Freescale Semiconductor Data Sheet: Advance Information Document Number: MPC5606S Rev. 1, 10/2008 MPC5606S LQFP–144 MAPBGA–225 QFN12 20 mm x 20 mm ##_mm_x_##mm 15 mm x 15 mm MPC560xS Microcontroller Data Sheet LQFP–176 24 mm x 24 mm SOT-343R ##_mm_x_##mm TBD PKG-TBD ## mm x ## mm 32-bit MCU for cluster applications with stepper motor, TFT graphic controller and LCD driver The MPC5606S family of devices is designed to enable the development of automotive instrument cluster applications by providing a single-chip solution capable of hosting real-time applications and driving a TFT display directly using an on-chip color TFT display controller. MPC5606S devices incorporate a cost-efficient host processor core compliant with the Power Architecture™ embedded category. The processor is 100% user-mode compatible with the original PowerPC user instruction set architecture (UISA) and capitalizes on the available development infrastructure of current Power ArchitectureTM devices with full support from available software drivers, operating systems and configuration code to assist with users' implementations. Offering high performance processing at speeds up to 64 MHz, the MPC5606S family is optimized for low power consumption and supports a range of on-chip SRAM and internal flash memories. The 1 MB flash version (MPC5606S) features 160 KB of on-chip graphics SRAM. Refer to Table 1 for specific memory and feature sets of the product family members. This document describes the features of the MPC5606S family of microcontrollers and highlights important electrical and physical characteristics of the devices. For functional characteristics, refer to the MPC5606S Microcontroller Reference Manual. This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2008. All rights reserved. Preliminary—Subject to Change Without Notice Table of Contents 1 2 3 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1 Device Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 MPC5606S Features. . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1.3 MPC5606S Series Blocks . . . . . . . . . . . . . . . . . . . . . . . .6 1.3.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .6 1.3.2 Block Summary . . . . . . . . . . . . . . . . . . . . . . . . . .7 Pinout and Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . .9 2.1 144 LQFP Package Pinout . . . . . . . . . . . . . . . . . . . . . .10 2.2 176 LQFP Package Pinout . . . . . . . . . . . . . . . . . . . . . .11 2.3 208 MAPBGA Package Pinout . . . . . . . . . . . . . . . . . . .11 2.4 Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2.4.1 Pad Configuration during Reset Phases . . . . . .13 2.4.2 Voltage Supply Pins. . . . . . . . . . . . . . . . . . . . . .13 2.4.3 Pad Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 2.4.4 System Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . .15 2.4.5 Nexus Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 2.4.6 Functional Ports A, B, C, D, E, F, G, H, I, J, K . .18 2.4.7 Signal Details. . . . . . . . . . . . . . . . . . . . . . . . . . .36 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .39 3.1.1 Recommended Operating Conditions . . . . . . . .41 3.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .44 3.2.1 General Notes for Specifications at Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . .45 3.3 EMI (Electromagnetic Interference) Characteristics . . .47 3.4 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . .47 3.4.1 Voltage Regulator Electrical Characteristics . . .47 3.4.2 Voltage monitor electrical characteristics. . . . . .48 3.4.3 Low voltage domain power consumption. . . . . .49 3.5 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .50 3.6 I/O Pad Electrical Characteristics . . . . . . . . . . . . . . . . .50 3.6.1 I/O Pad Types . . . . . . . . . . . . . . . . . . . . . . . . . .50 4 3.6.2 I/O Input DC Characteristics . . . . . . . . . . . . . . 50 3.6.3 I/O Output DC Characteristics . . . . . . . . . . . . . 51 3.6.4 I/O Pad Current Specification. . . . . . . . . . . . . . 55 3.7 RESET electrical characteristics . . . . . . . . . . . . . . . . . 57 3.8 Main Oscillator Electrical Characteristics . . . . . . . . . . 59 3.9 Low Power Oscillator Electrical Characteristics. . . . . . 61 3.10 FMPLL Electrical Characteristics. . . . . . . . . . . . . . . . . 62 3.11 Main RC Oscillator Electrical Characteristics . . . . . . . 63 3.12 Low Power RC Oscillator Electrical Characteristics . . 64 3.13 Flash Memory Electrical Characteristics . . . . . . . . . . . 64 3.14 Analog to Digital Converter (ADC) Electrical Characteristics 65 3.14.1 Input Impedance and ADC Accuracy . . . . . . . . 66 3.14.2 ADC Electrical Characteristics . . . . . . . . . . . . . 70 3.15 AC Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.15.1 Pad AC Specifications . . . . . . . . . . . . . . . . . . . 72 3.16 AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.16.1 IEEE 1149.1 Interface Timing . . . . . . . . . . . . . 74 3.16.2 Nexus Debug Interface. . . . . . . . . . . . . . . . . . . 77 3.16.3 Interface to TFT LCD Panels . . . . . . . . . . . . . . 78 3.16.4 External Interrupt (IRQ) and Non-Maskable Interrupt (NMI) Timing . . . . . . . . . . . . . . . . . . . 81 3.16.5 Enhanced Modular I/O Subsystem (eMIOS) Timing 82 3.16.6 FlexCAN Timing . . . . . . . . . . . . . . . . . . . . . . . . 82 3.16.7 Deserial Serial Peripheral Interface (DSPI) . . . 83 3.16.8 I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.16.9 Mechanical Outline Drawings. . . . . . . . . . . . . . 89 3.17 144 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.18 176 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 2 Preliminary—Subject to Change Without Notice Freescale Semiconductor Overview 1 Overview The following sections provide high-level descriptions of the features found on the MPC5606S. 1.1 Device Comparison .. Table 1. MPC5606S Family Feature MPC5602S CPU MPC5604S MPC5606S e200z0h Execution Speed Static - 64 MHz Flash (ECC) 256 KB EEPROM Emulation Block (ECC) RAM (ECC) Graphics RAM 512 KB 1 MB 4 × 16 KB 24 KB 48 KB 48 KB No No 160 KB MPU 12 entry eDMA 16 channels Display Control Unit No No Yes Parallel Data Interface No No Yes Stepper Motor Controller 6 motors Stepper Motor Stall Detect Sound Generation LCD Segment Driver Yes Yes Yes Using eMIOS 64 × 6 64 × 6 40 × 4, 38 × 61 32 kHz External Crystal Oscillator Yes Real Time Counter and Autonomous Periodic Interrupt Yes Yes Periodic Interrupt Timer 4 ch, 32-bit System Watchdog Timer Yes System Timer Module Yes 4 ch, 32-bit Timed I/O2 8 ch, 16-bit IC/OC 16 ch, 16-bit OPWM/IC/OC ADC3 16 channels, 10-bit CAN (64 Mailboxes) 1 × FlexCAN CAN Sampler 2 × FlexCAN 2 × FlexCAN Yes SCI 2 × LINFlex SPI QuadSPI Serial Flash Interface 2 × DSPI 2 × DSPI 34 × DSPI No No Yes MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 3 Overview Table 1. MPC5606S Family (continued) Feature MPC5602S MPC5604S MPC5606S 2 2 4 GPIO 105 105 105 / 132 Debug Nexus 1 Nexus 1 Nexus 2+5 144 LQFP 144 LQFP 144 LQFP6 176 LQFP 208 MAPBGA7 I2C Package 1 2 3 4 5 6 7 Configuration is software-programmable IC-Input Capture, OC-Output Compare, OPWM-Output Pulse Width Modulation Support for external multiplexer enabling up to 23 channels QuadSPI serial Flash controller can be optionally used as a third DSPI Nexus2+ available on 176 LQFP as alternate pin function and on 208 MAPBGA Not all features are available simultaneously in 144 LQFP package option The 208-pin package is not a production package; it is available in limited quantities for tool development only. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 4 Preliminary—Subject to Change Without Notice Freescale Semiconductor Overview 1.2 • • • • • • • • • • • • • • • • • • • • • MPC5606S Features Single issue, 32-bit Power Architecture Book E compliant CPU core complex (e200z0h) — Compatible with classic PowerPC instruction set — Includes variable length encoding (VLE) instruction set for smaller code size footprint; with the encoding of mixed 16-bit and 32-bit instructions, it is possible to achieve significant code size footprint reduction over conventional Book E compliant code On-chip ECC flash memory with flash controller — Up to 1 MB primary flash—two 512 KB modules with prefetch buffer and 128-bit data access port — 64 KB data flash—separate 4×16 KB flash block for EEPROM Emulation with prefetch buffer and 128-bit data access port Up to 48 KB on-chip ECC SRAM with SRAM controller Up to 160 KB on-chip non-ECC graphics SRAM with SRAM controller Memory protection unit (MPU) with up to 12 region descriptors and 32-byte region granularity to provide basic memory access permission Interrupt controller (INTC) with up to 127 peripheral interrupt sources and eight software interrupts Two frequency-modulated phase-locked loops (FMPLLs) — Primary FMPLL provides a 64 MHz system clock — Auxiliary FMPLL is available for use as an alternate, modulated or non-modulated clock source to eMIOS modules and as alternate clock to the DCU for pixel clock generation Crossbar switch architecture enables concurrent access of peripherals, flash memory or RAM from multiple bus masters (AMBA 2.0 v6 AHB) 16-channel enhanced direct memory access controller (eDMA) with multiple transfer request sources using a DMA channel multiplexer Boot assist module (BAM) for embedded boot code supports boot options including download of code via a serial link (CAN or SPI) Display control unit to drive TFT LCD displays. It includes processing of up to four planes that can be blended together and offers a direct un-buffered hardware bit-blitter of up to 16 software-configurable dynamic layers in order to drastically minimize graphic memory requirements and provide fast animations. Programmable display resolutions are available up to WVGA. Parallel Data Interface for digital video input The LCD segment driver module has two software programmable configurations: — Up to 40 front plane drivers and 4 backplane drivers — Up to 38 frontplane drivers and 6 backplane drivers Stepper Motor Controller module with high-current drivers for up to six instrument cluster gauges driven in full dual H-Bridge configuration including full diagnostics for short circuit detection Stepper motor return-to-zero and stall detection module Sound generation and playback utilizing PWM channels and eDMA; supports monotonic and polyphonic sound 24 eMIOs channels providing up to 16 PWM and 24 input capture / output compare channels 10-bit analog-to-digital converter (ADC) with a maximum conversion time of 1μs — 16 internal channels — Extendable to eight multiplexed external channels Up to three DSPI (Deserial Serial Peripheral Interface) modules for full-duplex, synchronous, communications with external devices QuadSPI serial flash memory controller supporting single, dual and quad modes of operation to interface to external serial flash memory or optionally can be configured to function as another DSPI module (MPC5606S only) Two Local Interconnect Network (LIN) controller modules capable of autonomous message handling (master), autonomous header handling (slave mode), and UART support. Compliant with LIN protocol rev 2.1 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 5 Overview • • • • • • • • • • • • • • • 1.3 1.3.1 Two full CAN 2.0B controllers with 64 configurable buffers each; the bit rate can be programmed up to 1 Mb/s Up to four Inter-integrated circuit (I2C) internal bus controllers with master/slave bus interface Up to 132 configurable general purpose pins supporting input and output operations Real Time Counter (RTC). Clock sources are: — Internal 128 kHz