Dual Low Bias Current Precision Operational Amplifier OP297 PIN CONFIGURATION Low offset voltage: 50 μV maximum Low offset voltage drift: 0.6 μV/°C maximum Very low bias current: 100 pA maximum Very high open-loop gain: 2000 V/mV minimum Low supply current (per amplifier): 625 μA maximum Operates from ±2 V to ±20 V supplies High common-mode rejection: 120 dB minimum OUTA 1 8 V+ –INA 2 7 OUTB +INA 3 6 –INB V– 4 5 +INB A B 00300-001 FEATURES Figure 1. 60 VS = ±15V VCM = 0V APPLICATIONS 40 INPUT CURRENT (pA) 20 IB– 0 IB+ –20 IOS –60 –75 GENERAL DESCRIPTION Precision performance of the OP297 includes very low offset, under 50 μV, and low drift, below 0.6 μV/°C. Open-loop gain exceeds 2000 V/mV, ensuring high linearity in every application. Errors due to common-mode signals are eliminated by the common-mode rejection of over 120 dB, which minimizes offset voltage changes experienced in battery-powered systems. The supply current of the OP297 is under 625 μA. The OP297 uses a super-beta input stage with bias current cancellation to maintain picoamp bias currents at all temperatures. This is in contrast to FET input op amps whose bias currents start in the picoamp range at 25°C, but double for every 10°C rise in temperature, to reach the nanoamp range above 85°C. Input bias current of the OP297 is under 100 pA at 25°C and is under 450 pA over the military temperature range per amplifier. This part can operate with supply voltages as low as ±2 V. –25 0 25 50 TEMPERATURE (°C) 75 100 125 Figure 2. Low Bias Current over Temperature 400 1200 UNITS TA = 25°C VS = ±15V VCM = 0V 300 NUMBER OF UNITS The OP297 is the first dual op amp to pack precision performance into the space saving, industry-standard 8-lead SOIC package. The combination of precision with low power and extremely low input bias current makes the dual OP297 useful in a wide variety of applications. –50 00300-002 –40 200 100 0 –100 –80 –60 –40 –20 0 20 40 INPUT OFFSET VOLTAGE (µV) 60 80 100 00300-003 Strain gage and bridge amplifiers High stability thermocouple amplifiers Instrumentation amplifiers Photocurrent monitors High gain linearity amplifiers Long-term integrators/filters Sample-and-hold amplifiers Peak detectors Logarithmic amplifiers Battery-powered systems Figure 3. Very Low Offset Combining precision, low power, and low bias current, the OP297 is ideal for a number of applications, including instrumentation amplifiers, log amplifiers, photodiode preamplifiers, and long term integrators. For a single device, see the OP97; for a quad device, see the OP497. Rev. F Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved. OP297 TABLE OF CONTENTS Features .............................................................................................. 1 AC Performance ............................................................................9 Applications....................................................................................... 1 Guarding and Shielding................................................................9 General Description ......................................................................... 1 Open-Loop Gain Linearity ....................................................... 10 Pin Configuration............................................................................. 1 Applications..................................................................................... 