Picoampere Input Current Quad Bipolar Op Amp AD704 OUTPUT 1 1 +IN 3 AD704 +VS 4 TOP VIEW +IN 5 –IN 6 2 3 OUTPUT 7 14 OUTPUT +IN 3 13 –IN +VS 4 12 +IN +IN 5 11 –VS –IN 6 10 +IN OUTPUT 7 9 –IN 8 OUTPUT (Not to Scale) –IN1 OUT1 NC OUT4 –IN4 2 1 20 19 1 4 NC 5 AD704 +VS 6 TOP VIEW (Not to Scale) 9 10 11 12 NC OUT3 3 13 –IN3 2 +IN2 8 13 –VS TOP VIEW 12 +IN 2 11 –IN 3 10 OUTPUT NC = NO CONNECT NC 7 The AD704 is a quad, low power bipolar op amp that has the low input bias current of a BiFET amplifier and offers a significantly lower IB drift over temperature. It uses superbeta bipolar input transistors to achieve picoampere input bias current levels (similar to FET input amplifiers at room temperature), while its IB typically increases only by 5× at 125°C (unlike a BiFET amp, for which IB doubles every 10°C, resulting in a 1000× increase at 125°C). In addition, the AD704 achieves 150 μV offset voltage and the low noise characteristics of a precision bipolar input op amp. 14 +IN AD704 Figure 2. 16-Lead SOIC (R) Package 3 +IN1 4 15 –IN 4 NC 8 (Not to Scale) 9 NC Figure 1. 14-Lead Plastic DIP (N) GENERAL DESCRIPTION 18 +IN4 17 NC 16 –VS 15 NC 14 +IN3 NC = NO CONNECT Figure 3. 20-Terminal LCC (E-20-1) Package 100 TYPICAL IB (nA) 10 TYPICAL JFET AMP 1 0.1 AD704 0.01 –55 25 TEMPERATURE (°C) 125 00818-004 The AD704 is an excellent choice for use in low frequency active filters in 12- and 14-bit data acquisition systems, in precision instrumentation, and as a high quality integrator. The AD704 is internally compensated for unity gain stability. The AD704J is rated over the commercial temperature range of 0°C to 70°C. The AD704A is rated over the industrial temperature of −40°C to +85°C. The AD704S is rated over the military temperature range of −55°C to +125°C, processed to MIL-STD-883B. 4 1 00818-003 –IN 2 00818-001 OUTPUT 1 Industrial/process controls Weigh scales ECG/EKG instrumentation Low frequency active filters Because it has only 1/20 the input bias current of an OP07, the AD704 does not require the commonly used balancing resistor. Furthermore, the current noise is 1/5 that of the OP07, which makes the AD704 usable with much higher source impedances. At 1/6 the supply current (per amplifier) of the OP07, the AD704 is better suited for today’s higher density circuit boards and battery-powered applications. 16 OUTPUT –IN 2 –IN2 APPLICATIONS CONNECTION DIAGRAMS OUT2 High dc precision 150 µV maximum offset voltage 1.5 µV/°C maximum offset voltage drift 270 pA maximum input bias current 0.3 pA/°C typical IB drift Low noise: 0.5 µV p-p Typical noise: 0.1 Hz to 10 Hz Low power: 600 µA maximum supply current per amplifier Dual version: AD706 Figure 4. Input Bias Current Over Temperature Table 1. Low IB @ 125°C Model Single Dual Quad 30V N/A AD706 AD704 16V AD8663 AD8667 AD8669 1.3 to 5V AD8603 AD8607 AD8609 Next Generation N/A AD8622 AD8624 Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2001-2010 Analog Devices, Inc. All rights reserved. 00818-002 FEATURES AD704 TABLE OF CONTENTS Features .............................................................................................. 1 Absolute Maximum Ratings ............................................................5 Applications ....................................................................................... 1 ESD Caution...................................................................................5 General Description ......................................................................... 