or 16 MHz RC oscillator supporting autonomous wake-up with 1 ms resolution with maximum timeout of 2 seconds — External 32 kHz crystal oscillator, supporting wake-up with 1 s resolution and maximum timeout of one hour — External 4 - 16 MHz oscillator System Timers: — 4-channel 32-bit System Timer Module (STM)—included in processor platform — 4-channel 32-bit Periodic Interrupt Timer (PIT) module — System watchdog timer System Integration Unit (SIU) module to manage resets, external interrupts, GPIO and pad control System Status and Configuration Module (SSCM) to provide information for identification of the device, last boot mode, or debug status and provides an entry point for the censorship password mechanism Clock Generation Module (CGM) to generate system clock sources and provide a unified register interface, enabling access to all clock sources Clock Monitor Unit (CMU) to monitor the integrity of the main crystal oscillator and the PLL and act as a frequency meter, measuring the frequency of one clock source and comparing it to a reference clock Mode Entry Module (MEM) to control the device power mode, i.e., RUN, HALT, STOP, or STANDBY, control mode transition sequences, and manage the power control, voltage regulator, clock generation and clock management modules Reset Generation Module (RGM) to manage reset assertion and release to the device at initial power-up Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class Two Plus standard Device/board boundary-scan testing supported per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1) On-chip voltage regulator controller for regulating the 3.3 or 5 V supply voltage down to 1.2 V for core logic (requires external ballast transistor) The MPC5606S microcontrollers are offered in the following packages:1 — 144 LQFP, 0.5 mm pitch, 20 mm × 20 mm outline — 176 LQFP, 0.5 mm pitch, 24 mm × 24 mm outline — 208 MAPBGA, 1.0 mm pitch, 17 mm × 17 mm outline MPC5606S Series Blocks Block Diagram Figure 1 shows a top-level block diagram of the MPC5606S series. 1. See the device comparison table or orderable parts summary for package offerings for each device in the family. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 6 Preliminary—Subject to Change Without Notice Freescale Semiconductor Overview Nexus Port JTAG Port NMI SRAM XTAL32/ EXTAL32 XOSC 32 kHz Data Nexus 2+ Voltage Regulator DMA Interrupt Controller (INTC) External Interrupts from Peripheral Blocks DCU 2× FMPLL speaker/ buzzer STM 4×PIT Power Control Unit SSCM Sound Generation RTC/ API SRAM Controller Instructions e200z0h 4 x 4 32-bit Crossbar Switch XOSC 4-16 MHz SRAM FLASH Controller Controller SWT Mode Entry Module BAM MPU (Memory Protection Unit) Clock Monitor Unit (CMU) XTAL/ EXTAL JTAG NMI SIU IRC 128 kHz Video SRAM Test Controller Nexus Port Controller IRC 16 MHz FLASH QuadSPI Data and Clock RGB TFT Output Parallel Data Interface (PDI) Clock Generation Module Reset Generation Module 40 × 4 LCD LCD FP and BP signals Peripheral Bridge SIU External Interrupts Six Gauge Drivers 16 ch. 10-bit ADC Reset Control External Interrupt Request with Stepper Stall Detect (SSD) 2x eMIOS 16 + 8 ch. 2× LINFlex 2× DSPI 4 × I2C 2× FlexCAN IMUX GPIO & Pad Control ... I/O ... ... ... ... ... Figure 1. MPC5606S Series Block Diagram 1.3.2 Block Summary Table 2 summarizes the functions of all blocks present in the MPC5606S series microcontrollers. Please note that the presence and number of blocks varies by device and package. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 7 Overview Table 2. MPC5606S Series Block Summary Block Function 16-channel 2nd-generation Direct Memory Access (eDMA) Second-generation platform module capable of performing complex data transfers with minimal intervention from a host processor via “n” programmable channels AHB crossbar switch “lite” (XBAR-Lite) Internal busmaster Analog-to-digital converter (ADC) 16-channel, 10-bit analog to digital converter Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according to the boot mode of the device Clock generation module (CGM) Provides logic and control required for the generation of system and peripheral clocks Clock monitor unit (CMU) Monitors clock source (internal and external) integrity Display control unit (DCU) Generates all signals required to drive a TFT LCD display, allowing blending of data of up to 16 layers; can also display digital video/graphics in the background plane Deserial serial peripheral interface (DSPI) Provides a synchronous serial interface for communication with external devices QuadSPI (QSPI) Provides a synchronous serial bus for communication with external serial flash memory and is optionally configurable as a third DSPI module Enhanced modular input output system (eMIOS) Provides the functionality to generate or measure events Flash memory Provides non-volatile storage for program code, constants and variables FlexCAN (controller area network) Supports the standard CAN communications protocol FMPLL (frequency-modulated phase-locked loop) Two FMPLLs generate high-speed system clocks and support programmable frequency modulation Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests JTAG controller Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode LCD driver module Provides 40 × 4 (frontplane drivers × backplane drivers) or 6 × 38 driver configuration for driving LCD segments LINflex controller Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load Memory protection unit (MPU) Provides hardware access control for all memory references generated in a device Error Correction Status Module (ECSM) Provides miscellaneous control functions including program-visible information about the platform configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and generic access error information for the processor core MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 8 Preliminary—Subject to Change Without Notice Freescale Semiconductor Pinout and Signal Descriptions Table 2. MPC5606S Series Block Summary (continued) Block Function Mode entry module (MEM) Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications Nexus development interface (NDI) level Provides real-time development support capabilities in compliance with the IEEE-ISTO 5001-2003 standard Peripheral interrupt timer (PIT) Produces periodic interrupts and triggers Power control unit (PCU) Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called “power domains” which are controlled by the PCU Static random-access memory (SRAM) Provides storage for program code, constants, and variables Reset generation module (RGM) Centralizes reset sources and manages the device reset sequence of the device Real time counter (RTC) A free running counter used for time keeping applications, the RTC can be configured to generate an interrupt at a pre-defined interval independent of the mode of operation (run mode or low-power mode) Sound generation logic (SGL) Provides monotonic and polyphonic sound generation capability Stepper motor controller (SMC) A PWM motor controller suitable for driving instruments in a cluster configuration or any other loads requiring a PWM signal Stepper stall detect (SDD) The SSD module connects to one stepper (SM) motor with 2 coils and is used to monitor the movement of the SM to detect that the attached gauge pointer has reached the stall position of the scale System integration unit (SIU) Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration System status configuration module (SSCM) Provides system configuration and status data, e.g., memory size and status, device mode and security status, DMA status, etc., device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable 2 System timer (STM) Provides a set of output compare events to support AutoSAR and operating system tasks System watchdog timer (SWT) Provides protection from runaway code Test control unit (TCU) An extension of the JTAG controller module, the TCU provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode Pinout and Signal Descriptions MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 9 Pinout and Signal Descriptions 2.1 144 LQFP Package Pinout Figure 2 shows the pinout for the 144-pin LQFP package. WARNING 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 PA9/DCU_G1/eMIOSB18/SDA_C/FP14 PA8/DCU_G0/eMIOSB23/SCL_C/FP15 PA7/DCU_R7/eMIOSA16/FP16 PA6/DCU_R6/eMIOSA15/FP17 PA5/DCU_R5/eMIOSA17/FP18 PA4/DCU_R4/eMIOSA18/FP19 PA3/DCU_R3/eMIOSA19/sscm7/FP20 PA2/DCU_R2/eMIOSA20/sscm6/FP21 PA1/DCU_R1/eMIOSA21/sscm5/FP22 PA0/DCU_R0/eMIOSA22/SOUND/FP23 VSS12 VDD12 PF15/SCK_C/FP24 PF14/SOUT_C/CNTX_B/sscm4/FP25 PF13/SIN_C/CNRX_B/sscm3/FP26 PF12/eMIOSB16/PCS_C2/sscm2/FP27 PF11/eMIOSB23/PCS_C1/sscm1/FP28 PF10/eMIOSA16/PCS_C0/sscm0/FP29 PG12/eMIOSA23/SOUND/eMIOSA8/FP30 VSSE_A VDDE_A PF9/SCL_B/PCS_B0/TXD_B/FP31 PF8/SDA_B/PCS_B1/RXD_B/FP32 PF7/SCL_A/PCS_B2/FP33 PF6/SDA_A/FP34 VSS12 VDD12 PF5/eMIOSA9/DCU_TAG/FP35 PF4/eMIOSA10/PDI7/FP36 PF3/eMIOSA11/PDI6/FP37 PF1/eMIOSA12/PDI5/eMIOSA21/FP38 PF0/eMIOSA13/PDI4/eMIOSA22/FP39 PB2/TXD_A PB3/RXD_A VSSE_E VDDE_E Any pins labeled “NC” must not be connected to any external circuit. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144-Pin LQFP 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 PB11/CNTX_B/PDI3/eMIOSA16 PB10/CNRX_B/PDI2/eMIOSA23 PB0/CNTX_A/PDI1 PB1/CNRX_A/PDI0 VSS12 VDD12 PE7/M5C1P/SSD5_3/eMIOSA8 PE6/M5C1M/SSD5_2/eMIOSA9 PE5/M5C0P/SSD5_1/eMIOSA10 PE4/M5C0M/SSD5_0/eMIOSA11 VSSMC VDDMC PE3/M4C1P/SSD4_3/eMIOSA12 PE2/M4C1M/SSD4_2/eMIOSA13 PE1/M4C0P/SSD4_1/eMIOSA14 PE0/M4C0M/SSD4_0/eMIOSA15 PD15/M3C1P/SSD3_3 PD14/M3C1M/SSD3_2 PD13/M3C0P/SSD3_1 PD12/M3C0M/SSD3_0 VSSMB VDDMB PD11/M2C1P/SSD2_3 PD10/M2C1M/SSD2_2 PD9/M2C0P/SSD2_1 PD8/M2C0M/SSD2_0 PD7/M1C1P/SSD1_3/eMIOSB16 PD6/M1C1M/SSD1_2/eMIOSB17 PD5/M1C0P/SSD1_1/eMIOSB18 PD4/M1C0M/SSD1_0/eMIOSB19 VSSMA VDDMA PD3/M0C1P/SSD0_3/eMIOSB20 PD2/M0C1M/SSD0_2/eMIOSB21 PD1/M0C0P/SSD0_1/eMIOSB22 PD0/M0C0M/SSD0_0/eMIOSB23 NMI/PF2 VDDE_B VSSE_B PCS_A2/eMIOSB19/RXD_B/PB12 PCS_A1/eMIOSB18/TXD_B/PB13 VDD12 VSS12 eMIOSB20/SCK_A/PB9 eMIOSB21/SOUT_A/PB8 eMIOSB22/SIN_A/PB7 CLKOUT/eMIOSB16/PCS_A0/PH4 MA0/SCK_B/PB4 FABM/MA1/SOUT_B/PB5 ABS[0]/MA2/SIN_B/PB6 VDD12 VSS12 VDDA VSSA XTAL32/AN15/PC15 EXTAL32/AN14/PC14 PCS_B0/MA2/AN13/PC13 PCS_B1/MA1/AN12/PC12 PCS_B2/MA0/AN11/PC11 SOUND/AN10(mux)/PC10 AN9/PC9 AN8/PC8 VDDE_C VSSE_C AN7/PC7 AN6/PC6 AN5/PC5 AN4/PC4 AN3/PC3 AN2/PC2 AN1/PC1 AN0/PC0 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 FP13/eMIOSB20/DCU_G2/PA10 FP12/eMIOSA13/DCU_G3/PA11 FP11/eMIOSA12/DCU_G4/PA12 FP10/eMIOSA11/DCU_G5/PA13 FP9/eMIOSA10/DCU_G6/PA14 FP8/eMIOSA9/DCU_G7/PA15 VDDE_A VSSE_A FP7/SOUND/SCL_D/DCU_B0/PG0 FP6/SDA_D/DCU_B1/PG1 FP5/eMIOSB19/DCU_B2/PG2 FP4/eMIOSB21/DCU_B3/PG3 FP3/eMIOSB17/DCU_B4/PG4 FP2/eMIOSA8/DCU_B5/PG5 FP1/DCU_B6/PG6 FP0/DCU_B7/PG7 BP0/DCU_VSYNC/PG8 BP1/DCU_HSYNC/PG9 BP2/DCU_DE/PG10 BP3/DCU_PCLK/PG11 VLCD/PH5 VDDR VSSR RESET VRC_CTRL VPP XTAL VSSOSC EXTAL VSSPLL VDDPLL NC TDI/PH1 TDO/PH2 TMS/PH3 TCK/PH0 Figure 2. 144-pin LQFPPinout MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 10 Preliminary—Subject to Change Without Notice Freescale Semiconductor Pinout and Signal Descriptions 2.2 176 LQFP Package Pinout Figure 3 shows the pinout for the 176-pin LQFP package. WARNING 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 PA9/DCU_G1/eMIOSB18/SDA_C/FP14 PA8/DCU_G0/eMIOSB23/SCL_C/FP15 PA7/DCU_R7/eMIOSA16/FP16 PA6/DCU_R6/eMIOSA15/FP17 PA5/DCU_R5/eMIOSA17/FP18 VSSE_A VDDE_A PA4/DCU_R4/eMIOSA18/FP19 PA3/DCU_R3/eMIOSA19/sscm7/FP20 PA2/DCU_R2/eMIOSA20/sscm6/FP21 PA1/DCU_R1/eMIOSA21/sscm5/FP22 PA0/DCU_R0/eMIOSA22/SOUND/FP23 VSS12 VDD12 PF15/SCK_C/FP24 PF14/SOUT_C/CNTX_B/sscm4/FP25 PF13/SIN_C/CNRX_B/sscm3/FP26 PF12/eMIOSB16/PCS_C2/sscm2/FP27 PF11/eMIOSB23/PCS_C1/sscm1/FP28 PF10/eMIOSA16/PCS_C0/sscm0/FP29 PG12/eMIOSA23/SOUND/eMIOSA8/FP30 VSSE_A VDDE_A PF9/SCL_B/PCS_B0/TXD_B/FP31 PF8/SDA_B/PCS_B1/RXD_B/FP32 PF7/SCL_A/PCS_B2/FP33 PF6/SDA_A/FP34 VSS12 VDD12 PF5/eMIOSA9/DCU_TAG/FP35 PF4/eMIOSA10/PDI7/FP36 PF3/eMIOSA11/PDI6/FP37 PF1/eMIOSA12/PDI5/eMIOSA21/FP38 PF0/eMIOSA13/PDI4/eMIOSA22/FP39 PK1/PDI13/eMIOSA17 PK0/PDI12/eMIOSA18/DCU_TAG PB2/TXD_A PB3/RXD_A PJ15/PDI11/eMIOSA19 PJ14/PDI10/eMIOSA20 PJ13/PDI9/eMIOSB20 PJ12/PDI8/eMIOSB17 VSSE_E VDDE_E Any pins labeled “NC” must not be connected to any external circuit. