.3 • • • Buffer reservation for class 2 (third lowest priority). Granularity 2. (Default 8'h00) C3RS - CLASS 3 RESERVED SIZE I2C Address h050, CPU Address:h512 Accessed by CPU, serial interface and I 2C (R/W) 7 0 Class 3 FCB Reservation Bits [7:0]: 11.9.6.4 • • • Buffer reservation for class 3. Granularity 2. (Default 8'h00) C4RS - CLASS 4 RESERVED SIZE I2C Address h051, CPU Address:h513 Accessed by CPU, serial interface and I 2C (R/W) 7 0 Class 4 FCB Reservation Bits [7:0]: 11.9.6.5 • • • Buffer reservation for class 4. Granularity 2. (Default 8'h00) C5RS - CLASS 5 RESERVED SIZE I2C Address h052; CPU Address:h514 Accessed by CPU, serial interface and I 2C (R/W) 7 0 Class 5 FCB Reservation Bits [7:0]: • Buffer reservation for class 5. Granularity 2. 86 Zarlink Semiconductor Inc. (Default 8'h00) MVTX2804 11.9.6.6 • • Data Sheet C6RS - CLASS 6 RESERVED SIZE I2C Address h053; CPU Address:h515 Accessed by CPU, serial interface and I 2C (R/W) 7 0 Class 6 FCB Reservation Bits [7:0]: 11.9.6.7 • • • Buffer reservation for class 6 (second highest priority). Granularity 2. (Default 8'h00) C7RS - CLASS 7 RESERVED SIZE I2C Address h054; CPU Address:h516 Accessed by CPU, serial interface and I 2C (R/W) 7 0 Class 7 FCB Reservation Bits [7:0]: 11.9.7 • Accessed by CPU; serial interface and I 2C (R/W): QOSC00 - BYTE_C2_G0 I2C Address h055, CPU Address:h517 Bits [7:0]: 11.9.7.2 • • • • Byte count threshold for C2 queue WRED (Default 8'h28) (1024byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC01 - BYTE_C3_G0 I2C Address h056, CPU Address:h518 Bits [7:0]: 11.9.7.3 • Buffer reservation for class 7 (highest priority). Granularity 2. Classes Byte Gigabit Port 0 11.9.7.1 • • • • • Byte count threshold for C3 queue WRED (Default 8'h28) (512byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC02 - BYTE_C4_G0 I2C Address h057, CPU Address:h519 Bits [7:0]: • • • Byte count threshold for C4 queue WRED (Default 8'h28) (256byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) 87 Zarlink Semiconductor Inc. (Default 8'h00) MVTX2804 11.9.7.4 • QOSC03 - BYTE_C5_G0 I2C Address h058, CPU Address:h51A Bits [7:0]: 11.9.7.5 • • • • Byte count threshold for C5 queue WRED (Default 8'h28) (128byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC04 - BYTE_C6_G0 I2C Address h059, CPU Address:h51B Bits [7:0]: 11.9.7.6 • Data Sheet • • • Byte count threshold for C6 queue WRED (Default 8'h50) (64byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC05 - BYTE_C7_G0 I2C Address h05A, CPU Address:h51C Bits [7:0]: • • • Byte count threshold for C6 queue WRED (Default 8'h50) (64byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC00 through QOSC05 represent the values F-A in Table 3 for Gigabit port 0. They are per-queue byte thresholds for weighted random early drop (WRED). QOSC05 represents A, and QOSC00 represents F. See QoS application note for more information. 11.9.8 • Classes Byte Gigabit Port 1 Accessed by CPU; serial interface and I 2C (R/W): 11.9.8.1 • QOSC06 - BYTE_C2_G1 I2C Address h05B, CPU Address:h51D Bits [7:0]: 11.9.8.2 • Byte count threshold for C2 queue WRED (Default 8'h28) (1024byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC07 - BYTE_C3_G1 I2C Address h05C, CPU Address:h51E Bits [7:0]: 11.9.8.3 • • • • • • • Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC08 - BYTE_C4_G1 I2C Address h05D, CPU Address:h51F Bits [7:0]: • • • Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) 88 Zarlink Semiconductor Inc. MVTX2804 11.9.8.4 • QOSC09 - BYTE_C5_G1 I2C Address h05E, CPU Address:h520 Bits [7:0]: 11.9.8.5 • • • • Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC0A - BYTE_C6_G1 I2C Address h05F, CPU Address:h521 Bits [7:0]: 11.9.8.6 • Data Sheet • • • Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC0B - BYTE_C7_G1 I2C Address h060, CPU Address:h522 Bits [7:0]: • • • Byte count threshold for C7 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC06 through QOSC0B represent the values F-A in Table 3. They are per-queue byte thresholds for random early drop. QOSC0B represents A, and QOSC06 represents F. See QoS application note for more information 11.9.9 • Classes Byte Gigabit Port 2 Accessed by CPU; serial interface and I 2C (R/W): 11.9.9.1 • I2C Address h061, CPU Address:h523 Bits [7:0]: 11.9.9.2 • • • • Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC0D - BYTE_C3_G2 I2C Address h062, CPU Address:h524 Bits [7:0]: 11.9.9.3 • QOSC0C - BYTE_C2_G2 • • • Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC0E - BYTE_C4_G2 I2C Address h063, CPU Address:h525 Bits [7:0]: • • • Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) 89 Zarlink Semiconductor Inc. MVTX2804 11.9.9.4 • 11.9.9.5 • • • Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC10 - BYTE_C6_G2 I2C Address h065, CPU Address:h527 Bits [7:0]: 11.9.9.6 • QOSC0F - BYTE_C5_G2 I2C Address h064, CPU Address:h526 Bits [7:0]: • Data Sheet • • • Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC11 - BYTE_C7_G2 I2C Address h066, CPU Address:h528 Bits [7:0]: • • • Byte count threshold for C7 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC0C through QOSC11 represent the values F-A in Table 3. They are per-queue byte thresholds for random early drop. QOSC11 represents A, and QOSC0C represents F. See QoS application note for more information 11.9.10 • Accessed by CPU; serial interface and I2C (R/W): 11.9.10.1 • 11.9.10.2 • • • Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC13 - BYTE_C3_G3 I2C Address h068, CPU Address:h52A Bits [7:0]: 11.9.10.3 • QOSC12 - BYTE_C2_G3 I2C Address h067, CPU Address:h529 Bits [7:0]: • Classes Byte Gigabit Port 3 • • • Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC14 - BYTE_C4_G3 I2C Address h069, CPU Address:h52B Bits [7:0]: • • • Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) 90 Zarlink Semiconductor Inc. MVTX2804 11.9.10.4 • 11.9.10.5 • • • Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC16 - BYTE_C6_G3 I2C Address h06B, CPU Address:h52D Bits [7:0]: 11.9.10.6 • QOSC15 - BYTE_C5_G3 I2C Address h06A, CPU Address:h52C Bits [7:0]: • Data Sheet • • • Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC17 - BYTE_C7_G3 I2C Address h06C, CPU Address:h52E Bits [7:0]: • • • Byte count threshold for C7 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC12 through QOSC17 represent the values F-A in Table 3. They are per-queue byte thresholds for random early drop. QOSC17 represents A, and QOSC12 represents F. See QoS application note for more information 11.9.11 • Accessed by CPU; serial interface and I 2C (R/W): 11.9.11.1 • 11.9.11.2 • • • Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC019 - BYTE_C3_G4 I2C Address h06E, CPU Address:h530 Bits [7:0]: 11.9.11.3 • QOSC18 - BYTE_C2_G4 I2C Address h06D, CPU Address:h52F Bits [7:0]: • Classes Byte Gigabit Port 4 • • • Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC1A - BYTE_C4_G4 I2C Address h06F, CPU Address:h531 Bits [7:0]: • • • Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) 91 Zarlink Semiconductor Inc. MVTX2804 11.9.11.4 • 11.9.11.5 • • • Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC1C - BYTE_C6_G4 I2C Address h071, CPU Address:h533 Bits [7:0]: 11.9.11.6 • QOSC1B - BYTE_C5_G4 I2C Address h070, CPU Address:h532 Bits [7:0]: • Data Sheet • • • Byte count threshold for C6 queue WRED (Default 8'h28) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC1D- BYTE_C7_G4 I2C Address h072, CPU Address:h534 Bits [7:0]: • • • Byte count threshold for C7 queue WRED (Default 8'h28) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC18 through QOSC1D represent the values F-A in Table 3. They are per-queue byte thresholds for random early drop. QOSC1D represents A, and QOSC18 represents F. See QoS application note for more information 11.9.12 • Accessed by CPU; serial interface and I 2C (R/W): 11.9.12.1 • 11.9.12.2 • • • Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC1F - BYTE_C3_G5 I2C Address h074, CPU Address:h536 Bits [7:0]: 11.9.12.3 • QOSC1E- BYTE_C2_G5 I2C Address h073, CPU Address:h535 Bits [7:0]: • Classes Byte Gigabit Port 5 • • • Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC20 - BYTE_C4_G5 I2C Address h075, CPU Address:h537 Bits [7:0]: • • • Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) 92 Zarlink Semiconductor Inc. MVTX2804 11.9.12.4 • 11.9.12.5 • • • Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC22 - BYTE_C6_G5 I2C Address h077, CPU Address:h539 Bits [7:0]: 11.9.12.6 • QOSC21 - BYTE_C5_G5 I2C Address h076, CPU Address:h538 Bits [7:0]: • Data Sheet • • • Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC23 - BYTE_C7_G5 I2C Address h078, CPU Address:h53A Bits [7:0]: • • • Byte count threshold for C4 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC1E through QOSC23 represent the values F-A in Table 3. They are per-queue byte thresholds for random early drop. QOSC23 represents A, and QOSC1E represents F. See QoS application note for more information 11.9.13 • Accessed by CPU; serial interface and I2C (R/W): 11.9.13.1 • 11.9.13.2 • • • Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC25 - BYTE_C3_G6 I2C Address h07A, CPU Address:h53C Bits [7:0]: 11.9.13.3 • QOSC24 - BYTE_C2_G6 I2C Address h079, CPU Address:h53B Bits [7:0]: • Classes Byte Gigabit Port 6 • • • Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC26 - BYTE_C4_G6 I2C Address h07B, CPU Address:h53D Bits [7:0]: • • • Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) 93 Zarlink Semiconductor Inc. MVTX2804 11.9.13.4 • 11.9.13.5 • • • Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC28 - BYTE_C6_G6 I2C Address h07D, CPU Address:h53F Bits [7:0]: 11.9.13.6 • QOSC27 - BYTE_C5_G6 I2C Address h07C, CPU Address:h53E Bits [7:0]: • Data Sheet • • • Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC29 - BYTE_C7_G6 I2C Address h07E, CPU Address:h540 Bits [7:0]: • • • Byte count threshold for C7 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC24 through QOSC29 represent the values F-A in Table 3. They are per-queue byte thresholds for random early drop. QOSC29 represents A, and QOSC24 represents F. See QoS application note for more information. 11.9.14 • Accessed by CPU; serial interface and I 2C (R/W): 11.9.14.1 • 11.9.14.2 • • • Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC2B - BYTE_C3_G7 I2C Address h080, CPU Address:h542 Bits [7:0]: 11.9.14.3 • QOSC2A - BYTE_C2_G7 I2C Address h07F, CPU Address:h541 Bits [7:0]: • Classes Byte Gigabit Port 7 • • • Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC2C - BYTE_C4_G7 I2C Address h081, CPU Address:h543 Bits [7:0]: • • • Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) 94 Zarlink Semiconductor Inc. MVTX2804 11.9.14.4 • 1QOSC2D - BYTE_C5_G7 I2C Address h082, CPU Address:h544 Bits [7:0]: • • • 11.9.14.5 • Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC2E - BYTE_C6_G7 I2C Address h083, CPU Address:h545 Bits [7:0]: • • • 11.9.14.6 • Data Sheet Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC2F - BYTE_C7_G7 I2C Address h084, CPU Address:h546 Bits [7:0]: • • • Byte count threshold for C5 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC00 through QOSC05 represent the values F-A in Table 3. They are per-queue byte thresholds for random early drop. QOSC05 represents A, and QOSC00 represents F. See QoS application note for more information. 11.9.15 • Classes Byte Limit CPU Accessed by CPU; serial interface and I 2C (R/W): 11.9.15.1 • CPU Address:h547 Bits [7:0]: 11.9.15.2 • • Byte count threshold for C1 queue (256byte/unit) QOSC31 - BYTE_C02 CPU Address:h548 Bits [7:0]: 11.9.15.3 • QOSC30 - BYTE_C01 • Byte count threshold for C2 queue (256byte/unit) QOSC32 - BYTE_C03 CPU Address:h549 Bits [7:0]: • Byte count threshold for C3 queue (256byte/unit) QOSC30 through QOSC32 represent the values C-A for CPU port. The values A-C are per-queue byte thresholds for random early drop. QOSC32 represents A, and QOSC30 represents C. Queue 0 does not have weighted random drop. See QoS application note for more information. 