NCV8506 Series Micropower 400 mA LDO Linear Regulators with DELAY and RESET The NCV8506 is a family of precision micropower voltage regulators. Their output current capability is 400 mA. The family has output voltage options for Adjustable, 2.5 V, 3.3 V and 5.0 V. The output voltage is accurate within ± 2.0% with a maximum dropout voltage of 0.6 V at 400 mA. Low quiescent current is a feature drawing only 100 mA with a 100 mA load. This part is ideal for any and all battery operated microprocessor equipment. Microprocessor control logic includes an active RESET (with DELAY). The active RESET circuit operates correctly at an output voltage as low as 1.0 V. The RESET function is activated during the power up sequence or during normal operation if the output voltage drops below the regulation limits. The regulator is protected against reverse battery, short circuit, and thermal overload conditions. The device can withstand load dump transients making it suitable for use in automotive environments. The device has also been optimized for EMC conditions. Features • • • • • • • • • Output Voltage Options: Adjustable, 2.5 V, 3.3 V, 5.0 V ± 2.0% Output Low 100 mA Quiescent Current Fixed or Adjustable Output Voltage Active RESET 400 mA Output Current Capability Fault Protection ♦ +60 V Peak Transient Voltage ♦ −15 V Reverse Voltage ♦ Short Circuit ♦ Thermal Overload Pb−Free Packages are Available NCV Prefix for Automotive and Other Applications Requiring Site and Change Control © Semiconductor Components Industries, LLC, 2007 February, 2007 − Rev. 7 1 http://onsemi.com MARKING DIAGRAM 1 D2PAK−7 DPS SUFFIX CASE 936AB NC V8506x AWLYWWG 1 x = Voltage Ratings as Indicated Below: A = Adjustable 2 = 2.5 V 3 = 3.3 V 5 = 5.0 V A = Assembly Location WL = Wafer Lot Y = Year WW = Work Week G = Pb−Free Package ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet. Publication Order Number: NCV8506/D NCV8506 Series PIN CONNECTIONS ADJUSTABLE OUTPUT FIXED OUTPUT D2PAK−7 D2PAK−7 Tab = GND Lead 1. DELAY 2. NC 3. RESET 4. GND 5. VADJ 6. VOUT 7. VIN 1 IQ 1 SENSE (Fixed Output Only) VIN VOUT VDD 33 mF 10 mF NCV8506 DELAY CDELAY Microprocessor VBAT Tab = GND Lead 1. DELAY 2. NC 3. RESET 4. GND 5. SENSE 6. VOUT 7. VIN RRST 5.1 k VADJ (Adjustable Output Only) RESET I/O GND Figure 1. Application Diagram http://onsemi.com 2 NCV8506 Series MAXIMUM RATINGS Rating Value Unit −15 to 45 V Peak Transient Voltage (46 V Load Dump @ VIN = 14 V) 60 V Operating Voltage 45 V VOUT (DC) −0.3 to 16 V Voltage Range (RESET, DELAY) −0.3 to 10 V Input Voltage Range VADJ −0.3 to 16 V 4.0 200 kV V −40 to +150 °C −55 to 150 °C 2.0 10−50* °C/W °C/W 240 peak (Note 2) °C VIN (DC) ESD Susceptibility (Human Body Model) (Machine Model) Junction Temperature, TJ Storage Temperature, TS Package Thermal Resistance, 7 Lead Junction−to−Case, RqJC Junction−to−Ambient, RqJA D2PAK Lead Temperature Soldering: Reflow: (SMD styles only) (Note 1) Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. 