1 Typical Performance Characteristics ..............................................6 Connection Diagrams ...................................................................... 1 Theory of Operation ...................................................................... 11 Revision History ............................................................................... 2 Outline Dimensions ....................................................................... 13 Specifications..................................................................................... 3 Ordering Guide .......................................................................... 14 REVISION HISTORY 1/10—Rev. D to Rev. E Updated Format .................................................................. Universal Changes to Features and General Description Section, Added Table 1, Renumbered Sequentially .................................... 1 Changes to Table 2 ............................................................................ 3 Changes to Table 3 ............................................................................ 5 Updated Outline Dimensions ....................................................... 13 Changes to Ordering Guide .......................................................... 14 12/09—Rev. C to Rev. D Updated Outline Dimensions ....................................................... 10 Changes to Ordering Guide .......................................................... 10 11/01—Rev. B to Rev. C Edits to Features ................................................................................ 1 Edits to Product Description .......................................................... 1 Edits to Absolute Maximum Ratings ............................................. 3 Deleted Metalization Photograph .................................................. 3 Edits to Ordering Guide .................................................................. 4 Rev. E | Page 2 of 16 AD704 SPECIFICATIONS TA = 25°C, VCM = 0 V, and VS =±15 V dc, unless otherwise noted. Table 2. Parameters INPUT OFFSET VOLTAGE Initial Offset Offset vs. Temp, Average TC vs. Supply (PSRR) TMIN − TMAX Long-Term Stability INPUT BIAS CURRENT 1 vs. Temp, Average TC TMIN − TMAX INPUT OFFSET CURRENT vs. Temp, Average TC TMIN − TMAX Conditions Min TMIN − TMAX VS = ±2 V to ±18 V VS = ±2.5 V to ±18 V 100 100 VCM = 0 V VCM = ±13.5 V AD704J/A Typ 50 100 0.2 132 126 0.3 100 VCM = 0 V VCM = ±13.5 V 80 0.6 100 100 VCM = 0 V VCM = ±13.5 V TMIN − TMAX Common-Mode Rejection3 TMIN − TMAX Power Supply Rejection4 INPUT VOLTAGE NOISE μV μV μV/°C dB dB μV/month pA pA pA/°C pA pA 270 300 TMIN − TMAX f = 10 Hz RLOAD = 2 kΩ Rev. E | Page 3 of 16 300 400 94 94 94 94 G = −1 TMIN − TMAX VCM = ±13.5 V TMIN − TMAX 0.1 Hz to 10 Hz f = 10 Hz 0.1 Hz to 10 Hz f = 10 Hz f = 1 kHz 250 300 250 400 500 600 Input Bias Current2 INPUT CURRENT NOISE 150 250 1.5 300 400 TMIN − TMAX FREQUENCY RESPONSE UNITY GAIN Crossover Frequency Slew Rate, Unity Gain Slew Rate INPUT IMPEDANCE Differential Common-Mode INPUT VOLTAGE RANGE Common-Mode Voltage Common-Mode Rejection Ratio Unit 0.3 VCM = 0 V VCM = ±13.5 V MATCHING CHARACTERISTICS Offset Voltage Crosstalk5 Max ±13.5 100 98 pA pA pA/°C pA pA μV μV pA pA dB dB dB dB 150 dB 0.8 0.15 0.1 MHz V/μs V/μs 40||2 300||2 MΩ||pF GΩ||pF ±14 