Freescale Semiconductor Technical Data Document Number: MW6IC2240N Rev. 1, 1/2006 RF LDMOS Wideband Integrated Power Amplifiers The MW6IC2240N wideband integrated circuit is designed with on -chip matching that makes it usable from 2110 to 2170 MHz. This multi - stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulation formats. Final Application • Typical 2 -Carrier W-CDMA Performance: VDD = 28 Volts, IDQ1 = 210 mA, IDQ2 = 370 mA, Pout = 4.5 Watts Avg., Full Frequency Band (2110 -2170 MHz), Channel Bandwidth = 3.84 MHz, PAR = 8.5 dB @ 0.01% Probability on CCDF. Power Gain — 28 dB Power Added Efficiency — 15% IM3 @ 10 MHz Offset — -43 dBc in 3.84 MHz Bandwidth ACPR @ 5 MHz Offset — -46 dBc in 3.84 MHz Bandwidth Driver Application • Typical 2 -Carrier W-CDMA Performance: VDD = 28 Volts, IDQ1 = 300 mA, IDQ2 = 320 mA, Pout = 25 dBm, Full Frequency Band (2110 2170 MHz), Channel Bandwidth = 3.84 MHz, PAR = 8.5 dB @ 0.01% Probability on CCDF. Power Gain — 29 dB IM3 @ 10 MHz Offset — -59 dBc in 3.84 MHz Bandwidth ACPR @ 5 MHz Offset — -62 dBc in 3.84 MHz Bandwidth • Capable of Handling 3:1 VSWR, @ 28 Vdc, 2170 MHz, 20 Watts CW Output Power • Stable into a 3:1 VSWR. All Spurs Below -60 dBc @ 100 mW to 10 W CW Pout. • Characterized with Series Equivalent Large -Signal Impedance Parameters and Common Source Scattering Parameters • On -Chip Matching (50 Ohm Input, DC Blocked, >3 Ohm Output) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function • Integrated ESD Protection • 200°C Capable Plastic Package • N Suffix Indicates Lead -Free Terminations. RoHS Compliant. • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel VDS1 RFin RFout/VDS2 VGS1 Quiescent Current Temperature Compensation VGS2 VDS1 Figure 1. Functional Block Diagram MW6IC2240NBR1 MW6IC2240GNBR1 2110 -2170 MHz, 4.5 W AVG., 28 V 2 x W -CDMA RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 1329-09 TO-272 WB-16 PLASTIC MW6IC2240NBR1 CASE 1329A-03 TO-272 WB-16 GULL PLASTIC MW6IC2240GNBR1 GND VDS1 NC NC NC 1 2 3 4 5 16 15 GND NC RFin 6 14 NC VGS1 VGS2 VDS1 GND 7 8 9 10 11 RFout / VDS2 13 12 NC GND (Top View) Note: Exposed backside flag is source terminal for transistors. Figure 2. Pin Connections Freescale Semiconductor, Inc., 2006. All rights reserved. RF Device Data Freescale Semiconductor MW6IC2240NBR1 MW6IC2240GNBR1 1 Table 1. Maximum Ratings Symbol Value Unit Drain-Source Voltage Rating VDSS -0.5, +68 Vdc Gate-Source Voltage VGS -0.5, +6 Vdc Storage Temperature Range Tstg -65 to +200 °C Operating Junction Temperature TJ 200 °C Input Power Pin 23 dBm Symbol Value (1,2) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case RθJC °C/W W-CDMA Application (Pout = 4.5 W Avg.) Stage 1, 28 Vdc, IDQ = 210 mA Stage 2, 28 Vdc, IDQ = 370 mA 1.8 1.0 W-CDMA Application (Pout = 40 W CW) Stage 1, 28 Vdc, IDQ = 110 mA Stage 2, 28 Vdc, IDQ = 370 mA 2.0 0.87 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22-A114) 1A (Minimum) Machine Model (per EIA/JESD22-A115) A (Minimum) Charge Device Model (per JESD22-C101) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22-A113, IPC/JEDEC J-STD-020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Functional Tests (In Freescale Wideband 2110-2170 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 210 mA, IDQ2 = 370 mA, Pout = 4.5 W Avg., f1 = 2112.5 MHz, f2 = 2122.5 MHz and f1 = 2157.5 MHz, f2 = 2167.5 MHz, 2-Carrier W-CDMA, 3.84 MHz Channel Bandwidth Carriers. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. IM3 measured in 3.84 MHz Channel Bandwidth @ ±10 MHz Offset. PAR = 8.5 dB @ 0.01% Probability on CCDF. Power Gain Gps 25.5 28 30 dB Power Added Efficiency PAE 13.7 15 — % Intermodulation Distortion IM3 — -43 -40 dBc ACPR — -46 -43 dBc IRL — -15 -10 dB Adjacent Channel Power Ratio Input Return Loss 1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. (continued) MW6IC2240NBR1 MW6IC2240GNBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 210 mA, IDQ2 = 370 mA, 2110 MHz<Frequency<2170 MHz Video Bandwidth (Tone Spacing from 100 kHz to VBW) ∆IMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both sidebands) VBW Quiescent Current Accuracy over Temperature with 18 kΩ Gate Feed Resistors (-10 to 85°C) (1) MHz — 30 — ∆IQT — ±5 — % Gain Flatness in 30 MHz Bandwidth @ Pout = 1 W CW GF — 0.2 — dB Deviation from Linear Phase in 30 MHz Bandwidth @ Pout = 1 W CW Φ — ±1 — ° Delay — 2.8 — ns ∆Φ — ±9 — ° Symbol Min Typ Max Unit — W Delay @ Pout = 1 W CW Including Output Matching Part-to-Part Phase Variation @ Pout = 1 W CW Table 6. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Typical Performances (In Freescale Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 110 mA, IDQ2 = 370 mA, 2110 MHz<Frequency<2170 MHz Saturated Pulsed Output Power (8 µsec(on), 1 msec(off)) Psat — 60 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family. Go to http://www.freescale.com/rf. Select Documentation/ApplicationNotes - AN1977. MW6IC2240NBR1 MW6IC2240GNBR1 RF Device Data Freescale Semiconductor 3 VD2 1 2 3 NC 4 NC 5 NC VD1 C13 RF INPUT Z1 Z2 DUT 16 C4 NC 15 C6 Z9 Z3 14 Z4 C1 Z5 Z6 Z7 Z8 RF OUTPUT 6 C9 VG1 7 NC 8 9 R1 10 11 C11 VG2 C2 C8 C3 Z10 Quiescent Current Temperature Compensation NC 13 12 C10 R2 C5 C7 C12 Z1* Z2* Z3 Z4* Z5* Z6* 1.73″ x 0.090″ Microstrip 0.47″ x 0.090″ Microstrip 0.13″ x 0.040″ Microstrip 0.22″ x 0.315″ Microstrip 0.34″ x 0.315″ Microstrip 0.34″ x 0.090″ Microstrip Z7* Z8 Z9, Z10 PCB 0.94″ x 0.090″ Microstrip 0.34″ x 0.090″ Microstrip 1.00″ x 0.080″ Microstrip Taconic TLX8-0300, 0.030″, εr = 2.55 * Variable for tuning Figure 3. MW6IC2240NBR1(GNBR1) Test Circuit Schematic Table 7. MW6IC2240NBR1(GNBR1) Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C2 1.5 pF 100B Chip Capacitors 100B1R5BW ATC C3 1.8 pF 100B Chip Capacitor 100B1R8BW ATC C4, C5 6.8 pF 100B Chip Capacitors 100B6R8CW ATC C6, C7, C10, C11, C12, C13 4.7 µF Chip Capacitors (1812) C4532X5R1H475MT TDK C8 8.2 pF 100B Chip Capacitor 100B8R2CW ATC C9 0.5 pF 100B Chip Capacitor 100B0R5BW ATC R1 18 kW, 1/4 W Chip Resistor (1206) R2 8.2 kW, 1/4 W Chip Resistor (1206) MW6IC2240NBR1 MW6IC2240GNBR1 4 RF Device Data Freescale Semiconductor VD1 VD2 C13 CUT OUT AREA C4 C9 C10 C6 MW6IC2240, Rev. 1 C3 C1 C8 C2 C5 C7 C12 C11 R1 VG1 R2 VG2 Figure 4. MW6IC2240NBR1(GNBR1) Test Circuit Component Layout MW6IC2240NBR1 MW6IC2240GNBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 0 VDD = 28 Vdc, Pout = 4.5 W (Avg.) IDQ1 = 210 mA, IDQ2 = 370 mA Two−Tone Measurements, 10 MHz Tone Spacing 30 Gps 25 −11 −22 IRL 20 −33 PAE 15 −44 IM3 IM3 (dBc), ACPR (dBc) IRL, INPUT RETURN LOSS (dB) PAE, POWER ADDED EFFICIENCY (%), Gps, POWER GAIN (dB) 35 ACPR 10 2000 2050 2100 −55 2250 2200 2150 f, FREQUENCY (MHz) Figure 5. 2 -Carrier W-CDMA Wideband Performance @ Pout = 4.5 Watts Avg. −10 IRL 30 25 20 −20 Gps VDD = 28 Vdc, Pout = 0.6 W (Avg.) IDQ1 = 300 mA, IDQ2 = 320 mA Two−Tone Measurements, 10 MHz Tone Spacing −30 −40 IM3 −50 15 ACPR −60 10 5 PAE 0 2050 2100 2150 −70 IM3 (dBc), ACPR (dBc) IRL, INPUT RETURN LOSS (dB) PAE, POWER ADDED EFFICIENCY (%), Gps, POWER GAIN (dB) 35 −80 2250 2200 f, FREQUENCY (MHz) Figure 6. 2 -Carrier W-CDMA Wideband Performance @ Pout = 0.6 Watts Avg. 31 31 IDQ2 = 530 mA 29 28 IDQ1 = 280 mA 450 mA 30 370 mA Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 30 290 mA 27 210 mA 26 25 24 23 0.1 VDD = 28 Vdc, IDQ = 210 mA f1 = 2135 MHz, f2 = 2145 MHz Two−Tone Measurements, 10 MHz Tone Spacing 1 10 210 mA 29 28 VDD = 28 Vdc Pout = 1 W CW IDQ2 = 370 mA 140 mA 27 100 26 2000 2050 2100 2150 2200 2250 Pout, OUTPUT POWER (WATTS) PEP f, FREQUENCY (MHz) Figure 7. Two -Tone Power Gain versus Output Power Figure 8. Frequency Response versus Current MW6IC2240NBR1 MW6IC2240GNBR1 6 RF Device Data Freescale Semiconductor −10 −20 −30 VDD = 28 Vdc, IDQ1 = 210 mA, IDQ2 = 370 mA f1 = 2135 MHz, f2 = 2145 MHz Two−Tone Measurements, 10 MHz Tone Spacing IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS 3rd Order 5th Order −40 7th Order −50 −60 −70 −80 −90 0.1 1 10 100 −10 VDD = 28 Vdc, Pout = 20 W (PEP), IDQ1 = 210 mA, IDQ2 = 370 mA, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 2140 MHz −15 −20 3rd Order −25 −30 −35 5th Order −40 7th Order −45 −50 0.1 1 10 100 TWO−TONE SPACING (MHz) Pout, OUTPUT POWER (WATTS) PEP Figure 10. Intermodulation Distortion Products versus Tone Spacing Figure 9. Intermodulation Distortion Products versus Output Power 55 P6dB = 48 dBm (63 W) Ideal Pout, OUTPUT POWER (dBm) 53 P3dB = 47.5 dBm (56 W) 51 P1dB = 47 dBm (50 W) 49 Actual 47 45 VDD = 28 Vdc, IDQ1 = 110 mA IDQ2 = 370 mA, Pulsed CW 8 µsec(on), 1 msec(off) f = 2140 MHz 43 41 39 10 12 14 16 18 20 22 24 26 28 30 Pin, INPUT POWER (dBm) 40 −25 35 TC = −30_C −30 30 25_C −35 85_C 25 20 VDD = 28 Vdc IDQ1 = 210 mA, IDQ2 = 370 mA f1 = 2135 MHz, f2 = 2145 MHz 15 IM3 ACPR PAE 0 0.1 −45 −50 10 5 −40 Gps 1 2−Carrier W−CDMA, 10 MHz Carrier Spacing, 3.84 MHz Channel Bandwidth, PAR = 8.5 dB @ 0.01% Probability (CCDF) 10 −55 IM3 (dBc), ACPR (dBc) PAE, POWER ADDED EFFICIENCY (%), Gps, POWER GAIN (dB) Figure 11. Pulse CW Output Power versus Input Power −60 −65 100 Pout, OUTPUT POWER (WATTS) AVG. Figure 12. 