60 second maximum above 183°C. 2. −5°C/+0°C allowable conditions. *Depending on thermal properties of substrate, RqJA = RqJC + RqCA. ELECTRICAL CHARACTERISTICS (IOUT = 1.0 mA, −40°C ≤ TJ ≤ 150°C; VIN = dependent on voltage option (Note 3); unless otherwise specified.) Characteristic Test Conditions Min Typ Max Unit Output Voltage for 2.5 V Option (VO) 6.5 V < VIN < 16 V, 1.0 mA ≤ IOUT ≤ 400 mA 4.5 V < VIN < 26 V, 1.0 mA ≤ IOUT ≤ 400 mA 2.450 2.425 2.5 2.5 2.550 2.575 V V Output Voltage for 3.3 V Option (VO) 7.3 V < VIN < 16 V, 1.0 mA ≤ IOUT ≤ 400 mA 4.5 V < VIN < 26 V, 1.0 mA ≤ IOUT ≤ 400 mA 3.234 3.201 3.3 3.3 3.366 3.399 V V Output Voltage for 5.0 V Option (VO) 9.0 V < VIN < 16 V, 1.0 mA ≤ IOUT ≤ 400 mA 6.0 V < VIN < 26 V, 1.0 mA ≤ IOUT ≤ 400 mA 4.90 4.85 5.0 5.0 5.10 5.15 V V Output Voltage for Adjustable Option (VO) VOUT = VADJ (Unity Gain) 6.5 V < VIN < 16 V, 1.0 mA < IOUT < 400 mA 4.5 V < VIN < 26 V, 1.0 mA < IOUT < 400 mA 1.274 1.261 1.300 1.306 1.326 1.339 V V Dropout Voltage (VIN − VOUT) (5.0 V and Adj. > 5.0 V Options Only) IOUT = 400 mA IOUT = 1.0 mA − − 400 30 600 150 mV mV Load Regulation VIN = 14 V, 5.0 mA ≤ IOUT ≤ 400 mA −30 5.0 30 mV Line Regulation (2.5 V, 3.3 V, and Adjustable Options) 4.5 V < VIN < 26 V, IOUT = 1.0 mA − 5.0 25 mV Line Regulation (5.0 V Option) 6.0 V < VIN < 26 V, IOUT = 1.0 mA − 5.0 25 mV Quiescent Current, (IQ) Active Mode IOUT = 100 mA, VIN = 12 V, Delay = 3.0 V IOUT = 75 mA, VIN = 14 V, Delay = 3.0 V IOUT ≤ 400 mA, VIN = 14 V, Delay = 3.0 V − − − 100 2.5 25 150 5.0 45 mA mA mA 425 800 − mA Output Stage Current Limit − Short Circuit Output Current VOUT = 0 V 100 500 − mA Thermal Shutdown (Guaranteed by Design) 150 180 − °C 3. Voltage range specified in the Output Stage of the Electrical Characteristics in boldface type. http://onsemi.com 3 NCV8506 Series ELECTRICAL CHARACTERISTICS (continued) (IOUT = 1.0 mA, −40°C ≤ TJ ≤ 150°C; VIN = dependent on voltage option (Note 4); unless otherwise specified.) Characteristic Test Conditions Min Typ Max Unit 2.35 2.30 25 − − − 1.0 × VO − − V V mV 3.10 3.00 35 − − − 1.0 × VO − − V V mV 4.70 4.60 50 − − − 1.0 × VO − − V V mV 1.22 1.19 10 − − − 1.0 × VO − − V V mV − 0.1 0.4 V Reset Function (RESET) RESET Threshold for 2.5 V Option HIGH (VRH) LOW (VRL) Hysteresis VIN = 4.5 V (Note 5) (Note 6) VOUT Increasing VOUT Decreasing RESET Threshold for 3.3 V Option HIGH (VRH) LOW (VRL) Hysteresis VIN = 4.5 V (Note 5) (Note 6) VOUT Increasing VOUT Decreasing RESET Threshold for 5.0 V Option HIGH (VRH) LOW (VRL) Hysteresis VIN = 6.0 V (Note 6) VOUT Increasing VOUT Decreasing RESET Threshold for Adjustable Option HIGH (VRH) LOW (VRL) Hysteresis VIN = 4.5 V (Note 5) (Note 6) VOUT Increasing VOUT Decreasing Output Voltage Low (VRLO) VIN = Minimum (Note 6) (Note 7) 1.0 V ≤ VOUT ≤ VRL, RRESET = 5.1 k DELAY Switching Threshold (VDT) (2.5 V, 3.3 V, and 5.0 V Options) VIN = Minimum (Note 6) (Note 7) 1.4 1.8 2.2 V DELAY Switching Threshold (VDT) (Adjustable Option) VIN = Minimum (Note 6) (Note 7) 1.0 1.3 1.6 V DELAY Low Voltage VIN = Minimum (Note 6) (Note 7) VOUT < RESET Threshold Low(min) − − 0.2 V DELAY Charge Current VIN = Minimum (Note 6) (Note 7) DELAY = 1.0 V, VOUT > VRH 2.5 4.0 5.5 mA DELAY Discharge Current VIN = Minimum (Note 6) (Note 7) DELAY = 1.0 V, VOUT < VRL 5.0 − − mA VADJ = 1.25 V −0.5 − 0.5 mA Voltage Adjust (Adjustable Output only) Input Current 4. Voltage range specified in the Output Stage of the Electrical Characteristics in boldface type. 5. For VIN ≤ 4.5 V, a RESET = Low may occur with the output in regulation. 6. Part is guaranteed by design to meet specification over the entire VIN voltage range, but is production tested only at the specified VIN voltage. 