132 128 3 50 0.5 17 15 V dB dB pA p-p fA/√Hz μV p-p nV/√Hz nV/√Hz 22 AD704 Parameters OPEN-LOOP GAIN OUTPUT CHARACTERISTICS Voltage Swing Current CAPACITIVE LOAD Drive Capability POWER SUPPLY Rated Performance Operating Range Quiescent Current TRANSISTOR COUNT Conditions VO = ±12 V RLOAD = 10 kΩ TMIN − TMAX VO = ±10 V RLOAD = 2 kΩ TMIN − TMAX RLOAD = 10 kΩ TMIN − TMAX Short circuit Min AD704J/A Typ 200 150 2000 1500 V/mV V/mV 200 150 1000 1000 V/mV V/mV ±13 ±14 ±15 mA 10,000 pF Max V Gain = 1 ±15 ±2.0 TMIN − TMAX Number of transistors Bias current specifications are guaranteed maximum at either input. Input bias current match is the maximum difference between corresponding inputs of all four amplifiers. 3 CMRR match is the difference of ΔVOS/ΔVCM between any two amplifiers, expressed in dB. 4 PSRR match is the difference between ΔVOS/ΔVSUPPLY for any two amplifiers, expressed in dB. 5 See Figure 5 for test circuit. 1 2 Rev. E | Page 4 of 16 Unit 1.5 1.6 180 ±18 2.4 2.6 V V mA mA AD704 ABSOLUTE MAXIMUM RATINGS Table 3. –80 Rating ±18 V AMP4 AMP2 –100 0°C to 70°C −40°C to +85°C 300°C –160 10 Specification is for the device in free air: 14-lead plastic package: θJA = 150°C/W. 16-lead SOIC package: θJA = 100°C/W. 20-terminal LCC package: θJA = 150°C/W. 2 The input pins of this amplifier are protected by back-to-back diodes. If the differential voltage exceeds ±0.7 volts, external series protection resistors should be added to limit the input current to less than 25 mA. ESD CAUTION 9kΩ +VS OUTPUT 1µF 0.1µF 1µF AD704 PIN 4 COM AD704 2.5kΩ INPUT SIGNAL1 0.1µF –VS 1kΩ AD704 PIN 11 NOTES 1. ALL FOUR AMPLIFIERS ARE CONNECTED AS SHOWN. 00818-005 1THE SIGNAL INPUT (SUCH THAT THE AMPLIFIER’S OUTPUT IS AT MAXIMUM AMPLITUDE WITHOUT CLIPPING OR SLEW LIMITING) IS APPLIED TO ONE AMPLIFIER AT A TIME. THE OUTPUTS OF THE OTHER THREE AMPLIFIERS ARE THEN MEASURED FOR CROSSTALK. 100 1k FREQUENCY (Hz) 10k Figure 6. Crosstalk vs. Frequency Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 1/4 –120 –140 1 1kΩ AMP3 Figure 5. Crosstalk Test Circuit Rev. E | Page 5 of 16 100k 00818-006 ±VS ±0.7 V Indefinite −65°C to +125°C CROSSTALK (dB) Parameter Supply Voltage Internal Power Dissipation (25°C)1 Input Voltage Differential Input Voltage2 Output Short-Circuit Duration (Single Input) Storage Temperature Range Operating Temperature Range AD704J AD704A Lead Temperature (Soldering, 10 sec) AD704 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VS = ±15 V dc, unless otherwise noted. +VS UNITS (%) 40 30 20 0 –80 –40 0 40 INPUT OFFSET VOLTAGE (µV) 80 –1.0 –1.5 +1.5 +1.0 +0.5 –VS 00818-007 10 –0.5 Figure 7. Typical Distribution of Input Offset Voltage 0 5 10 SUPPLY VOLTAGE (V) 15 00818-010 INPUT COMMON-MODE VOLTAGE LIMIT –V (REFERRED TO SUPPLY VOLTAGES) 50 20 Figure 10. Input Common-Mode Voltage Range vs. Supply Voltage 35 50 30 OUTPUT VOLTAGE (V p-p) UNITS (%) 40 30 20 25 20 15 10 10 –160 –80 0 80 INPUT BIAS CURRENT (pA) 160 0 1k 00818-008 0 Figure 8. Typical Distribution of Input Bias Current 10k 100k FREQUENCY (Hz) 1M 00818-011 5 Figure 11. Large Signal Frequency Response 50 100 30 20 10 0 –120 –60 0 60 INPUT OFFSET CURRENT (pA) 120 10 1 0.1 1k 00818-009 UNITS (%) 40 Figure 9. Typical Distribution of Input Offset Current 10k 100k 1M SOURCE RESISTANCE (Ω) 10M Figure 12. Offset Voltage Drift vs. Source Resistance Rev. E | Page 6 of 16 100M 00818-012 OUTPUT VOLTAGE DRIFT (µV/°C) SOURCE RESISTANCE