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 176-Pin LQFP 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 PB11/CNTX_B/PDI3/eMIOSA16 PB10/CNRX_B/PDI2/eMIOSA23 PB0/CNTX_A/PDI1 PB1/CNRX_A/PDI0 PJ11/PDI7 PJ10/PDI6 PJ9/PDI5 PJ8/PDI4 VSS12 VDD12 PJ3/PDI_PCLK PJ2/PDI_VSYNC PJ1/PDI_HSYNC PJ0/PDI_DE PE7/M5C1P/SSD5_3/eMIOSA8 PE6/M5C1M/SSD5_2/eMIOSA9 PE5/M5C0P/SSD5_1/eMIOSA10 PE4/M5C0M/SSD5_0/eMIOSA11 VSSMC VDDMC PE3/M4C1P/SSD4_3/eMIOSA12 PE2/M4C1M/SSD4_2/eMIOSA13 PE1/M4C0P/SSD4_1/eMIOSA14 PE0/M4C0M/SSD4_0/eMIOSA15 PD15/M3C1P/SSD3_3 PD14/M3C1M/SSD3_2 PD13/M3C0P/SSD3_1 PD12/M3C0M/SSD3_0 VSSMB VDDMB PD11/M2C1P/SSD2_3 PD10/M2C1M/SSD2_2 PD9/M2C0P/SSD2_1 PD8/M2C0M/SSD2_0 PD7/M1C1P/SSD1_3/eMIOSB16 PD6/M1C1M/SSD1_2/eMIOSB17 PD5/M1C0P/SSD1_1/eMIOSB18 PD4/M1C0M/SSD1_0/eMIOSB19 VSSMA VDDMA PD3/M0C1P/SSD0_3/eMIOSB20 PD2/M0C1M/SSD0_2/eMIOSB21 PD1/M0C0P/SSD0_1/eMIOSB22 PD0/M0C0M/SSD0_0/eMIOSB23 NMI/PF2 VDDE_B VSSE_B PCS_A2/eMIOSB19/RXD_B/PB12 PCS_A1/eMIOSB18/TXD_B/PB13 VDD12 VSS12 eMIOSA15/SDA_B/PK10 eMIOSA14/SCL_B/PK11 eMIOSB20/SCK_A/PB9 eMIOSB21/SOUT_A/PB8 eMIOSB22/SIN_A/PB7 CNRX_A/PDI0/PJ4 CNTX_A/PDI1/PJ5 eMIOSA22/CNRX_B/PDI2/PJ6 eMIOSA21/CNTX_B/PDI3/PJ7 CLKOUT/eMIOSB16/PCS_A0/PH4 MA0/SCK_B/PB4 FABM/MA1/SOUT_B/PB5 VDDE_B VSSE_B ABS[0]/MA2/SIN_B/PB6 VDD12 VSS12 VDDA VSSA XTAL32/AN15/PC15 EXTAL32/AN14/PC14 PCS_B0/MA2/AN13/PC13 PCS_B1/MA1/AN12/PC12 PCS_B2/MA0/AN11/PC11 SOUND/AN10(mux)/PC10 AN9/PC9 AN8/PC8 VDDE_C VSSE_C AN7/PC7 AN6/PC6 AN5/PC5 AN4/PC4 AN3/PC3 AN2/PC2 AN1/PC1 AN0/PC0 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 FP13/eMIOSB20/DCU_G2/PA10 FP12/eMIOSA13/DCU_G3/PA11 FP11/eMIOSA12/DCU_G4/PA12 FP10/eMIOSA11/DCU_G5/PA13 FP9/eMIOSA10/DCU_G6/PA14 FP8/eMIOSA9/DCU_G7/PA15 VDDE_A VSSE_A FP7/SOUND/SCL_D/DCU_B0/PG0 FP6/SDA_D/DCU_B1/PG1 FP5/eMIOSB19/DCU_B2/PG2 FP4/eMIOSB21/DCU_B3/PG3 FP3/eMIOSB17/DCU_B4/PG4 FP2/eMIOSA8/DCU_B5/PG5 FP1/DCU_B6/PG6 FP0/DCU_B7/PG7 BP0/DCU_VSYNC/PG8 BP1/DCU_HSYNC/PG9 BP2/DCU_DE/PG10 BP3/DCU_PCLK/PG11 VLCD/PH5 VDDR VSSR RESET VRC_CTRL VPP XTAL VSSOSC EXTAL VSSPLL VDDPLL NC PDI10/MCKO/PK2 PDI11/MSEO/PK3 PDI12/EVTO/PK4 TDI/PH1 PDI13/EVTI/PK5 PDI14/MDO0/PK6 TDO/PH2 PDI15/MDO1/PK7 TMS/PH3 PDI16/MDO2/PK8 TCK/PH0 PDI17/MDO3/PK9 Figure 3. 176-pin LQFP Pinout 2.3 208 MAPBGA Package Pinout Figure 4 shows the pinout for the 208-pin BGA package. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 11 Any pins labeled “NC” must not be connected to any external circuit. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A PA0 PJ0 PJ1 PJ3 PJ5 PJ7 PJ14 PF0 PF5 PK9 PK5 NC NC PF10 PF11 PF12 B PA1 VDDE_A PJ2 PJ4 PJ6 PJ8 PJ15 PF1 PF6 NC PK6 PK2 NC NC VDDE_E PF13 PA2 PA3 VDDE_A PJ9 PJ10 PJ12 PK0 PF3 PF7 NC PK7 PK3 NC VDDE_ E NC PF14 D PA4 PA5 PG0 VDD12 PJ11 PJ13 PK1 PF4 VDD12 PG12 PK8 PK4 VDD12 NC NC PF15 E PA6 PA7 PG1 PG2 NC NC NC NC F PA8 PA9 PG3 PG4 NC NC NC NC G PA10 PA11 PG5 PG6 VSS VSS VSS VSS NC PE7 PE1 NC H PA12 PA13 PA15 PG7 VSS VSS VSS VSS PE5 PE6 VDDMC VSSMC J RESET PA14 PG8 PG10 VSS VSS VSS VSS PE4 PE2 PE0 PD8 K EXTAL VDDE_A PG9 PG11 VSS VSS VSS VSS PE3 PD13 PD9 PD7 VSSPLL VDDPLL NMI/PF2 MDO3 PD15 PD12 VDDMB VSSM B XTAL VPP PH3 VREG BYPASS PD14 PD11 PD5 PD6 VDDR VLCD PH2 VDD12 PK11 PK10 PB8 PB5 PC13 PC9 PC6 PB11 VDDMA PD10 PD4 PD3 VRC_ PH1 VDDE_B MDO2 MDO1 PB13 PB7 PB4 PC12 PC8 PC5 PC3 PB10 NC PD2 PD1 C MPC560xS Microcontroller Data Sheet, Rev. 1 Preliminary—Subject to Change Without Notice L M N P CTRL Freescale Semiconductor R PH0 VDDE_B EVTO PF9 PH4 PB12 PB6 PC15 PC11 PC7 PC4 PC2 PB3 PB2 VDDE_B PD0 T MCKO MSEO EVTI PF8 MDO0 PB9 VDDE_C PC14 PC10 VSSA VDDA PC1 PC0 PB1 PB0 VSSMA Figure 4. 208-pin MAPBGA Pinout 2.4 Signal Description Pinout and Signal Descriptions 12 WARNING Pinout and Signal Descriptions The following sections provide signal descriptions and related information about the functionality and configuration. 2.4.1 Pad Configuration during Reset Phases All pads have a fixed configuration under reset. During the power-up phase, all pads are forced to tristate. After power-up phase, all pads are floating with the following exceptions: • • • • • • • • • • • • • • • • • • • • • • • • • 2.4.2 Analog input pins AN[0:9] are pull-up EVTI (208-pin package only) is pull-up. PB[6] (FAB) is pull-up. Without external strong pull-up the device starts fetching from flash RESET pad is driven low. This is released only after PHASE2 reset completion. Main oscillator pads (EXTAL, XTAL) are tristate. PA[0] DCU_R0 is pull-up PB[1] CNRX_A is pull-up PB[10] CNRX_B is pull-up PB[12] RXD_B is pull-up PB[3] RXD_A is pull-up PB[4] SCK_B is pull-up PF[0] eMIOSA13 is pull-up PF[11] eMIOSB23 is pull-up PF[13] SIN_C is pull-up PF[2] NMI is pull-up PF[3] eMIOSA11 is pull-up PF[5] eMIOSA9 is pull-up PF[6] SDA_A is pull-up PF[8] SDA_B is pull-up PH[0] TCK is pull-up PH[1] TDI is pull-up PH[3] TMS is pull-up PJ[4] PDI0 is pull-up PJ[6] PDI2 is pull-up PK[9] MDO3 is pull-up Voltage Supply Pins Voltage supply pins are used to provide power to the device. Two dedicated pins are used for 1.2 V regulator stabilization. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 13 Pinout and Signal Descriptions Table 3. Voltage Supply Pin Descriptions Pin Number Supply pin Function 144 LQFP 176 LQFP 208 MAPBGA VDD121 1.2 V core supply (1.08 V - 1.32 V) 42, 51, 103, 118, 133 50, 67, 123, 148, 163 D4, D9, D13, N4 VSS12 Low voltage ground for core domain 43, 52, 104, 119, 134 51, 68, 124, 149, 164 — VSS Low voltage ground — — G7, G8, G9, G10, H7, H8, H9, H10, J7, J8, J9, J10, K7, K8, K9, K10 VDDA 3.3 V/5 V reference voltage and analog supply for A/D converter 53 69 T11 VSSA Reference ground and analog ground for A/D converter 54 70 T10 VDDR Voltage regulator VREG supply 22 22 N1 VSSR Voltage regulator ground 23 23 — VDDE_A 3.3 V/5 V I/O supply. This supply is shared with internal flash and 16 MHz IRC oscillator. 7, 124 7, 154, 170 B2, C3, K2 VSSE_A 3.3 V/5 V I/O supply ground 8, 125 8, 155, 171 — VDDE_B 3.3 V/5 V I/O supply. 4-16 MHz crystal oscillator shares this supply. 38 46, 64 P3, R2, R15 VSSE_B 3.3 V/5 V I/O supply ground 39 47, 65 — VDDE_C 3.3 V/5 V I/O supply. 32 KHz oscillator shares this supply with ADC. 63 79 T7 VSSE_C 3.3 V/5 V I/O supply ground 64 80 — VDDE_E 3.3 V/5 V I/O supply 109 133 B15, C14 VSSE_E 3.3 V/5 V I/O supply ground 110 134 — VDDMA2 Stepper motor 5 V pad supply. SSD shares this supply. 77 93 N13 VSSMA Stepper motor ground 78 94 T16 VDDMB2 Stepper motor 5 V pad supply. SSD shares this supply. 87 103 L15 VSSMB Stepper motor ground 88 104 L16 Stepper motor 5 V pad supply. SSD shares this supply. 97 113 H15 VSSMC Stepper motor ground 98 114 H16 VDDPLL 1.2 V PLL supply 31 31 L2 VDDMC 2 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 14 Preliminary—Subject to Change Without Notice Freescale Semiconductor Pinout and Signal Descriptions Table 3. Voltage Supply Pin Descriptions (continued) Pin Number Supply pin Function 144 LQFP 176 LQFP 208 MAPBGA VSSPLL PLL ground 30 30 L1 VSSOSC Oscillator ground 28 28 — VLCD3 LCD supply option 21 21 N2 VPP4 9 V - 12 V flash test analog write signal 26 26 M2 1 Decoupling capacitors must be connected between these pins and the nearest VSS12 pin. All stepper motor supplies need to be at same level (3.3 V or 5 V). 3 Refer to LCD segment of Reference manual for usage of VLCD as supply/reference voltage source. 4 This signal needs to be connected to ground during normal operation. 2 2.4.3 Pad Types In the device the following types of pads are available for system pins and functional port pins: S = Slow1 M = Medium1,2 F = Fast1,2 I = Input only with analog feature1 J = Input/Output with analog feature X = Oscillator 2.4.4 System Pins The system pins are listed in Table 4. 1. Refer to Section 3.6, “I/O Pad Electrical Characteristics, for details 2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (refer to PCR.SRC in the device reference manual, Pad Configuration Registers (PCR0 - PCR120)). MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 15 Pinout and Signal Descriptions Table 4. System Pin Descriptions System pin I/O Pad direction type Function RESET configuration Pin Number 144 LQFP 176 LQFP 208 MAPBGA RESET Bidirectional reset with Schmitt-Trigger characteristics and noise filter. I/O M Input, weak pull up 24 24 J1 EXTAL Analog output of the oscillator amplifier circuit. Input for the clock generator in bypass mode. O X — 29 29 K1 XTAL Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator bypass mode is used. I X — 27 27 M1 EXTAL32 Analog input of the 32KHz oscillator amplifier circuit. O — 56 72 — XTAL32 Analog output of the 32 KHz oscillator amplifier circuit. Input for the clock generator in bypass mode. I — 55 71 — NMI Non-Maskable Interrupt I/O Input, weak pull up 37 45 L3 — 25 25 P1 VRC_CTRL Voltage Regulator external NPN Ballast base control pin 2.4.5 Nexus Pins Table 5. Nexus Pins Pin Number System pin Function 144 LQFP 176 LQFP 208 MAPBGA EVTI Nexus Event In — 37 T3 EVTO Nexus Event Out — 35 R3 MCKO Nexus Msg Clock Out — 33 T1 MDO[0] Nexus Msg Data Out — 38 T5 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 16 Preliminary—Subject to Change Without Notice Freescale Semiconductor Pinout and Signal Descriptions Table 5. Nexus Pins (continued) Pin Number System pin Function 144 LQFP 176 LQFP 208 MAPBGA MDO[1] Nexus Msg Data Out — 40 P5 MDO[2] Nexus Msg Data Out — 42 P4 MDO[3] Nexus Msg Data Out — 44 L4 MSE0 Nexus Msg Start/End Out — 34 T2 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 17 Functional Ports A, B, C, D, E, F, G, H, I, J, K The functional port pins are listed in Table 6. Table 6. Port Pin Summary Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 Preliminary—Subject to Change Without Notice Freescale Semiconductor PA[0] PCR[0] Option 0 Option 1 Option 2 Option 3 GPIO[0] DCU_R0 eMIOSA[[22] SOUND FP23 SIU DCU PWM/Timer Sound I/O M Input, Pull Up 135 165 A1 PA[1] PCR[1] Option 0 Option 1 Option 2 Option 3 GPIO[1] DCU_R1 eMIOSA[21] — FP22 SIU DCU PWM/Timer — I/O M None, None 136 166 B1 PA[2] PCR[2] Option 0 Option 1 Option 2 Option 3 GPIO[2] DCU_R2 eMIOSA[20] — FP21 SIU DCU PWM/Timer — I/O M None, None 137 167 C1 PA[3] PCR[3] Option 0 Option 1 Option 2 Option 3 GPIO[3] DCU_R3 eMIOSA[19] — FP20 SIU DCU PWM/Timer — I/O M None, None 138 168 C2 PA[4] PCR[4] Option 0 Option 1 Option 2 Option 3 GPIO[4] DCU_R4 eMIOSA[18] — FP19 SIU DCU PWM/Timer — I/O M None, None 139 169 D1 PA[5] PCR[5] Option 0 Option 1 Option 2 Option 3 GPIO[5] DCU_R5 eMIOSA[17] — FP18 SIU DCU PWM/Timer — I/O M None, None 140 172 D2 PA[6] PCR[6] Option 0 Option 1 Option 2 Option 3 GPIO[6] DCU_R6 eMIOSA[15] — FP17 SIU DCU PWM/Timer — I/O M None, None 141 173 E1 PA[7] PCR[7] Option 0 Option 1 Option 2 Option 3 GPIO[7] DCU_R7 eMIOSA[16] — FP16 SIU DCU PWM/Timer — I/O M None, None 142 174 E2 Pinout and Signal Descriptions 18 2.4.6 Freescale Semiconductor Table 6. Port Pin Summary (continued) Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 PCR[8] Option 0 Option 1 Option 2 Option 3 GPIO[8] DCU_G0 eMIOSB[23] SCL_C FP15 SIU DCU PWM/Timer I2C_2 