11 Revision History ............................................................................... 2 Precision Absolute Value Amplifier......................................... 11 Specifications..................................................................................... 3 Precision Current Pump............................................................ 11 Electrical Characteristics............................................................. 3 Precision Positive Peak Detector.............................................. 11 Absolute Maximum Ratings............................................................ 4 Simple Bridge Conditioning Amplifier ................................... 11 Thermal Resistance ...................................................................... 4 Nonlinear Circuits...................................................................... 12 ESD Caution.................................................................................. 4 Outline Dimensions ....................................................................... 13 Typical Performance Characteristics ............................................. 5 Ordering Guide .......................................................................... 14 Applications Information ................................................................ 9 REVISION HISTORY 2/06—Rev. E to Rev. F Updated Format..................................................................Universal Changes to Features.......................................................................... 1 Deleted OP297 Spice Macro Model Section ................................. 9 Updated Outline Dimensions ....................................................... 13 Changes to Ordering Guide .......................................................... 14 7/03—Rev. D to Rev. E Changes to TPCs 13 and 16 ............................................................ 4 Edits to Figures 12 and 14 ............................................................... 8 Changes to Nonlinear Circuits Section ......................................... 8 10/02—Rev. C to Rev. D Edits to Figure 16...............................................................................6 10/02—Rev. B to Rev. C Edits to Specifications .......................................................................2 Deleted Wafer Test Limits ................................................................3 Deleted Dice Characteristics............................................................3 Deleted Absolute Maximum Ratings..............................................4 Edits to Ordering Guide ...................................................................4 Updated Outline Dimensions....................................................... 12 Rev. F | Page 2 of 16 OP297 SPECIFICATIONS ELECTRICAL CHARACTERISTICS @ VS = ±15 V, TA = 25°C, unless otherwise noted. Table 1. OP297E Parameter Input Offset Voltage Symbol VOS Conditions Long-Term Input Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density IOS IB en p-p en VCM = 0 V VCM = 0 V 0.1 Hz to 10 Hz fO = 10 Hz fO = 1000 Hz fO = 10 Hz Input Noise Current Density Input Resistance Differential Mode Input Resistance Common-Mode Large Signal Voltage Gain Input Voltage Range 1 Common-Mode Rejection Power Supply Rejection Output Voltage Swing in RINCM AVO VCM CMRR PSRR VO ISY VS SR GBWP CS Input Capacitance CIN VO = ±10 V RL = 2 kΩ VCM = ±13 V VS = ±2 V to ±20 V RL = 10 kΩ RL = 2 kΩ No Load Operating Range Typ 25 0.1 20 20 0.5 20 17 20 RIN Supply Current per Amplifier Supply Voltage Slew Rate Gain Bandwidth Product Channel Separation 1 Min 2000 ±13 120 120 ±13 ±13 ±2 0.05 AV = +1 VO = 20 V p-p fO = 10 Hz OP297F Max 50 Min Typ 50 0.1 35 35 0.5 20 17 20 100 ±100 OP297G Max 100 Min Typ 80 0.1 50 50 0.5 20 17 20 150 ±150 Max 200 200 ±200 Unit μV μV/mo pA pA μV p-p nV/√Hz nV/√Hz fA/√Hz 30 30 30 MΩ 500 500 500 GΩ 3200 ±14 135 125 ±14 ±13.7 525 0.15 500 150 V/mV V dB dB V V μA V V/μs kHz dB 3 pF 4000 ±14 140 130 ±14 ±13.7 525 1500 ±13 114 114 ±13 ±13 625 ±20 0.15 500 150 ±2 0.05 3 3200 ±14 135 125 ±14 ±13.7 525 1200 ±13 114 114 ±13 ±13 625 ±20 0.15 500 150 ±2 0.05 3 625 ±20 Guaranteed by CMR test. @ VS = ±5 V, –40°C ≤ TA ≤ +85°C for OP297E/OP297F/OP297G, unless otherwise noted. Table 2. OP297E Parameter Input Offset Voltage Symbol VOS Average Input Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain TCVOS IOS IB AVO Input Voltage Range 1 Common-Mode Rejection Power Supply Rejection VCM CMRR PSRR Output Voltage Swing Supply Current per Amplifier Supply Voltage 1 Conditions VCM = 0 V VCM = 0 V VO = ±10 V RL = 2 kΩ Min OP297F Typ 35 Max 100 0.2 50 50 0.6 450 ±450 Min OP297G Typ 80 Max 300 0.5 80 80 2.0 750 ±750 Min Typ 110 Max 400 Unit μV 0.6 80 80 2.0 750 ±750 μV/°C pA pA 3200 ±13.5 130 1000 ±13 108 2500 ±13.5 130 800 ±13 108 2500 ±13.5 130 V/mV V dB VO VCM = ±13 VS = ±2.5 V to ±20 V RL = 10 kΩ 1200 ±13 114 114 ±13 0.15 ±13.4 108 ±13 0.15 ±13.4 108 ±13 0.3 ±13.4 dB V ISY VS No Load Operating Range ± 2.5 550 750 ±20 Guaranteed by CMR test. Rev. F | Page 3 of 16 550 ±2.5 750 ±20 550 ±2.5 750 ±20 μA V OP297 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Supply Voltage Input Voltage1 Differential Input Voltage1 Output Short-Circuit Duration Storage Temperature Range Z Package P, S Packages Operating Temperature Range OP297E (Z) OP297F, OP297G (P, S) Junction Temperature Z Package P, S Packages Lead Temperature (Soldering, 60 sec) 1 Rating ±20 V ±20 V 40 V Indefinite Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. −65°C to +175°C −65°C to +150°C THERMAL RESISTANCE −40°C to +85°C −40°C to +85°C θJA is specified for worst-case mounting conditions, that is, θJA is specified for device in socket for CERDIP and PDIP packages; θJA is specified for device soldered to printed circuit board for the SOIC package. −65°C to +175°C −65°C to +150°C 300°C Table 4. Thermal Resistance For supply voltages less than ±20 V, the absolute maximum input voltage is equal to the supply voltage. Package Type 8-Lead CERDIP (Z-Suffix) 8-Lead PDIP (P-Suffix) 8-Lead SOIC (S-Suffix) θJA 134 96 150 ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. – 1/2 OP297 + V1 20V p-p @ 10Hz 2kΩ 50kΩ 50Ω – 1/2 OP297 V2 CHANNEL SEPARATION = 20 log V1 V2/10000 Figure 4. Channel Separation Test Circuit Rev. F | Page 4 of 16 00300-004 + θJC 12 37 41 Unit °C/W °C/W °C/W OP297 TYPICAL PERFORMANCE CHARACTERISTICS 400 60 VS = ±15V VCM = 0V TA = 25°C VS = ±15V VCM = 0V 1200 UNITS 40 INPUT CURRENT (pA) NUMBER OF UNITS 300 200 20 IB– 0 IB+ –20 IOS 100 –80 –60 –40 –20 0 20 40 INPUT OFFSET VOLTAGE (pA) 60 80 100 –60 –75 00300-005 0 –100 Figure 5. Typical Distribution of Input Offset Voltage 0 25 50 TEMPERATURE (°C) 75 100 125 60 TA = 25°C VS = ±15V VCM = 0V 1200 UNITS VS = ±15V VCM = 0V 40 INPUT CURRENT (pA) 200 150 