PC866 Series PC866 Series Low Driving Current Type Photocoupler ■ Features ■ Outline Dimensions 1. Low driving current ( single Tr. output ) ( CTR : MIN. 100 % at I F = 1mA ) 2. High collector-emitter voltage ( VCEO : 80V) 3. Isolation voltage between input and output ( Viso : 5 000V rms ) 4. Also available burn-in type ( PC866Q / PC8D66Q/ PC8Q66Q ) ( Unit : mm ) PC866/PC866Q International connection diagram 4 3 2.54 3 6.5 ± 0.5 4 Anode mark 866 1 0.9 ± 0.2 2 1 2 1.2 ± 0.3 7.62 ± 0.3 4.58 ± 0.5 2.7 ± 0.5 3.0 ± 0.5 0.5TYP. 1. Telephone sets 2. Computer terminals 3. System appliances, measuring instruments 3.5 ± 0.5 ■ Applications 0.5 ± 0.1 θ 0.26 ± 0.1 θ θ = 0 to 13 ˚ 1 Anode 2 Cathode 3 Emitter 4 Collector PC8Q66/PC8Q66Q International connection diagram 16 15 14 13 12 11 10 9 6 7 8 10 9 7 8 PC8D66/PC8D66Q International connection diagram 2.54 ± 0.25 8 7 6 5 8 7 6 5 6.5 ± 0.5 1 2 3 4 3 4 0.9 ± 0.2 7.62 ±0.3 2.7 ± 0.5 3.5 ± 0.5 15 θ 0.26 ± 0.1 0.5 ± 0.1 1 2 5 6 3 4 7 8 Anode Cathode Emitter Collector θ 5 14 13 12 11 PC8Q66 1 θ = 0 to 13 ˚ 3.5 ± 0.5 3.0 ± 0.5 0.5TYP. 9.66 ± 0.5 4 2.54 ± 0.25 16 6.5 ± 0.5 1.2 ± 0.3 3 2 1.2 ± 0.3 3 4 5 6 0.9 ± 0.2 ± 0.5 19.82 7.62 2.7 ± 0.5 2 3.0 ± 0.5 1 2 1 3 5 7 Anode 2 4 6 8 Cathode 9 11 13 15 Emitter 10 12 14 16 Collector Anode mark PC8D66 0.5TYP. Anode mark 1 0.5 ±0.1 θ θ = 0 to 13 ˚ 0.26 ± 0.1 “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” θ PC866 Series ■ Absolute Maximum Ratings Input Output ( Ta = 25˚C ) Parameter Forward current *1 Peak forward current Reverse voltage Power dissipation Collector-emitter voltage Emitter-collector voltage Collector current Collector power dissipation Total power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature Symbol IF I FM VR P V CEO V ECO IC PC P tot V iso T opr T stg T sol Rating 50 1 6 70 80 6 50 150 200 5 000 - 30 to + 100 - 55 to + 125 260 Unit mA A V mW V V mA mW mW V rms ˚C ˚C ˚C *1 Pulse width <=100µs, Duty ratio : 0.001 *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds ■ Electoro-optical Characteristics Input Output Transfer characteristics Parameter Forward voltage Peak forward voltage Reverse current Terminal capacitance Collector dark current Collector-emitter breakdown voltage Emitter-collector breakdown voltage Current transfer ratio Collector-emitter saturation voltage Isolation resistance Floating capacitance Cut-off frequency Response time ( Ta = 25˚C ) Symbol VF V FM IR Ct I CEO BV CEO BV ECO CTR V CE(sat) R ISO Cf fc Rise time Fall time tr tf Conditions I F = 10mA I FM = 0.5A V R = 4V V = 0, f = 1kHz V CE = 24V, I F = 0 I C = 0.1mA, I F = 0 I E = 10 µA, I F = 0 I F = 1mA, V CE = 0.5V I F = 1mA, I C = 0.2mA DC500V, 40 to 60% RH V = 0, f = 1MHz V CE = 5V, I C = 2mA, R L = 100 Ω - 3dB V CE = 2V, I C = 2mA R L = 100 Ω MIN. 80 6 100 5 x 1010 - TYP. 1.2 30 1011 0.6 MAX. 1.4 3.0 10 250 100 0.4 1.0 Unit V V µA pF nA V V % V