95 Zarlink Semiconductor Inc. MVTX2804 11.9.16 • Data Sheet Classes WFQ Credit Set 0 Accessed by CPU only 11.9.16.1 • QOSC33 - CREDIT_C0_G0 CPU Address:h54A Bits [5:0]: • W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: • Priority type. Define one of the four QoS mode of operation for port 0 (Default 2'00) See table below: • Queue P6 P5 P4 P3 P2 P1 Option 1 Bit [7:6] = 2'B00 DELAY BOUND BE Option 2 Bit [7:6] = 2'B01 SP DELAY BOUND BE Option 3 Bit [7:6] = 2'B10 SP WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] W7 11.9.16.2 • P7 W6 W5 W4 W3 W2 W1 P0 W0 QOSC34 - CREDIT_C1_G0 CPU Address:h54B Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) • 0 = Not support QoS when the Source port Flow control status is on. • 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) • 0= DO NOT send any frames if the XOFF is on. • 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] • W1 - Credit register. (Default 4'h04) Fc_allow Fc_be_only Lost_ok Egress- for dest fc_status Ingress- for src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD 1 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 1 1 Always Normal 96 Zarlink Semiconductor Inc. MVTX2804 11.9.16.3 • Bits [5:0]: • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved QOSC39- CREDIT_C6_G0 CPU Address:h550 Bits [5:0]: • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 11.9.16.8 • QOSC38 - CREDIT_C5_G0 CPU Address:h54F 11.9.16.7 • QOSC37 - CREDIT_C4_G0 CPU Address:h54E 11.9.16.6 • QOSC36 - CREDIT_C3_G0 CPU Address:h54D 11.9.16.5 • QOSC35 - CREDIT_C2_G0 CPU Address:h54C 11.9.16.4 • Data Sheet QOSC3A- CREDIT_C7_G0 CPU Address:h551 Bits [5:0]: • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC33 through QOSC3Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 0. The granularity of the numbers is 1, and their sum must be 64. QOSC33 corresponds to W0, and QOSC3A corresponds to W7. 11.9.17 • Classes WFQ Credit Port G1 Access by CPU only 97 Zarlink Semiconductor Inc. MVTX2804 11.9.17.1 • Data Sheet QOSC3B - CREDIT_C0_G1 CPU Address:h552 Bits [5:0]: • W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: • • Priority type. Define one of the four QoS mode of operation for port 1 (Default 2'00) See table below: Queue P7 P6 Option 1 Bit [7:6] = 2'B00 P5 P4 SP P1 Option 3 Bit [7:6] = 2'B10 SP P0 BE DELAY BOUND BE WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] • P2 DELAY BOUND Option 2 Bit [7:6] = 2'B01 11.9.17.2 P3 W7 W6 W5 W4 W3 W2 W1 W0 QOSC3C - CREDIT_C1_G1 CPU Address:h54B Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) • 0 = Not support QoS when the Source port Flow control status is on. • 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) • 0= DO NOT send any frames if the XOFF is on. • 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] • Fc_allow W1 - Credit register. (Default 4'h04) Fc_be_only Lost_ok Egress- for dest fc_status Ingressfor src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD 1 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 1 1 Always Normal 98 Zarlink Semiconductor Inc. MVTX2804 11.9.17.3 • Bits [5:0]: • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved QOSC41- CREDIT_C6_G1 CPU Address:h557 Bits [5:0]: • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 11.9.17.8 • QOSC40 - CREDIT_C5_G1 CPU Address:h556 11.9.17.7 • QOSC3F - CREDIT_C4_G1 CPU Address:h555 11.9.17.6 • QOSC3E - CREDIT_C3_G1 CPU Address:h554 11.9.17.5 • QOSC3D - CREDIT_C2_G1 CPU Address:h553 11.9.17.4 • Data Sheet QOSC42- CREDIT_C7_G1 CPU Address:h558 Bits [5:0]: • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC3B through QOSC42 represents the set of WFQ parameters (see section 7.5) for Gigabit port 1. The granularity of the numbers is 1, and their sum must be 64. QOSC3B corresponds to W0, and QOSC42 corresponds to W7 99 Zarlink Semiconductor Inc. MVTX2804 11.9.18 • Classes WFQ Credit Port G2 Access by CPU only 11.9.18.1 • QOSC43 - CREDIT_C0_G2 CPU Address:h55A Bits [5:0]: • W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: • • Priority type. Define one of the four QoS mode of operation for port 2 (Default 2'00) See table below: Queue P7 P6 P5 P4 P3 P2 P1 Option 1 Bit [7:6] = 2'B00 DELAY BOUND BE Option 2 Bit [7:6] = 2'B01 SP DELAY BOUND BE Option 3 Bit [7:6] = 2'B10 SP WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] W7 11.9.18.2 • Data Sheet W6 W5 W4 W3 W2 W1 W0 QOSC44 - CREDIT_C1_G2 CPU Address:h55B Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) • 0 = Not support QoS when the Source port Flow control status is on. • 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) • 0= DO NOT send any frames if the XOFF is on. • 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] Fc_allow • W1 - Credit register. (Default 4'h04) Fc_be_only Lost_ok Egress- for dest fc_status Ingressfor src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD 1 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 1 1 Always Normal 100 Zarlink Semiconductor Inc. MVTX2804 11.9.18.3 • Bits [5:0]: • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved QOSC49- CREDIT_C6_G2 CPU Address:h560 Bits [5:0]: • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 11.9.18.8 • QOSC48 - CREDIT_C5_G2 CPU Address:h55F 11.9.18.7 • QOSC47 - CREDIT_C4_G2 CPU Address:h55E 11.9.18.6 • QOSC46 - CREDIT_C3_G2 CPU Address:h55D 11.9.18.5 • QOSC45 - CREDIT_C2_G2 CPU Address:h55C 11.9.18.4 • Data Sheet QOSC4A- CREDIT_C7_G2 CPU Address:h561 Bits [5:0]: • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC43 through QOSC4Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 2. The granularity of the numbers is 1, and their sum must be 64. QOSC43 corresponds to W0, and QOSC4A corresponds to W7. 101 Zarlink Semiconductor Inc. MVTX2804 11.9.19 • Classes WFQ Credit Port G3 Access by CPU only 11.9.19.1 • QOSC4B - CREDIT_C0_G3 CPU Address:h562 Bits [5:0]: • W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: • • Priority type. Define one of the four QoS mode of operation for port 3 (Default 2'00) See table below: Queue P7 P6 P5 P4 P3 P2 P1 Option 1 Bit [7:6] = 2'B00 DELAY BOUND BE Option 2 Bit [7:6] = 2'B01 SP DELAY BOUND BE Option 3 Bit [7:6] = 2'B10 SP WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] W7 11.9.19.2 • Data Sheet W6 W5 W4 W3 W2 W1 P0 W0 QOSC4 - CREDIT_C1_G3 CPU Address:h563 Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) • 0 = Not support QoS when the Source port Flow control status is on. • 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) • 0= DO NOT send any frames if the XOFF is on. • 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] • Fc_allow W1 - Credit register. (Default 4’h04) Fc_be_only Lost_ok Egress- for dest fc_status Ingressfor src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD 1 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 1 1 Always Normal 102 Zarlink Semiconductor Inc. MVTX2804 11.9.19.3 • Bits [5:0]: • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved QOSC51- CREDIT_C6_G3 CPU Address:h568 Bits [5:0]: • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 11.9.19.8 • QOSC50 - CREDIT_C5_G3 CPU Address:h567 11.9.19.7 • QOSC4F - CREDIT_C4_G3 CPU Address:h566 11.9.19.6 • QOSC4E - CREDIT_C3_G3 CPU Address:h565 11.9.19.5 • QOSC4D - CREDIT_C2_G3 CPU Address:h564 11.9.19.4 • Data Sheet QOSC52- CREDIT_C7_G3 CPU Address:h569 Bits [5:0]: • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC4B through QOSC52 represents the set of WFQ parameters (see section 7.5) for Gigabit port 3. The granularity of the numbers is 1, and their sum must be 64. QOSC4B corresponds to W0, and QOSC52 corresponds to W7. 103 Zarlink Semiconductor Inc. MVTX2804 11.9.20 • Classes WFQ Credit Port G4 Access by CPU only 11.9.20.1 • QOSC53 - CREDIT_C0_G4 CPU Address:h56A Bits [5:0]: W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: Priority type. Define one of the four QoS mode of operation for port 4 (Default 2'00) See table below: Queue P7 P6 P5 P4 P3 P2 P1 Option 1 Bit [7:6] = 2'B00 DELAY BOUND BE Option 2 Bit [7:6] = 2'B01 SP DELAY BOUND BE Option 3 Bit [7:6] = 2'B10 SP WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] W7 11.9.20.2 • Data Sheet W6 W5 W4 W3 W2 W1 P0 W0 QOSC54 - CREDIT_C1_G4 CPU Address:h56B Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) • 0 = Not support QoS when the Source port Flow control status is on. • 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) • 0= DO NOT send any frames if the XOFF is on. • 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] Fc_allow • W1 -Credit register. (Default 4'h04) Fc_be_only Egress- for dest fc_status Lost_ok Ingress- for src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD 1 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 1 1 Always Normal 104 Zarlink Semiconductor Inc. MVTX2804 11.9.20.3 • Bits [5:0]: • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved QOSC59- CREDIT_C6_G4 CPU Address:h570 Bits [5:0]: • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 11.9.20.8 • QOSC58 - CREDIT_C5_G4 CPU Address:h56F 11.9.20.7 • QOSC57 - CREDIT_C4_G4 CPU Address:h56E 11.9.20.6 • QOSC56 - CREDIT_C3_G4 CPU Address:h56D 11.9.20.5 • QOSC55 - CREDIT_C2_G4 CPU Address:h56C 11.9.20.4 • Data Sheet QOSC5A- CREDIT_C7_G4 CPU Address:h571 Bits [5:0]: • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC53 through QOSC5A represents the set of WFQ parameters (see section 7.5) for Gigabit port 4. The granularity of the numbers is 1, and their sum must be 64. QOSC53 corresponds to W0, and QOSC5A corresponds to W7. 105 Zarlink Semiconductor Inc. MVTX2804 11.9.20.9 • Classes WFQ Credit Port G5 Access by CPU only 11.9.20.10 • QOSC5B - CREDIT_C0_G5 CPU Address:h572 Bits [5:0]: • W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: • Priority type. Define one of the four QoS mode of operation for port 5 (Default 2'00) See table below: • Queue P7 P6 P5 P4 P3 P2 P1 Option 1 Bit [7:6] = 2'B00 DELAY BOUND BE Option 2 Bit [7:6] = 2'B01 SP DELAY BOUND BE Option 3 Bit [7:6] = 2'B10 SP WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] W7 11.9.20.11 • Data Sheet W6 W5 W4 W3 W2 W1 P0 W0 QOSC5C - CREDIT_C1_G5 CPU Address:h573 Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) • 0 = Not support QoS when the Source port Flow control status is on. • 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) • 0= DO NOT send any frames if the XOFF is on. • 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] Fc_allow • W1 - Credit register. (Default 4'h04) Fc_be_only Egress- for dest fc_status Lost_ok Ingress- for src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD 1 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 1 1 Always Normal 106 Zarlink Semiconductor Inc. MVTX2804 11.9.20.12 • Bits [5:0]: • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved QOSC61- CREDIT_C6_G5 CPU Address:h578 Bits [5:0]: • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 11.9.20.17 • QOSC60 - CREDIT_C5_G5 CPU Address:h577 11.9.20.16 • QOSC5F - CREDIT_C4_G5 CPU Address:h576 11.9.20.15 • QOSC5E - CREDIT_C3_G5 CPU Address:h575 11.9.20.14 • QOSC5D - CREDIT_C2_G5 CPU Address:h574 11.9.20.13 • Data Sheet QOSC62- CREDIT_C7_G5 CPU Address:h579 Bits [5:0]: • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC5B through QOSC62 represents the set of WFQ parameters (see section 7.5) for Gigabit port 5. The granularity of the numbers is 1, and their sum must be 64. QOSC5B corresponds to W0, and QOSC62 corresponds to W7. 107 Zarlink Semiconductor Inc. MVTX2804 11.9.21 • Classes WFQ Credit Port G6 Access by CPU only 11.9.21.1 • QOSC63 - CREDIT_C0_G6 CPU Address:h57A Bits [5:0]: • W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: • • Priority type. Define one of the four QoS mode of operation for port 6 (Default 2'00) See table below: Queue P7 P6 P5 P4 P3 P2 P1 Option 1 Bit [7:6] = 2'B00 DELAY BOUND BE Option 2 Bit [7:6] = 2'B01 SP DELAY BOUND BE Option 3 Bit [7:6] = 2'B10 SP WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] W7 11.9.21.2 • Data Sheet W6 W5 W4 W3 W2 W1 P0 W0 QOSC64 - CREDIT_C1_G6 CPU Address:h57B Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) • 0 = Not support QoS when the Source port Flow control status is on. • 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) • 0= DO NOT send any frames if the XOFF is on. • 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] Fc_allow • W1 - Credit register. (Default 4'h04) Fc_be_only Lost_ok Egress- for dest fc_status Ingressfor src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD 1 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 1 1 Always Normal 108 Zarlink Semiconductor Inc. MVTX2804 11.9.21.3 • Bits [5:0]: • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved QOSC69- CREDIT_C6_G6 CPU Address:h580 Bits [5:0]: • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 11.9.21.8 • QOSC68 - CREDIT_C5_G6 CPU Address:h57F 11.9.21.7 • QOSC67 - CREDIT_C4_G6 CPU Address:h57E 11.9.21.6 • QOSC66 - CREDIT_C3_G6 CPU Address:h57D 11.9.21.5 • QOSC65 - CREDIT_C2_G6 CPU Address:h57C 11.9.21.4 • Data Sheet QOSC6A- CREDIT_C7_G6 CPU Address:h581 Bits [5:0]: • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC63 through QOSC6A represents the set of WFQ parameters (see section 7.5) for Gigabit port 6. The granularity of the numbers is 1, and their sum must be 64. QOSC63 corresponds to W0, and QOSC6A corresponds to W7. 