7. Minimum VIN = 4.5 V for 2.5 V, 3.3 V, and Adjustable options. Minimum VIN = 6.0 V for 5.0 V option. http://onsemi.com 4 NCV8506 Series PACKAGE PIN DESCRIPTION, ADJUSTABLE OUTPUT Pin Number Pin Symbol Function 1 DELAY 2 NC 3 RESET 4 GND Ground. All GND leads must be connected to Ground. 5 VADJ Voltage Adjust. A resistor divider from VOUT to this lead sets the output voltage. 6 VOUT ±2.0%, 400 mA output. 7 VIN Timing capacitor for RESET function. No connection. Active reset (accurate to VOUT ≥ 1.0 V) Input Voltage. PACKAGE PIN DESCRIPTION, FIXED OUTPUT Pin Number Pin Symbol 1 DELAY 2 NC 3 RESET 4 GND 5 SENSE 6 VOUT 7 VIN Function Timing capacitor for RESET function. No connection. Active reset (accurate to VOUT ≥ 1.0 V) Ground. All GND leads must be connected to Ground. Kelvin connection which allows remote sensing of output voltage for improved regulation. If remote sensing is not desired, connect to VOUT. ±2.0%, 400 mA output. Input Voltage. http://onsemi.com 5 NCV8506 Series VOUT VIN Current Source (Circuit Bias) SENSE IBIAS Current Limit Sense IBIAS + − 1.8 V (Fixed Versions) 1.3 V (Adjustable Version) VBG + DELAY VBG −18 mV Fixed Versions only − RESET Error Amplifier + − Thermal Protection 4.0 mA Bandgap Reference IBIAS VBG Figure 2. Block Diagram http://onsemi.com 6 15 k Adjustable Version only VADJ GND NCV8506 Series TYPICAL PERFORMANCE CHARACTERISTICS 5.10 3.35 Vout, OUTPUT VOLTAGE (V) 5.08 5.06 Vout, OUTPUT VOLTAGE (V) VOUT = 5.0 V VIN = 14 V IOUT = 5.0 mA 5.04 5.02 5.00 4.98 4.96 4.94 VOUT = 3.3 V VIN = 14 V IOUT = 5.0 mA 3.33 3.31 3.29 3.27 3.25 4.92 4.90 −40 −20 0 3.23 −40 −20 20 40 60 80 100 120 140 160 TEMPERATURE (°C) Figure 3. 5 V Output Voltage vs Temperature 700 Vout, OUTPUT VOLTAGE (V) 2.53 DROPOUT VOLTAGE (mV) VOUT = 2.5 V VIN = 14 V IOUT = 5.0 mA 2.54 2.52 2.51 2.50 2.49 2.48 2.47 2.46 500 125 °C 400 25 °C 300 200 −40 °C 100 0 0 20 40 60 80 100 120 140 160 TEMPERATURE (°C) Figure 5. 2.5 V Output Voltage vs Temperature 100 0 50 100 2.5 V 10 Stable Region CVOUT = 0.1 mF 1.0 Stable Region Unstable Region VIN = 14 V CVOUT = 10 mF 50 400 CVOUT = 33 mF* ESR (W) 1.0 0.1 350 Unstable Region 3.3 V 10 100 150 200 250 300 Iout, OUTPUT CURRENT (mA) Figure 6. Dropout Voltage vs Output Current 5.0 V Unstable Region ESR (W) 600 5 V and Adj. > 5 V options only 2.45 −40 −20 0 20 40 60 80 100 120 140 160 TEMPERATURE (°C) Figure 4. 3.3 V Output Voltage vs Temperature 2.55 0.01 0 100 150 200 250 300 Iout, OUTPUT CURRENT (mA) 350 0.1 400 Figure 7. Output Stability with Output Voltage Change *There is no unstable lower region for the 33 mF capacitor 0 50 5 V version 100 150 200 250 300 Iout, OUTPUT CURRENT (mA) 350 400 Figure 8. Output Stability with Output Capacitor Change http://onsemi.com 7 NCV8506 Series TYPICAL PERFORMANCE CHARACTERISTICS 1.8 +25°C 60 +125°C 1.6 IQ, QUIESCENT CURRENT (mA) IQ, QUIESCENT CURRENT (mA) 2.0 −40°C 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 5 10 15 20 25 30 35 40 IOUT, OUTPUT CURRENT (mA) 45 Figure 9. Quiescent Current vs Output Current Iout = 200 mA 8 6 Iout = 100 mA Iout = 50 mA 2 Iout = 10 mA 0 6 8 10 12 14 16 18 20 VIN, INPUT VOLTAGE (V) 22 24 20 10 0 50 100 150 200 250 300 350 400 450 500 IOUT, OUTPUT CURRENT (mA) 140 T = 25°C 10 4 −40°C 30 Figure 10. Quiescent Current vs Output Current IQ, QUIESCENT CURRENT (mA) IQ, QUIESCENT CURRENT (mA) 12 +25°C 40 0 50 +125°C 50 Figure 11. Quiescent Current vs Input Voltage Iout = 100 mA 100 80 60 40 20 0 26 T = 25°C 120 8 6 10 12 14 16 18 20 VIN, INPUT VOLTAGE (V) 22 24 26 Figure 12. Quiescent Current vs Input Voltage http://onsemi.com 8 NCV8506 Series CIRCUIT DESCRIPTION REGULATOR CONTROL FUNCTIONS The NCV8506 contains the microprocessor compatible control function RESET (Figure 13). The DELAY lead provides source current (typically 4.0 mA) to the external DELAY capacitor during the following proceedings: 1. During Power Up (once the regulation threshold has been verified). 