MAY BE EITHER BALANCED OR UNBALANCED. AD704 1k 50 VOLTAGE NOISE (nV/ Hz) 40 UNITS (%) 30 20 100 10 –0.8 –0.4 0 0.4 INPUT OFFSET VOLTAGE DRIFT (µV/°C) 1 00818-013 0 0.8 1 100 1k FREQUENCY (Hz) Figure 16. Input Noise Voltage Spectral Density Figure 13. Typical Distribution of Input Offset Voltage Drift 1k 4 CURRENT NOISE (fA/ Hz) 3 2 1 100 100Ω 10 10kΩ 20MΩ 0 0 1 2 3 WARM-UP TIME (Minutes) 4 5 1 1 10 100 1k FREQUENCY (Hz) 00818-017 VOUT 00818-014 CHANGE IN OFFSET VOLTAGE (µV) 10 00818-016 10 Figure 17. Input Noise Current Spectral Density Figure 14. Change in Input Offset Voltage vs. Warm-Up Time 120 POSITIVE IB 80 0.5µV 60 40 NEGATIVE IB 0 –15 –10 –5 0 5 COMMON-MODE VOLTAGE (V) 10 15 0 5 TIME (Seconds) Figure 18. 0.1 Hz to 10 Hz Noise Voltage Figure 15. Input Bias Current vs. Common-Mode Voltage Rev. E | Page 7 of 16 10 00818-018 20 00818-015 INPUT BIAS CURRENT (pA) 100 AD704 10M OPEN-LOOP VOLTAGE GAIN QUIESCENT CURRENT (µA) 500 450 400 +125°C +25°C 350 –55°C +25°C +125°C 1M –55°C 5 10 SUPPLY VOLTAGE (±V) 15 20 100k 1 Figure 19. Quiescent Supply Current vs. Supply Voltage (per Amplifier) 10 LOAD RESISTANCE (kΩ) 00818-022 0 00818-019 200 100 Figure 22. Open-Loop Gain vs. Load Resistance Over Temperature 160 140 0 120 30 OPEN-LOOP VOLTAGE GAIN (dB) 140 120 80 60 40 80 90 60 120 150 40 GAIN 180 20 10 100 1k FREQUENCY (Hz) 10k 100k 1M –20 0.01 00818-020 1 Figure 20. Common-Mode Rejection vs. Frequency 100 1k 10k FREQUENCY (Hz) 100k 1M 10M OUTPUT VOLTAGE SWING –V (REFERRED TO SUPPLY VOLTAGES) RL = 10kΩ 120 –PSR 100 80 60 +PSR 40 1 10 100 1k FREQUENCY (Hz) 10k 100k 1M –0.5 –1.0 –1.5 +1.5 +1.0 +0.5 –VS 00818-021 PSR (dB) 10 +VS VS = ±15V TA = 25°C 140 20 0.1 1 Figure 23. Open-Loop Gain and Phase vs. Frequency 180 160 0.1 00818-023 0 20 0 0.1 PHASE 0 5 10 SUPPLY VOLTAGE (±V) 15 Figure 24. Output Voltage Swing vs. Supply Voltage Figure 21. Power Supply Rejection vs. Frequency Rev. E | Page 8 of 16 20 00818-024 CMR (dB) 100 60 100 PHASE SHIFT (Degrees) VS = ±15V AD704 IOUT = 1mA 5µs 100 100 • • • • AV = –1000 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 90 10 1 AV = +1 0.1 10 0% • • • • 0.01 00818-028 CLOSED-LOOP OUTPUT IMPEDANCE (Ω) 1k 1 10 100 1k FREQUENCY (Hz) 10k 100k 00818-025 20mV 0.001 Figure 28. Unity Gain Follower Small Signal Pulse Response RF = 0 Ω, CL = 100 pF Figure 25. Closed-Loop Output Impedance vs. Frequency RF 5µs +VS 0.1µF 100 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 90 1/4 AD704 RL 2kΩ VIN VOUT CL 00818-026 0.1µF SQUARE WAVE INPUT –VS 00818-029 10 0% • • • • 20mV Figure 26. Unity Gain Follower (for Large Signal Applications, Resistor RF Limits the Current Through the Input Protection Diodes) Figure 29. Unity Gain Follower Small Signal Pulse Response RF = 0 Ω, CL = 1000 pF 10kΩ +VS 0.1µF • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 90 VIN 10kΩ 1/4 AD704 SQUARE WAVE INPUT RL 2.5kΩ VOUT CL 0.1µF –VS 10 • • • • • • • • • • • • • • • • • • • • 2V • • • • • • • • • • • • 50µs • • • • 00818-027 0% • • • • Figure 27. Unity Gain Follower Large Signal Pulse Response RF = 10 kΩ, CL = 1000 pF Rev. E | Page 9 of 16 Figure 30. Unity Gain Inverter Connection 00818-030 100 • • • • AD704 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 100 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0% • • • • • • • • 00818-031 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Figure 33. Unity Gain Inverter Small Signal Pulse Response, CL = 1000 pF 5µs • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 90 20mV 00818-032 10 0% • • • • • • • • 20mV Figure 31. Unity Gain Inverter Large Signal Pulse Response, CL = 1000 pF 100 • • • • • • • • 10 10 0% • • • • • • • • 90 90 00818-033 100 • • • • 5µs 50µs 2V Figure 32. Unity Gain Inverter Small Signal Pulse Response, CL = 100 pF Rev. E | Page 10 of 16 AD704 THEORY OF OPERATION GAIN TRIM (500kΩ POT) OPTIONAL AC CMRR TRIM R5 2.4kΩ R3 6.34kΩ R4 47.5kΩ DC CMRR TRIM (5kΩ POT) +VS Ct RG C1 4C2 1 Q1 = ω= R1 6.34kΩ R2 49.9kΩ Q2 = R6 C1C2 ω= R6 = R7 C1 R6 1MΩ C3 R7 1MΩ AD704 1/4 AD704 R8 1MΩ 1/4 C2 0.1µF R8 C3C4 R8 = R9 0.1µF 1/4 C3 4C4 1 R9 1MΩ AD704 C4 –VIN –VS +VIN 1/4 OUTPUT AD704 R10, 2MΩ R11, 2MΩ C5, 0.01µF C6, 0.01µF OPTIONAL BALANCE RESISTOR NETWORKS CAN BE REPLACED WITH A SHORT. 00818-034 NOTES R2 2R2 1. INSTRUMENTATION AMPLIFIER GAIN = 1 + + (FOR R1 = R3, R2 = R4 + R5). R1 RG 2. CAPACITORS C2 AND C4 ARE SOUTHERN ELECTRONICS MPCC, POLYCARBONATE, ±5%, 50V. 3. ALL RESISTORS METAL FILM, 1%. Figure 34. Gain-of-10 Instrumentation Amplifier with Post Filtering R2 = R4 + R5 = 49.9 kΩ 49.9 kΩ R1 = R3 = 0.9 G − 1 RG (Max Value of Trim Potentiometer) 166 kΩ 16.6 kΩ 1.66 kΩ 80 TYPICAL MONOLITHIC IN AMP 60 40 WITHOUT CAPACITOR Ct 1 10 100 FREQUENCY (Hz) 1k 10k Figure 35. Common-Mode Rejection vs. Frequency with and Without Capacitor Ct 1 2 π ( R3) 5 × 10 5 R1 and R3 6.34 kΩ 526 Ω 56.2 Ω 100 0 Table 4. Resistance Values for Various Gains Circuit Gain (G) 10 100 1000 CIRCUIT TRIMMED USING CAPACITOR Ct 120 20 99.8 kΩ 0.06 G Max Value of RG = Ct ≈ GAIN = 10, 0.2V p-p COMMON-MODE INPUT 140 00818-035 The instrumentation amplifier circuit offers many performance benefits, including BiFET level input bias currents, low input offset voltage drift, and only 1.2 mA quiescent current. It operates for gains that are G ≥ 2 and, at lower gains, it benefits from no output amplifier offset and no noise contribution as encountered in a 3-op-amp design. Good low frequency CMRR is achieved even without the optional ac CMRR trim (see Figure 35). Table 4 provides resistance values for three common circuit gains. For other gains, use the following equations: 160 COMMON-MODE REJECTION (dB) The instrumentation amplifier with post filtering (see Figure 34) combines two applications that benefit greatly from the AD704. This circuit achieves low power and dc precision over temperature with a minimum of components. Bandwidth (−3 dB), Hz 50 k 5k 0.5 k Rev. E | Page 11 of 16 AD704 180 120 OFFSET VOLTAGE OF FILTER CIRCUIT (RTI) (µV) WITHOUT OPTIONAL BALANCE RESISTOR, R3 60 0 WITH OPTIONAL BALANCE RESISTOR, R3 –60 –120 –180 –40 0 40 80 TEMPERATURE (°C) 120 00818-036 The 1 Hz, four-pole active filter offers dc precision with a minimum of components and cost. The low current noise, IOS, and IB allow the use of 1 MΩ resistors without sacrificing the 1 μV/°C drift of the AD704. This means that lower capacitor values can be used, reducing cost and space. Furthermore, because the AD704’s IB is as low as its IOS, over most of the MIL temperature range, most applications do not require the use of the normal balancing resistor (with its stability capacitor). Adding the optional balancing resistor enhances performance at high temperatures, as shown in Figure 36. Table 5 gives capacitor values for several common low pass responses. Figure 36. VOS vs. Temperature Performance of the 1 Hz Filter Circuit Table 5. 