109 Zarlink Semiconductor Inc. MVTX2804 11.9.22 • Data Sheet Classes WFQ Credit Port G7 Access by CPU only 11.9.22.1 • QOSC6B - CREDIT_C0_G7 CPU Address:h582 Bits [5:0]: • W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: • Priority type. Define one of the four QoS mode of operation for port 7 (Default 2'00) See table below: • Queue 11.9.22.2 • P7 P6 P5 P4 P3 P2 P1 Option 1 Bit [7:6] = 2'B00 DELAY BOUND BE Option 2 Bit [7:6] = 2'B01 SP DELAY BOUND BE Option 3 Bit [7:6] = 2'B10 SP WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] W7 W6 W5 W4 W3 W2 W1 P0 W0 QOSC6C - CREDIT_C1_G7 CPU Address:h583 Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) • 0 = Not support QoS when the Source port Flow control status is on. • 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) • 0= DO NOT send any frames if the XOFF is on. • 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] Fc_allow • W1 - Credit register. (Default 4'h04) Fc_be_only Lost_ok Egress- for dest fc_status Ingress- for src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD 1 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 1 1 Always Normal 110 Zarlink Semiconductor Inc. MVTX2804 11.9.22.3 • Bits [5:0]: • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved Bits [5:0]: • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved QOSC71- CREDIT_C6_G7 CPU Address:h588 Bits [5:0]: • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 11.9.22.8 • QOSC70 - CREDIT_C5_G7 CPU Address:h587 11.9.22.7 • QOSC6F - CREDIT_C4_G7 CPU Address:h586 11.9.22.6 • QOSC6E - CREDIT_C3_G7 CPU Address:h585 11.9.22.5 • QOSC6D - CREDIT_C2_G7 CPU Address:h584 11.9.22.4 • Data Sheet QOSC72- CREDIT_C7_G7 CPU Address:h589 Bits [5:0]: • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC6B through QOSC72 represents the set of WFQ parameters (see section 7.5) for Gigabit port 7. The granularity of the numbers is 1, and their sum must be 64. QOSC6B corresponds to W0, and QOSC72 corresponds to W7. 111 Zarlink Semiconductor Inc. MVTX2804 11.9.23 • QOSC73 - TOKEN_RATE_G0 CPU Address:h58A Bits [7:0]: 11.9.23.2 • Class 6 Shaper Control Port G0 Accessed by CPU only 11.9.23.1 • Data Sheet • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) QOSC74 - TOKEN_LIMIT_G0 CPU Address:h58B Bits [7:0]: • Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0) QOSC73 and QOSC74 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC73 is an integer less than 64 (average rate), with granularity 1. QOSC74 is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC73 and QOSC74 apply to Gigabit port 0. Register QOSC39-CREDIT_C6_G0 programs the peak rate. See QoS application note for more information. 11.9.23.3 • Accessed by CPU only 11.9.23.4 • QOSC75 - TOKEN_RATE_G1 CPU Address:h58C Bits [7:0]: 11.9.23.5 • Class 6 Shaper Control Port G1 • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) QOSC76 - TOKEN_LIMIT_G1 CPU Address:h58D Bits [7:0]: • Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0) QOSC75 and QOSC76 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC75 is an integer less than 64 (average rate), with granularity 1. QOSC76 is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC75 and QOSC76 apply to Gigabit port 0. Register QOSC41-CREDIT_C6_G1 programs the peak rate. See QoS application note for more information. 112 Zarlink Semiconductor Inc. MVTX2804 11.9.24 • Class 6 Shaper Control Port G2 Accessed by CPU only 11.9.24.1 • QOSC77 - TOKEN_RATE_G2 CPU Address:h58E Bits [7:0]: 11.9.24.2 • Data Sheet • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) QOSC78 - TOKEN_LIMIT_G2 CPU Address:h58F Bits [7:0]: • Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0) QOSC77 and QOSC78 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC77 is an integer less than 64 (average rate), with granularity 1. QOSC78 is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC77 and QOSC78 apply to Gigabit port 2. QOSC49-CREDIT_C6_G2 programs the peak rate. See QoS application note for more information. 11.9.25 • Accessed by CPU only 11.9.25.1 • QOSC79 - TOKEN_RATE_G3 CPU Address:h590 Bits [7:0]: 11.9.25.2 • Class 6 Shaper Control Port G3 • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) QOSC7A - TOKEN_LIMIT_G3 CPU Address:h591 Bits [7:0]: • Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0) QOSC79 and QOSC7A correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC79 is an integer less than 64 (average rate), with granularity 1. QOSC7A is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC79 and QOSC7A apply to Gigabit port 3. QOSC51-CREDIT_C6_G3 programs the peak rate. See QoS application note for more information. 113 Zarlink Semiconductor Inc. MVTX2804 11.9.26 • QOSC7B - TOKEN_RATE_G4 CPU Address:h592 Bits [7:0]: 11.9.26.2 • Class 6 Shaper Control Port G4 Accessed by CPU only 11.9.26.1 • Data Sheet • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) QOSC7C - TOKEN_LIMIT_G4 CPU Address:h593 Bits [7:0]: • Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0) QOSC7B and QOSC7C correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC7B is an integer less than 64, with granularity 1 (average rate). QOSC7C is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC7B and QOSC7C apply to Gigabit port 4. QOSC59-CREDIT_C6_G4 programs the peak rate. See QoS application note for more information. 11.9.27 • Accessed by CPU only 11.9.27.1 • QOSC7D - TOKEN_RATE_G5 CPU Address:h594 Bits [7:0]: 11.9.27.2 • Class 6 Shaper Control Port G5 • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) QOSC7E - TOKEN_LIMIT_G5 CPU Address:h595 Bits [7:0]: • Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0) QOSC7D and QOSC7E correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC7D is an integer less than 64 (average rate), with granularity 1. QOSC7E is the programmed maximum value of the counter C1 (maximum burst size). This value is expressed in multiples of 16. QOSC7D and QOSC7E apply to Gigabit port 5. QOSC60-CREDIT_C6_G5 programs the peak rate. See QoS application note for more information. 114 Zarlink Semiconductor Inc. MVTX2804 11.9.28 Class 6 Shaper Control Port G6 11.9.28.1 Accessed by CPU only 11.9.28.2 QOSC7F - TOKEN_RATE_G6 • CPU Address:h596 Bits [7:0]: 11.9.28.3 • Data Sheet • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) QOSC80 - TOKEN_LIMIT_G6 CPU Address:h597 Bits [7:0]: • Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0) QOSC7F and QOSC80 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC7F is an integer less than 64 (average rate), with granularity 1. QOSC80 is the programmed maximum value of the counter C1 (maximum burst size). This value is expressed in multiples of 16. QOSC7F and QOSC80 apply to Gigabit port 6. QOSC69-CREDIT_C6_G6 programs the peak rate. See QoS application note for more information. 11.9.29 • Accessed by CPU only 11.9.29.1 • QOSC81 - TOKEN_RATE_G7 CPU Address:h598 Bits [7:0]: 11.9.29.2 • Class 6 Shaper Control Port G7 • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) QOSC82 - TOKEN_LIMIT_G7 CPU Address:h599 Bits [7:0]: • Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0) QOSC81 and QOSC82 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC81 is an integer less than 64 (average rate), with granularity 1. QOSC82 is the programmed maximum value of the counter C1 (maximum burst size). This value is expressed in multiples of 16. QOSC81 and QOSC82 apply to Gigabit port 7. QOSC6F-CREDIT_C6_G7 programs the peak rate. See QoS application note for more information. 115 Zarlink Semiconductor Inc. MVTX2804 11.9.30 • • RDRC0 - WRED Rate Control 0 I2C Address:h085, CPU Address:h59A Accessed by CPU, Serial Interface and I2C (R/W) 7 4 3 X Rate Y Rate • Corresponds to the percentage X% in Chapter 7. Used for random early drop. Granularity 6.25%. (Default: 4'h8) Bits[3:0]: • Corresponds to the percentage Y% in Chapter 7. Used for random early drop. Granularity 6.25%.(Default: 4'hE) RDRC1 - WRED Rate Control 1 I2C Address:h086, CPU Address:h59B Accessed by CPU, Serial Interface and I2C (R/W) 7 4 3 Z Rate 0 B Rate Bits [7:4]: • Corresponds to the percentage Z% in Chapter 7. Used for random early drop. Granularity 6.25%.%. (Default: 4'h6) Bits[3:0]: • Corresponds to the best effort frame drop percentage B%, when shared pool is all in use and destination port best effort queue reaches UCC. Used for random early drop. Granularity 6.25%.%. (Default: 4'h8) 11.10 Group 6 Address 11.10.1 MISC Group 11.10.1.1 • • 0 Bits [7:4]: 11.9.31 • • Data Sheet MII_OP0 - MII REGISTER OPTION 0 I2C Address:h0B1, CPU Address:h600 Accessed by CPU, serial interface and I 2C (R/W) 7 Hfc Bit [7]: 6 5 1prst 4 NP 0 Vendor Spc. Reg Addr • Half duplex flow control (Do not use half duplex mode) 0 = Half duplex flow control always enable 1 = Half duplex flow control by negotiation Bit[6]: • Link partner reset auto-negotiate disable Bit [5] • Next page enable 1: enable 0: disable Bit[4:0]: • Vendor specified link status register address (null value means don't use it) (Default 00) 116 Zarlink Semiconductor Inc. MVTX2804 11.10.1.2 • • MII_OP1 - MII REGISTER OPTION 1 I2C Address:0B2, CPU Address:h601 Accessed by CPU, serial interface and I 2C (R/W) 7 4 3 Speed bit location 0 Duplex bit location Bits[3:0]: • Duplex bit location in vendor specified register Bits [7:4]: • Speed bit location in vendor specified register (Default 00) 11.10.1.3 • • Data Sheet FEN - FEATURE REGISTER I2C Address:h0B3, CPU Address:h602 Accessed by CPU, serial interface and I 2C (R/W) 7 6 DML Bits [0]: • MII 5 4 3 Rp IP Mul V-Sp 2 DS 1 0 SC Statistic Counter Enable (Default 0) • 0 - Disable • 1 - Enable • When statistic counter is enable, an interrupt control frame is generated to the CPU, every time a counter wraps around. This feature requires an external CPU. Bits[1]: • Reserved Bit [2]: • Support DS EF Code. (Default 0) • 0 - Disable • 1 - Enable (all ports) Bit [3]: • When 101110 is detected in DS field (TOS[7:2]), the frame priority is set for 110 and drop is set for 0. • Enable VLAN spanning tree support (Default 0) • 0 - Disable • 1 - Enable Bit [4]: • When VLAN spanning tree is enable the register ECR1Pn are not used to program the port spanning tree status. The port spanning tree status is programmed in the VLAN status field. • Disable IP Multicast Support (Default 1) • 0 - Enable IP Multicast Support • 1 - Disable IP Multicast Support Bit [5]: • When enable, IGMP packets are identified by search engine and are passed to the CPU for processing. IP multicast packets are forwarded to the IP multicast group members according to the VLAN port mapping table. • Enable report of new MAC and VLAN (Default 0) • 0 - Disable report to CPU • 1 - Enable report to CPU Bit [6]: • When disable: new VLAN port association report, new MAC address report and aging report are disable for all ports. When enable, register SE_OPEMODE is used to enable/disable selectively each function. • • 0: Enable MII Management State Machine (Default 0) 1: Disable MII Management State Machine 117 Zarlink Semiconductor Inc. MVTX2804 Bit [7]: 11.10.1.4 • • Data Sheet 0: Enable using MCT Link List structure 1: Disable using MCT Link List structure MIIC0 - MII COMMAND REGISTER 0 • CPU Address:h603 • Accessed by CPU and serial interface only (R/W) • Bit [7:0] MII Data [7:0] Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then program MII command. 11.10.1.5 MIIC1 - MII COMMAND REGISTER 1 • CPU Address:h604 • Accessed by CPU and serial interface only (R/W) • Bit [7:0] MII Data [15:8] Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. 11.10.1.6 • • MIIC2 - MII COMMAND REGISTER 2 CPU Address:h605 Accessed by CPU and serial interface only (R/W) 7 6 5 MII OP 4 0 Register address Bits [4:0]: REG_AD - Register PHY Address Bit [6:5] OP - Operation code “10” for read command and “01” for write command Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. 11.10.1.7 • • MIIC3 - MII COMMAND REGISTER 3 CPU Address:h606 Accessed by CPU and serial interface only (R/W) 7 6 Rdy Valid 5 4 0 PHY address Bits [4:0]: PHY_AD - 5 Bit PHY Address Bit [6] VALID - Data Valid from PHY (Read Only) Bit [7] RDY - Data is returned from PHY (Ready Only) Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. 118 Zarlink Semiconductor Inc. MVTX2804 11.10.1.8 • • • MIID0 - MII DATA REGISTER 0 CPU Address:h607 Accessed by CPU and serial interface only (RO) Bit [7:0] MII Data [7:0] 11.10.1.9 • • • MIID1 - MII DATA REGISTER 0 CPU Address:h608 Accessed by CPU and serial interface only (RO) Bit [7:0] MII Data [15:8] 11.10.1.10 • • Data Sheet LED MODE - LED CONTROL I2C Address:h0B4; CPU Address:h609 Accessed by CPU, serial interface and I 2C (R/W) 7 6 5 lpbk Bit[1:0] 4 Out Pattern 3 2 Clock rate • Sample hold time(Default 2'b00) 2'b00- 8 msec 2'b01- 16 msec 2'b10- 32 msec 2'b11- 64 msec Bit[3:2] • LED clock speed (serial mode) (Default 2'b10) 2'b00- sclk/1282'b01- sclk/256 2'b10- sclk/10242'b11- sclk/2048 • LED clock speed (parallel mode) (Default 2'b10) 2'b00- sclk/10242'b01- sclk/4096 2'b10- sclk/20482'b11- sclk/8192 119 Zarlink Semiconductor Inc. 1 0 Hold Time MVTX2804 Bit[5:4] LED indicator out pattern (Default 2'b11) 2'b00- Normal output, LED signals go straight out, no logical combination 2'b01- 4 bi-color LED mode 2'b10- 3 bi-color LED mode 2'b11- programmable mode 1. Normal mode: LED_BYTEOUT_[7]:Collision (COL) LED_BYTEOUT_[6]:Full duplex (FDX) LED_BYTEOUT_[5]:Speed[1] (SP1) LED_BYTEOUT_[4]:Speed[0] (SP0) LED_BYTEOUT_[3]:Link (LNK) LED_BYTEOUT_[2]:Rx (RXD) LED_BYTEOUT_[1]:Tx (TXD) LED_BYTEOUT_[0]:Flow Control (FC) 2. 