I/O M None, None 143 175 F1 PA[9] PCR[9] Option 0 Option 1 Option 2 Option 3 GPIO[9] DCU_G1 eMIOSB[18] SDA_C FP14 SIU DCU PWM/Timer I2C_2 I/O M None, None 144 176 F2 PA[10] PCR[10] Option 0 Option 1 Option 2 Option 3 GPIO[10] DCU_G2 eMIOSB[20] — FP13 SIU DCU PWM/Timer — I/O M None, None 1 1 G1 PA[11] PCR[11] Option 0 Option 1 Option 2 Option 3 GPIO[11] DCU_G3 eMIOSA[13] — FP12 SIU DCU PWM/Timer — I/O M None, None 2 2 G2 PA[12] PCR[12] Option 0 Option 1 Option 2 Option 3 GPIO[12] DCU_G4 eMIOSA[12] — FP11 SIU DCU PWM/Timer — I/O M None, None 3 3 H1 PA[13] PCR[13] Option 0 Option 1 Option 2 Option 3 GPIO[13] DCU_G5 eMIOSA[11] — FP10 SIU DCU PWM/Timer — I/O M None, None 4 4 H2 PA[14] PCR[14] Option 0 Option 1 Option 2 Option 3 GPIO[14] DCU_G6 eMIOSA[10] — FP9 SIU DCU PWM/Timer — I/O M None, None 5 5 J2 PA[15] PCR[15] Option 0 Option 1 Option 2 Option 3 GPIO[15] DCU_G7 eMIOSA[9] — FP8 SIU DCU PWM/Timer — I/O M None, None 6 6 H3 19 Pinout and Signal Descriptions Preliminary—Subject to Change Without Notice PA[8] Freescale Semiconductor Table 6. Port Pin Summary (continued) Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 PCR[16] Option 0 Option 1 Option 2 Option 3 GPIO[16] CANTX_A PDI1 — — SIU CAN-A PDI — I/O M None, None 106 130 T15 PB[1] PCR[17] Option 0 Option 1 Option 2 Option3 GPIO[17] CANRX_A PDI0 — — SIU CAN-A PDI — I/O S Input, Pull Up 105 129 T14 PB[2] PCR[18] Option 0 Option 1 Option 2 Option3 GPIO[18] TXD_A — — — SIU LIN_A — — I/O S None, None 112 140 R14 PB[3] PCR[19] Option 0 Option 1 Option 2 Option3 GPIO[19] RXD_A — — — SIU LIN_A — — I/O S Input, Pull Up 111 139 R13 PB[4] PCR[20] Option 0 Option 1 Option 2 Option 3 GPIO[20] SCK_B MA0 — — SIU SPI_1 ADC — I/O M Input, Pull Up 48 62 P8 PB[5] PCR[21] Option 0 Option 1 Option 2 Option 3 GPIO[21] SOUT_B MA1 FABM — SIU SPI_1 ADC Control I/O M Input, Pull Down 49 63 N8 PB[6] PCR[22] Option 0 Option 1 Option 2 Option 3 GPIO[22] SIN_B MA2 ABS[0] — SIU SPI_1 ADC Control I/O S Input, Pull Up 50 66 R7 PB[7] PCR[23] Option 0 Option 1 Option 2 Option 3 GPIO[23] SIN_A eMIOSB[22] — — SIU SPI_A PWM/Timer — I/O S None, None 46 56 P7 20 Pinout and Signal Descriptions Preliminary—Subject to Change Without Notice PB[0] Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 Preliminary—Subject to Change Without Notice PB[8] PCR[24] Option 0 Option 1 Option 2 Option 3 GPIO[24] SOUT_A eMIOSB[21] — — SIU SPI_A PWM/Timer — I/O M None, None 45 55 N7 PB[9] PCR[25] Option 0 Option 1 Option 2 Option 3 GPIO[25] SCK_A eMIOSB[20] — — SIU SPI_A PWM/Timer — I/O M Input, Pull Up 44 54 T6 PB[10] PCR[26] Option 0 Option 1 Option 2 Option 3 GPIO[26] CNRX_B PDI2 eMIOSA[23] — SIU CAN-B PDI PWM/Timer I/O S Input, Pull Up 107 131 P13 PB[11] PCR[27] Option 0 Option 1 Option 2 Option 3 GPIO[27] CNTX_B PDI3 eMIOSA[16] — SIU CAN-B PDI PWM/Timer I/O M None, None 108 132 N12 PB[12] PCR[28] Option 0 Option 1 Option 2 Option 3 GPIO[28] RXD_B eMIOSB[19] PCS_A2 — SIU LIN_B PWM/Timer SPI_0 I/O S Input, Pull Up 40 48 R6 PB[13] PCR[29] Option 0 Option 1 Option 2 Option 3 GPIO[29] TXD_B eMIOSB[18] PCS_A1 — SIU LIN_B PWM/Timer SPI_0 I/O S None, None 41 49 P6 PB[14] — — Reserved — — — — — — — A11 PB[15] — — Reserved — — — — — — — — Freescale Semiconductor PC[0] PCR[30] Option 0 Option 1 Option 2 Option 3 GPIO[30] AN[0] — — — SIU ADC — — I A Input, Pull Up 72 88 T13 PC[1] PCR[31] Option 0 Option 1 Option 2 Option 3 GPIO[31] AN[1] — — — SIU ADC — — I A Input, Pull Up 71 87 T12 Pinout and Signal Descriptions 21 Table 6. Port Pin Summary (continued) Freescale Semiconductor Table 6. Port Pin Summary (continued) Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 PCR[32] Option 0 Option 1 Option 2 Option 3 GPIO[32] AN[2] — — — SIU ADC — — I A Input, Pull Up 70 86 R12 PC[3] PCR[33] Option 0 Option 1 Option 2 Option 3 GPIO[33] AN[3] — — — SIU ADC — — I A Input, Pull Up 69 85 P12 PC[4] PCR[34] Option 0 Option 1 Option 2 Option 3 GPIO[34] AN[4] — — — SIU ADC — — I A Input, Pull Up 68 84 R11 PC[5] PCR[35] Option 0 Option 1 Option 2 Option 3 GPIO[35] AN[5] — — — SIU ADC — — I A Input, Pull Up 67 83 P11 PC[6] PCR[36] Option 0 Option 1 Option 2 Option 3 GPIO[36] AN[6] — — — SIU ADC — — I A Input, Pull Up 66 82 N11 PC[7] PCR[37] Option 0 Option 1 Option 2 Option 3 GPIO[37] AN[7] — — — SIU ADC — — I A Input, Pull Up 65 81 R10 PC[8] PCR[38] Option 0 Option 1 Option 2 Option 3 GPIO[38] AN[8] — — — SIU ADC — — I A Input, Pull Up 62 78 P10 PC[9] PCR[39] Option 0 Option 1 Option 2 Option 3 GPIO[39] AN[9] — — — SIU ADC — — I A Input, Pull Up 61 77 N10 22 Pinout and Signal Descriptions Preliminary—Subject to Change Without Notice PC[2] Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 Preliminary—Subject to Change Without Notice Freescale Semiconductor PC[10] PCR[40] Option 0 Option 1 Option 2 Option 3 GPIO[40] AN[10] SOUND — — SIU ADC Sound — I/O S Input, Pull Up 60 76 T9 PC[11] PCR[41] Option 0 Option 1 Option 2 Option 3 GPIO[41] AN[11] MA0 PCS_B2 — SIU ADC ADC SPI_B I/O S None, None 59 75 R9 PC[12] PCR[42] Option 0 Option 1 Option 2 Option 3 GPIO[42] AN[12] MA1 PCS_B1 — SIU ADC ADC SPI_B I/O S None, None 58 74 P9 PC[13] PCR[43] Option 0 Option 1 Option 2 Option 3 GPIO[43] AN[13] MA2 PCS_B0 — SIU ADC ADC SPI_B I/O S None, None 57 73 N9 PC[14] PCR[44] Option 0 Option 1 Option 2 Option 3 GPIO[44] AN[14] EXTAL32 — — SIU ADC Osc — I/O S None, None 56 72 T8 PC[15] PCR[45] Option 0 Option 1 Option 2 Option 3 GPIO[45] AN[15] XTAL32 — — SIU ADC Osc — I/O S None, None 55 71 R8 PD[0] PCR[46] Option 0 Option 1 Option 2 Option 3 GPIO[46] M0C0M SSD0_0 eMIOSB[23] — SIU SMD SSD PWM/Timer I/O SMD None, None 73 89 R16 PD[1] PCR[47] Option 0 Option 1 Option 2 Option 3 GPIO[47] M0C0P SSD0_1 eMIOSB[22] — SIU SMD SSD PWM/Timer I/O SMD None, None 74 90 P16 Pinout and Signal Descriptions 23 Table 6. Port Pin Summary (continued) Freescale Semiconductor Table 6. Port Pin Summary (continued) Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 PCR[48] Option 0 Option 1 Option 2 Option 3 GPIO[48] M0C1M SSD0_2 eMIOSB[21] — SIU SMD SSD PWM/Timer I/O SMD None, None 75 91 P15 PD[3] PCR[49] Option 0 Option 1 Option 2 Option 3 GPIO[49] M0C1P SSD0_3 eMIOSB[20] — SIU SMD SSD PWM/Timer I/O SMD None, None 76 92 N16 PD[4] PCR[50] Option 0 Option 1 Option 2 Option 3 GPIO[50] M1C0M SSD1_0 eMIOSB[19] — SIU SMD SSD PWM/Timer I/O SMD None, None 79 95 N15 PD[5] PCR[51] Option 0 Option 1 Option 2 Option 3 GPIO[51] M1C0P SSD1_1 eMIOSB[18] — SIU SMD SSD PWM/Timer I/O SMD None, None 80 96 M15 PD[6] PCR[52] Option 0 Option 1 Option 2 Option 3 GPIO[52] M1C1M SSD1_2 eMIOSB[17] — SIU SMD SSD PWM/Timer I/O SMD None, None 81 97 M16 PD[7] PCR[53] Option 0 Option 1 Option 2 Option 3 GPIO[53] M1C1P SSD1_3 eMIOSB[16] — SIU SMD SSD PWM/Timer I/O SMD None, None 82 98 K16 PD[8] PCR[54] Option 0 Option 1 Option 2 Option 3 GPIO[54] M2C0M SSD2_0 — — SIU SMD SSD — I/O SMD None, None 83 99 J16 PD[9] PCR[55] Option 0 Option 1 Option 2 Option 3 GPIO[55] M2C0P SSD2_1 — — SIU SMD SSD — I/O SMD None, None 84 100 K15 24 Pinout and Signal Descriptions Preliminary—Subject to Change Without Notice PD[2] Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 Preliminary—Subject to Change Without Notice Freescale Semiconductor PD[10] PCR[56] Option 0 Option 1 Option 2 Option 3 GPIO[56] M2C1M SSD2_2 — — SIU SMD SSD — I/O SMD None, None 85 101 N14 PD[11] PCR[57] Option 0 Option 1 Option 2 Option 3 GPIO[57] M2C1P SSD2_3 — — SIU SMD SSD — I/O SMD None, None 86 102 M14 PD[12] PCR[58] Option 0 Option 1 Option 2 Option 3 GPIO[58] M3C0M SSD3_0 — — SIU SMD SSD — I/O SMD None, None 89 105 L14 PD[13] PCR[59] Option 0 Option 1 Option 2 Option 3 GPIO[59] M3C0P SSD3_1 — — SIU SMD SSD — I/O SMD None, None 90 106 K14 PD[14] PCR[60] Option 0 Option 1 Option 2 Option 3 GPIO[60] M3C1M SSD3_2 — — SIU SMD SSD — I/O SMD None, None 91 107 M13 PD[15] PCR[61] Option 0 Option 1 Option 2 Option 3 GPIO[61] M3C1P SSD3_3 — — SIU SMD SSD — I/O SMD None, None 92 108 L13 PE[0] PCR[62] Option 0 Option 1 Option 2 Option 3 GPIO[62] M4C0M SSD4_0 eMIOSA[15] — SIU SMD SSD PWM/Timer I/O SMD None, None 93 109 J15 PE[1] PCR[63] Option 0 Option 1 Option 2 Option 3 GPIO[63] M4C0P SSD4_1 eMIOSA[14] — SIU SMD SSD PWM/Timer I/O SMD None, None 94 110 G15 Pinout and Signal Descriptions 25 Table 6. Port Pin Summary (continued) Freescale Semiconductor Table 6. Port Pin Summary (continued) Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 PCR[64] Option 0 Option 1 Option 2 Option 3 GPIO[64] M4C1M SSD4_2 eMIOSA[13] — SIU SMD SSD PWM/Timer I/O SMD None, None 95 111 J14 PE[3] PCR[65] Option 0 Option 1 Option 2 Option 3 GPIO[65] M4C1P SSD4_3 eMIOSA[12] — SIU SMD SSD PWM/Timer I/O SMD None, None 96 112 K13 PE[4] PCR[66] Option 0 Option 1 Option 2 Option 3 GPIO[66] M5C0M SSD5_0 eMIOSA[11] — SIU SMD SSD PWM/Timer I/O SMD None, None 99 115 J13 PE[5] PCR[67] Option 0 Option 1 Option 2 Option 3 GPIO[67] M5C0P SSD5_1 eMIOSA[10] — SIU SMD SSD PWM/Timer I/O SMD None, None 100 116 H13 PE[6] PCR[68] Option 0 Option 1 Option 2 Option 3 GPIO[68] M5C1M SSD5_2 eMIOSA[9] — SIU SMD SSD PWM/Timer I/O SMD None, None 101 117 H14 PE[7] PCR[69] Option 0 Option 1 Option 2 Option 3 GPIO[69] M5C1P SSD5_3 eMIOSA[8] — SIU SMD SSD PWM/Timer I/O SMD None, None 102 118 G14 PE[8] — — Reserved — — — — — — — — PE[9] — — Reserved — — — — — — — — PE[10] — — Reserved — — — — — — — — PE[11] — — Reserved — — — — — — — — PE[12] — — Reserved — — — — — — — — PE[13] — — Reserved — — — — — — — — PE[14] — — Reserved — — — — — — — — PE[15] — — Reserved — — — — — — — — 26 Pinout and Signal Descriptions Preliminary—Subject to Change Without Notice PE[2] Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 Preliminary—Subject to Change Without Notice Freescale Semiconductor PF[0] PCR[70] Option 0 Option 1 Option 2 Option 3 GPIO[70] eMIOSA[13] PDI4 eMIOSA[22] FP39 SIU PWM/Timer PDI PWM/Timer I/O S Input, Pull Up 113 143 A8 PF[1] PCR[71] Option 0 Option 1 Option 2 Option 3 GPIO[71] eMIOSA[12] PDI5 eMIOSA[21] FP38 SIU PWM/Timer PDI PWM/Timer I/O S None, None 114 144 B8 PF[2] PCR[72] Option 0 Option 1 Option 2 Option 3 GPIO[72] NMI — — SIU NMI — — I/O S Input, Pull Up 37 45 L3 PF[3] PCR[73] Option 0 Option 1 Option 2 Option 3 GPIO[73] eMIOSA[11] PDI6 — FP37 SIU PWM/Timer PDI — I/O M Input, Pull Up 115 145 C8 PF[4] PCR[74] Option 0 Option 1 Option 2 Option 3 GPIO[74] eMIOSA[10] PDI7 — FP36 SIU PWM/Timer PDI — I/O M None, None 116 146 D8 PF[5] PCR[75] Option 0 Option 1 Option 2 Option 3 GPIO[75] eMIOSA[9] DCU_TAG — FP35 SIU PWM/Timer DCU — I/O M Input, Pull Up 117 147 A9 PF[6] PCR[76] Option 0 Option 1 Option 2 Option 3 GPIO[76] SDA_A — — FP34 SIU I2C_A — — I/O S Input, Pull Up 120 150 B9 PF[7] PCR[77] Option 0 Option 1 Option 2 Option 3 GPIO[77] SCL_A PCS_B2 — FP33 SIU I2C_A SPI_B — I/O S None, None 121 151 C9 — Pinout and Signal Descriptions 27 Table 6. Port Pin Summary (continued) Freescale Semiconductor Table 6. Port Pin Summary (continued) Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 PCR[78] Option 0 Option 1 Option 2 Option 3 GPIO[78] SDA_B PCS_B1 RXD_B FP32 SIU I2C_B SPI_B LIN_B I/O S Input, Pull Up 122 152 T4 PF[9] PCR[79] Option 0 Option 1 Option 2 Option 3 GPIO[79] SCL_B PCS_B0 TXD_B FP31 SIU I2C_B SPI_B LIN_B I/O S None, None 123 153 R4 PF[10] PCR[80] Option 0 Option 1 Option 2 Option 3 GPIO[80] eMIOSA[16] PCS_C0 — FP29 SIU PWM/Timer SPI_C — I/O M None, None 127 157 A14 PF[11] PCR[81] Option 0 Option 1 Option 2 Option 3 GPIO[81] eMIOSB[23] PCS_C1 — FP28 SIU PWM/Timer SPI_C — I/O M Input, Pull Up 128 158 A15 PF[12] PCR[82] Option 0 Option 1 Option 2 Option 3 GPIO[82] eMIOSB[16] PCS_C2 — FP27 SIU PWM/Timer SPI_C — I/O M None, None 129 159 A16 PF[13] PCR[83] Option 0 Option 1 Option 2 Option 3 GPIO[83] SIN_C