Ω pF - 50 - kHz - 8 8 - µs PC866 Series Fig. 2 Diode Power Dissipation vs. Ambient Temperature 60 120 50 100 Diode power dissipation P ( mW ) Forward current I F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature 40 30 20 10 0 - 30 0 25 50 75 Ambient temperature T a 100 ( ˚C ) 80 70 60 40 25 20 0 - 30 125 0 25 75 50 Ambient temperature T Fig. 3 Collector Power Dissipation vs. Ambient Temperature a 100 125 ( ˚C ) Fig. 4 Power Dissipation vs. Ambient Temperature 250 150 Power dissipation P tot ( mW ) Collector power dissipation PC ( mW ) 200 100 50 0 - 30 0 25 50 75 100 200 150 100 50 0 - 30 125 0 Fig. 5 Peak Forward Current vs. Duty Ratio 10 000 FM ( mA ) 2 000 Peak forward current I 500 50 75 100 125 Fig. 6 Forward Current vs. Forward Voltage Pulse width <=100 µs 5 000 25 Ambient temperature T a ( ˚C ) Ambient temperature T a ( ˚C ) 500 T a = 25˚C T a = 75˚C 200 25˚C 0˚C 50 - 25˚C Forward current I F ( mA ) 1 000 50˚C 100 200 100 50 20 10 20 10 5 2 1 5 5 10 -3 2 5 10 -2 2 5 Duty ratio 10 -1 2 5 1 0 0.5 1.0 1.5 2.0 2.5 Forward voltage V F ( V ) 3.0 3.5 PC866 Series Fig. 8 Collector Current vs. Collector-emitter Voltage Fig. 7 Current Transfer Ratio vs. Forward Current 50 500 V CE = 0.5V T a = 25˚C I F = 30mA Collector current I C ( mA) Current transfer ratio CTR ( % ) P C ( MAX.) 40 400 300 200 20mA 30 10mA 20 5mA 10 100 1mA 0 0.1 1 0 0 5 1 2 3 4 Collector-emitter voltage V CE ( V) Forward current I F ( mA ) Fig. 9 Relative Current Transfer Ratio vs. Ambient Temperature 0.16 I F = 1mA V CE = 0.5V 100 50 0 - 30 0 20 40 60 80 Fig.10 Collector-emitter Saturation Voltage vs. Ambient Temperature Collector-emitter saturation voltage V CE(sat) ( V ) Relative current transfer ratio ( % ) 150 I F = 20mA I C = 1mA 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0 - 30 100 Ambient temperature T a ( ˚C ) 500 V CE = 24V 200 -6 100 5 10 -7 10 -8 Response time ( µ s ) Collector dark current I CEO ( A ) 10 5 5 10 80 100 50 20 tr tf 10 5 td ts 0.5 - 10 - 11 - 30 60 V CE = 2V I C = 2mA T a = 25˚C 1 5 10 40 2 -9 5 10 20 Fig.12 Response Time vs. Load Resistance -5 5 0 Ambient temperature T a (˚C) Fig.11 Collector Dark Current vs. Ambient Temperature 10 5 20 0 40 60 Ambient temperature T a ( ˚C ) 80 100 0.2 0.1 0.01 0.1 1 Load resistance RL ( k Ω ) 10 50 PC866 Series Fig.13 Frequency Response V CE = 5V I C = 2mA T a = 25˚C 0 Voltage gain Av ( dB ) Test Circuit for Response Time Input VCC Output Input RD RL Output 10% 1k Ω 100 Ω R L = 10k Ω 90% td - 10 Test Circuit for Frepuency Response VCC - 20 RD RL Output 0.5 1 2 5 10 20 50 100 200 500 Frequency f ( kHz ) CE(sat) (V) Fig.14 Collector-emitter Saturation Voltage vs. Forward Current Collector-emitter saturation voltage V ts tr 6 T a = 25˚C 5 7mA 5mA 4 3mA 3 1mA 2 I C = 0.5mA 1 0 0 2 4 6 8 10 12 Forward current I F 14 16 18 20 ( mA ) ● Please refer to the chapter “ Precautions for Use ” tf