4 bi-color LED mode LED_BYTEOUT_[7]:COL LED_BYTEOUT_[6]:1000FDX LED_BYTEOUT_[5]:1000HDX LED_BYTEOUT_[4]:100FDX LED_BYTEOUT_[3]:100HDX LED_BYTEOUT_[2]:10FDX LED_BYTEOUT_[1]:10HDX LED_BYTEOUT_[0]:ACT Note: All output qualified by Link signal 120 Zarlink Semiconductor Inc. Data Sheet MVTX2804 Data Sheet 3. 3 bi-color LED mode: LED_BYTEOUT_[7]:COL LED_BYTEOUT_[6]:LNK LED_BYTEOUT_[5]:FC LED_BYTEOUT_[4]:SPD1000 LED_BYTEOUT_[3]:SPD100 LED_BYTEOUT_[2]:FDX LED_BYTEOUT_[1]:HDX LED_BYTEOUT_[0]:ACT Note: All output qualified by Link signal 4. Programmable mode: LED_BYTEOUT_[7]:Link LED_BYTEOUT_[6:0]:Defined by the LEDSIG6 ~ LEDSIG0 programmable registers. Note: All output qualified by Link signal Bit[6]: • Reserved. Must be '0' Bit[7]: • Enable internal loop back. When this bit is set to '1' all ports work in internal loop back mode. For normal operation must be '0'. 11.10.2 • • I2C Address h0C5, CPU Address:h60B Accessed by CPU, serial interface and I 2C (R/W) Bit[7:0]: 11.10.3 11.10.3.1 • • CHECKSUM - EEPROM Checksum (Default 00) LED User LEDUSER0 I2C Address h0BB, CPU Address:h60C Accessed by CPU, serial interface and I 2C (R/W) 7 0 LED USER0 Bit[7:0]: (Default 00) Content will send out by LED serial logic 121 Zarlink Semiconductor Inc. MVTX2804 11.10.3.2 • • Data Sheet LEDUSER1 I2C Address h0BC, CPU Address:h60D Accessed by CPU, serial interface and I 2C (R/W) 7 0 LED USER1 Bit[7:0]: (Default 00) Content will send out by LED serial logic 11.10.3.3 LEDUSER2/LEDSIG2 • I2C Address h0BD, CPU Address:h60E • Accessed by CPU, serial interface and I 2C (R/W) In serial mode: 7 0 LED USER2 Bit[7:0]: (Default 00) Content will be sent out by LED serial shift logic In parallel mode: this register is used for programming the LED pin - led_byteout_[2] 7 COL FDX SP1 Bit [3:0]: (Default 4'H0) Signal polarity: 0: not invert polarity (high true) 1: invert polarity Bit [7:4] (Default 4'H8) 4 3 SP0 COL 0 FDX SP1 SP0 Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[2] = AND (all selected bits) 11.10.3.4 LEDUSER3/LEDSIG3 • I2C Address:h0BE, CPU Address:h60F • Access by CPU, serial interface (R/W) In serial mode: 0 7 LED USER3 Bit [7:0]: (Default 8'H33) Content will be sent out by LED serial shift logic. 122 Zarlink Semiconductor Inc. MVTX2804 Data Sheet In parallel mode: this register is used for programming the LED pin - led_byteout_[3] 0 7 COL FDX SP1 Bit [3:0]: (Default 4'H3) Signal polarity: 0: not invert polarity (high true) 1: invert polarity Bit [7:4] (Default 4'H3) SP0 COL FDX SP1 SP0 Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[3] = AND (all selected bits) 11.10.3.5 • • LEDUSER4/LEDSIG4 I2C Address:h0BF, CPU Address:h610 Access by CPU, serial interface (R/W) 0 7 LED USER4 Bit [7:0] (Default 8'H32) Content will be sent out by LED serial shift logic. In parallel mode: this register is used for programming the LED pin - led_byteout_[4] 7 COL SP1 3 SP0 COL 0 FDX SP1 SP0 Bit [3:0]: (Default 4'H2) Signal polarity: 0: not invert polarity (high true) 1: invert polarity Bit [7:4] (Default 4'H3) Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[4] = AND (all selected bits) 11.10.3.6 • • FDX 4 LEDUSER5/LEDSIG5 I2C Address:h0C0, CPU Address:h611 Access by CPU, serial interface (R/W) 0 7 LED USER5 Bit [7:0] (Default 8'H20) Content will be sent out by LED serial shift logic. 123 Zarlink Semiconductor Inc. MVTX2804 Data Sheet In parallel mode: this register is used for programming the LED pin - led_byteout_[5] 7 COL FDX SP1 Bit [3:0] (Default 4'H0) Signal polarity: 0: not invert polarity (high true) 1: invert polarity Bit [7:4] (Default 4'H2) 4 3 SP0 COL 0 FDX SP1 SP0 Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[5] = AND (all selected bits) 11.10.3.7 • • LEDUSER6/LEDSIG6 I2C Address:h0C1, CPU Address:h612 Access by CPU, serial interface (R/W) 0 7 LED USER6 Bit [7:0] (Default 8'H40) Content will be sent out by LED serial shift logic. In parallel mode: this register is used for programming the LED pin - led_byteout_[6] 7 COL FDX SP1 4 3 SP0 COL 0 FDX SP1 SP0 Bit [3:0] (Default 4'B0000) Signal polarity: 0: not invert polarity (high true) 1: invert polarity Bit [7:4] (Default 4'b0100) Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[6] = AND (all selected bits), or the polarity of led_byteout_[6] is controlled by LEDSIG1_0[3] 124 Zarlink Semiconductor Inc. MVTX2804 11.10.3.8 • • Data Sheet LEDUSER7/LEDSIG1_0 I2C Address:h0C2, CPU Address:h613 Access by CPU, serial interface (R/W) 0 7 LED USER7 Bit [7:0] (Default 8'H61) Content will be sent out by LED serial shift logic. In parallel mode: this register is used for programming the LED pin - led_byteout_[2] 7 GP RX TX 0 3 FC P6 RX TX FC Bit [7] (Default 1'B0) Global output polarity: this bit controls the output polarity of all led_byteout_ and led_port_sel pins. 0: no invert polarity - (led_byteout_[7:0] are high activated, led_port_sel[9:0] are low activated) 1: invert polarity - (led_byteout_[7:0] are low activated, led_port_sel[9:0] are high activated) Bit [6:4] (Default 3'B110) Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[6] = OR (all selected bits) Bit[3] (Default 1'B0) Polarity control of led_byteout_[6] 0: not invert 1: invert Bit [2:0] (Default 3'b001) Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[0] = OR (all selected bits) 11.10.4 • • 4 MIINP0 - MII Next Page Data Register 0 I2C Address:h0C3, CPU Address:h614 Access by CPU and serial interface only (R/W) Bit [7:0] 11.10.5 MII next page Data [7:0] MIINP1 - MII Next Page Data Register 1 • I2C Address:h0C4, CPU Address:h615 Access by CPU and serial interface only (R/W) Bit [7:0] MII next page Data [15:8] 125 Zarlink Semiconductor Inc. MVTX2804 11.11 Group F Address 11.11.1 11.11.1.1 • • CPU Access Group GCR-GLOBAL CONTROL REGISTER CPU Address: hF00 Accessed by CPU and serial interface. (R/W) 7 5 4 3 2 1 0 Init Reset Bist SR SC Bit [0]: Store configuration (Default = 0) Write '1' followed by '0' to store configuration into external EEPROM Bit[1]: Store configuration and reset (Default = 0) Write '1' to store configuration into external EEPROM and reset chip Bit[2]: Start BIST (Default = 0) Write '1' followed by '0' to start the device's built-in self-test. The result is found in the DCR register. Bit[3]: Soft Reset (Default = 0) Write '1' to reset the chip Bit[4]: Initialization Done (Default = 0) This bit is meaningless when CPU is not installed. In managed mode, CPU write this bit with “1” to indicate initialization is completed and ready to forward packets. 1 - initialization is done 0 - initialization is not completed. Bit[7] Interrupt Polarity (Default = 0) 1 - interrupt active high 0 - interrupt active low 11.11.1.2 • • Data Sheet DCR-DEVICE STATUS AND SIGNATURE REGISTER CPU Address: hF01 Accessed by CPU and serial interface. (RO) 6 7 Revision 5 4 Signature 3 RE 2 1 BinP BR Bit [0]: 1 - Busy writing configuration to I2C 0 - Not Busy writing configuration to I2C Bit[1]: 1 - Busy reading configuration from I2C 0 - Not Busy reading configuration from I2C Bit[2]: 1 - BIST in progress 0 - BIST not running Bit[3]: 1 - RAM Error 0 - RAM OK Bit[5:4]: Device Signature 00 - 4 Ports Device, non-management mode 01 - 8 Ports Device, non-management mode 10 - 4 Ports Device, management mode possible (need to install CPU) 11 - 8 Ports Device, management mode possible (need to install CPU) 126 Zarlink Semiconductor Inc. 0 BW MVTX2804 Bit [7:6]: 11.11.1.3 • • Revision DCR01-GIGA PORT STATUS CPU Address: hF02 Accessed by CPU and serial interface. (RO) 6 7 4 3 CIC 2 1 GIGA1 0 GIGA0 Bit [1:0]: Giga port 0 strap option - 00 - 100Mb MII mode - 01 - 2G mode - 10 - GMII - 11 - PCS Bit[3:2] Giga port 1 strap option - 00 - 100Mb MII mode - 01 - Reserved - 10 - GMII - 11 - PCS Bit [7] Chip initialization completed. Note: DCR01[7], DCR23[7], DCR45[7] and DCR67[7] have the same function. 11.11.1.4 • • Data Sheet DCR23-GIGA PORT STATUS CPU Address: hF03 Accessed by CPU and serial interface. (RO) 7 6 4 3 CIC Bit [1:0]: Giga port 2 strap option- 00 - 100Mb MII mode - 00 - 100Mb MII mode - 01 - Reserved - 10 - GMII - 11 - PCS Bit[3:2] Giga port 3 strap option - 00 - 100Mb MII mode - 01 - 2G mode - 10 - GMII - 11 - PCS Bit [7] Chip initialization completed 127 Zarlink Semiconductor Inc. 2 1 0 GIGA3 GIGA2 MVTX2804 11.11.1.5 • • DCR45-GIGA PORT STATUS CPU Address: hF04 Accessed by CPU and serial interface. (RO) 6 7 4 3 CIC 2 1 GIGA5 Bit [1:0]: Giga port 4 strap option - 00 - 100Mb MII mode - 01 - Reserved - 10 - GMII - 11 - PCS Bit[3:2] Giga port 5 strap option - 00 - 100Mb MII mode - 01 - 2G mode - 10 - GMII - 11 - PCS Bit [7] Chip initialization completed 11.11.1.6 • • Data Sheet 0 GIGA4 DCR67-GIGA PORT STATUS CPU Address: hF05 Accessed by CPU and serial interface. (RO) 6 7 4 3 CIC Bit [1:0]: Giga port 6 strap option - 00 - 100Mb MII mode - 01 - 2G mode - 10 - GMII - 11 - PCS Bit[3:2] Giga port 7 strap option - 00 - 100Mb MII mode - 01 - Reserved - 10 - GMII - 11 - PCS Bit [7] Chip initialization completed 2 GIGA7 128 Zarlink Semiconductor Inc. 1 0 GIGA6 MVTX2804 11.11.1.7 • • DPST - DEVICE PORT STATUS REGISTER CPU Address:hF06 Accessed by CPU and serial interface (R/W) Bit[2:0]: 11.11.1.8 • • Data Sheet Read back index register. This is used for selecting what to read back from DTST. (Default 00) - 3'B000 - Port 0 Operating mode and Negotiation status - 3'B001 - Port 1 Operating mode and Negotiation status - 3'B010 - Port 2 Operating mode and Negotiation status - 3'B011 - Port 3 Operating mode and Negotiation status - 3'B100 - Port 4 Operating mode and Negotiation status - 3'B101 - Port 5 Operating mode and Negotiation status - 3'B110 - Port 6 Operating mode and Negotiation status - 3'B111 - Port 7 Operating mode and Negotiation status DTST - Data Read Back Register CPU Address: hF07 Accessed by CPU and serial interface (RO) 7 6 5 4 3 2 1 0 MD InfoDet SigDet Giga lnkdn FE Fdpx Fc_en This register provides various internal information as selected in DPST bit[2:0] Bit[0]: Flow control enabled Bit[1]: Full duplex port Bit[2]: Fast ethernet port (if not giga) Bit[3]: Link is down Bit[4]: GIGA port Bit[5]: Signal detect (when PCS interface mode) Bit[6]: Pipe signal detected (pipe mode only) Bit[7]: Module detected (for hot swap purpose) 129 Zarlink Semiconductor Inc. MVTX2804 12.0 BGA and Ball Signal Description 12.1 BGA Views (Top-View) A 1 2 AVDD NC9 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Data Sheet 17 18 19 20 21 22 23 24 25 26 27 28 29 30 SCAN_ LB_D[0] LB_D[4] LB_D[5] LB_D[10 LB_D[16 LB_D[19] LB_D[26 LB_D[31 LB_D[32 LB_D[36 LB_D[40 LB_D[45 S_CLK LB_D[60 LB_A[3] LB_A[7] LB_A[11 LB_A[15 B_A[16] B_A[12] B_A[7] EN ] ] ] ] ] ] ] ] ] ] ] B_A[2] B_OE# B_D[27] B_D[26] NC4 NC3 LB_D[1] LB_D[3] LB_D[6] LB_D[12 LB_D[17 LB_D[20] LB_D[28 LB_CS0 LB_D[33 LB_D[37 LB_D[41 LB_D[47 LB_D[54 LB_D[58 LB_D[62 LB_A[6] LB_A[10 LB_A[13 B_A[17] B_A[13] B_A[8] ] ] ] # ] ] ] ] ] ] ] ] ] B_A[3] B_WE# B_D[30] DEV_CF G[1] NC5 B_D[25] B DEV_CF LA_D[0] [0] C LA_D[1] LA_CLK LA_D[3] NC6 LB_D[2] LB_D[8] LB_D[15 LB_D[18 LB_D[21] ] ] D LA_D[2] LA_D[5] LA_D[9] NC8 LB_CLK LB_D[9] LB_D[13 LB_D[23 LB_D[22] LB_D[24 LB_D[25 LB_D[35 LB_D[42 LB_D[44 LB_D[50 LB_D[51 LB_D[55 LB_D[63 LB_A[14 LB_A[18 LB_A[16 LB_A[19 B_A[9] B_A[10] B_ADSC ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] # E LA_D[8] LA_D[7] LA_D[6] LA_D[4] F LA_D[10 LA_D[11 LA_D[1 LA_D[13] LA_D[14 ] ] 2] ] VSS G LA_D[15 LA_D[16 LA_D[1 LA_D[18] LA_D[17 ] ] 9] ] VDD H LA_D[20 LA_D[21 LA_D[2 LA_D[29] LA_D[24 ] ] 2] ] J LA_D[23 LA_D[25 LA_D[2 LA_D[27] LA_D[31 ] ] 6] ] VDD K LA_D[28 LA_D[30 LA_CS0 LA_D[37] LA_D[33 ] ] ] # VDD L LA_CS1 LA_RW# LA_D[3 LA_D[46] LA_D[41 # 2] ] M LA_D[34 LA_D[35 LA_D[3 LA_D[53] LA_D[48 ] ] 6] ] VCC N LA_D[38 LA_D[40 LA_D[4 LA_D[61] LA_D[56 ] ] 2] ] VCC VSS VSS VSS VSS VSS P LA_D[43 LA_D[44 LA_D[4 LA_A[4] LA_D[39 ] ] 5] ] VCC VSS VSS VSS VSS R LA_D[49 LA_D[50 LA_D[5 LA_D[52] LA_D[47 ] ] 1] ] VSS VSS VSS VSS T LA_D[58 LA_D[57 LA_D[5 LA_D[54] LA_A[7] ] ] 5] VSS VSS VSS U LA_D[63 LA_D[62 LA_D[6 LA_D[59] LA_A[11 ] ] 0] ] VCC VSS V LA_A[6] LA_A[5] LA_A[3] LA_A[14] LA_A[18 ] VCC VSS W LA_A[10 LA_A[9] LA_A[8] LA_A[20] G0_TXD ] [1] VCC Y LA_A[15 LA_A[13 LA_A[12 G0_CRS/ G0_TXD ] ] ] L [4] NC7 AGND L_D[29] LB_RW# LB_D[34 LB_D[39 LB_D[43 LB_BD[4 LB_D[52 LB_D[57 LB_D[61 LB_A[4] LB_A[8] LB_A[12 B_A[18] B_A[14] B_A[11] B_A[5] ] ] ] 8] ] ] ] ] LB_D[7] LB_D[14 LB_D[11 LB_D[27] LB_D[30 LB_CS1 LB_D[38 LB_D[46 LB_D[49 LB_D[53 LB_D[56 LB_D[59 