100 50 IB– 20 IB+ 0 IOS –80 –60 –40 –20 0 20 40 INPUT OFFSET VOLTAGE (pA) 60 80 100 –40 –15 00300-006 0 –100 Figure 6. Typical Distribution of Input Bias Current ±3 DEVIATION FROM FINAL VALUE (µV) TA = 25°C VS = ±15V VCM = 0V 300 200 100 –80 –60 –40 –20 0 20 40 INPUT OFFSET VOLTAGE (pA) 60 80 100 10 15 TA = 25°C VS = ±15V VCM = 0V ±2 ±1 0 00300-007 0 –100 –5 0 5 COMMON-MODE VOLTAGE (V) Figure 9. Input Bias, Offset Current vs. Common-Mode Voltage 400 1200 UNITS –10 00300-009 –20 0 1 2 3 4 TIME AFTER POWER APPLIED (Minutes) Figure 10. Input Offset Voltage Warm-Up Drift Figure 7. Typical Distribution of Input Offset Current Rev. F | Page 5 of 16 5 00300-010 NUMBER OF UNITS –25 Figure 8. Input Bias, Offset Current vs. Temperature 250 NUMBER OF UNITS –50 00300-008 –40 OP297 1300 BALANCED OR UNBALANCED VS = ±15V VCM = 0V 1000 100 –55°C ≤ TA ≤ +125°C 1100 TA = +25°C 1000 TA = +25°C 100 1k 10k 100k 1M 10M SOURCE RESISTANCE (Ω) TA = –55°C 900 800 0 100 COMMON-MODE REJECTION (dB) EFFECTIVE OFFSET VOLTAGE DRIFT (µV/°C) 10 1 100k 1M 10M 100M SOURCE RESISTANCE (Ω) 120 100 80 60 1 100 1k 10k FREQUENCY (Hz) 100k 1M 160 35 30 TA = 25°C VS = ±15V ΔVS = 10V p-p TA = –55°C POWER SUPPLY REJECTION (dB) 25 TA = +25°C 20 15 TA = +125°C 10 VS = ±15V OUTPUT SHORTED TO GROUND 5 0 –5 –10 –15 TA = +125°C –20 TA = +25°C –25 140 120 100 80 60 TA = –55°C –30 0 1 2 3 TIME FROM OUTPUT SHORT (Minutes) 4 40 0.1 00300-013 SHORT-CIRCUIT CURRENT (mA) 10 Figure 15. Common-Mode Rejection Frequency Figure 12. Effective TCVOS vs. Source Resistance –35 ±20 TA = 25°C VS = ±15V 140 40 00300-012 10k ±15 160 BALANCED OR UNBALANCED VS = ±15V VCM = 0V 1k ±10 SUPPLY VOLTAGE (V) Figure 14. Total Supply Current vs. Supply Voltage Figure 11. Effective Offset Voltage vs. Source Resistance 0.1 100 ±5 00300-015 10 TA = +125°C 1 10 100 1k FREQUENCY (Hz) 10k 100k Figure 16. Power Supply Rejection vs. Frequency Figure 13. Short-Circuit Current vs. Time, Temperature Rev. F | Page 6 of 16 1M 00300-016 10 1200 00300-014 TOTAL SUPPLY CURRENT (µA) NO LOAD 00300-011 EFFECTIVE OFFSET VOLTAGE (µV) 10000 OP297 1000 VOLTAGE NOISE 10 1 10 1 10 1 1000 100 FREQUENCY (Hz) RL = 10kΩ VS = ±15V VCM = 0V TA = +125°C TA = +25°C 0 TA = –55°C –15 –5 0 5 10 15 OUTPUT VOLTAGE (V) Figure 17. Voltage Noise Density and Current Noise Density vs. Frequency Figure 20. Differential Input Voltage vs. Output Voltage 10 35 TA = 25°C VS = ±2V TO ±20V 30 OUTPUT SWING (V p-p) TOTAL NOISE DENSITY (nV/√Hz) –10 00300-020 CURRENT NOISE CURRENT NOISE DENSITY (fA/√Hz) 100 100 DIFFERENTIAL INPUT VOLTAGE (10µV/DIV) TA = 25°C VS = ±2V TO ±15V 00300-017 1 10Hz 1kHz 0.1 1kHz 25 TA = 25°C VS = ±15V AVCL = +1 1% THD fO = 1kHz 20 15 10 5 103 104 105 SOURCE RESISTANCE (Ω) 106 107 0 10 00300-018 0.01 102 10k Figure 21. Output Swing vs. Load Resistance Figure 18. Total Noise Density vs. Source Resistance 35 TA = –55°C TA = +25°C VS = ±15V VO = ±10V TA = 25°C VS = ±15V AVCL = +1 1% THD fO = 1kHz RL = 10kΩ 30 OUTPUT SWING (V p-p) 10000 TA = +125°C 1000 25 20 15 10 5 100 1 2 5 6 7 8 9 10 3 4 LOAD RESISTANCE (kΩ) 20 0 100 00300-019 OPEN-LOOP GAIN (V/mV) 100 1k LOAD RESISTANCE (Ω) 00300-021 10Hz 1k 10k FREQUENCY (Hz) Figure 22. Maximum Output Swing vs. Frequency Figure 19. Open-Loop Gain vs. Load Resistance Rev. F | Page 7 of 16 100k 00300-022 VOLTAGE NOISE DENSITY (nV/√Hz) 1000 OP297 1000 100 VS = ±15V CL = 30pF RL = 1MΩ 60 PHASE 40 TA = 25°C VS = ±15V 100 TA = –55°C 20 