CNRX_B — FP26 SIU SPI_C CAN_B — I/O M Input, Pull Up 130 160 B16 PF[14] PCR[84] Option 0 Option 1 Option 2 Option 3 GPIO[84] SOUT_C CANTX_B — FP25 SIU SPI_C CAN_B — I/O M None, None 131 161 C16 PF[15] PCR[85] Option 0 Option 1 Option 2 Option 3 GPIO[85] SCK_C — — FP24 SIU SPI_C — — I/O F None, None 132 162 D16 28 Pinout and Signal Descriptions Preliminary—Subject to Change Without Notice PF[8] Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 Preliminary—Subject to Change Without Notice Freescale Semiconductor PG[0] PCR[86] Option 0 Option 1 Option 2 Option 3 GPIO[86] DCU_B0 SCL_D SOUND FP7 SIU DCU I2C_3 Sound I/O M None, None 9 9 D3 PG[1] PCR[87] Option 0 Option 1 Option 2 Option 3 GPIO[87] DCU_B1 SDA_D — FP6 SIU DCU I2C_3 — I/O M None, None 10 10 E3 PG[2] PCR[88] Option 0 Option 1 Option 2 Option 3 GPIO[88] DCU_B2 eMIOSB[19] — FP5 SIU DCU PWM/Timer — I/O M None, None 11 11 E4 PG[3] PCR[89] Option 0 Option 1 Option 2 Option 3 GPIO[89] DCU_B3 eMIOSB[21] — FP4 SIU DCU PWM/Timer — I/O M None, None 12 12 F3 PG[4] PCR[90] Option 0 Option 1 Option 2 Option 3 GPIO[90] DCU_B4 eMIOSB[17] — FP3 SIU DCU PWM/Timer — I/O M None, None 13 13 F4 PG[5] PCR[91] Option 0 Option 1 Option 2 Option 3 GPIO[91] DCU_B5 eMIOSA[8] — FP2 SIU DCU PWM/Timer — I/O M None, None 14 14 G3 PG[6] PCR[92] Option 0 Option 1 Option 2 Option 3 GPIO[92] DCU_B6 — — FP1 SIU DCU — — I/O M None, None 15 15 G4 PG[7] PCR[93] Option 0 Option 1 Option 2 Option 3 GPIO[93] DCU_B7 — — FP0 SIU DCU — — I/O M None, None 16 16 H4 Pinout and Signal Descriptions 29 Table 6. Port Pin Summary (continued) Freescale Semiconductor Table 6. Port Pin Summary (continued) Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 PCR[94] Option 0 Option 1 Option 2 Option 3 GPIO[94] DCU_VSYNC — — BP0 SIU DCU — — I/O M Input, Pull Up 17 17 J3 PG[9] PCR[95] Option 0 Option 1 Option 2 Option 3 GPIO[95] DCU_HSYNC — — BP1 SIU DCU — — I/O M Input, Pull Up 18 18 K3 PG[10] PCR[96] Option 0 Option 1 Option 2 Option 3 GPIO[96] DCU_DE — — BP2 SIU DCU — — I/O M None, None 19 19 J4 PG[11] PCR[97] Option 0 Option 1 Option 2 Option 3 GPIO[97] DCU_PCLK — — BP3 SIU DCU — — I/O M None, None 20 20 K4 PG[12] PCR[98] Option 0 Option 1 Option 2 Option 3 GPIO[98] eMIOSA[23] SOUND eMIOSA[8] FP30 SIU PWM/Timer Sound PWM/Timer I/O S None, None 126 156 D10 PG[13] — — Reserved — — — — — — — — PG[14] — — Reserved — — — — — — — — PG[15] — — Reserved — — — — — — — — GPIO[99] TCK — — — SIU JTAG — — I/O S Input, Pull Up 36 43 R1 GPIO[100] TDI — — — SIU JTAG — — I/O S Input, Pull Up 33 36 P2 PH[0]4 PCR[99] Option 0 Option 1 Option 2 Option 3 PH[1]4 PCR[100] Option 0 Option 1 Option 2 Option 3 30 Pinout and Signal Descriptions Preliminary—Subject to Change Without Notice PG[8] Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 Preliminary—Subject to Change Without Notice PH[2]4 PCR[101] Option 0 Option 1 Option 2 Option 3 GPIO[101] TDO — — — SIU JTAG — — I/O M Output, None 34 39 N3 PH[3]4 PCR[102] Option 0 Option 1 Option 2 Option 3 GPIO[102] TMS — — — SIU JTAG — — I/O S Input, Pull Up 35 41 M3 PH[4] PCR[103] Option 0 Option 1 Option 2 Option 3 GPIO[103] PCS_A0 eMIOSB[16] CLKOUT — SIU SPI_0 PWM/Timer Control I/O F None, None 47 61 R5 PH[5] PCR[104] Option 0 Option 1 Option 2 Option 3 GPIO[104] VLCD — — — SIU LCD — — 21 21 — Freescale Semiconductor PH[6] — — Reserved — — — — — — — — PH[7] — — Reserved — — — — — — — — PH[8] — — Reserved — — — — — — — — PH[9] — — Reserved — — — — — — — — PH[10] — — Reserved — — — — — — — — PH[11] — — Reserved — — — — — — — — PH[12] — — Reserved — — — — — — — — PH[13] — — Reserved — — — — — — — — PH[14] — — Reserved — — — — — — — — PH[15] — — Reserved — — — — — — — — GPIO[105] PDI_DE — — — S None, None — 119 A2 PJ[0] PCR[105] Option 0 Option 1 Option 2 Option 3 SIU PDI — — I/O Pinout and Signal Descriptions 31 Table 6. Port Pin Summary (continued) Freescale Semiconductor Table 6. Port Pin Summary (continued) Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 PCR[106] Option 0 Option 1 Option 2 Option 3 GPIO[106] PDI_HSYNC — — — SIU PDI — — I/O S None, None — 120 A3 PJ[2] PCR[107] Option 0 Option 1 Option 2 Option 3 GPIO[107] PDI_VSYNC — — — SIU PDI — — I/O S None, None — 121 B3 PJ[3] PCR[108] Option 0 Option 1 Option 2 Option 3 GPIO[108] PDI_PCLK — — — SIU PDI — — I/O M None, None — 122 A4 PJ[4] PCR[109] Option 0 Option 1 Option 2 Option 3 GPIO[109] PDI[0] CNRX_A — — SIU PDI CAN-A — I/O S Input, Pull Up — 57 B4 PJ[5] PCR[110] Option 0 Option 1 Option 2 Option 3 GPIO[110] PDI[1] CNTX_A — — SIU PDI CAN-A — I/O M None, None — 58 A5 PJ[6] PCR[111] Option 0 Option 1 Option 2 Option 3 GPIO[111] PDI[2] CNRX_B eMIOSA[22] — SIU PDI CAN-B PWM/Timer I/O S Input, Pull Up — 59 B5 PJ[7] PCR[112] Option 0 Option 1 Option 2 Option 3 GPIO[112] PDI[3] CNTX_B eMIOSA[21] — SIU PDI CAN-B PWM/Timer I/O M None, None — 60 A6 PJ[8] PCR[113] Option 0 Option 1 Option 2 Option 3 GPIO[113] PDI[4] — — — SIU PDI — — I/O S None, None — 125 B6 32 Pinout and Signal Descriptions Preliminary—Subject to Change Without Notice PJ[1] Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 Preliminary—Subject to Change Without Notice Freescale Semiconductor PJ[9] PCR[114] Option 0 Option 1 Option 2 Option 3 GPIO[114] PDI[5] — — — SIU PDI — — I/O S None, None — 126 C4 PJ[10] PCR[115] Option 0 Option 1 Option 2 Option 3 GPIO[115] PDI[6] — — — SIU PDI — — I/O S None, None — 127 C5 PJ[11] PCR[116] Option 0 Option 1 Option 2 Option 3 GPIO[116] PDI[7] — — — SIU PDI — — I/O S None, None — 128 D5 PJ[12] PCR[117] Option 0 Option 1 Option 2 Option 3 GPIO[117] PDI[8] eMIOSB[17] — — SIU PDI PWM/Timer — I/O M None, None — 135 C6 PJ[13] PCR[118] Option 0 Option 1 Option 2 Option 3 GPIO[118] PDI[9] eMIOSB[20] — — SIU PDI PWM/Timer — I/O M None, None — 136 D6 PJ[14] PCR[119] Option 0 Option 1 Option 2 Option 3 GPIO[119] PDI[10] eMIOSA[20] — — SIU PDI PWM/Timer — I/O M None, None — 137 A7 PJ[15] PCR[120] Option 0 Option 1 Option 2 Option 3 GPIO[120] PDI[11] eMIOSA[19] — — SIU PDI PWM/Timer — I/O M None, None — 138 B7 PK[0] PCR[121] Option 0 Option 1 Option 2 Option 3 GPIO[121] PDI[12] eMIOSA[18] DCU_TAG — SIU PDI PWM/Timer DCU I/O M None, None — 141 C7 Pinout and Signal Descriptions 33 Table 6. Port Pin Summary (continued) Freescale Semiconductor Table 6. Port Pin Summary (continued) Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 PCR[122] Option 0 Option 1 Option 2 Option 3 GPIO[122] PDI[13] eMIOSA[17] — — SIU PDI PWM/Timer — I/O M None, None — 142 D7 PK[2] PCR[123] Option 0 Option 1 Option 2 Option 3 GPIO[123] MCKO PDI[10] — — SIU Nexus PDI — I/O F None, None — 33 B12 PK[3] PCR[124] Option 0 Option 1 Option 2 Option 3 GPIO[124] MSEO PDI[11] — — SIU Nexus PDI — I/O M None, None — 34 C12 PK[4] PCR[125] Option 0 Option 1 Option 2 Option 3 GPIO[125] EVTO PDI[12] — — SIU Nexus PDI — I/O M None, None — 35 D12 PK[5] PCR[126] Option 0 Option 1 Option 2 Option 3 GPIO[126] EVTI PDI[13] — — SIU Nexus PDI — I/O M None, None — 37 — PK[6] PCR[127] Option 0 Option 1 Option 2 Option 3 GPIO[127] MDO0 PDI[14] — — SIU Nexus PDI — I/O M None, None — 38 B11 PK[7] PCR[128] Option 0 Option 1 Option 2 Option 3 GPIO[128] MDO1 PDI[15] — — SIU Nexus PDI — I/O M None, None — 40 C11 PK[8] PCR[129] Option 0 Option 1 Option 2 Option 3 GPIO[129] MDO2 PDI[16] — — SIU Nexus PDI — I/O M None, None — 42 D11 34 Pinout and Signal Descriptions Preliminary—Subject to Change Without Notice PK[1] Freescale Semiconductor Table 6. Port Pin Summary (continued) Port Pin PCR Alternate Register Function1 Function Special Function Peripheral Pad RESET I/O Type Config. Direction 2 3 Pin Number 144 LQFP 176 LQFP 208 MAPBGA MPC560xS Microcontroller Data Sheet, Rev. 1 PCR[130] Option 0 Option 1 Option 2 Option 3 GPIO[130] MDO3 PDI[17] — — SIU Nexus PDI — I/O M Input, Pull Up — 44 A10 PK[10] PCR[131] Option 0 Option 1 Option 2 Option 3 GPIO[131] SDA_B eMIOSA[15] — — SIU I2C_B PWM/Timer — I/O S None, None — 52 N6 PK[11] PCR[132] Option 0 Option 1 Option 2 Option 3 GPIO[132] SCL_B eMIOSA[14] — — SIU I2C_B PWM/Timer — I/O S None, None — 53 N5 PK[12] — — Reserved — — — — — — — — PK[13] — — Reserved — — — — — — — — PK[14] — — Reserved — — — — — — — — PK[15] — — Reserved — — — — — — — — 1 Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module. PCR.PA = 00 -> Option 0; PCR.PA = 01 -> Option 1; PCR.PA = 10 -> Option 2; PCR.PA = 11-> Option 3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”. 2 A=A, S=Slow, M=Medium, F=Fast, SMD=Stepper Motor Driver 3 Reset configuration is given as I/O direction and pull, e.g., “Input, pullup”. 4 Out of reset pins PH[0:3] are available as JTAG pins (TCK, TDI, TDO and TMS respectively). It is up to the user to configure pins PH[0:3] when needed. 35 Pinout and Signal Descriptions Preliminary—Subject to Change Without Notice PK[9] Pinout and Signal Descriptions 2.4.7 Signal Details Table 7. Signal Details Signal Peripheral Description ABS[0] BAM Alternate Boot Select. gives an option to boot by downloading code via CAN or LIN. AN[0:15] Analog-to-digital conversion (ADC) Inputs used to bring into the device sensor-based signals for A/D conversion. FABM Force Alternate Boot mode. Forces the device to boot from the external bus (Can or LIN). If not asserted, the device boots up from the lowest flash sector containing a valid boot signature. DCU_DE Display Control Unit Indicates that valid pixels are present when high; otherwise low to allow a sub frame display for pixels. DCU_HSYNC, Display Control Unit Horizontal sync pulse for TFT-LCD display. DCU_PCLK Display Control Unit Output pixel clock for TFT-LCD display DCU_R[0:7], DCU_G[0:7] DCU_B[0:7] Display Control Unit Red, green and blue color 8 bit Pixel values for TFT-LCD displays. DCU_TAG Display Control Unit High indicates certain pixels that can be called as tagged pixels, upon which internal CRC has been calculated based on pixel values and pixel position. DCU_VSYNC Display Control Unit Vertical sync pulse for TFT-LCD display. PCS_A[0:2], PCS_B[0:2], PCS_C[0:2} DSPI Peripheral chip selects when device is in Master mode; not used in slave modes. SCK_A, SCK_B, SCK_C DSPI SPI clock signal - bi-directional. SIN _A, SIN _B, SIN _C DSPI SPI data input signal. SOUT _A, SOUT _B, SOUT _C DSPI SPI data output signal. eMIOSA[0:23], eMIOSB[0:23] eMIOS Enhanced Modular Input Output System. 16+9 channel eMIOS for timed input or output functions. CNRX_A, CNRX_B FlexCAN Receive (RX) pins for the CAN bus transceiver. CNTX_A, CNTX_B FlexCAN Transmit (TX) pins for the CAN bus transceiver. SCL_A, SCL_B, SCL_C, SCL_D I2C Bidirectional serial clock compatible with I2C specifications. SDA_A, SDA_B, SDA_C, SDA_D I2C Bidirectional serial data compatible with I2C specifications. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 36 Preliminary—Subject to Change Without Notice Freescale Semiconductor Pinout and Signal Descriptions Table 7. Signal Details (continued) Signal Peripheral Description TCK JTAG Debug port serial clock as per JTAG specifications. TDI JTAG Debug port serial data input port as per JTAG standards specifications. TDO JTAG Debug port serial data output port as per JTAG standards specifications. TMS JTAG Debug port Test Mode Select signal for the JTAG TAP controller state machine and indicates various state transitions for the TAP controller in the device. BP[0:3] LCD Back plane signals from the LCD controlling the back plane reference voltage for the LCD display. FP[0:39] LCD Front plane signals for LCD segments. EVTI Nexus Nexus2+ event input trigger. EVTO Nexus Nexus2+ event output trigger. MCKO Nexus Output clock for the development tool MDO[0:3] Nexus Message output port pins that send information bits to the development tools for messages such as Branch Trace Message (BTM), Ownership Trace Message (OTM), Data Trace Message (DTM). Only available in reduced port mode. MSEO Nexus Output pin. Indicates the start or end of the variable length message on the MDO pins. PDI[0:17] Parallel Display Interface Video/graphic data in various RGB modes input to the DCU. PDI_DE Parallel Display Interface Input signal indicates the validity of pixel data on the Input PDI data bus. For valid Pixel Data this is high, otherwise low. PDI_HSYNC Parallel Display Interface Input indicates the timing reference for the start of each frame line for the PDI Input data. PDI_PCLK Parallel Display Interface Output pixel clock for PDI. PDI_VSYNC Parallel Display Interface Input indicates the timing reference for the start of a frame for the PDI input data. RXD_A LINFlex-UART SCI/LIN Receive data signal. This port is used to download the code for the BAM boot sequence RXD_B LINFlex-UART SCI/LIN Receive data signal. Input pad for the LIN SCI module. Connects to the internal LIN second port. TXD_A LINFlex-UART This port is used to download the code for the BAM boot sequence TXD_B LINFlex-UART SCI/LIN Transmit data signal. Transmit (output) port for the second LIN module in the chip . SOUND Sound generation logic (SGL) Sound signal to the speaker/buzzer. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 37 Pinout and Signal Descriptions Table 7. Signal Details (continued) Signal Peripheral Description SSD[0..5]_0 SSD[0..5]_1 SSD[0..5]_2 SSD[0..5]_3 SSD (Stepper Stall Detect) Interface Bidirectional SSD inputs and control signals M[0:5]C0M M[0:5]C0P M[0:5]C1M M[0:5]C1P Stepper Motor Control (SMC) Interface Controls stepper motors in Dual H bridge configuration. CLKOUT Clock generation module (CGM) Output clock. It can be selected from several internal clocks of the device from the clock generation module. MA[0:2] ADC These three control bits are output to enable the selection for an external Analog Mux for expansion channels. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 38 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 3 Electrical Characteristics This section contains electrical characteristics of the device as well as temperature and power considerations. This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This could be done by internal pull up and pull down, which is provided by the product for most general purpose pins. The parameters listed in the following tables represent the characteristics of the device and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. 3.1 Absolute Maximum Ratings Table 8. Absolute Maximum Ratings Value Symbol VDDA VSSA VDDPLL Parameter SR Voltage on VDDA pin (ADC reference) with respect to ground (VSSA) Conditions Max -0.3 +5.5 V Relative to VDD VDD-0.3 VDD+0.3 VSS-0.1 VSS+0.1 V 1.08 1.32 V SR Voltage on VSSA (ADC reference) pin with respect VSS CC Voltage on VDDPLL (1.2 V PLL supply) pin with respect to ground (VSSPLL) Unit Min Relative to VDD VDD-0.3 VDD+0.3 VSSPLL SR Voltage on VSSMC (stepper motor supply ground) pin with respect to VSS VSS-0.1 VSS+0.1 V VDDR SR Voltage on VDDR pin (regulator supply) with respect to ground (VSSR) -0.3 +5.5 V Relative to VDD VDD-0.3 VDD+0.3 VSSR SR Voltage on VSSR (regulator ground) pin with respect to VSS VSS-0.1 VSS+0.1 V VDD12 CC Voltage on VDD12 pin with respect to ground (VSS12) 1.08 1.4 V VSS12 CC Voltage on VSS12 pin with respect to VSS VSS-0.1 VSS+0.1 V VDDE_A1 SR Voltage on VDDE_A (I/O supply) pin with respect to ground (VSSE_A) -0.3 +5.5 V VDDE_B1 SR Voltage on VDDE_B (I/O supply) pin with respect to ground (VSSE_B) -0.3 +5.5 V VDDE_C1 SR Voltage on VDDE_C (I/O supply) pin with respect to ground (VSSE_C) -0.3 +5.5 V VDDE_E1 SR Voltage on VDDE_E (I/O supply) pin with respect to ground (VSSE_E) -0.3 +5.5 V MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 39 Electrical Characteristics Table 8. Absolute Maximum Ratings (continued) Value Symbol Parameter Conditions Unit Min Max VDDMA1 SR Voltage on VDDMA (stepper motor supply) pin with respect to ground (VSSMA) -0.3 +5.5 V VDDMB1 SR Voltage on VDDMB (stepper motor supply) pin with respect to ground (VSSMB) -0.3 +5.5 V VDDMC1 SR Voltage on VDDMC (stepper motor supply) pin with respect to ground (VSSMC) -0.3 +5.5 V 0 0 V VSS-0.1 VSS+0.1 V 0 VDDE_A +0.3 V -0.3 +5.5 V -0.3 VDD+0.3 VSS2 VSSOSC VLCD VIN SR I/O supply ground SR Voltage on VSSOSC (oscillator ground) pin with respect to VSS SR Voltage on VLCD (LCD supply) pin with respect to VSS SR Voltage on any GPIO pin with respect to ground (VSS) Relative to VDD IINJPAD SR Injected input current on any pin during overload condition -10 10 IINJSUM SR Absolute sum of all injected input currents during overload condition -50 50 -55 150 °C 2000 V TSTORAGE SR Storage temperature ESDHBM SR ESD Susceptibility (Human Body Model) mA 1 Throughout the remainder of this document VDD refers collectively to I/O voltage supplies, i.e., VDDE_A, VDDE_B, VDDE_C, VDDE_E, VDDMA, VDDMB and VDDMC, unless otherwise noted. 2 Throughout the remainder of this document V SS refers collectively to I/O voltage supply grounds, i.e., VSSE_A, VSSE_B, VSSE_C, VSSE_E, VSSMA, VSSMB and VSSMC, unless otherwise noted. NOTE Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (VIN > VDD or VIN < VSS), the voltage on pins with respect to ground (VSS) must not exceed the recommended values. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 40 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 3.1.1 Recommended Operating Conditions Table 9. Recommended Operating Conditions (3.3 V) Value Symbol VDDA1 VSSA Parameter SR Voltage on VDDA pin (ADC reference) with respect to ground (VSS) Conditions Unit Min Max +3.0 +3.6 V Relative to VDD VDD-0.1 VDD+0.1 VSS-0.1 VSS+0.1 V 1.08 1.32 V SR Voltage on VSSA (ADC reference) pin with respect VSS VDDPLL CC Voltage on VDDPLL (1.2 V PLL supply) pin with respect to ground (VSSPLL) VSSPLL SR Voltage on VSSMC (stepper motor supply ground) pin with respect to VSS VSS-0.1 VSS+0.1 V VDDR2 SR Voltage on VDDR pin (regulator supply) with respect to ground (VSSR) +3.0 +3.6 V VSSR Relative to VDD VDD-0.1 VDD+0.1 VSS-0.1 VSS+0.1 V 1.08 1.4 V VSS-0.1 VSS+0.1 V +3.0 +3.6 V 0 0 V SR Voltage on VSSR (regulator ground) pin with respect to VSS VDD123,4 CC Voltage on VDD12 pin with respect to ground (VSS12) VSS12 VDD5,6,7 VSS8 CC Voltage on VSS12 pin with respect to VSS SR Voltage on VDD pins (VDDE_A, VDDE_B, VDDE_C, VDDE_E, VDDMA, VDDMB, VDDMC) with respect to ground (VSS) SR I/O supply ground VDDE_A SR Voltage on VDDE_A (I/O supply) pin with respect to ground (VSSE_A) +3.0 +3.6 V VDDE_B SR Voltage on VDDE_B (I/O supply) pin with respect to ground (VSSE_B) +3.0 +3.6 V VDDE_C9 SR Voltage on VDDE_C (I/O supply) pin with respect to ground (VSSE_C) +3.0 +3.6 V VDDE_E SR Voltage on VDDE_E (I/O supply) pin with respect to ground (VSSE_E) +3.0 +3.6 V VDDMA SR Voltage on VDDMA (stepper motor supply) pin with respect to ground (VSSMA) +3.0 +3.6 V VDDMB SR Voltage on VDDMB (stepper motor supply) pin with respect to ground (VSSMB) +3.0 +3.6 V VDDMC SR Voltage on VDDMC (stepper motor supply) pin with respect to ground (VSSMC) +3.0 +3.6 V VSSOSC SR Voltage on VSSOSC (oscillator ground) pin with respect to VSS 0 0 V MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 41 Electrical Characteristics Table 9. Recommended Operating Conditions (3.3 V) (continued) Value Symbol Parameter VLCD SR Voltage on VLCD (LCD supply) pin with respect to VSS TVDD SR VDD slope to ensure correct power up10 Conditions Unit Min Max 0 VDDE_A +0.3 V 0.25 V/µs °C TA SR Ambient temperature under bias -40 +105 TJ SR Junction temperature under bias -40 +150 1 100 nF capacitance needs to be provided between VDDA/VSSA pair. 200 μF capacitance must be connected between VDDR and VSS12. 3 VDD12 cannot be used to drive any external component. 4 Each VDD12/VSS12 supply pair should have a 10 μF capacitor. Absolute combined maximum capacitance is 40 μF. 5 V DD refers collectively to I/O voltage supplies, i.e., VDDE_A, VDDE_B, VDDE_C, VDDE_E, VDDMA, VDDMB and VDDMC. 6 100 nF capacitance needs to be provided between each V /V DD SS pair 7 Full electrical specification cannot be guaranteed when voltage drops below 3.0V. In particular, ADC electrical characteristics and I/O’s DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL device is reset. 8 V SS refers collectively to I/O voltage supply grounds, i.e., VSSE_A, VSSE_B, VSSE_C, VSSE_E, VSSMA, VSSMB and VSSMC) unless otherwise noted. 9 V DDE_C should not be less than VDDA. 10 Guaranteed by device validation 2 Table 10. Recommended Operating Conditions (5.0 V) Value Symbol VDDA1 Parameter SR Voltage on VDDA pin (ADC reference) with respect to ground (VSS) Conditions Voltage drop2 Relative to VDD VSSA SR Voltage on VSSA (ADC reference) pin with respect VSS VDDPLL CC Voltage on VDDPLL (1.2 V PLL supply) pin with respect to ground (VSSPLL) VSSPLL SR Voltage on VSSMC (stepper motor supply ground) pin with respect to VSS VDDR3 SR Voltage on VDDR pin (regulator supply) with respect to ground (VSSR) Voltage drop2 Relative to VDD Unit Min Max +4.5 +5.5 +3.0 +5.5 VDD-0.1 VDD+0.1 VSS-0.1 VSS+0.1 V 1.08 1.32 V VSS-0.1 VSS+0.1 V +4.5 +5.5 V +3.0 +5.5 VDD-0.1 VDD+0.1 V VSSR SR Voltage on VSSR (regulator ground) pin with respect to VSS VSS-0.1 VSS+0.1 V VDD124,5 CC Voltage on VDD12 pin with respect to ground (VSS12) 1.08 1.4 V MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 42 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics Table 10. Recommended Operating Conditions (5.0 V) (continued) Value Symbol VSS12 VDD 6,7 VSS8 Parameter Conditions CC Voltage on VSS12 pin with respect to VSS SR Voltage on VDD pins (VDDE_A, VDDE_B, VDDE_C, VDDE_E, VDDMA, VDDMB, VDDMC) with respect to ground (VSS) Voltage drop 2 Unit Min Max VSS-0.1 VSS+0.1 V +4.5 +5.5 V 0 0 V SR I/O supply ground VDDE_A SR Voltage on VDDE_A (I/O supply) pin with respect to ground (VSSE_A) +4.5 +5.5 V VDDE_B SR Voltage on VDDE_B (I/O supply) pin with respect to ground (VSSE_B) +4.5 +5.5 V VDDE_C9 SR Voltage on VDDE_C (I/O supply) pin with respect to ground (VSSE_C) +4.5 +5.5 V VDDE_E SR Voltage on VDDE_E (I/O supply) pin with respect to ground (VSSE_E) +4.5 +5.5 V VDDMA SR Voltage on VDDMA (stepper motor supply) pin with respect to ground (VSSMA) +4.5 +5.5 V VDDMB SR Voltage on VDDMB (stepper motor supply) pin with respect to ground (VSSMB) +4.5 +5.5 V VDDMC SR Voltage on VDDMC (stepper motor supply) pin with respect to ground (VSSMC) +4.5 +5.5 V VSSOSC SR Voltage on VSSOSC (oscillator ground) pin with respect to VSS 0 0 V VLCD SR Voltage on VLCD (LCD supply) pin with respect to VSS 0 VDDE_A +0.3 V TVDD SR VDD slope to ensure correct power up10 0.25 V/µs -40 +105 °C -40 +105 -40 +150 TA TJ SR Ambient temperature under bias SR Junction temperature under bias 1 100 nF capacitance needs to be provided between VDDA/VSSA pair. Full functionality cannot be guaranteed when voltage drops below 4.5 V. In particular, I/O DC and ADC electrical characteristics may not be guaranteed below 4.5 V during the voltage drop sequence. 3 200 μF capacitance must be connected between V DDR and VSS12. 4 V cannot be used to drive any external component. DD12 5 Each V DD12/VSS12 supply pair should have a 10 μF capacitor. Absolute combined maximum capacitance is 40 μF. 6 VDD refers collectively to I/O voltage supplies, i.e., VDDE_A, VDDE_B, VDDE_C, VDDE_E, VDDMA, VDDMB and VDDMC. 7 100 nF capacitance needs to be provided between each V /V DD SS pair 8 V refers collectively to I/O voltage supply grounds, i.e., V SS SSE_A, VSSE_B, VSSE_C, VSSE_E, VSSMA, VSSMB and VSSMC) unless otherwise noted. 