LB_A[5] LB_A[9] LB_A[17 LB_A[20 B_A[15] B_A[6] B_D[31] ] ] ] # ] ] ] ] ] ] ] ] VSS VDD VDD VCC VCC VCC VSS VSS VCC VCC VCC VDD VDD VSS AGND VSS VDD B_A[4] B_D[28] NC2 AVDD B_CLK B_D[22] B_D[29] B_D[24] B_D[18] B_D[21] B_D[17] B_D[23] B_D[19] B_D[16] B_D[14] NC1 B_D[9] B_D[10] B_D[11] B_D[12] B_D[20] B_D[4] B_D[3] B_D[6] B_D[7] B_D[15] B_D[8] P_INT# B_D[1] B_D[2] VDD B_D[13] P_A[1] P_A[2] P_WE# P_RD# VDD B_D[5] P_D[15] P_D[11] P_D[12] P_D[13] P_CS# P_D[14] P_D[7] P_D[8] P_D[10] VCC P_A[0] B_D[0] P_D[3] P_D[4] P_D[5] VSS VCC P_D[6] P_D[9] P_D[0] P_D[1] P_D[2] VSS VSS VCC T_D[15] T_D[11] T_D[12] T_D[13] T_D[14] VSS VSS VSS VSS T_D[10] T_D[5] T_D[7] T_D[8] T_D[9] VSS VSS VSS VSS VSS T_D[6] T_D[2] T_D[1] T_D[0] VSS VSS VSS VSS VSS VCC S_RST# T_D[3] TMODE[ TMODE[ RESOU 1] 0] T# VSS VSS VSS VSS VSS VCC G7_RX G7_RX_ LESYNO LE_CLK LE_DO D[7] ER # 0 VCC G7_RX G7_RXD G7_RX_ G7_RXD G7_RXD D[3] [1] DV [6] [5] T_D[4] G7_TXD G7_TX_ G7_RXD G7_RXD G7_RXD [6] EN [4] [2] [0] AA LA_A[19 LA_A[17 LA_A[16 GREFC[ G0_TXD ] ] ] 0] [7] VDD VDD G7_TXD G7_TXD G7_COL G7_RXC MIITXCK [0] [3] LK [7] AB MIITXCK G0_TXD G0_TX G0_TXC G0_TX_ [0] [2] D[0] LK ER VDD VDD G6_RX G7_TX_ G7_TXD G7_TXD G7_TXD D[7] ER [7] [5] [4] AC G0_RXC G0_TXD G0_TX G0_RXD[ G0_RXD LK [5] D[3] 2] [6] G6_RXD G6_RXD G7_TXD G7_TXD G7_CRS [2] [4] [2] [1] /L AD G0_RXD G0_TX_ G0_CO G0_TXD[ G0_RX_ [0] EN L 6] DV VSS AE G0_RXD G0_RXD G0_RX G0_RXD[ G1_TXD [5] [4] D[3] 1] [0] VSS VDD VDD VDD VCC VCC VCC VSS VSS VCC VCC VCC VDD VDD VSS VDD G6_RX G6_RX_ G7_TXC GREFC[ G6_RX_ D[0] ER LK 7] DV VSS G6_TXD G6_RXD G6_RXD G6_RXD G6_RXD [7] [6] [5] [3] [1] AF G0_RXD G0_RX_ GREFC[ G1_RXD[ G1_RXD G1_RXD G2_TXD G2_TXD G2_RXD[2] G2_RXD G2_RXD G3_TXD G3_TXD G3_COL G3_RXD G3_RXD IND_CM G3_RXD G3_RX_ G4_TXD G4_RXD G4_RXD G5_TXD G5_TXD G5_TX_ G5_RXD G6_RXC G6_TXD G6_COL G6_TX_ [7] ER 1] 2] [5] [7] [0] [7] [4] [5] [1] [6] [3] [6] [4] ER [3] [1] [4] [2] [4] ER [5] LK [6] ER AG G1_TXD G1_TXC G1CRS/ G1_TXD[ G2_TXC G1_RXD G2_TXD G2_TXD G2_RXD[3] G2_RXC G2_RXD G2_RX_ G3_TX_ G3_RXD G3_RXD G3_RXD GREFC[ M_MDIO G4_TXD G4_RXD G4_RXD G4_RXD G5_CRS G5_TXD MIITXCK G5_RXD G6_TXD G6_TXD G6_TX_ G6_TXD [1] LK L 7] LK [4] [4] [3] LK [7] ER EN [0] [5] [7] 4] [1] [5] [6] [7] /L [5] [5] [1] [3] [4] EN [5] AH G1_TXD G1_TXD MIITXC G1_RXD[ G1_RXC G2CRS/ MIITXCK G2_TX_ G2_RXD[1] G2_RX_ G3_TXC G3_TXD G3_TXD G3_RXC G3_RXD G3_RX_ G4_TXC G4_TXD G4_TXD G4_TX_ G4_RXC G4_RX_ G4_RX_ G5_TXD G5_TX_ G5_RXD G5_RXD G6_TXD G6_TXD G6_TXC [2] [3] K[1] 0] LK L [2] EN DV LK [3] [5] LK [2] DV LK [4] [6] ER LK DV ER [3] EN [3] [6] [1] [2] LK AJ G1_TXD G1_TXD G1_TX_ G1_COL G1_RXD GREFC[ G2_TXD G2_TXD G2_RXD[0] G2_RXD GREFC[ G3_TXD MIITXCK G3_TX_ G3_RXD M_MDC G4_TXD G4_TXD G4_TXD G4_RXD G4_COL GREFC[ G5_TXD G5_TXD G5_RXD G5_COL G5_RXD G5_RX_ G6_CRS G6_TXD [5] [4] ER [6] 2] [2] [6] [6] 3] [2] [3] ER [1] [0] [5] [7] [0] 5] [0] [6] [0] [4] ER /L [0] AK G1_TXD G1_TX_ G1_RX G1_RXD[ G1_RX_ G1_RX_ G2_TXD G2_TXD G2_TX_ER G2_COL G3_CRS G3_TXD G3_TXD G3_TXD CM_CLK G4CRS/ G4_TXD MIITXCK G4_TX_ G4_RXD G4_RXD G5_TXC G5_TXD G5_TXD G5_RXD G5_RXC G5_RXD G5_RX_ MIITXCK GREFC[ [6] EN D[1] 3] DV ER [1] [5] /L [0] [4] [7] L [2] [4] EN [2] [3] LK [1] [7] [2] LK [7] DV [6] 6] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 130 Zarlink Semiconductor Inc. 18 19 20 21 22 23 24 25 26 27 28 29 30 MVTX2804 12.2 Data Sheet Ball-Signal Descriptions All pins are CMOS type; all Input pins are 5 Volt tolerance, and all output pins are 3.3 CMOS drive. 12.2.1 Ball Signal Description in Managed Mode Ball No(s) Symbol I/O Description CPU Bus Interface K27, L27, K30, K29, K28, L30, N27, L29, L28, N26, M30, M29, M28, N30, N29, N28 P_DATA[15:0] I/O-TS with pull up Processor Bus Data Bit [15:0] J28, J27, M26 P_A[2:0] Input Processor Bus Address Bit [2:0] J29 P_WE# Input with weak internal pull up CPU Bus-Write Enable J30 P_RD# Input with weak internal pull up CPU Bus-Read Enable L26 P_CS# Input with weak internal pull up Chip Select H28 P_INT# Output CPU Interrupt Frame Buffer Interface U1, U2, N4, U3, U4, T1, T2, N5, T3, T4, M4, R4, R3, R2, R1, M5, R5, L4, P3, P2, P1, N3, L5, N2, P5, N1, K4, M3, M2, M1, K5, L3, J5, K2, H4, K1, J4, J3, J2, H5, J1, H3, H2, H1, G3, G4, G5, G2, G1, F5, F4, F3, F2, F1, D3, E1, E2, E3, D2., E4, C3, D1, C1, B2 LA_D[63:0] I/O-TS with pull up Frame Bank A- Data Bit [63:0] AA1, V5, AA2, AA3, Y1, V4, Y2, Y3, U5, W1, W2, W3, T5, V1, V2, P4, V3 LA_A[19:3] Output Frame Bank A - Address Bit [19:3] W4 LA_A[20] Output with pull up Frame Bank A - Address Bit [20] C2 LA_CLK Output Frame Bank A Clock Input K3 LA_CS0# Output with pull up Frame Bank A Low Portion Chip Selection L1 LA_CS1# Output with pull up Frame Bank A High Portion Chip Selection L2 LA_RW# Output with pull up Frame Bank A Read/Write 131 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol I/O Data Sheet Description CPU Bus Interface D18, B18, C18, A17, E17, B17, C17, E16, D17, B16, E15, C16, D16, D15, E14, C15, B15, E13, A15, D14, C14, D13, B14, A14, C13, E12, B13, A13, D12, C12, B12, A12, A11, E10, C10, B10, E9, A10, D11, D10, D8, D9, C9, B9, A9, C8, B8, A8, C7, E7, D7, B7, E8, A7, D6, C6, E6, B6, A6, A5, B5, C5, B4,A4 LB_D[63:0] I/O-TS with pullup Frame Bank B- Data Bit [63:0] D22, D20, E20, D21, A21, D19, B21, C21, A20, B20, E19, C20, A19, B19, E18, C19, A18 LB_A[19:3] Output Frame Bank B - Address Bit [19:3] E21 LB_A[20] Output with pull up Frame Bank B - Address Bit [20] D5 LB_CLK Output Frame Bank B Clock Input B11 LB_CS0# Output with pull up Frame Bank B Low Portion Chip Selection E11 LB_CS1# Output with pull up Frame Bank B High Portion Chip Selection C11 LB_RW# Output with pull up Frame Bank B Read/Write E24,B27, D27, C27, A27, A28, B30, D28, E27, C30, D30, G26, E28, D29, E26, E29, H26, E30, J26, F30, F29, F28, F27, H27, G30, G29, K26, G27, G28, H30, H29, M27 B_D[31:0] I/O-TS with pull up Switch Database Domain C22, B22, A22, E22, C23, B23, A23, C24, D24, D23, B24, A24, E23, C25, C26, B25, A25 B_A[18:2] Switch Database Interface - Data Bit [31:0] Output Switch Database Address (512K) - Address Bit [18:2] C29 B_CLK Output Switch Database Clock Input D25 B_ADSC# Output with pull up Switch Database Address Status Control B26 B_WE# Output with pull up Switch Database Write Chip Select A26 B_OE# Output with pull up Switch Database Read Chip Select M_MDC Output MII Management Data Clock - (common for all MII Ports [7:0]) MII Management Interface AJ16 132 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol I/O Data Sheet Description CPU Bus Interface AG18 M_MDIO I/O-TS with pull up MII Management Data I/O (common for all MII Ports -[7:0])) 2.5Mhz GMII / MII Interface (193) Gigabit Ethernet Access Port GREF_CLK [7:0] Input w/ pull up Giga Reference Clock AK15 CM_CLK Input w/ pull up Common Clock shared by port G[7:0] AF17 IND/CM Input w/ pull up 1: select GREF_CLK[7:0] as clock 0: select CM_CLK as clock for all ports AA30, AK29, AG25, AK18, AJ13, AH7, AH3, AB1 MII TX CLK[7:0] Input w/ pull up Input w/ pull up V26, W29, W30, Y28, W26, Y29, W27, Y30, G7_RXD[7:0] Input w/ pull up G[7:0] port - Receive Data Bit [7:0] AB26, AE27, AE28, AC27, AE29, AC26, AE30, AD26 G6_RXD[7:0] AK27, AH27, AF26, AJ27, AH26, AK25, AG26, AJ25 G5_RXD[7:0] AG22, AG21, AG20, AF22, AK21, AK20, AF21, AJ20 G4_RXD[7:0] AG16, AF16, AG15, AF18, AF15, AH15, AJ15, AG14 G3_RXD[7:0] AG11, AJ10, AF11, AF10, AG9, AF9, AH9, AJ9 G2_RXD[7:0] AF6, AJ5, AF5, AG6, AK4, AF4, AK3, AH4 G1_RXD[7:0] AF1, AC5, AE1, AE2, AE3, AC4, AE4, AD1 G0_RXD[7:0] AD29, AK30, AJ22, AG17, AJ11, AJ6, AF3,AA4 W28, AD30, AK28, AH22, AH16, AH10, AK5, AD5 G[7:0]_RX_DV Input w/ pull down G[7:0]port - Receive Data Valid V27, AD27, AJ28, AH23, AF19, AG12, AK6, AF2 G[7:0]_RX_ER Input w/ pull up G[7:0]port - Receive Error AC30, AJ29, AG23, AK16, AK11, AH6, AG3, Y4 G[7:0]_CRS/LI Input w/ pull down NK G[7:0]port - Carrier Sense 133 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol I/O Data Sheet Description CPU Bus Interface AA28, AF29, AJ26, AJ21, AF14, AK10, AJ4, AD3 AA29, AF27, AK26, AH21, AH14, AG10, AH5, AC1 G[7:0]_COL Input w/ pull up G[7:0]_RXCLK Input w/ pull up AB28, Y26, AB29, AB30, AA27, AC28, AC29, AA26 G7_TXD[7:0] AE26, AF28, AG30, AG28, AG27, AH29, AH28, AJ30 G6_TXD[7:0] AK24, AJ24, AG24, AF24, AH24, AF23, AK23, AJ23 G5_TXD[7:0] AJ19, AH19, AJ18, AH18, AF20, AK17, AG19, AJ17 G4_TXD[7:0] AK14, AF13, AH13, AK13, AH12, AJ12, AF12, AK12 G3_TXD[7:0] AF8, AJ8, AK8, AG7, AG8, AJ7, AK7, AF7 G2_TXD[7:0] AG4, AK1, AJ1, AJ2, AH2, AH1, AG1, AE5 G1_TXD[7:0] AA5, AD4, AC2, Y5, AC3, AB2, W5, AB3 G0_TXD[7:0] Output G[7:0]port - Collision Detected G[7:0]port - Receive Clock G[7:0]port - Transmit Data Bit [7:0] Y27, AG29, AH25, AK19, AG13, AH8, AK2, AD2 G[7:0]_TX_EN Output w/ pull up G[7:0]port - Transmit Data Enable AB27, AF30, AF25, AH20, AJ14, AK9, AJ3, AB5 G[7:0]_TX_ER Output w/ pull up G[7:0]port - Transmit Error AD28, AH30, AK22, AH17, AH11, AG5, AG2, AB4 G[7:0]_ TXCLK Output G[7:0]port - Gigabit Transmit Clock PMA Interface (193) Gigabit Ethernet Access Port (PCS) GREF_CLK [7:0] Input w/ pull up Gigabit Reference Clock AK15 CM_CLK Input w/ pull up Common Clock shared by port G[7:0] AF17 IND/CM Input w/ pull up I: select GREF_CLK[7:0] as clock 0: select CM_CLK as clock for all port AD29, AK30, AJ22, AG17, AJ11, AJ6, AF3,AA4 134 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol I/O Data Sheet Description CPU Bus Interface V26, W29, W30, Y28, W26, Y29, W27, Y30 G7_RXD[7:0] AB26, AE27, AE28, AC27, AE29, AC26, AE30, AD26 G6_RXD[7:0] AK27, AH27, AF26, AJ27, AH26, AK25, AG26, AJ25 G5_RXD[7:0] AG22, AG21, AG20, AF22, AK21, AK20, AF21, AJ20 G4_RXD[7:0] AG16, AF16, AG15, AF18, AF15, AH15, AJ15, AG14 G3_RXD[7:0] AG11, AJ10, AF11, AF10, AG9, AF9, AH9, AJ9 G2_RXD[7:0] AF6, AJ5, AF5, AG6, AK4, AF4, AK3, AH4 G1_RXD[7:0] AF1, AC5, AE1, AE2, AE3, AC4, AE4, AD1 G0_RXD[7:0] Input w/ pull up G[7:0]port - PMA Receive Data Bit [7:0] W28, AD30, AK28, AH22, AH16, AH10, AK5, AD5 GP[7:0]_RX_D Input w/ pull down [8] G[7:0]port - PMA Receive Data Bit [8] V27, AD27, AJ28, AH23, AF19, AG12, AK6, AF2 GP[7:0]_RX_D Input w/ pull up [9] G[7:0]port - PMA Receive Data Bit [9] AA28, AF29, AJ26, AJ21, AF14, AK10, AJ4, AD3 AA29, AF27, AK26, AH21, AH14, AG10, AH5, AC1 GP[7:0]_ RXCLK 1 Input w/ pull up G[7:0]port - PMA Receive Clock 1 GP[7:0]_RXCL Input w/ pull up K0 G[7:0]port - PMA Receive Clock 0 135 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol I/O Data Sheet Description CPU Bus Interface AB28, Y26, AB29, AB30, AA27, AC28, AC29, AA26 G7_TXD[7:0] Output G[7:0]port - PMA Transmit Data Bit [7:0] AE26, AF28, AG30, AG28, AG27, AH29, AH28, AJ30 G6_TXD[7:0] AK24, AJ24, AG24, AF24, AH24, AF23, AK23, AJ23 G5_TXD[7:0] AJ19, AH19, AJ18, AH18, AF20, AK17, AG19, AJ17 G4_TXD[7:0] AK14, AF13, AH13, AK13, AH12, AJ12, AF12, AK12 G3_TXD[7:0] AF8, AJ8, AK8, AG7, AG8, AJ7, AK7, AF7 G2_TXD[7:0] AG4, AK1, AJ1, AJ2, AH2, AH1, AG1, AE5 G1_TXD[7:0] AA5, AD4, AC2, Y5, AC3, AB2, W5, AB3 G0_TXD[7:0] Y27, AG29, AH25, AK19, AG13, AH8, AK2, AD2 GP[7:0]_TXD[ 8] Output w/ pull up G[7:0]port - PMA Transmit Data Bit [8] AB27, AF30, AF25, AH20, AJ14, AK9, AJ3, AB5 GP[7:0]_TXD[ 9] Output w/ pull up G[7:0]port - PMA Transmit Data Bit [9] AD28, AH30, AK22, AH17, AH11, AG5, AG2, AB4 G[7:0]_ TXCLK Output G[7:0]port - PMA Gigabit Transmit Clock Test Facility (3) U29 T_MODE0 I/O-TS with pull up Test - Set upon Reset, and provides NAND Tree test output during test mode Use external Pull up for normal operation U28 T_MODE1 I/O-TS with pull up Test - Set upon Reset, and provides NAND Tree test output during test mode Use external Pull up for normal operation A3 SCAN_EN Input w/ pull down Enable test mode For normal operation leave it open 136 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol Data Sheet I/O Description CPU Bus Interface LED Interface (serial and parallel) R28, T26, R27, T27, U27, T28, T29, T30 T_D[7:0]/ Output While resetting, T_D[7,0] are in input mode and are used as strapping pins. Internal pullup LED_PD - Parallel Led data [7:0] Output While resetting, T_D[15:8] are in input mode and are used as strapping pins. Internal pullup LED_PD[7:0] P26, P30, P29, P28, P27, R26, R30, R29 T_D[15:8]/ LED_PT[7:0] LED_PR[7:0] - Parallel Led port sel [7:0] V29 LED_CLK0/ Output LED_CLK0 - LED Serial Interface Output Clock LED_PT[8] LED_PT[8] - Parallel Led port sel [8] V30 LED_BLINK/ LED_DO/ LED_PT[9] Output While resetting, LED-BLINK is in input mode and is used as strapping pin. 1: No Blink, 0: Blink. Internal pullup. LED_DO - LED Serial Data Output Stream LED_PT[9] - Parallel Led port sel [9] V28 LED_PM/ Output w/ pull up LED_SYNCO# While resetting, LED_PM is in input mode and is used as strapping pin. Internal pull up. 1: Enable parallel interface, 0: enable serial interface. LED_SYNCO# - LED Output Data Stream Envelop System Clock, Power, and Ground Pins A16 S_CLK