2 -Carrier W-CDMA ACPR, IM3, Power Gain and Power Added Efficiency versus Output Power MW6IC2240NBR1 MW6IC2240GNBR1 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS TC = −30_C 50 25_C 40 28 24 20 25_C 85_C 85_C 30 VDD = 28 Vdc IDQ1 = 210 mA, IDQ2 = 370 mA f = 2140 MHz Gps 20 PAE 16 10 12 0.1 0 1 10 30 IDQ1 = 210 mA IDQ2 = 370 mA f = 2140 MHz 29 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 32 60 −30_C PAE, POWER ADDED EFFICIENCY (%) 36 28 27 26 32 V 16 V 25 20 V VDD = 12 V 24 0 100 24 V 10 20 28 V 30 40 50 60 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 14. Power Gain versus Output Power Figure 13. Power Gain and Power Added Efficiency versus Output Power MTTF FACTOR (HOURS X AMPS2) 1.E+09 2nd Stage 1.E+08 1.E+07 1.E+06 90 1st Stage 100 110 120 130 140 150 160 170 180 190 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application. Figure 15. MTTF Factor versus Junction Temperature MW6IC2240NBR1 MW6IC2240GNBR1 8 RF Device Data Freescale Semiconductor Zo = 50 Ω f = 2050 MHz f = 2230 MHz Zin f = 2050 MHz f = 2230 MHz Zload VDD = 28 Vdc, IDQ1 = 210 mA, IDQ2 = 370 mA, Pout = 4.5 W Avg. Zin f MHz Zin Ω Zload Ω 2050 33.723 + j3.048 7.971 - j5.705 2080 38.052 + j8.201 7.559 - j5.532 2110 45.972 + j12.306 7.117 - j5.345 2140 59.075 + 9.272 6.642 - j5.119 2170 68.368 - j3.227 6.132 - j4.891 2200 67.177 - j19.071 5.626 - j4.619 2230 58.213 - j28.879 5.118 - j4.305 = Device input impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Z in Z load Figure 16. Series Equivalent Input and Load Impedance MW6IC2240NBR1 MW6IC2240GNBR1 RF Device Data Freescale Semiconductor 9 Table 8. Common Source Scattering Parameters (VDD = 28 V, 50 ohm system) IDQ1 = 210 mA, IDQ2 = 370 mA f MHz MH S11 S21 S12 S22 |S11| ∠φ |S21| ∠φ |S12| ∠φ |S22| ∠φ 1000 0.788 131.360 0.0013 63.602 0.0020 25.353 0.9940 172.664 1200 0.713 113.326 0.0012 42.219 0.0094 10.742 0.9910 169.954 1400 0.584 86.885 0.0007 55.210 0.1180 -39.325 0.9850 166.452 1600 0.389 41.593 0.0006 117.726 0.6690 -92.822 0.9780 161.752 1800 0.239 -54.753 0.0022 122.409 4.9300 -164.584 0.9310 152.388 2000 0.221 -162.180 0.0036 118.178 21.396 49.432 0.6120 151.441 2200 0.216 -38.746 0.0057 68.626 19.739 -105.946 0.7530 -177.800 2400 0.467 -113.440 0.0043 64.758 7.8281 166.887 0.9010 171.868 2600 0.539 -153.020 0.0044 48.498 3.8868 113.310 0.9350 167.252 2800 0.635 -171.630 0.0044 52.829 2.4331 69.460 0.9480 164.137 3000 0.716 169.263 0.0049 56.398 1.6119 29.135 0.9570 161.593 MW6IC2240NBR1 MW6IC2240GNBR1 10 RF Device Data Freescale Semiconductor NOTES MW6IC2240NBR1 MW6IC2240GNBR1 RF Device Data Freescale Semiconductor 11 NOTES