9 V DDE_C should not be less than VDDA. 10 Guaranteed by device validation 2 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 43 Electrical Characteristics 3.2 Thermal Characteristics Table 11. Thermal Characteristics for 144-pin LQFP1 Symbol Parameter Conditions Convection2 Value Unit Single layer board - 1s 50 °C/W Four layer board - 2s2p 41 °C/W RθJA CC Junction to Ambient Natural RθJA CC Junction to Ambient Natural Convection2 RθJMA CC 2 Junction to Ambient @200 ft./min., single layer board - 1s 41 °C/W RθJMA CC Junction to Ambient2 @200 ft./min., four layer board- 2s2p 35 °C/W RθJB CC Junction to Board3 29 °C/W 4 RθJCtop CC Junction to Case 10 °C/W ΨJT CC Junction to Package Top Natural Convection5 2 °C/W 1 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5 Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 2 Table 12. Thermal Characteristics for 176-pin LQFP1 Symbol RθJA Parameter CC Conditions Junction to Ambient Natural Convection2 Single layer board - 1s Convection2 Value Unit 43 °C/W RθJA CC Junction to Ambient Natural Four layer board - 2s2p 35 °C/W RθJMA CC Junction to Ambient2 @200 ft./min., single layer board - 1s 35 °C/W RθJMA CC Junction to Ambient2 @200 ft./min., Four layer board - 2s2p 30 °C/W RθJB CC Junction to Board3 24 °C/W RθJCtop CC Junction to Case (Top)4 9 °C/W ΨJT CC Junction to Package Top Natural Convection5 2 °C/W 1 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5 Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 2 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 44 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 3.2.1 General Notes for Specifications at Maximum Junction Temperature An estimate of the chip junction temperature, TJ, can be obtained from the equation: TJ = TA + (RθJA * PD) Eqn. 1 where: TA= ambient temperature for the package (oC) RθJA= junction to ambient thermal resistance (oC/W) PD= power dissipation in the package (W) The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the: • • • • Construction of the application board (number of planes) Effective size of the board which cools the component Quality of the thermal and electrical connections to the planes Power dissipated by adjacent components Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced. As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has: • • • One oz. (35 micron nominal thickness) internal planes Components are well separated Overall power dissipation on the board is less than 0.02 W/cm2 The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device. At a known board temperature, the junction temperature is estimated using the following equation: TJ = TB + (RθJB * PD) Eqn. 2 where: TB= board temperature for the package perimeter (oC) RθJB= junction-to-board thermal resistance (oC/W) per JESD51-8S PD= power dissipation in the package (W) When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to a board with internal planes. The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance: RθJA = RθJC + RθCA Eqn. 3 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 45 Electrical Characteristics where: RθJA = junction to ambient thermal resistance (oC/W) RθJC= junction to case thermal resistance (oC/W) RθCA= case to ambient thermal resistance (oC/W) RθJC s device related and is not affected by other factors. The thermal environment can be controlled to change the case-to-ambient thermal resistance, RθCA. For example, change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient. For most packages, a better model is required. A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple estimations and for computational fluid dynamics (CFD) thermal models. To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization parameter (ΨJT) to determine the junction temperature by measuring the temperature at the top center of the package case using the following equation: TJ = TT + (ΨJT x PD) Eqn. 4 where: TT= thermocouple temperature on top of the package (oC) ΨJT= thermal characterization parameter (oC/W) PD= power dissipation in the package (W) The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire. References: Semiconductor Equipment and Materials International Middlefield Rd. CA 94043 805 East Mountain View, (415) 964-5111 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB at http://www.jedec.org. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 46 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 3.3 EMI (Electromagnetic Interference) Characteristics Table 13. EMI Testing Specifications1 Value Symbol 1 3.4 3.4.1 Parameter Unit min typ max — SR Scan Range TBD TBD TBD MHz — SR Operating Frequency TBD TBD TBD MHz — SR VDD12, VDDPLL Operating Voltages TBD TBD TBD V — SR VDD, VDDA Operating Voltages TBD TBD TBD V — SR Maximum Amplitude TBD TBD TBD dBuV — SR Operating Temperature TBD TBD TBD oC EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03. Power Management Voltage Regulator Electrical Characteristics The internal voltage regulator requires an external NPN (BCP56 or BCP68) ballast to be connected as shown in Figure 5 as well as an external capacitance (CREG) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 15 nH. For the MPC5606S microcontroller , 10 µF should be placed between each of the three VDD12/VSS12 supply pairs and also between the VDDPLL/VSSPLL pair. Additionally, 200 μF should be placed between the VDDR pin and the adjacent VSS pin. VDDR = 3.0 V to 3.6 V / 4.5 V to 5.5 V, TA = -40 to 105 °C, unless otherwise specified. VDDR VRC_CTRL VDD12 Figure 5. External NPN Ballast Connections MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 47 Electrical Characteristics Table 14. Voltage Regulator Electrical Characteristics1 No. Symbol Parameter Min Max Unit SR Power supply 3.0 5.5 V -40 150 °C 1 VDDR 2 TJ SR Junction temperature 3 IREG CC Current consumption 4 IL 5 VDD12 Reference included, @ 55 °C No load @ Full load — CC Output current capacity DC load current — 200 mA CC Output voltage (value @ IL = 0 @ 27°C) Pre-trimming sigma < 7 mV — 1.330 V Post-trimming 1.270 1.280 Post-trimming 1.145 — 4 capacitances of 10 µF each 10 * 4 Output voltage (value @ IL = Imax) 6 SR External decoupling/stability capacitor 7 LBOND 8 10 1 2 3.4.2 tSU @ DC @ no load mA 2 11 µF ESR of external cap 0.05 0.2 ohm 1 bond wire R + 1 pad R 0.2 1 ohm 0 15 nH — -30 dB CC Bonding Inductance for Bipolar Base Control pad CC Power supply rejection 9 Conditions Cload = 10 µF * 4 @ 200 kHz @ no load -100 @ DC @ 400 mA -30 @ 200 kHz @ 400 mA -30 CC Load current transient Cload = 10 µF * 4 — CC Start-up time after input supply stabilizes2 Cload = 10 µF * 4 — 10% to 90% of IL (max) in 100 ns 500 µs All values in this table are PRELIMINARY. Time after the input supply to the voltage regulator has ramped up (VDDR) and the voltage regulator has asserted the Power OK signal. Voltage monitor electrical characteristics The device implements a Power On Reset module to ensure correct power-up initialization, as well as four low voltage detectors to monitor the VDD and the VDD12 voltage while device is supplied: • • • • • POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state LVDHV3 monitors VDD to ensure device reset below minimum functional supply LVDHV5 monitors VDD when application uses device in the 5.0V ± 10% range LVDLVCOR monitors power domain No. 1 LVDLVBKP monitors power domain No. 0 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 48 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics Table 15. Low voltage monitor electrical characteristics Symbol VPORH Value2 Conditions1 Parameter CC Power-on reset threshold Unit TA = 25°C, after trimming Min Typ Max 1.5 — 2.7 — — 2.8 VLVDHV3H CC LVDHV3 low voltage detector high threshold VLVDHV3L CC LVDHV3 low voltage detector low threshold 2.7 — — VLVDHV5H CC LVDHV5 low voltage detector high threshold — — 4.37 VLVDHV5L CC LVDHV5 low voltage detector low threshold 4.2 — — VLVDLVCORH CC LVDLVCOR low voltage detector high threshold — — 1.185 VLVDLVCORL CC LVDLVCOR low voltage detector low threshold 1.095 — — 1 V VDD = 3.3V ± 10% / 5.0V ± 10%, TA = -40 / +105°C, unless otherwise specified All values need to be confirmed during device validation. 2 3.4.3 Low voltage domain power consumption Table 16 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application. Table 16. DC electrical characteristics Symbol Parameter Value2 Conditions1 Unit Min Typ Max SR Maximum current — — 135 mA CC RUN mode current — 130 — mA IDDWAIT CC WAIT mode current — 30 — mA IDDHALT CC HALT mode current 4.5 — 12 mA IDDSTOP CC STOP mode current IRC 16 MHz oscillator off — 1.5 — mA IDDSTOP CC STOP mode current HPVREG off — 800 — µA IDDSTOP CC STOP mode current IRC 16 MHz oscillator on — 4 — mA IDDSTDBY CC STANDBY mode current IRC 16 MHz oscillator off — 29 — µA IDDSTDBY CC STANDBY mode current IRC 16 MHz oscillator on — 300 — µA IDDMAX IDDRUN 3 1 VDD = 3.3V ± 10% / 5.0V ± 10%, TA = -40 / +125 °C All values need to be confirmed during device validation. 3 Value is for maximum peripherals turned on. May vary significantly based on different configurations, active peripherals, operating frequency, etc. 2 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 49 Electrical Characteristics 3.5 DC Electrical Specifications 3.6 I/O Pad Electrical Characteristics 3.6.1 I/O Pad Types The device provides four main I/O pad types depending of the associated alternate functions: • • • Slow pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission. Medium pads provide fast enough transition for the serial communication channels with controlled current to reduce electromagnetic emission. Fast pads provide maximum speed. There are used for improved NEXUS debugging capability. Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. 3.6.2 I/O Input DC Characteristics Table 17 provides input DC electrical characteristics as described in Figure 6. VIN VDD VIH VHYS VIL VINTERNAL (SIU register) Figure 6. I/O Input DC Electrical Characteristics Definition Table 17. I/O Input DC Electrical Characteristics Symbol Parameter Value2 Conditions1 Unit Min Typ Max VIH SR Input high level CMOS Schmitt Trigger 0.65VDD VDD+0.4 VIL SR Input low level CMOS Schmitt Trigger -0.4 0.35VDD VHYS CC3 Input hysteresis CMOS Schmitt Trigger 0.1VDD V MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 50 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to +105 °C. All values need to be confirmed during device validation. 3 Parameter value guaranteed by design. 1 2 3.6.3 I/O Output DC Characteristics The following tables provide DC characteristics for bidirectional pads: • • • • Table 18 provides weak pull figures. Both pull-up and pull-down resistances are supported. Table 19 provides output driver characteristics for I/O pads when in SLOW configuration. Table 20 provides output driver characteristics for I/O pads when in MEDIUM configuration. Table 21 provides output driver characteristics for I/O pads when in FAST configuration. Table 18. I/O Pull-up/Pull-down DC Electrical Characteristics Symbol Value2 Conditions1 Parameter Unit Min 1 2 Typ Max |IWPU| CC Weak pull-up current absolute value 10 — |IWPD| CC Weak pull-down current absolute value 10 — µA VDD = 3.3V ± 10% / 5.0V ± 10%, TA = -40 to +105°C, unless otherwise specified. All values need to be confirmed during device validation. Table 19. SLOW Configuration Output Buffer Electrical Characteristics Symbol Parameter Value2 Conditions1 Unit Min VOH VOL CC Output high level SLOW configuration CC Output low level SLOW configuration Push Pull, IOH = -2mA, VDD = 5.0V ± 10%, ipp_hve = 0 (recommended) 0.8VDD Push Pull, IOH = -2mA, VDD = 5.0V ± 10%, ipp_hve = 13 0.8VDD Push Pull, IOH = -1mA, VDD = 3.3V ± 10%, ipp_hve = 1 (recommended) VDD-0. 