Input System Clock at 133 MHz U26 S_RST# Input - ST Reset Input U30 RESOUT# Output Reset PHY B1 DEV_CFG[0] Input w/ pull down Not used B28 DEV_CFG[1]I Input w/ pull down Not used Power core +2.5 Volt DC Supply AE7, AE9, F10, F21, F22, F9, G25, G6, J25, J6, K25, K6, AA25, AA6, AB25, AB6, AD25, AE10, AE21, AE22 VDD 137 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol Data Sheet I/O Description CPU Bus Interface VSS Ground Ground A1, C28 AVDD Power Analog +2.5 Volt DC Supply E5, E25 AVSS Ground Analog Ground AE12, AE13, AE14, AE17, AE18, AE19, F12, F13, F14, F17, F18, F19, M25, M6, N25, N6, P25, P6, U25, U6, V25, V6, W25, W6 VCC Power I/O +3.3 Volt DC Supply V14, V15, V16, V17, V18, F16, F24, F25, F6, F7, N13, N14, N15, N16, N17, N18, P13, P14, P15, P16, P17, P18, R13, R14, R15, R16, R17, R18, R25, R6, T13, T14, T15, T16, T17, T18, T25, T6, U13, U14, U15, U16, U17, U18, V13, AD6, AE15, AE16, AE24, AE25, AE6, F15 Bootstrap Pins (Default= pull up, 1= pull up 0= pull down) AD2,AB5 G0_TX_EN G0_TX_ER Default: PCS Giga0 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS AK2,AJ3 G1_TX_EN G1_TXER Default: PCS Giga1 Mode: G1_TXEN G1_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS AH8,AK9 G2_TX_EN G2_TX_ER Default: PCS Giga2 Mode: G2_TXEN G2_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS AG13,AJ14 G3_TX_EN G3_TX_ER Default: PCS Giga3 Mode: G3_TXEN G3_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS 138 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol I/O Data Sheet Description CPU Bus Interface AK19,AH20 G4_TX_EN G4_TX_ER Default: PCS Giga4 Mode: G4_TXEN G4_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS AH25,AF25 G5_TX_EN G5_TX_ER Default: PCS Giga5 Mode: G5_TXEN G5_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS AG29,AF30 G6_TX_EN G6_TX_ER Default: PCS Giga6 Mode: G6_TXEN G6_TXER 0 0 0 1 1 0 1 1 MII Rsvd GMII PCS Giga7 Mode: G7_TXEN G7_TXER 0 0 0 1 1 0 1 1 MII Rsvd GMII PCS Y27,AB27 G7_TX_EN G7_TX_ER Default: PCS After reset T_D[15:0] are used by the LED interface T30 T_D[0] 1 Giga link active status 0 - active low 1 - active high T29 T_D[1] 1 Power saving 0 - No power saving 1 - Power saving Stop MAC clock if no MAC activity. T28 T_D[2] Must be pulled-down Reserved - Must be pulled-down U27 T_D[3] 1 Hot plug port module detection enable 0 - module detection enable 1 - module detection disable T27 T_D[4] Must be pulled-down Reserved - Must be pulled-down R27 T_D[5] 1 SRAM memory size 0 - 512K SRAM 1 - 256K SRAM T26 T_D[6] 1 CPU Port mode 0 – 8 bit cpu data bus 1 – 16 bit cpu data bus R28 T_D[7] 1 FDB memory depth 1- one memory layer 0 - two memory layers 139 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol Data Sheet I/O Description CPU Bus Interface W4, E21 LA_A[20], LB_A[20] 1 FDB memory size 11 - 2M per bank = 4M total 10 - 1M per bank = 2M total 0x - 512K per bank = 1M total R29 T_D[8] 1 EEPROM installed 0 - EEPROM is installed 1 - EEPROM is not installed R30 T_D[9] 1 MCT Aging enable 0 - MCT aging disable 1 - MCT aging enable R26 T_D[10] 1 FCB handle aging enable 0 - FCB handle aging disable 1 - FCB handle aging enable P27 T_D[11] 1 Timeout reset enable 0 - timeout reset disable 1 - timeout reset enable Issue reset if any state machine did not go back to idle for 5sec. T_D[13:12] 1 Reserved P30 T_D[14] 1 CPU installed 0 - CPU installed 1 - CPU is not installed P26 T_D[15] 1 External RAM test 0 - Perform the infinite loop of ZBT RAM BIST. Debug test only 1 - Regular operation. P28, P29 After reset P_D[8:0] are used by the CPU bus interface N30, N29, N28 P_D[2:0] 111 ZBT RAM la_clk turning 3'b000 - control by reg. LCLKCR[2:0] 3'b001 - delay by method # 0 3'b010 - delay by method # 1 3'b011 - delay by method # 2 3'b100 - delay by method # 3 3'b101 - delay by method # 4 3'b110 - delay by method # 5 3'b111 - delay by method # 6 USE METHOD 6 FOR NORMAL OPERATION. External pull up not required 140 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol I/O Data Sheet Description CPU Bus Interface M30, M29, M28 P_D[5:3] 111 ZBT RAM lb_clk turning 3'b000 - control by reg. LCLKCR[6:4] 3'b001 - delay by method # 0 3'b010 - delay by method # 1 3'b011 - delay by method # 2 3'b100 - delay by method # 3 3'b101 - delay by method # 4 3'b110 - delay by method # 5 3'b111 - delay by method # 6 USE METHOD 6 FOR NORMAL OPERATION. External pull up not required L29, L28, N26 P_D[8:6] 111 SBRAM b_clk turning 3'b000 - control by BCLKCR[2:0] 3'b001 - delay by method # 0 3'b010 - delay by method # 1 3'b011 - delay by method # 2 3'b100 - delay by method # 3 3'b101 - delay by method # 4 3'b110 - delay by method # 5 3'b111 - delay by method # 6 USE METHOD 6 FOR NORMAL OPERATION. External pull up not required Notes # = Input = In-ST = Output = Out-OD= I/O-TS = I/O-OD = Active low signal Input signal Input signal with Schmitt-Trigger Output signal (Tri-State driver) Output signal with Open-Drain driver Input & Output signal with Tri-State driver Input & Output signal with Open-Drain driver 141 Zarlink Semiconductor Inc. MVTX2804 12.2.2 Data Sheet Ball - Signal Description in Unmanaged Mode Ball No(s) Symbol K27, L27, K30, K29, K28 P_DATA[15:11] I/O-TS with pull up Not used - leave unconnected L30 P_DATA[10] I/O - TS with pull up Trunk enable in unmanaged mode External pull up or unconnected disable trunk group 0 and 1 External pull down - enable trunk group 0 and 1 See register TRUNK0_MODE for port selection and trunk enable. N27 P_DATA[9] I/O - TS with pull up Trunk enable in unmanaged mode External pull up or unconnected disable trunk group 2 and 3 External pull down - enable trunk group 2 and 3 See register TRUNK1_MODE for port selection and trunk enable P_DATA[8:0] I/O - TS with pull up Bootstrap function - See bootstrap section L29, L28, N26, M30, M29, M28, N30, N29, N28 I/O Description J28 P_A[2] Input Not used - leave unconnected H28 P_INT# Output with internal weak pullup Not used - leave unconnected I2C Interface (0) Note: In unmanaged mode, Use I2C and Serial control interface to configure the system J27 SCL Output I2C Data Clock M26 SDA I/O-TS with pull up I2C Data I/O Serial Control Interface J29 PS_STROBE Input with weak internal pull up Serial Strobe Pin J30 PS_DI Input with weak internal pull up Serial Data Input L26 PS_DO (AUTOFD) Output with pull up Serial Data Output (AutoFD) U1, U2, N4, U3, U4,T1,T2, N5, T3, T4, M4, R4, R3, R2, R1, M5, R5, L4, P3, P2, P1, N3,L5, N2, P5, N1, K4, M3, M2, M1, K5, L3, J5, K2, H4, K1, J4, J3, J2, H5, J1, H3, H2, H1, G3, G4, G5, G2, G1, F5, F4, F3, F2, F1, D3, E1,E2,E3, D2., E4, C3, D1, C1, B2 LA_D[63:0] I/O-TS with pull up Frame Bank A- Data Bit [63:0] AA1, V5, AA2, AA3, Y1, V4, Y2, Y3, U5, W1, W2, W3, T5, V1, V2, P4, V3 LA_A[19:3] Output Frame Bank A - Address Bit [19:3] Frame Buffer Interface 142 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol I/O Data Sheet Description W4 LA_A[20] Output with pull up Frame Bank A - Address Bit [20] C2 LA_CLK Output Frame Bank A Clock Input K3 LA_CS0# Output with pull up Frame Bank A Low Portion Chip Selection L1 LA_CS1# Output with pull up Frame Bank A High Portion Chip Selection L2 LA_RW# Output with pull up Frame Bank A Read/Write D18, B18, C18, A17, E17, B17, C17, E16, D17, B16, E15, C16, D16, D15, E14, C15, B15, E13, A15, D14, C14, D13, B14, A14, C13, E12, B13, A13, D12, C12, B12, A12, A11, E10, C10, B10, E9, A10, D11, D10, D8, D9, C9, B9, A9, C8, B8, A8, C7, E7, D7, B7, E8, A7, D6, C6, E6, B6, A6, A5, B5, C5, B4,A4 LB_D[63:0] I/O-TS with pull up Frame Bank B- Data Bit [63:0] D22, D20, E20, D21, A21, D19, B21, C21, A20, B20, E19, C20, A19, B19, E18, C19, A18 LB_A[19:3] Output Frame Bank B - Address Bit [19:3] E21 LB_A[20] Output with pull up Frame Bank B - Address Bit [20] D5 LB_CLK Output Frame Bank B Clock Input B11 LB_CS0# Output with pull up Frame Bank B Low Portion Chip Selection E11 LB_CS1# Output with pull up Frame Bank B High Portion Chip Selection C11 LB_RW# Output with pull up Frame Bank B Read/Write E24,B27, D27, C27, A27, A28, B30, D28, E27, C30, D30, G26, E28, D29, E26, E29, H26, E30, J26, F30, F29, F28, F27, H27, G30, G29, K26, G27, G28, H30, H29, M27 B_D[31:0] Output with pull up Switch Database Domain - Data Bit [31:0] C22, B22, A22, E22, C23, B23, A23, C24, D24, D23, B24, A24, E23, C25, C26, B25, A25 B_A[18:2] Output Switch Database Address (512K) - Address Bit [18:2] C29 B_CLK Output Switch Database Clock Input D25 B_ADSC# Output with pull up Switch Database Address Status Control B26 B_WE# Output with pull up Switch Database Write Chip Select A26 B_OE# Output with pull up Switch Database Read Chip Select Switch Database Interface 143 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol I/O Data Sheet Description MII Management Interface AJ16 M_MDC Output MII Management Data Clock (common for all MII Ports [7:0]) AG18 M_MDIO I/O-TS with pull up MII Management Data I/O (common for all MII Ports -[7:0])) 2.5Mhz Ball No(s) Symbol I/O Description GMII / MII Interface (193) Gigabit Ethernet Access Port GREF_CLK [7:0] Input w/ pull up Gigabit Reference Clock AK15 CM_CLK Input w/ pull up Common Clock shared by port G[7:0] AF17 IND/CM Input w/ pull up 1: select GREF_CLK[7:0] as clock 0: select CM_CLK as clock for all ports MII TX CLK[7:0] Input w/ pull up V26, W29, W30, Y28, W26, Y29, W27, Y30 G7_RXD[7:0] Input w/ pull up G[7:0] port - Receive Data Bit [7:0] AB26, AE27, AE28, AC27, AE29, AC26, AE30, AD26 G6_RXD[7:0] AK27, AH27, AF26, AJ27, AH26, AK25, AG26, AJ25 G5_RXD[7:0] AG22, AG21, AG20, AF22, AK21, AK20, AF21, AJ20 G4_RXD[7:0] AG16, AF16, AG15, AF18, AF15, AH15, AJ15, AG14 G3_RXD[7:0] AG11, AJ10, AF11, AF10, AG9, AF9, AH9, AJ9 G2_RXD[7:0] AF6, AJ5, AF5, AG6, AK4, AF4, AK3, AH4 G1_RXD[7:0] AF1, AC5, AE1, AE2, AE3, AC4, AE4, AD1 G0_RXD[7:0] AD29, AK30, AJ22, AG17, AJ11, AJ6, AF3,AA4 AA30, AK29, AG25, AK18, AJ13, AH7, AH3, AB1 W28, AD30, AK28, AH22, AH16, AH10, AK5, AD5 G[7:0]_RX_DV Input w/ pull down G[7:0]port - Receive Data Valid V27, AD27, AJ28, AH23, AF19, AG12, AK6, AF2 G[7:0]_RX_ER Input w/ pull up G[7:0]port - Receive Error 144 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol I/O AC30, AJ29, AG23, AK16, AK11, AH6, AG3, Y4 G[7:0]_CRS/LINK AA28, AF29, AJ26, AJ21, AF14, AK10, AJ4, AD3 Data Sheet Description Input w/ pull down G[7:0]port - Carrier Sense G[7:0]_COL Input w/ pull up G[7:0]port - Collision Detected AA29, AF27, AK26, AH21, AH14, AG10, AH5, AC1 G[7:0]_RXCLK Input w/ pull up G[7:0]port - Receive Clock AB28, Y26, AB29, AB30, AA27, AC28, AC29, AA26 G7_TXD[7:0] Output G[7:0]port - Transmit Data Bit [7:0] AE26, AF28, AG30, AG28, AG27, AH29, AH28, AJ30 G6_TXD[7:0] AK24, AJ24, AG24, AF24, AH24, AF23, AK23, AJ23 G5_TXD[7:0] AJ19, AH19, AJ18, AH18, AF20, AK17, AG19, AJ17 G4_TXD[7:0] AK14, AF13, AH13, AK13, AH12, AJ12, AF12, AK12 G3_TXD[7:0] AF8, AJ8, AK8, AG7, AG8, AJ7, AK7, AF7 G2_TXD[7:0] AG4, AK1, AJ1, AJ2, AH2, AH1, AG1, AE5 G1_TXD[7:0] AA5, AD4, AC2, Y5, AC3, AB2, W5, AB3 G0_TXD[7:0] Y27, AG29, AH25, AK19, AG13, AH8, AK2, AD2 G[7:0]_TX_EN Output w/ pull up G[7:0]port - Transmit Data Enable AB27, AF30, AF25, AH20, AJ14, AK9, AJ3, AB5 G[7:0]_TX_ER Output w/ pull up G[7:0]port - Transmit Error AD28, AH30, AK22, AH17, AH11, AG5, AG2, AB4 G[7:0]_ TXCLK Output G[7:0]port - Gigabit Transmit Clock PMA Interface (193) Gigabit Ethernet Access Port (PCS) GREF_CLK [7:0] Input w/ pull up Gigabit Reference Clock AK15 CM_CLK Input w/ pull up Common Clock shared by port G[7:0] AF17 IND/CM Input w/ pull up 1: select GREF_CLK[7:0] as clock 0: select CM_CLK as clock for all port AD29, AK30, AJ22, AG17, AJ11, AJ6, AF3,AA4 145 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) V26, W29, W30, Y28, W26, Y29, W27, Y30 AB26, AE27, AE28, AC27, AE29, AC26, AE30, AD26 Symbol G7_RXD[7:0] I/O Data Sheet Description Input w/ pull up G[7:0]port - PMA Receive Data Bit [7:0] \ G6_RXD[7:0] AK27, AH27, AF26, AJ27, AH26, AK25, AG26, AJ25 G5_RXD[7:0] AG22, AG21, AG20, AF22, AK21, AK20, AF21, AJ20 G4_RXD[7:0] AG16, AF16, AG15, AF18, AF15, AH15, AJ15, AG14 G3_RXD[7:0] AG11, AJ10, AF11, AF10, AG9, AF9, AH9, AJ9 G2_RXD[7:0] AF6, AJ5, AF5, AG6, AK4, AF4, AK3, AH4 G1_RXD[7:0] AF1, AC5, AE1, AE2, AE3, AC4, AE4, AD1 G0_RXD[7:0] W28, AD30, AK28, AH22, AH16, AH10, AK5, AD5 G[7:0]_RX_D[8] Input w/ pull down G[7:0]port - PMA Receive Data Bit [8] V27, AD27, AJ28, AH23, AF19, AG12, AK6, AF2 G[7:0]_RX_D[9] Input w/ pull up G[7:0]port - PMA Receive Data Bit [9] AA28, AF29, AJ26, AJ21, AF14, AK10, AJ4, AD3 G[7:0]_RXCLK1 Input w/ pull up G[7:0]port - PMA Receive Clock 1 AA29, AF27, AK26, AH21, AH14, AG10, AH5, AC1 G[7:0]_RXCLK0 Input w/ pull up G[7:0]port - PMA Receive Clock 0 146 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol AB28, Y26, AB29, AB30, AA27, AC28, AC29, AA26 G7_TXD[7:0] AE26, AF28, AG30, AG28, AG27, AH29, AH28, AJ30 