2. After a reset event has occurred and the device is back in regulation. The DELAY capacitor is discharged when the regulation (RESET threshold) has been violated. This is a latched incident. The capacitor will fully discharge and wait for the device to regulate before going through the delay time event again. VIN VOUT RESET Threshold DELAY DELAY Threshold (VDT) RESET Td Voltage Adjust Td Figure 14 shows the device setup for a user configurable output voltage. The feedback to the VADJ pin is taken from a voltage divider referenced to the output voltage. The loop is balanced around the Unity Gain threshold (1.30 V typical). Figure 13. Reset and Delay Circuit Wave Forms RESET Function A RESET signal (low voltage) is generated as the IC powers up until VOUT is within 1.5% of the regulated output voltage, or when VOUT drops out of regulation,and is lower than 4.0% below the regulated output voltage. Hysteresis is included in the function to minimize oscillations. The RESET output is an open collector NPN transistor, controlled by a low voltage detection circuit. The circuit is functionally independent of the rest of the IC thereby guaranteeing that the RESET signal is valid for VOUT as low as 1.0 V. ≈5.0 V VOUT NCV8506 VADJ 15 k COUT 1.28 V 5.1 k DELAY Function The reset delay circuit provides a programmable (by external capacitor) delay on the RESET output lead. Figure 14. Adjustable Output Voltage APPLICATION NOTES SETTING THE DELAY TIME The delay time is controlled by the Reset Delay Low Voltage, Delay Switching Threshold, and the Delay Charge Current. The delay follows the equation: tDELAY + STABILITY CONSIDERATIONS The output or compensation capacitor helps determine three main characteristics of a linear regulator: start−up delay, load transient response and loop stability. The capacitor value and type should be based on cost, availability, size and temperature constraints. A tantalum or aluminum electrolytic capacitor is best, since a film or ceramic capacitor with almost zero ESR can cause instability. The aluminum electrolytic capacitor is the least expensive solution, but, if the circuit operates at low temperatures (−25°C to −40°C), both the value and ESR of the capacitor will vary considerably. The capacitor manufacturers data sheet usually provides this information. [CDELAY(Vdt * Reset Delay Low Voltage)] Delay Charge Current Example: Using CDELAY = 33 nF. Assume reset Delay Low Voltage = 0. Use the typical value for Vdt = 1.8 V (2.5 V, 3.3 V, and 5.0 V options). Use the typical value for Delay Charge Current = 4.2 mA. tDELAY + [33 nF(1.8 * 0)] + 14 ms 4.2 mA http://onsemi.com 9 NCV8506 Series The value for the output capacitor COUT shown in Figure 15 should work for most applications, however it is not necessarily the optimized solution. VIN The value of RqJA can then be compared with those in the package section of the data sheet. Those packages with RqJA’s less than the calculated value in equation 2 will keep the die temperature below 150°C. In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required. VOUT CIN* 0.1 mF NCV8506 RRST COUT** 33 mF RESET VIN VOUT IQ Figure 16. Single Output Regulator with Key Performance Parameters Labeled Figure 15. Test and Application Circuit Showing Output Compensation HEAT SINKS A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air. Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of RqJA: CALCULATING POWER DISSIPATION IN A SINGLE OUTPUT LINEAR REGULATOR The maximum power dissipation for a single output regulator (Figure 16) is: (1) ) VIN(max)IQ where: VIN(max) is the maximum input voltage, VOUT(min) is the minimum output voltage, IOUT(max) is the maximum output current for the application, and IQ is the quiescent current the regulator consumes at IOUT(max). Once the value of PD(max) is known, the maximum permissible value of RqJA can be calculated: T RqJA + 150°C * A PD SMART REGULATOR® } Control Features *CIN required if regulator is located far from the power supply filter. **COUT required for stability. Capacitor must operate at minimum temperature expected. PD(max) + [VIN(max) * VOUT(min)] IOUT(max) IOUT IIN RqJA + RqJC ) RqCS ) RqSA (3) where: RqJC = the junction−to−case thermal resistance, RqCS = the case−to−heatsink thermal resistance, and RqSA = the heatsink−to−ambient thermal resistance. RqJC appears in the package section of the data sheet. Like RqJA, it too is a function of package type. RqCS and RqSA are functions of the package type, heatsink and the interface between them. These values appear in heat sink data sheets of heat sink manufacturers. (2) http://onsemi.com 10 NCV8506 Series ORDERING INFORMATION Package Shipping † NCV8506D2TADJ D2PAK−7 50 Units / Rail NCV8506D2TADJG D2PAK−7 (Pb−Free) 50 Units / Rail D2PAK−7 750 Tape & Reel NCV8506D2TADJR4G D2PAK−7 (Pb−Free) 750 Tape & Reel NCV8506D2T25 D2PAK−7 50 Units / Rail NCV8506D2T25G D2PAK−7 (Pb−Free) 50 Units / Rail D2PAK−7 750 Tape & Reel NCV8506D2T25R4G D2PAK−7 (Pb−Free) 750 Tape & Reel NCV8506D2T33 D2PAK−7 50 Units / Rail NCV8506D2T33G D2PAK−7 Device NCV8506D2TADJR4 NCV8506D2T25R4 NCV8506D2T33R4 Output Voltage Adjustable 2.5 V (Pb−Free) 3.3 V D2PAK−7 D2PAK−7 NCV8506D2T33R4G (Pb−Free) NCV8506D2T50 D2PAK−7 NCV8506D2T50G D2PAK−7 NCV8506D2T50R4 (Pb−Free) 5.0 V D2PAK−7 D2PAK−7 NCV8506D2T50R4G (Pb−Free) 50 Units / Rail 750 Tape & Reel 750 Tape & Reel 50 Units / Rail 50 Units / Rail 750 Tape & Reel 750 Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 11 NCV8506 Series PACKAGE DIMENSIONS D2PAK−7 (SHORT LEAD) DPS SUFFIX CASE 936AB−01 ISSUE A NOTES: 1. DIMENSIONS AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. TERMINAL 8 A K U E S B DIM A B C D E G H K L M N P R S U V V M H L P D G N R SOLDERING FOOTPRINT* 9.5 0.374 C CL CL 0.96 0.038 8.26 0.325 MILLIMETERS MIN MAX 10.05 10.31 8.28 8.53 4.31 4.57 0.66 0.91 1.14 1.40 1.27 REF 13.69 14.71 1.40 1.68 0.00 0.25 2.54 2.79 0.43 0.58 1.47 1.98 0° 8° 2.41 2.67 6.50 REF 7.75 REF 2.16 0.085 1.27 0.050 3.25 0.128 10.54 0.415 INCHES MIN MAX 0.396 0.406 0.326 0.336 0.170 0.180 0.026 0.036 0.045 0.055 0.050 REF 0.539 0.579 0.055 0.066 0.000 0.010 0.100 0.110 0.017 0.023 0.058 0.078 0° 8° 0.095 0.105 0.256 REF 0.305 REF 3.8 0.150 1 SCALE 3:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 12 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NCV8506/D