OUTPUT IMPEDANCE (Ω) OPEN-LOOP GAIN (dB) GAIN PHASE SHIFT (Deg) 80 0 10 1 0.1 0.01 –20 10k 100k FREQUENCY (Hz) 1M 10M Figure 23. Open-Loop Gain, Phase vs. Frequency TA = 25°C VS = ±15V AVCL = +1 VOUT = 100mV p-p –EDGE 40 +EDGE 30 20 10 0 0 100 1000 LOAD CAPACITANCE (pF) 10000 00300-024 OVERSHOOT (%) 50 100 1k 10k FREQUENCY (Hz) 100k Figure 25. Open-Loop Output Impedance vs. Frequency 70 60 0.001 10 Figure 24. Small Signal Overshoot vs. Load Capacitance Rev. F | Page 8 of 16 1M 00300-025 1k 00300-023 TA = +125°C –40 100 OP297 APPLICATIONS INFORMATION Extremely low bias current over a wide temperature range makes the OP297 attractive for use in sample-and-hold amplifiers, peak detectors, and log amplifiers that must operate over a wide temperature range. Balancing input resistances is unnecessary with the OP297. Offset voltage and TCVOS are degraded only minimally by high source resistance, even when unbalanced. 100 90 The input pins of the OP297 are protected against large differential voltage by back-to-back diodes and current-limiting resistors. Common-mode voltages at the inputs are not restricted and can vary over the full range of the supply voltages used. 10 0% 20mV 00300-028 5µs Figure 28. Large Signal Transient Response (AVCL = 1) The OP297 requires very little operating headroom about the supply rails and is specified for operation with supplies as low as 2 V. Typically, the common-mode range extends to within 1 V of either rail. The output typically swings to within 1 V of the rails when using a 10 kΩ load. NONINVERTING AMPLIFIER UNITY-GAIN FOLLOWER AC PERFORMANCE – – The ac characteristics of the OP297 are highly stable over its full operating temperature range. Unity gain small signal response is shown in Figure 26. Extremely tolerant of capacitive loading on the output, the OP297 displays excellent response with 1000 pF loads (see Figure 27). + + 1/2 OP297 1/2 OP297 MINI-DIP BOTTOM VIEW INVERTING AMPLIFIER 8 1 A 100 – 90 1/2 OP297 B 00300-029 + Figure 29. Guard Ring Layout and Considerations 10 10 0% 5µs 00300-026 GUARDING AND SHIELDING 20mV Figure 26. Small Signal Transient Response (CLOAD = 100 pF, AVCL = 1) 100 90 10 20mV 5µs 00300-027 0% To maintain the extremely high input impedances of the OP297, care is taken in circuit board layout and manufacturing. Board surfaces must be kept scrupulously clean and free of moisture. Conformal coating is recommended to provide a humidity barrier. Even a clean PC board can have 100 pA of leakage currents between adjacent traces, so guard rings should be used around the inputs. Guard traces operate at a voltage close to that on the inputs, as shown in Figure 29, to minimize leakage currents. In noninverting applications, the guard ring should be connected to the common-mode voltage at the inverting input. In inverting applications, both inputs remain at ground, so the guard trace should be grounded. Guard traces should be placed on both sides of the circuit board. Figure 27. Small Signal Transient Response (CLOAD = 1000 pF, AVCL = 1) Rev. F | Page 9 of 16 The OP297 has both an extremely high gain of 2000 V/mV minimum and constant gain linearity. This enhances the precision of the OP297 and provides for very high accuracy in high closed-loop gain applications. Figure 30 illustrates the typical open-loop gain linearity of the OP297 over the military temperature range. RL = 10kΩ VS = ±15V VCM = 0V TA = +125°C