1 Hz, Four-Pole Low-Pass Filter Recommended Component Values1 Desired Low Pass Response Bessel Butterworth 0.1 dB Chebychev 0.2 dB Chebychev 0.5 dB Chebychev 1.0 dB Chebychev 1 Section 1 Frequency (Hz) 1.43 1.00 0.648 0.603 0.540 0.492 Q 0.522 0.541 0.619 0.646 0.705 0.785 Section 2 Frequency (Hz) 1.60 1.00 0.948 0.941 0.932 0.925 Q 0.806 1.31 2.18 2.44 2.94 3.56 C1 ( µF) 0.116 0.172 0.304 0.341 0.416 0.508 C2 (µF) 0.107 0.147 0.198 0.204 0.209 0.206 C3 (µF) 0.160 0.416 0.733 0.823 1.00 1.23 Specified values are for a −3 dB point of 1.0 Hz. For other frequencies, simply scale the C1 through C4 capacitors directly; that is, for a 3 Hz Bessel response, C1 = 0.0387 μF, C2 = 0.0357 μF, C3 = 0.0533 μF, and C4 = 0.0205 μF. Rev. E | Page 12 of 16 C4 (µF) 0.0616 0.0609 0.0385 0.0347 0.0290 0.0242 AD704 OUTLINE DIMENSIONS 0.775 (19.69) 0.750 (19.05) 0.735 (18.67) 14 8 1 0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 7 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.100 (2.54) BSC 0.060 (1.52) MAX 0.210 (5.33) MAX 0.015 (0.38) MIN 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) SEATING PLANE 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.195 (4.95) 0.130 (3.30) 0.115 (2.92) 0.015 (0.38) GAUGE PLANE 0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.430 (10.92) MAX 0.005 (0.13) MIN 0.070 (1.78) 0.050 (1.27) 0.045 (1.14) 070606-A COMPLIANT TO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure 37. 14-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-14) Dimensions shown in inches and (millimeters) 10.50 (0.4134) 10.10 (0.3976) 9 16 7.60 (0.2992) 7.40 (0.2913) 8 1.27 (0.0500) BSC 0.30 (0.0118) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 10.65 (0.4193) 10.00 (0.3937) 0.75 (0.0295) 0.25 (0.0098) 2.65 (0.1043) 2.35 (0.0925) SEATING PLANE 45° 8° 0° 0.33 (0.0130) 0.20 (0.0079) COMPLIANT TO JEDEC STANDARDS MS-013- AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 38. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16) Dimensions shown in millimeters and (inches) Rev. E | Page 13 of 16 1.27 (0.0500) 0.40 (0.0157) 032707-B 1 AD704 0.200 (5.08) REF 0.100 (2.54) REF 0.015 (0.38) MIN 0.075 (1.91) REF 0.095 (2.41) 0.075 (1.90) 19 18 0.358 (9.09) 0.342 (8.69) SQ 0.358 (9.09) MAX SQ 0.088 (2.24) 0.054 (1.37) 0.011 (0.28) 0.007 (0.18) R TYP 0.075 (1.91) REF 0.055 (1.40) 0.045 (1.14) 3 20 4 0.028 (0.71) 0.022 (0.56) 1 BOTTOM VIEW 0.050 (1.27) BSC 8 14 13 9 45° TYP 0.150 (3.81) BSC CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. 022106-A 0.100 (2.54) 0.064 (1.63) Figure 39. 20-Terminal Ceramic Leadless Chip Carrier [LCC] (E-20-1) Dimensions shown in inches and (millimeters) ORDERING GUIDE Model1 AD704AR-16 AD704AR-16-REEL AD704ARZ-16 AD704ARZ-16-REEL AD704JN AD704JNZ AD704JR-16 AD704JR-16-REEL AD704JRZ-16 AD704JRZ-16-REEL AD704SE/883B 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C 0°C to 70°C 0°C to 70°C 0°C to 70°C 0°C to 70°C 0°C to 70°C 0°C to 70°C −55°C to +125°C Package Description 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 14-Lead PDIP 14-Lead PDIP 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 20-Terminal LCC Z = RoHS Compliant Part. Rev. E | Page 14 of 16 Package Option RW -16 RW -16 RW -16 RW -16 N-14 N-14 RW -16 RW -16 RW -16 RW -16 E-20-1 AD704 NOTES Rev. E | Page 15 of 16 AD704 NOTES ©2001-2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00818-0-1/10(E) Rev. E | Page 16 of 16