MW6IC2240NBR1 MW6IC2240GNBR1 12 RF Device Data Freescale Semiconductor NOTES MW6IC2240NBR1 MW6IC2240GNBR1 RF Device Data Freescale Semiconductor 13 PACKAGE DIMENSIONS r1 C A B 2X E1 B aaa A NOTE 6 M PIN ONE INDEX 4X aaa M b1 C A 6X e1 4X e2 2X e3 e D1 aaa b3 aaa M C A b2 C A D M M 10X b aaa M C A ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ N E VIEW Y-Y DATUM PLANE H A c1 C SEATING PLANE F Y ZONE "J" E2 Y A1 7 A2 NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M−1994. 3. DATUM PLANE −H− IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE −H−. 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION. 6. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY. CASE 1329-09 ISSUE K TO -272 WB-16 PLASTIC MW6IC2240NBR1 DIM A A1 A2 D D1 E E1 E2 F M N b b1 b2 b3 c1 e e1 e2 e3 r1 aaa INCHES MIN MAX .100 .104 .038 .044 .040 .042 .928 .932 .810 BSC .551 .559 .353 .357 .346 .350 .025 BSC .600 −−− .270 −−− .011 .017 .037 .043 .037 .043 .225 .231 .007 .011 .054 BSC .040 BSC .224 BSC .150 BSC .063 .068 .004 MILLIMETERS MIN MAX 2.54 2.64 0.96 1.12 1.02 1.07 23.57 23.67 20.57 BSC 14.00 14.20 8.97 9.07 8.79 8.89 0.64 BSC 15.24 −−− 6.86 −−− 0.28 0.43 0.94 1.09 0.94 1.09 5.72 5.87 .18 .28 1.37 BSC 1.02 BSC 5.69 BSC 3.81 BSC 1.6 1.73 .10 MW6IC2240NBR1 MW6IC2240GNBR1 14 RF Device Data Freescale Semiconductor E1 r1 aaa M C A B 2X A B 4X PIN ONE INDEX aaa M b1 C A 6X e1 4X e2 2X e3 b3 aaa M C A e D1 aaa M D M b2 C A b C A 10X aaa M ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ NOTE 6 N E2 VIEW Y-Y E DETAIL Y DATUM PLANE H A2 A c1 E2 Y Y L1 t L GAGE PLANE A1 DETAIL Y C SEATING PLANE NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M−1994. 3. DATUM PLANE −H− IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE −H−. 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION. 6. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SINK. DIM A A1 A2 D D1 E E1 E2 L L1 M N b b1 b2 b3 c1 e e1 e2 e3 r1 t aaa INCHES MIN MAX .100 .104 .001 .004 .099 .110 .928 .932 .810 BSC .429 .437 .353 .357 .346 .350 .018 .024 .01 BSC .600 −−− .270 −−− .011 .017 .037 .043 .037 .043 .225 .231 .007 .011 .054 BSC .040 BSC .224 BSC .150 BSC .063 .068 2° 8° .004 MILLIMETERS MIN MAX 2.54 2.64 0.02 0.10 2.51 2.79 23.57 23.67 20.57 BSC 10.90 11.10 8.97 9.07 8.79 8.89 4.90 5.06 0.25 BSC 15.24 −−− 6.86 −−− 0.28 0.43 0.94 1.09 0.94 1.09 5.72 5.87 .18 .28 1.37 BSC 1.02 BSC 5.69 BSC 3.81 BSC 1.6 1.73 2° 8° .10 CASE 1329A-03 ISSUE D TO -272 WB-16 GULL PLASTIC MW6IC2240GNBR1 MW6IC2240NBR1 MW6IC2240GNBR1 RF Device Data Freescale Semiconductor 15 How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. Freescale Semiconductor, Inc. 2006. All rights reserved. RoHS- compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non - RoHS- compliant and/or non- Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. MW6IC2240NBR1 MW6IC2240GNBR1 Document Number: MW6IC2240N Rev. 1, 1/2006 16 RF Device Data Freescale Semiconductor