TA = +25°C 0 TA = –55°C –15 –10 –5 0 5 10 OUTPUT VOLTAGE (V) Figure 30. Open-Loop Linearity of the OP297 Rev. F | Page 10 of 16 15 00300-030 OPEN-LOOP GAIN LINEARITY DIFFERENTIAL INPUT VOLTAGE (10µV/DIV) OP297 OP297 APPLICATIONS PRECISION ABSOLUTE VALUE AMPLIFIER PRECISION POSITIVE PEAK DETECTOR The circuit in Figure 31 is a precision absolute value amplifier with an input impedance of 30 MΩ. The high gain and low TCVOS of the OP297 ensure accurate operation with microvolt input signals. In this circuit, the input always appears as a common-mode signal to the op amps. The CMR of the OP297 exceeds 120 dB, yielding an error of less than 2 ppm. In Figure 33, the CH must be of polystyrene, Teflon®, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of CH and the bias current of the OP297. 1kΩ +15V 1N4148 C2 0.1µF 2 R3 1kΩ R1 1kΩ 3 1/2 OP297 + 4 1 6 D2 1N4148 C3 0.1µF + 1kΩ 1/2 OP297 + RESET 1kΩ 7 1/2 OP297 + R4 10kΩ Figure 34 shows a simple bridge conditioning amplifier using the OP297. The transfer function is ΔR ⎞ R F VOUT = VREF ⎛⎜ ⎟ R ⎝ + ΔR ⎠ R The REF43 provides an accurate and stable reference voltage for the bridge. To maintain the highest circuit accuracy, RF should be 0.1% or better with a low temperature coefficient. R6 10kΩ 1 2 IOUT 10mA 4 R + ΔR 8 1/2 OP297 – 6 6 100Ω = 10mA/V –15V 00300-032 R5 VIN 3 – 1/2 OP297 1 VOUT + 5 5 = RF REF43 +15V 7 0.1µF 15V + 3 – VOUT 2N930 VREF 2 + 7 SIMPLE BRIDGE CONDITIONING AMPLIFIER R3 10kΩ R2 10kΩ 1/2 OP297 Figure 33. Precision Positive Peak Detector R2 2kΩ Maximum output current of the precision current pump shown in Figure 32 is ±10 mA. Voltage compliance is ±10 V with ±15 V supplies. Output impedance of the current transmitter exceeds 3 MΩ with linearity better than 16 bits. R1 10kΩ – –15V PRECISION CURRENT PUMP IOUT = 5 0V < VOUT < 10V Figure 31. Precision Absolute Value Amplifier VIN 6 1 CH – –15V VIN 1/2 OP297 0.1µF – 8 1/2 OP297 + 7 VOUT = VREF RF ΔR R + ΔR R 4 Figure 34. A Simple Bridge Condition Amplifier Using the OP297 Figure 32. Precision Current Pump Rev. F | Page 11 of 16 00300-034 VIN 8 – 5 D1 1N4148 00300-031 2 C1 30pF VIN 1kΩ 3 – 00300-033 +15V OP297 R2 33kΩ NONLINEAR CIRCUITS C2 100pF ⎛I VT 1ln⎜⎜ IN ⎝ I S1 ⎞ ⎛I ⎟ + VT 2 ln⎜ IN ⎟ ⎜I ⎠ ⎝ S2 ⎞ ⎛I ⎟ = VT 3ln⎜ O ⎟ ⎜I ⎠ ⎝ S3 ⎞ ⎛I ⎟ + VT 4 ln⎜ REF ⎟ ⎜ I ⎠ ⎝ S4 6 IO Q1 ⎞ ⎟ ⎟ ⎠ VIN 2 ln IIN = ln IO + ln IREF = ln (IO × IREF) I REF ⎛ R2 VOUT = ⎜⎜ ⎝ I REF ⎞⎛ VIN ⎞ 2 ⎟⎜ ⎟⎝ R1 ⎟⎠ ⎠ + 1 8 Q3 10 9 R3 50kΩ 4 R4 50kΩ –15V An important consideration for the squaring circuit is that a sufficiently large input voltage can force the output beyond the operating range of the output op amp. Resistor R4 can be changed to scale IREF or R1; R2 can be varied to keep the output voltage within the usable range. (VIN )(I REF ) VOUT = R2 Unadjusted accuracy of the square root circuit is better than 0.1% over an input voltage range of 100 mV to 10 V. For a similar input voltage range, the accuracy of the squaring circuit is better than 0.5%. R1 C2 100pF R2 33kΩ 6 IO 1 Q1 3 + Q3 10 8 4 V– VOUT + MAT04E 8 C1 100pF V+ 1/2 OP297 7 7 Q2 6 5 – 5 – 1/2 OP297 1 IREF 9 14 13 Q4 12 R3 50kΩ R4 50kΩ –15V 00300-035 2 3 8 1/2 OP297 7 14 Q4 12 In these circuits, IREF is a function of the negative power supply. To maintain accuracy, the negative supply should be well regulated. For applications where very high accuracy is required, a voltage reference can be used to set IREF. A similar analysis