G6_TXD[7:0] AK24, AJ24, AG24, AF24, AH24, AF23, AK23, AJ23 G5_TXD[7:0] AJ19, AH19, AJ18, AH18, AF20, AK17, AG19, AJ17 G4_TXD[7:0] AK14, AF13, AH13, AK13, AH12, AJ12, AF12, AK12 G3_TXD[7:0] AF8, AJ8, AK8, AG7, AG8, AJ7, AK7, AF7 G2_TXD[7:0] AG4, AK1, AJ1, AJ2, AH2, AH1, AG1, AE5 G1_TXD[7:0] AA5, AD4, AC2, Y5, AC3, AB2, W5, AB3 G0_TXD[7:0] Y27, AG29, AH25, AK19, AG13, AH8, AK2, AD2 I/O Data Sheet Description Output G[7:0]port - PMA Transmit Data Bit [7:0] G[7:0]_TXD[8] Output w/ pull up G[7:0]port - PMA Transmit Data Bit [8] AB27, AF30, AF25, AH20, AJ14, AK9, AJ3, AB5 G[7:0]_TX_D[9] Output w/ pull up G[7:0]port - PMA Transmit Data Bit [9] AD28, AH30, AK22, AH17, AH11, AG5, AG2, AB4 G[7:0]_ TXCLK Output G[7:0]port - PMA Gigabit Transmit Clock Test Facility (3) U29 T_MODE0 I/O-TS with pull up Test - Set upon Reset, and provides NAND Tree test output during test mode. Use external Pull up for normal operation U28 T_MODE1 I/O-TS with pull up Test - Set upon Reset, and provides NAND Tree test output during test mode. Use external Pull up for normal operation A3 SCAN_EN Input w/ pull down Enable test mode. For normal operation leave it open Output While resetting, T_D[7,0] are in input mode and are used as strapping pins. Internal pullup LED_PD - Parallel Led data [7:0] LED Interface (serial and parallel) R28, T26, R27, T27, U27, T28, T29, T30 T_D[7:0]/ LED_PD[7:0] 147 Zarlink Semiconductor Inc. MVTX2804 Data Sheet Ball No(s) Symbol I/O Description P26, P30, P29, P28, P27, R26, R30, R29 T_D[15:8]/ LED_PT[7:0] Output While resetting, T_D[15:8] are in input mode and are used as strapping pins. Internal pullup LED_PR[7:0] - Parallel Led port sel [7:0] V29 LED_CLK0/ LED_PT[8] Output LED_CLK0 - LED Serial Interface Output Clock LED_PT[8] - Parallel Led port sel [8] V30 LED_BLINK/ LED_DO/ LED_PT[9] Output While resetting, LED-BLINK is in input mode and is used as strapping pin. 1: No Blink, 0: Blink. Internal pullup. LED_DO - LED Serial Data Output Stream LED_PT[9] - Parallel Led port sel [9] V28 LED_PM/ LED_SYNCO# Output w/ pull up While resetting, LED_PM is in input mode and is used as strapping pin. Internal pull up. 1: Enable parallel interface, 0: enable serial interface. LED_SYNCO# - LED Output Data Stream Envelop Input System Clock at 133 MHz Input - ST Reset Input Output Reset PHY System Clock, Power, and Ground Pins A16 S_CLK U26 S_RST# U30 RESOUT# B1 DEV_CFG[0] Input w/ pull down Not used B28 DEV_CFG[1] Input w/ pull down Not used AE7, AE9, F10, F21, F22, F9, G25, G6, J25, J6, K25, K6, AA25, AA6, AB25, AB6, AD25, AE10, AE21, AE22 VDD Power core +2.5 Volt DC Supply V14, V15, V16, V17, V18, F16, F24, F25, F6, F7, N13, N14, N15, N16, N17, N18, P13, P14, P15, P16, P17, P18, R13, R14, R15, R16, R17, R18, R25, R6, T13, T14, T15, T16, T17, T18, T25, T6, U13, U14, U15, U16, U17, U18, V13, AD6, AE15, AE16, AE24, AE25, AE6, F15 VSS Ground Ground A1, C28 AVDD Power Analog +2.5 Volt DC Supply E5, E25 AVSS Ground Analog Ground 148 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol AE12, AE13, AE14, AE17, AE18, AE19, F12, F13, F14, F17, F18, F19, M25, M6, N25, N6, P25, P6, U25, U6, V25, V6, W25, W6 VCC I/O Power I/O Data Sheet Description +3.3 Volt DC Supply Bootstrap Pins (Default= pull up, 1= pull up 0= pull down) AD2,AB5 G0_TX_EN G0_TX_ER Default: PCS Giga0 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS AK2,AJ3 G1_TX_EN G1_TXER Default: PCS Giga1 Mode: G1_TXEN G1_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS AH8,AK9 G2_TX_EN G2_TX_ER Default: PCS Giga2 Mode: G2_TXEN G2_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS AG13,AJ14 G3_TX_EN G3_TX_ER Default: PCS Giga3 Mode: G3_TXEN G3_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS AK19,AH20 G4_TX_EN G4_TX_ER Default: PCS Giga4 Mode: G4_TXEN G4_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS AH25,AF25 G5_TX_EN G5_TX_ER Default: PCS Giga5 Mode: G5_TXEN G5_TXER 0 0 MII 0 1 Rsvd 1 0 GMII 1 1 PCS AG29,AF30 G6_TX_EN G6_TX_ER Default: PCS Giga6 Mode: G6_TXEN G6_TXER 0 0 0 1 1 0 1 1 149 Zarlink Semiconductor Inc. MII Rsvd GMII PCS MVTX2804 Ball No(s) Y27,AB27 Symbol G7_TX_EN G7_TX_ER Data Sheet I/O Default: PCS Description Giga7 Mode: G7_TXEN G7_TXER 0 0 0 1 1 0 1 1 MII Rsvd GMII PCS After reset T_D[15:0] are used by the LED interface T30 T_D[0] 1 Giga link active status 0 - active low 1 - active high T29 T_D[1] 1 Power saving 0 - No power saving 1 - Power saving Stop MAC clock if no MAC activity. T28 T_D[2] Must be pulled-down Reserved - Must be pulled-down U27 T_D[3] 1 Hot plug port module detection enable 0 - module detection enable 1 - module detection disable T27 T_D[4] Must be pulled-down Reserved - Must be pulled-down R27 T_D[5] 1 SRAM memory size 0 - 512K SRAM 1 - 256K SRAM T26 T_D[6] 1 CPU Port mode 0 – 8 bit cpu data bus 1 – 16 bit cpu data bus R28 T_D[7] 1 FDB memory depth 1- one memory layer 0 - two memory layers LA_A[20], LB_A[20] 1 FDB memory size 11 - 2M per bank = 4M total 10 - 1M per bank = 2M total 0x - 512K per bank = 1M total R29 T_D[8] 1 EEPROM installed 0 - EEPROM is installed 1 - EEPROM is not installed R30 T_D[9] 1 MCT Aging enable 0 - MCT aging disable 1 - MCT aging enable R26 T_D[10] 1 FCB handle aging enable 0 - FCB handle aging disable 1 - FCB handle aging enable P27 T_D[11] 1 Timeout reset enable 0 - timeout reset disable 1 - timeout reset enable Issue reset if any state machine did not go back to idle for 5sec. T_D[13:12] 1 Reserved W4, E21 P28, P29 150 Zarlink Semiconductor Inc. MVTX2804 Ball No(s) Symbol I/O Data Sheet Description P30 T_D[14] 1 CPU installed 0 - CPU installed 1 - CPU is not installed P26 T_D[15] 1 External RAM test 0 - Perform the infinite loop of ZBT RAM BIST. Debug test only 1 - Regular operation. N30, N29, N28 P_D[2:0] 111 ZBT RAM la_clk turning 3'b000 - control by reg. LCLKCR[2:0] 3'b001 - delay by method # 0 3'b010 - delay by method # 1 3'b011 - delay by method # 2 3'b100 - delay by method # 3 3'b101 - delay by method # 4 3'b110 - delay by method # 5 3'b111 - delay by method # 6 - USE THIS METHOD M30, M29, M28 P_D[5:3]1 L29, L28, N26 P_D[8:6] ZBT RAM lb_clk turning 3'b000 - control by reg. LCLKCR[6:4] 3'b001 - delay by method # 0 3'b010 - delay by method # 1 3'b011 - delay by method # 2 3'b100 - delay by method # 3 3'b101 - delay by method # 4 3'b110 - delay by method # 5 3'b111 - delay by method # 6 - USE THIS METHOD 111 Notes: # = Input = In-ST = Output = Active low signal Input signal Input signal with Schmitt-Trigger Output signal (Tri-State driver) Out-OD = I/O-TS = I/O-OD = Output signal with Open-Drain driver Input & Output signal with Tri-State driver Input & Output signal with Open-Drain driver SBRAM b_clk turning 3'b000 - control by BCLKCR[2:0] 3'b001 - delay by method # 0 3'b010 - delay by method # 1 3'b011 - delay by method # 2 3'b100 - delay by method # 3 3'b101 - delay by method # 4 3'b110 - delay by method # 5 3'b111 - delay by method # 6- USE THIS METHOD 151 Zarlink Semiconductor Inc. MVTX2804 12.3 Ball Signal Name Ball No. Signal Name A1 AVCC B1 DEV_CFG[0] B2 LA_D[0] C2 LA_CLK C1 LA_D[1] D1 LA_D[2] C3 LA_D[3] E4 LA_D[4] D2 LA_D[5] E3 LA_D[6] E2 LA_D[7] E1 LA_D[8] D3 LA_D[9] F1 LA_D[10] F2 LA_D[11] F3 LA_D[12] F4 LA_D[13] F5 LA_D[14] G1 LA_D[15] G2 LA_D[16] G5 LA_D[17] G4 LA_D[18] G3 LA_D[19] H1 LA_D[20] H2 LA_D[21] H3 LA_D[22] J1 LA_D[23] H5 LA_D[24] J2 LA_D[25] J3 LA_D[26] J4 LA_D[27] K1 LA_D[28] H4 LA_D[29] K2 LA_D[30] M1 LA_D[34] M2 LA_D[35] M3 LA_D[36] K4 LA_D[37] Ball No. Signal Name Data Sheet Ball No. Signal Name N1 LA_D[38] W4 LA_A[20] P5 LA_D[39] Y4 G0_CRS/LNK N2 LA_D[40] AA4 GREF_CLK[0] L5 LA_D[41] AB4 G0_TXCLK N3 LA_D[42] AB3 G0_TXD[0] P1 LA_D[43] W5 G0_TXD[1] P2 LA_D[44] AB2 G0_TXD[2] P3 LA_D[45] AB1 MII_TX_CLK[0] L4 LA_D[46] AC3 G0_TXD[3] R5 LA_D[47] Y5 G0_TXD[4] M5 LA_D[48] AC2 G0_TXD[5] R1 LA_D[49] AC1 G0_RXCLK R2 LA_D[50] AD3 G0_COL R3 LA_D[51] AD4 G0_TXD[6] R4 LA_D[52] AA5 G0_TXD[7] M4 LA_D[53] AD2 G0_TX_EN T4 LA_D[54] AB5 G0_TX_ER T3 LA_D[55] AD1 G0_RXD[0] N5 LA_D[56] AE4 G0_RXD[1] T2 LA_D[57] AC4 G0_RXD[2] T1 LA_D[58] AE3 G0_RXD[3] U4 LA_D[59] AE2 G0_RXD[4] U3 LA_D[60] AE1 G0_RXD[5] N4 LA_D[61] AC5 G0_RXD[6] U2 LA_D[62] AF1 G0_RXD[7] U1 LA_D[63] AD5 G0_RX_DV V3 LA_A[3] AF2 G0_RX_ER P4 LA_A[4] J5 LA_D[31] V2 LA_A[5] K3 LA_CS0# V1 LA_A[6] L1 LA_CS1# Y2 LA_A[13] L2 LA_RW# V4 LA_A[14] L3 LA_D[32] Y1 LA_A[15] K5 LA_D[33] V4 LA_A[14] AH2 G1_TXD[3] Y1 LA_A[15] AJ2 G1_TXD[4] AA3 LA_A[16] AJ1 G1_TXD[5] AA2 LA_A[17] AK1 G1_TXD[6] V5 LA_A[18] AG4 G1_TXD[7] AA1 LA_A[19] AK2 G1_TX_EN 152 Zarlink Semiconductor Inc. MVTX2804 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AH3 MII_TX_CLK[1] AH11 G3_TXCLK AJ20 G4_RXD[0] AJ3 G1_TX_ER AK12 G3_TXD[0] AF21 G4_RXD[1] AH4 G1_RXD[0] AF12 G3_TXD[1] AK20 G4_RXF[2] AK3 G1_RXD[1] AJ12 G3_TXD[2] AH21 G4_RXCLK AF4 G1_RXD[2] AH12 G3_TXD[3] AJ21 G4_COL AK4 G1_RXD[3] AK13 G3_TXD[4] AK21 G4_RXD[3] AH5 G1_RXCLK AJ13 MII_TX_CLK[3] AF22 Gr_RXD[4] AJ4 G1_COL AH13 G3_TXD[5] AG20 G4_RXD[5] AG6 G1_RXD[4] AF13 G3_TXD[6] AG21 G4_RXD[6] AF5 G1_RXD[5] AK14 G3_TXD[7] AG22 G4_RXD[7] AJ5 G1_RXD[6] AG13 G3_TX_EN AH22 G4_RX_DV AF6 G1_RXD[7] AJ14 G3_TX_ER AJ22 GREF_CLK[5] AK5 G1_RX_DV AH14 G3_RXCLK AK22 G5_TXCLK AK6 G1_RX_ER AF14 G3_COL AH23 G4_RX_ER AJ6 GREF_CLK[2] AG14 G3_RXD[0] AG23 G5_CRS/LINK AG5 G2_TXCLK AK15 CM_CLK AJ23 G5_TXD[0] AH6 G2_CRS/LKINK AF17 IND_CM AK23 G5_TXD[1] AF7 G2_TXD[0] AJ15 G3_RXD[1] AF23 G5_TXD[2] AK7 G2_TXD[1] AH15 G3_RXD[2] AH24 G5_TXD[3] AJ7 G2_TXD[2] AF15 G3_RXD[3] AF24 G5_TXD[4] AG8 G2_TXD[3] AF18 G3_RXD[4] AG24 G5_TXD[5] AG7 G2_TXD[4] AG15 G3_RXD[5] AF8 G2_TXD[7] AH7 MII_TX_CLK[2] AF16 G3_RXD[6] AH8 G2_TX_EN AK8 G2_TXD[5] AF3 GREF_CLK[1] AK9 G2_TX_ER AJ8 G2_TXD[6] AG2 G1_TXCLK AJ9 G2_RXD[0] T5 LA_A[7] AG3 G1_CRS/LINK AH9 G2_RXD[1] W3 LA_A[8] AE5 G1_TXD[0] AF9 G2_RXD[2] W2 LA_A[9] AG1 G1_TXD[1] AG9 G2_RXD[3] W1 LA_A[10] AH1 G1_TXD[2] AF10 G2_RXD[4] U5 LA_A[11] AG19 G4_TXD[1] AF11 G2_RXD[5] Y3 LA_A[12] AK17 G4_TXD[2] AJ26 G5_COL AG10 G2_RXCLK AF20 G4_TXD[3] AH26 G5_RXD[3] AK10 G2_COL AH18 G4_TXD[4] AJ27 G5_RXD[4] AJ10 G2_RXD[6] AJ18 G4_TXD[5] AF26 G5_RXD[5] AG11 G2_RXD[7] AK18 MII_TX_CLK[4] AH27 G5_RXD[6] AH10 G2_RX_DV AH19 G4_TXD[6] AK27 G5_RXD[7] AG12 G2_RX_ER AJ19 G4_TXD[7] AK28 G5_RX_DV AK11 G3_CRS/LINK AK19 G4_TX_EN AJ28 G5_RX_ER AJ11 GREF_CLK[3] AH20 G4_TX_ER AJ29 G6_CRS/LINK 153 Zarlink Semiconductor Inc. MVTX2804 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AK29 MII_TX_CLK[6] W27 G7_RXD[1] N27 P_D[9] AK30 GREF_CLK[6] Y29 G7_RXD{2] L30 P_D[10] AH28 G6_TXD[1] W26 G7_RXD{3] K28 P_D[11] AH29 G6_TXD[2] Y28 G7_RXD{4] K29 P_D[12] AG27 G6_TXD[3] W30 G7_RXD{5] K30 P_D[13] AG28 G6_TXD[4] W29 G7_RXD{6] L27 P_D[14] AH30 G6_TXCLK V26 G7_RXD{7] K27 P_D[15] AG30 G6_TXD[5] W28 G7_RX_DV M26 P_A[0] AF28 G6_TXD[6] V27 G7_RX_ER J27 P_A[1] AE26 G6_TXD[7] V30 LED_DO J28 P_A[2] AG29 G6_TX-EN V29 LED_CLK0 J29 P_WE# AF27 G6_RXCLK V28 LED_SYNCO# J30 P_RD# AF29 G6_COL U26 S_RST# L26 P_CS# AF30 G6_TX_ER U30 RESOUT# H28 P_INT# AD26 G6_RXD[0] U29 T_MODE{0} M27 B_D[0] AE30 G6_RXD[1] U28 T_MODE{1] H29 B_D[1] AC26 G6_RXD[2] T30 T_D[0] H30 B_D[2] AE29 G6_RXD[3] T29 T_D[1] AE28 G6_RXD[5] AC27 G6_RXD[4] AJ24 G5_TXD[6] AE27 G6_RXD[6] AG16 G3_RXD[7] AK24 G5_TXD[7] AB26 G6_RXD[7] AH16 G3_RX_DV AG25 MII_TX_CLK[5] AD30 G6_RX_DV AF19 G3_RX_ER AH25 G5_TX_EN AD29 GREF_CLK[7] AJ16 M_MDC AF25 G5_TX_ER AD27 G6_RX_ER AG18 M_MDIO AJ25 G5_RXD[0]] AD28 G7_TXCLK AK16 G4_CRS/LINK AG26 G5_RXD[1] AC30 G7_CRS/LINK AG17 GREF_CLK[4] AK25 G5_RXD[2] AA26 G7_TXD[0] AH17 G4_TXCLK AK26 G5_RXCLK AC29 G7_TXD[1] AJ17 G4_TXD[0] P29 T_D[13] AC28 G7_TXD[2] AA27 G7_TXD[3] P30 T_D[14] E30 B_D[14] AB30 G7_TXD[4] P26 T_D[15] H26 B_D[15] AB29 G7_TXD[5] N28 P_D[0] E29 B_D[16] Y26 G7_TXD[6] N29 P_D[1] E26 B_D[17] AB28 G7_TXD[7] N30 P_D[2] D29 B_D[18] Y27 G7_TX_EN M28 P_D[3] E28 B_D[19] AB27 G7_TX_ER M29 P_D[4] G26 B_D[20] AA30 MII_TX_CLK[7] M30 P_D[5] D30 B_D[21] AA29 G7_RXCLK N26 P_D[6] C30 B_D[22] AA29 C7_COL L28 P_D[7] E27 B_D[23] Y30 G7_RXD[0] L29 P_D[8] C29 B_CLK 154 Zarlink Semiconductor Inc. MVTX2804 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name D28 B_D[24] D19 LB_A[14] C12 LB_D[34] B30 B_D[25] B21 LB_A[13] B12 LB_D[33] F26 NC1 C21 LB_A[12] A12 LB_D[32] D26 NC2 A20 LB_A[11] C11 LB_RW# A30 NC3 B20 LB_A[10] E11 LB_CS1# A29 NC4 E19 LB_A[9] B11 LB_CS0# B29 NC5 C20 LB_A[8] A11 LB_D[31] E25 AGND A19 LB_A[7] E10 LB_D[30] B28 DEV_CFG[1] B19 LB_A[6] C10 LB_D[29] C28 AVDD E18 LB_A[5] B10 LB_D[28] A28 B_D[26] C19 LB_A[4] E9 LB_D[27] A27 B_D[27] A18 LB_A[3] E24 B_D[31] C27 B_D[28] D18 LB_D[63] D25 B_ADSC# D27 B_D[29] G28 B_D[3] B26 B_WE# B27 B_D[30] G27 B_D[4] A26 B_OE# T28 T_D[2] K26 B_D[5] A25 B_A[2] U27 T_D[3] G29 B_D[6] B25 B_A[3] T27 T_D[4] G30 B_D[7] C26 B_A[4] R27 T_D[5] H27 B_D[8] C25 B_A[5] T26 T_D[6] F27 B_D[9] E23 B_A[6] R28 T_D[7] F28 B_D[10] A24 B_A[7] R29 T_D[8] F29 B_D[11] B24 B_A[8] R30 T_D[9] F30 B_D[12] D23 B_A[9] R26 T_D[10] J26 B_D[13] D24 