made for the square root circuit of Figure 36 leads to its transfer function 2 – 13 Figure 36. Square Root Amplifier Op Amp A2 forms a current-to-voltage converter, which gives VOUT = R2 × IO. Substituting (VIN/R1) for IIN and the above equation for IO yields VIN 2 MAT04E 1 Q2 5 VOUT + V– (I )2 = IN R1 33kΩ R1 33kΩ 3 Exponentiating both sides of the equation leads to IO 6 V+ 7 IREF 3 C1 100pF All the transistors of the MAT04 are precisely matched and at the same temperature, so the IS and VT terms cancel, where 5 – 1/2 OP297 Figure 35. Squaring Amplifier Rev. F | Page 12 of 16 00300-036 Due to its low input bias currents, the OP297 is an ideal log amplifier in nonlinear circuits such as the square and square root circuits shown in Figure 35 and Figure 36. Using the squaring circuit of Figure 35 as an example, the analysis begins by writing a voltage loop equation across Transistor Q1, Transistor Q2, Transistor Q3, and Transistor Q4. OP297 OUTLINE DIMENSIONS 0.400 (10.16) 0.365 (9.27) 0.355 (9.02) 8 1 5 4 0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 0.005 (0.13) MIN 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) PIN 1 0.100 (2.54) BSC 0.210 (5.33) MAX 0.150 (3.81) 0.130 (3.30) 0.115 (2.92) 8 0.060 (1.52) MAX 1 4 0.100 (2.54) BSC 0.015 (0.38) GAUGE PLANE SEATING PLANE 0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.430 (10.92) MAX 0.005 (0.13) MIN 5 0.310 (7.87) 0.220 (5.59) 0.195 (4.95) 0.130 (3.30) 0.115 (2.92) 0.015 (0.38) MIN 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.055 (1.40) MAX 0.320 (8.13) 0.290 (7.37) 0.405 (10.29) MAX 0.060 (1.52) 0.015 (0.38) 0.200 (5.08) MAX 0.150 (3.81) MIN 0.200 (5.08) 0.125 (3.18) 0.070 (1.78) 0.060 (1.52) 0.045 (1.14) 0.023 (0.58) 0.014 (0.36) 0.070 (1.78) 0.030 (0.76) SEATING PLANE 15° 0° 0.015 (0.38) 0.008 (0.20) COMPLIANT TO JEDEC STANDARDS MS-001-BA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 37. 8-Lead Plastic Dual In-Line Package [PDIP] P-Suffix (N-8) Dimensions shown in inches and (millimeters) Figure 38. 8-Lead Ceramic Dual In-Line Package [CERDIP] Z-Suffix (Q-8) Dimensions shown in inches and (millimeters) 5.00 (0.1968) 4.80 (0.1890) 8 4.00 (0.1574) 3.80 (0.1497) 1 5 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 6.20 (0.2440) 4 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE 0.50 (0.0196) × 45° 0.25 (0.0099) 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 39. 8-Lead Standard Small Outline Package (SOIC) Narrow Body S-Suffix (R-8) Dimensions shown in millimeters and (inches) Rev. F | Page 13 of 16 OP297 ORDERING GUIDE Model OP297EZ Temperature Range −40°C to +85°C Package Description 8-Lead CERDIP Package Options Q-8 OP297FP OP297FPZ 1 OP297FS OP297FS-REEL OP297FS-REEL7 OP297FSZ1 OP297FSZ-REEL1 OP297FSZ-REEL71 OP297GP OP297GPZ1 OP297GS OP297GS-REEL OP297GS-REEL7 −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C 8-Lead PDIP 8-Lead PDIP 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead PDIP 8-Lead PDIP 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC N-8 N-8 R-8 R-8 R-8 R-8 R-8 R-8 N-8 N-8 R-8 R-8 R-8 OP297GSZ1 OP297GSZ-REEL1 OP297GSZ-REEL71 −40°C to +85°C −40°C to +85°C −40°C to +85°C 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC R-8 R-8 R-8 1 Z = PB-free part. Rev. F | Page 14 of 16 OP297 NOTES Rev. F | Page 15 of 16 OP297 NOTES ©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00300-0-2/06(F) Rev. F | Page 16 of 16