B_A[10] P27 T_D[11] E14 LB_D[49] C24 B_A[11] P28 T_D[12] C15 LB_D[48] B7 LB_D[12] A23 B_A[12] B15 LB_D[47] E8 LB_D[11] B23 B_A[13] E13 LB_D[46] A7 LB_D[10] C23 B_A[14] A15 LB_D[45] D6 LB_D[9] E22 B_A[15] D14 LB_D[44] C6 LB_D[8] A22 B_A[16] C14 LB_D[43] E6 LB_D[7] B22 B_A[17] D13 LB_D[42] B6 LB_D[6] C22 B_A[18] B14 LB_D[41] A6 LB_D[5] E21 LB_A[20] A14 LB_D[40] A5 LB_D[4] D22 LB_A[19] C13 LB_D[39] B5 LB_D[3] D20 LB_A[18] E12 LB_D[38] C5 LB_D[2] E20 LB_A[17] B13 LB_D[37] B4 LB_D[1] D21 LB_A[16] A13 LB_D[36] D5 LB_CLK A21 LB_A[15] D12 LB_D[35] A4 LB_D[0] 155 Zarlink Semiconductor Inc. MVTX2804 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name A3 SCAN_EN T16 VSS AE18 VCC E5 AGND T17 VSS AE19 VCC C4 NC6 T18 VSS F12 VCC B3 NC7 T25 VSS F13 VCC D4 NC8 T6 VSS F14 VCC A2 NC9 U13 VSS F17 VCC AD6 VSS U14 VSS F18 VCC AE15 VSS U15 VSS F19 VCC AE16 VSS U16 VSS AE25 VSS AE24 VSS A10 LB_D[26] AE6 VSS B18 LB_D[62] D11 LB_D[25] F15 VSS C18 LB_D[61] D10 LB_D[24] F16 VSS A17 LB_D[60] D8 LB_D[23] F24 VSS E17 LB_D[59] D9 LB_D[22] F25 VSS B17 LB_D[58] C9 LB_D[21] F6 VSS C17 LB_D[57] B9 LB_D[20] F7 VSS E16 LB_D[56] A9 LB_D[19] N13 VSS D17 LB_D[55] C8 LB_D[18] N14 VSS A16 S_CLK B8 LB_D[17] N15 VSS B16 LB_D[54] A8 LB_D[16] N16 VSS E15 LB_D[53] C7 LB_D[15] N17 VSS C16 LB_D[52] E7 LB_D[14] N18 VSS D16 LB_D[51] D7 LB_D[13] P13 VSS D15 LB_D[50] AE7 VDD P14 VSS P15 VSS AE9 VDD U17 VSS P16 VSS F10 VDD U18 VSS P17 VSS F21 VDD V13 VSS P18 VSS F22 VDD V14 VSS R13 VSS F9 VDD V15 VSS R14 VSS G25 VDD V16 VSS R15 VSS G6 VDD V17 VSS R16 VSS J25 VDD V18 VSS R17 VSS J6 VDD AA25 VDD R18 VSS K25 VDD AA6 VDD R25 VSS K6 VDD AB25 VDD R26 VSS AE12 VCC AB6 VDD T13 VSS AE13 VCC AD25 VDD T14 VSS AE14 VCC AE10 VDD T15 VSS AE17 VCC AE21 VDD 156 Zarlink Semiconductor Inc. MVTX2804 Ball No. Signal Name AE22 VDD M25 VCC M6 VCC N25 VCC N6 VCC P25 VCC U25 VCC U6 VCC V6 VCC W25 VCC W6 VCC 157 Zarlink Semiconductor Inc. Data Sheet MVTX2804 12.4 12.4.1 Data Sheet Characteristics and Timing Absolute Maximum Ratings Storage Temperature -65C to +150C Operating Temperature -40°C to +85°C Maximum Junction Temperature +125°C Supply Voltage VCC with Respect to VSS +3.0 V to +3.6 V Supply Voltage VDD with Respect to VSS +2.38 V to +2.75 V Voltage on Input Pins -0.5 V to (VCC + 3.3 V) Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for extended periods may affect device reliability. Functionality at or above these limits is not implied. 12.4.2 DC Electrical Characteristics VCC = 3.0 V to 3.6 V (3.3v +/- 10%)TAMBIENT = -40°C to +85°C VDD = 2.5V +10% -5% 158 Zarlink Semiconductor Inc. MVTX2804 12.4.3 Data Sheet Recommended Operating Conditions Symbol Parameter Description Min Type Max Unit fosc Frequency of Operation ICC Supply Current – @ 133 MHz (3.3 V supply) 720 930 mA IDD Supply Current – @ 133 MHz (2.5 V supply) 1400 1700 mA VOH Output High Voltage (CMOS) VOL Output Low Voltage (CMOS) 133 MHz 2.4 V 0.4 V VCC + 2.0 V VIH-TTL Input High Voltage (TTL 5V tolerant) VIL-TTL Input Low Voltage (TTL 5V tolerant) 0.8 V IIL Input Leakage Current (0.1 V < VIN < VCC) (all pins except those with internal pull-up/pull-down resistors) 10 µA IOL Output Leakage Current (0.1 V < VOUT < VCC) 10 µA CIN Input Capacitance 5 pF Output Capacitance 5 pF I/O Capacitance 7 pF COUT CI/O 2.0 θja Thermal resistance with 0 air flow 11.2 C/W θja Thermal resistance with 1 m/s air flow 9.9 C/W θja Thermal resistance with 2 m/s air flow 8.7 C/W θjc Thermal resistance between junction and case 3.3 C/W 159 Zarlink Semiconductor Inc. MVTX2804 12.5 Data Sheet AC Characteristics and Timing 12.5.1 Typical Reset & Bootstrap Timing Diagram S_RST# RESOUT# Tri-Stated R1 R3 Bootstrap Pins Outputs Inputs Outputs R2 Figure 8 - Typical Reset & Bootstrap Timing Diagram Symbol Parameter Min R1 Delay until RESOUT# is tri-stated R2 Bootstrap stabilization R3 RESOUT# assertion 1µs Typ Note: 10ns RESOUT# state is then determined by the external pull-up/down resistor 10µs Bootstrap pins sampled on rising edge of S_RST#1 2ms Table 5 - Reset & Bootstrap Timing 1. The T_D[15:0] pins will switch over to the LED interface functionality in 3 SCLK cycles after S_RST# goes high 160 Zarlink Semiconductor Inc. MVTX2804 12.5.2 Data Sheet Typical CPU Timing Diagram for a CPU Write Cycle Description Write Cycle (SCLK=133Mhz) Symbol Min (ns) Write Set up Time TWS 10 Write Active Time TWA 15 Write Hold Time TWH 2 Write Recovery time TWR 22.5 Data Set Up time TDS 10 Data Hold time TDH 2 Max (ns) At least 2 SCLK At least 3 SCLK Table 6 - CPU Write Cycle P_ADDR ADDR1 ADDR0 P_CS# TWA at least 2 SCLKs TWS P_WE# TDH TWA at least 2 SCLKs TWS TWH TWR Recovery Time TDH DATA 0 DATA to VTX2600 TWH DATA 1 TDS TDS Hold time Set up time Figure 9 - Typical CPU Timing Diagram for a CPU Write Cycle 161 Zarlink Semiconductor Inc. MVTX2804 12.5.3 Data Sheet Typical CPU Timing Diagram for a CPU Read Cycle P_ADDR ADDR1 ADDR0 P_CS# TRS P_RD# TRA at least 2 SCLKs DATA to CPU TRH TRS TRR Recovery Time at least 3 SCLKs TRA at least 2 SCLKs DATA 0 TDV TRH DATA 1 TDI 2ns Valid time TDV TDI Inactive time Figure 10 - Typical CPU Timing Diagram for a CPU Read Cycle Description Read Cycle (SCLK=133Mhz) Symbol Min (ns) Max (ns) Read Set up Time TRS 10 Read Active Time TRA 15 Read Hold Time TRH 2 Read Recovery time TRR 22.5 Data Valid time TDS 10 Data Inactive time TDI 2 At least 2 SCLK At least 3 SCLK Table 7 - CPU Read Cycle 162 Zarlink Semiconductor Inc. MVTX2804 12.5.4 Data Sheet Local Frame Buffer ZBT SRAM Memory Interface 12.5.4.1 Local ZBT SRAM Memory Interface A LA_CLK L1 L2 LA_D[63:0] Figure 11 - Local Memory Interface – Input setup and hold timing LA_CLK L3-max L3-min LA_D[63:0] L4-max L4-min LA_A[20:3] L6-max L6-min LA_CS[1,0]# L9-max L9-min LA_RW# Figure 12 - Local Memory Interface - Output valid delay timing (SCLK= 133MHz) Symbol Parameter Min (ns) Max (ns) Note: L1 LA_D[63:0] input set-up time 2.5 L2 LA_D[63:0] input hold time L3 LA_D[63:0] output valid delay 3.0 5 2CL = 25pf L4 LA_A[20:3] output valid delay 3.0 5 3CL = 30pf L6 LA_CS[1:0]# output valid delay 3.0 5 4CL = 30pf L9 LA_WE# output valid delay 3.0 5 5CL = 25pf 1 1 Table 8 - AC Characteristics – Local frame buffer ZBT-SRAM Memory Interface A 163 Zarlink Semiconductor Inc. MVTX2804 12.5.4.2 Data Sheet Local ZBT SRAM Memory Interface B LB_CLK L1 L2 LB_D[63:0] Figure 13 - Local Memory Interface – Input setup and hold timing LB_CLK L3-max L3-min LB_D[63:0] L4-max L4-min LB_A[20:3] L6-max L6-min LB_CS[1,0]# L9-max L9-min LB_RW# Figure 14 - Local Memory Interface - Output valid delay timing (SCLK= 133MHz) Symbol Parameter Min (ns) Max (ns) Note: L1 LB_D[63:0] input set-up time 2.5 L2 LB_D[63:0] input hold time L3 LB_D[63:0] output valid delay 3.0 5 CL = 25pf L4 LB_A[20:3] output valid delay 3.0 5 CL = 30pf L6 LB_CS[1:0]# output valid delay 3.0 5 CL = 30pf L9 LB_WE# output valid delay 3.0 5 CL = 25pf 1 Table 9 - AC Characteristics – Local frame buffer ZBT-SRAM Memory Interface B 164 Zarlink Semiconductor Inc. MVTX2804 12.5.5 Data Sheet Local Switch Database SBRAM Memory Interface 12.5.5.1 Local SBRAM Memory Interface B_CLK L1 L2 B_D[31:0] Figure 15 - Local Memory Interface – Input setup and hold timing B_CLK L3-max L3-min B_D[31:0] L4-max L4-min B_A[18:2] L6-max L6-min B_ADSC# L10-max L10-min B_WE# L11-max L11-min B_OE# Figure 16 - Local Memory Interface - Output valid delay timing (SCLK= 133MHz) Symbol Parameter Min (ns) Max (ns) Note: L1 B_D[31:0] input set-up time 2.5 L2 B_D[31:0] input hold time L3 B_D[31:0] output valid delay 3.0 5 CL = 25pf L4 B_A[18:2] output valid delay 3.0 5 CL = 30pf L6 B_ADSC# output valid delay 3.0 5 CL = 30pf L10 B_WE# output valid delay 3.0 5 CL = 25pf L11 B_OE# output valid delay 3.0 4 CL = 25pf 1 Table 10 - AC Characteristics – Local Switch Database SBRAM Memory Interface 165 Zarlink Semiconductor Inc. MVTX2804 12.5.6 Data Sheet Media Independent Interface MII_TXCLK[7:0] M6-max M6-min G[7:0]_TXEN M7-max M7-min G[7:0] _TXD[3:0] Figure 17 - AC Characteristics – Media Independent Interface G[7:0]_RXCLK M2 G[7:0]_RXD[3:0] M3 M4 G[7:0]_CRS_DV M5 Figure 18 - AC Characteristics – Media Independent Interface (MII_TXCLK & G_RXCLK = 25MHz) Symbol Parameter Min (ns) Max (ns) Note: M2 G[7:0]_RXD[3:0] Input Setup Time 4 M3 G[7:0]_RXD[3:0] Input Hold Time 1 M4 G[7:0]_CRS_DV Input Setup Time 4 M5 G[7:0]_CRS_DV Input Hold Time 1 M6 G[7:0]_TXEN Output Delay Time 3 11 CL = 20 pF M7 G[7:0]_TXD[3:0] Output Delay Time 3 11 CL = 20 pF Table 11 - AC Characteristics – Media Independent Interface 166 Zarlink Semiconductor Inc. MVTX2804 12.5.7 Data Sheet Gigabit Media Independent Interface G[7:0]_TXCLK G12-max G12-min G[7:0]_TXD[7:0] [15:0] G13-max G13-min G[7:0]_TX_EN G14-max G14-min G[7:0]_TX_ER Figure 19 - AC Characteristics - GMII G[7:0]_RXCLK G1 G2 G[7:0]_RXD[7:0] G3 G4 G[7:0}_RX_DV G5 G6 G[7:0]_RX_ER G7 G8 G[7:0]_RX_CRS Figure 20 - AC Characteristics – Gigabit Media Independent Interface (G_RCLK & G_REFCLK = 125MHz) Symbol Min (ns) Parameter G1 G[7:0]_RXD[7:0] Input Setup Times 2 G2 G[7:0]_RXD[7:0] Input Hold Times 1 G3 G[7:0]_RX_DV Input Setup Times 2 G4 G[7:0]_RX_DV Input Hold Times 1 G5 G[7:0]_RX_ER Input Setup Times 2 G6 G[7:0]_RX_ER Input Hold Times 1 G7 G[7:0]_CRS Input Setup Times 2 G8 G[7:0]_CRS Input Hold Times 1 Max (ns) Table 12 - AC Characteristics – Gigabit Media Independent Interface 167 Zarlink Semiconductor Inc. Note: MVTX2804 Data Sheet (G_RCLK & G_REFCLK = 125MHz) Symbol Parameter Min (ns) Max (ns) Note: 1.5 5 CL = 20pf G12 G[7:0]_TXD[7:0] Output Delay Times G13 G[7:0]_TX_EN Output Delay Times 2 5 CL = 20pf G14 G[7:0]_TX_ER Output Delay Times 1 5 CL = 20pf Table 12 - AC Characteristics – Gigabit Media Independent Interface (continued) 12.5.8 PCS Interface G[7:0]_TXCLK G30-max G30-min G[7:0]_TXD[9:0] [15:0] Figure 21 - AC Characteristics – PCS Interface Figure 22 - AC Characteristics – PCS Interface (G_RCLK & G_REFCLK = 125MHz) Symbol Min (ns) Parameter G21 G[7:0]_RXD[9:0] Input Setup Times ref to G_RXCLK 2 G22 G[7:0]_RXD[9:0] Input Hold Times ref to G_RXCLK 1 Table 13 - AC Characteristics – PCS Interface 168 Zarlink Semiconductor Inc. Max (ns) Note: MVTX2804 Data Sheet (G_RCLK & G_REFCLK = 125MHz) Symbol Parameter Min (ns) G23 G[7:0]_RXD[9:0] Input Setup Times ref to G_RXCLK1 2 G24 G[7:0]_RXD[9:0] Input Hold Times ref to G_RXCLK1 1 G25 G[7:0]_CRS Input Setup Times 2 G26 G[7:0]_CRS Input Hold Times 1 G30 G[7:0]_TXD[9:0] Output Delay Times 1 Max (ns) 5 Note: CL = 20pf Table 13 - AC Characteristics – PCS Interface (continued) 12.5.9 LED Interface LED_CLK LE5-max LE5-min LED_SYN LE6-max LE6-min LED_BIT Figure 23 - AC Characteristics – LED Interface Variable FREQ. Symbol Parameter Min (ns) Max (ns) Note: LE5 LED_SYN Output Valid Delay 1 7 CL = 30pf LE6 LED_BIT Output Valid Delay 1 7 CL = 30pf Table 14 - AC Characteristics – LED Interface 169 Zarlink Semiconductor Inc. MVTX2804 12.5.10 Data Sheet MDIO Input Setup and Hold Timing MDC D1 D2 MDIO Figure 24 - MDIO Input Setup and Hold Timing MDC D3-max D3-min MDIO Figure 25 - MDIO Output Delay Timing 1MHz Symbol Parameter Min (ns) D1 MDIO input setup time 10 D2 MDIO input hold time 2 D3 MDIO output delay time 1 Table 15 - MDIO Timing 170 Zarlink Semiconductor Inc. Max (ns) 20 Note: CL = 50pf MVTX2804 12.5.11 Data Sheet I2C Input Setup Timing SCL S1 S2 SDA Figure 26 - I2C Input Setup Timing SCL S3-max S3-min SDA Figure 27 - I2C Output Delay Timing 500KHz Symbol Parameter Min (ns) S1 SDA input setup time 20 S2 SDA input hold time 1 S3* SDA output delay time 1 Max (ns) 20 * Open Drain Output. Low to High transistor is controlled by external pullup resistor. Table 16 - I2C Timing 171 Zarlink Semiconductor Inc. Note: CL = 30pf MVTX2804 12.5.12 Data Sheet Serial Interface Setup Timing STROBE D4 D5 D1 D1 D2 PS_DI D2 Figure 28 - Serial Interface Setup Timing STROBE D3-max D3-min PS_DO Figure 29 - Serial Interface Output Delay Timing (SCLK =133 MHz) Symbol Parameter Min (ns) D1 PS_DI setup time 20 D2 PS_DI hold time 10 D3 PS_DO output delay time 1 D4 Strobe low time 5µ s D5 Strobe high time 5µs Table 17 - Serial Interface Timing 172 Zarlink Semiconductor Inc. Max (ns) 50 Note: CL = 100pf E1 MIN MAX A 2.20 2.46 A1 0.50 0.70 A2 1.17 REF 40.20 D 39.80 D1 34.50 REF E 40.20 39.80 E1 34.50 REF b 0.60 0.90 e 1.27 596 Conforms to JEDEC MS - 034 E e D D1 A2 NOTE: b A1 A 1. CONTROLLING DIMENSIONS ARE IN MM 2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER 3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 4. N IS THE NUMBER OF SOLDER BALLS 5. NOT TO SCALE. 6. SUBSTRATE THICKNESS IS 0.56 MM Package Code ISSUE ACN DATE APPRD. Previous package codes: For more information about all Zarlink products visit our Web Site at www.zarlink.com Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request. Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved. TECHNICAL DOCUMENTATION - NOT FOR RESALE