8 Typ Max V Push Pull, IOL = 2mA, VDD = 5.0V ± 10%, ipp_hve = 0 (recommended) 0.1VDD Push Pull, IOL = 2mA, VDD = 5.0V ± 10%, ipp_hve = 13 0.1VDD Push Pull, IOL = 1mA, VDD = 3.3V ± 10%, ipp_hve = 1 (recommended) 0.5 V MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 51 Electrical Characteristics Table 19. SLOW Configuration Output Buffer Electrical Characteristics (continued) Symbol Parameter Conditions Value2 1 Unit Min Ttr 2 3 4 5 6 Max CC4 Output transition time output pin5 CL = 25pF, SLOW configuration VDD = 5.0V ± 10%, ipp_hve = 0 506 CL = 50pF, VDD = 5.0V ± 10%, ipp_hve = 0 1006 CL = 100pF, VDD = 5.0V ± 10%, ipp_hve = 0 1254 CL = 25pF, VDD = 3.3V ± 10%, ipp_hve = 1 406 CL = 50pF, VDD = 3.3V ± 10%, ipp_hve = 1 506 CL = 100pF, VDD = 3.3V ± 10%, ipp_hve = 1 754 recommended configuration at VDD = 5.0V ± 10%, ipp_hve = 0, VDD = 3.3V ± 10%, ipp_hve = 1 2 VDD = 5.0V ± 10%, ipp_hve = 1 7 ΔItr50 CC4 Current slew at CL = 50pF SLOW configuration 1 Typ ns mA/ns VDD = 3.3V ± 10% / 5.0V ± 10%, TA = -40 to +105°C, unless otherwise specified All values need to be confirmed during device validation. This is a transient configuration during power-up. All pads but RESET and NEXUS output (MDOx, EVTO, MCK) are configured in input or in high impedance state. Data based on characterization results, not tested in production CL calculation should include device and package capacitances (CPKG < 5pF). Data based on simulation results, not tested in production Table 20. MEDIUM Configuration Output Buffer Electrical Characteristics Symbol Parameter Value2 Conditions1 Unit Min VOH CC Output high level MEDIUM configuration Push Pull, IOH = -2mA, VDD = 5.0V ± 10%, ipp_hve = 0 (recommended) 0.8VDD Push Pull, IOH = -1mA, VDD = 5.0V ± 10%, ipp_hve = 13 0.8VDD Push Pull, IOH = -1mA, VDD = 3.3V ± 10%, ipp_hve = 1 (recommended) VDD-0.8 Typ Max V MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 52 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics Table 20. MEDIUM Configuration Output Buffer Electrical Characteristics (continued) Symbol Parameter Conditions Value2 1 Unit Min VOL Ttr CC Output low level MEDIUM configuration CC4 Output transition time output pin5 MEDIUM configuration ΔItr50 CC4 Current slew at CL = 50pF MEDIUM configuration Typ Max Push Pull, IOL = 2mA, VDD = 5.0V ± 10%, ipp_hve = 0 (recommended) 0.1VDD Push Pull, IOL = 1mA, VDD = 5.0V ± 10%, ipp_hve = 13 0.1VDD Push Pull, IOL = 1mA, VDD = 3.3V ± 10%, ipp_hve = 1 (recommended) 0.5 CL = 25pF, VDD = 5.0V ± 10%, ipp_hve = 0 10 CL = 50pF, VDD = 5.0V ± 10%, ipp_hve = 0 20 CL = 100pF, VDD = 5.0V ± 10%, ipp_hve = 0 40 CL = 25pF, VDD = 3.3V ± 10%, ipp_hve = 1 12 CL = 50pF, VDD = 3.3V ± 10%, ipp_hve = 1 25 CL = 100pF, VDD = 3.3V ± 10%, ipp_hve = 1 40 recommended configuration at VDD = 5.0V ± 10%, ipp_hve = 0 VDD = 3.3V ± 10%, ipp_hve = 1 7 VDD = 5.0V ± 10%, ipp_hve = 1 16 V ns mA/ns VDD = 3.3V ± 10% / 5.0V ± 10%, TA = -40 to +105°C, unless otherwise specified All values need to be confirmed during device validation. 3 This is a transient configuration during power-up. All pads but RESET and NEXUS output (MDOx, EVTO, MCK) are configured in input or in high impedance state. 4 Data based on characterization results, not tested in production 5 C calculation should include device and package capacitance (C L PKG < 5pF). 1 2 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 53 Electrical Characteristics Table 21. FAST Configuration Output Buffer Electrical Characteristics Symbol Parameter Value2 Conditions1 Unit Min VOH VOL Ttr CC Output high level FAST configuration CC Output low level FAST configuration Push Pull, IOH = -14mA, VDD = 5.0V ± 10%, ipp_hve = 0 (recommended) 0.8VDD Push Pull, IOH = -7mA, VDD = 5.0V ± 10%, ipp_hve = 13 0.8VDD Push Pull, IOH = -11mA, VDD = 3.3V ± 10%, ipp_hve = 1 (recommended) VDD-0.8 Typ Max V Push Pull, IOL = 14mA, VDD = 5.0V ± 10%, ipp_hve = 0 (recommended) 0.1VDD Push Pull, IOL = 7mA, VDD = 5.0V ± 10%, ipp_hve = 13 0.1VDD Push Pull, IOL = 11mA, VDD = 3.3V ± 10%, ipp_hve = 1 (recommended) 0.5 CC4 Output transition time output CL = 25pF, pin5 VDD = 5.0V ± 10%, ipp_hve = 0 FAST configuration CL = 50pF, VDD = 5.0V ± 10%, ipp_hve = 0 4 CL = 100pF, VDD = 5.0V ± 10%, ipp_hve = 0 12 CL = 25pF, VDD = 3.3V ± 10%, ipp_hve = 1 4 CL = 50pF, VDD = 3.3V ± 10%, ipp_hve = 1 7 CL = 100pF, VDD = 3.3V ± 10%, ipp_hve = 1 12 VDD = 5.0V ± 10%, ipp_hve = 0 (recommended configuration) 55 VDD = 3.3V ± 10%, ipp_hve = 1 (recommended configuration) 40 VDD = 5.0V ± 10%, ipp_hve = 1 100 ΔItr504 CC Current slew at CL = 50pF FAST configuration V ns 6 mA/n s VDD = 3.3V ± 10% / 5.0V ± 10%, TA = -40 to +105°C, unless otherwise specified All values need to be confirmed during device validation. 3 This is a transient configuration during power-up. All pads but RESET and NEXUS output (MDOx, EVTO, MCK) are configured in input or in high impedance state. 4 Data based on characterization results, not tested in production 5 C calculation should include device and package capacitance (C L PKG < 5pF). 1 2 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 54 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 3.6.4 I/O Pad Current Specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as described in Table 22. Table 23 provides I/O consumption figures. In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG maximum value. In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single segment should remain below the IDYNSEG maximum value. Table 22. I/O Supply Segment Supply segment Package 1 2 3 4 5 6 A1 B2 C3,4 D5 E6 144 LQFP pins 1 - 21 pins 113 - 144 pins 22 - 52 pins 53 - 72 pins 73 - 102 pins 103 - 112 176 LQFP pins 1 - 21 pins 143 - 176 pins 22 - 68 pins 69 - 88 pins 89 - 118 pins 119 - 142 LCD pad segment containing pad supplies VDDE_A Misc. pad segment containing pad supplies VDDE_B ADC pad segment containing pad supplies VDDE_C ADC VDDA and VDDE_C should be at the same voltage level Stepper Motor pad segment containing I/O supplies VDDMA, VDDMB, VDDMC Misc pad segment containing pad supplies VDDE_E Table 23. I/O Consumption Symbol Parameter Value2 Conditions1 Unit Min ISWTSLW CC3 Dynamic I/O current for SLOW configuration ISWTMED CC3 Dynamic I/O current for MEDIUM configuration ISWTFST3 CC3 Dynamic I/O current for FAST configuration Typ Max CL = 25pF, VDD = 5.0V ± 10%, ipp_hve = 0 20 CL = 25pF, VDD = 3.3V ± 10%, ipp_hve = 1 16 CL = 25pF, VDD = 5.0V ± 10%, ipp_hve = 0 29 CL = 25pF, VDD = 3.3V ± 10%, ipp_hve = 1 17 CL = 25pF, VDD = 5.0V ± 10%, ipp_hve = 0 110 CL = 25pF, VDD = 3.3V ± 10%, ipp_hve = 1 50 mA mA mA MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 55 Electrical Characteristics Table 23. I/O Consumption (continued) Symbol Parameter Value2 1 Conditions Unit Min IRMSSLW CC RMS I/O current for SLOW configuration IRMSMED CC Average I/O current for SLOW configuration IRMSFST IDYNSEG IAVGSEG CC Average I/O current for SLOW configuration Typ Max CL = 25 pF, 2 MHz VDD = 5.0 V ± 10%, ipp_hve = 0 2.33 CL = 25 pF, 4 MHz VDD = 5.0 V ± 10%, ipp_hve = 0 3.23 CL = 100 pF, 2 MHz VDD = 5.0 V ± 10%, ipp_hve = 0 6.64 CL = 25 pF, 2 MHz VDD = 3.3 V ± 10%, ipp_hve = 1 1.63 CL = 25 pF, 4 MHz VDD = 3.3 V ± 10%, ipp_hve = 1 2.33 CL = 100 pF, 2 MHz VDD = 3.3 V ± 10%, ipp_hve = 1 4.74 CL = 25 pF, 2 MHz VDD = 5.0 V ± 10%, ipp_hve = 0 6.63 CL = 25 pF, 4 MHz VDD = 5.0 V ± 10%, ipp_hve = 0 13.43 CL = 100 pF, 2 MHz VDD = 5.0 V ± 10%, ipp_hve = 0 18.34 CL = 25 pF, 2 MHz VDD = 3.3 V ± 10%, ipp_hve = 1 5.03 CL = 25 pF, 4 MHz VDD = 3.3 V ± 10%, ipp_hve = 1 8.53 CL = 100 pF, 2 MHz VDD = 3.3 V ± 10%, ipp_hve = 1 11.04 CL = 25 pF, 2 MHz VDD = 5.0V ± 10%, ipp_hve = 0 22.03 mA CL = 25 pF, 4 MHz VDD = 5.0V ± 10%, ipp_hve = 0 33.03 CL = 100 pF, 2 MHz VDD = 5.0V ± 10%, ipp_hve = 0 56.04 CL = 25 pF, 2 MHz VDD = 3.3V±10%, ipp_hve = 1 14.03 CL = 25 pF, 4 MHz VDD = 3.3 V ± 10%, ipp_hve = 1 20.03 CL = 100 pF, 2 MHz VDD = 3.3 V ± 10%, ipp_hve = 1 25.04 SR Sum of all the dynamic and static I/O VDD = 5.0 V ± 10%, ipp_hve = 0 current within a supply segment VDD = 3.3 V ± 10%, ipp_hve = 1 110 SR Sum of all the static I/O current within VDD = 5.0 V ± 10%, ipp_hve = 0 a supply segment VDD = 3.3 V ± 10%, ipp_hve = 1 70 mA mA mA 65 mA 65 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 56 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to +105°C, unless otherwise specified All values need to be confirmed during device validation. 3 Data based on simulation results, not tested in production 4 Data based on characterization results, not tested in production 1 2 3.7 RESET electrical characteristics The device implements a dedicated bidirectional RESET pin. Figure 7. Start-up reset requirements VDD VDDMIN RESET VIH VIL device reset forced by RESET device start-up phase TRSTREM Figure 8. Noise filtering on reset signal VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 57 Electrical Characteristics Table 24. Reset electrical characteristics Symbol Parameter Value2 1 Unit Conditions Min SR Input High Level CMOS Schmitt Trigger 0.65VDD VDD+0.4 V VIL SR Input low Level CMOS Schmitt Trigger -0.4 0.35VDD V VHYS CC3 Input hysteresis CMOS Schmitt Trigger 0.1VDD Ttr 4 5 6 CC4 Output transition time output pin6 MEDIUM configuration SR RESET Input Filtered Pulse WNFRS SR RESET Input Not Filtered Pulse |IWPU| 3 CC4 Output low level WFRST T 1 Max VIH VOL 2 Typ V Push Pull, IOL = 2mA, VDD = 5.0V ± 10%, ipp_hve = 0 (recommended) 0.1VDD Push Pull, IOL = 1mA, VDD = 5.0V ± 10%, ipp_hve = 15 0.1VDD Push Pull, IOL = 1mA, VDD = 3.3V ± 10%, ipp_hve = 1 (recommended) 0.5 CL = 25pF, VDD = 5.0V ± 10%, ipp_hve = 0 10 CL = 50pF, VDD = 5.0V ± 10%, ipp_hve = 0 20 CL = 100pF, VDD = 5.0V ± 10%, ipp_hve = 0 40 CL = 25pF, VDD = 3.3V ± 10%, ipp_hve = 1 12 CL = 50pF, VDD = 3.3V ± 10%, ipp_hve = 1 25 CL = 100pF, VDD = 3.3V ± 10%, ipp_hve = 1 40 1000 CC4 Weak pull-up current absolute value 10 - V ns 40 ns - ns µA VDD = 3.3V ± 10% / 5.0V ± 10%, TA = -40 / +105oC, unless otherwise specified All values need to be confirmed during device validation. Data based on characterization results, not tested in production Guaranteed by design simulation. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the reference manual). CL calculation should include device and package capacitance (CPKG < 5pF). MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 58 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 3.8 Main Oscillator Electrical Characteristics The device provides an oscillator/resonator driver. Figure 9 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator. EXTAL CL Crystal EXTAL RP XTAL CL DEVICE VDD I R EXTAL XTAL Resonator DEVICE XTAL DEVICE Figure 9. Crystal Oscillator and Resonator Connection Scheme NOTE XTAL/EXTAL must not be directly used to drive external circuits. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 59 Electrical Characteristics VDD VDDMIN VXTAL 1/fXOSCHS VXOSCHS 90% VXOSCHSOP 10% TXOSCHSSU valid internal clock Figure 10. Main Oscillator Electrical Characteristics Table 25. Main Oscillator Electrical Characteristics Symbol fXOSCHS gmXOSCHS VXOSCHS Parameter Oscillator transconductance CC3 Oscillation amplitude VXOSCHSOP CC3 Oscillation operating point Unit Min Typ Max 4.0 — 16.0 MHz VDD = 3.3 V ± 10%, OSCILLATOR_MARGIN = 0 4.11 5.59 7.38 mA/V VDD = 5.0 V ± 10%, OSCILLATOR_MARGIN = 0 3.67 5.04 6.73 VDD = 3.3 V ± 10%, OSCILLATOR_MARGIN = 1 4.93 6.70 8.86 VDD = 5.0 V ± 10%, OSCILLATOR_MARGIN = 1 4.54 6.22 8.31 fOSC = 4 MHz, VDD = 3.3 V ± 10% 2.51 — — fOSC = 16 MHz, VDD = 3.3 V ± 10% 1.68 — — fOSC = 4 MHz, VDD = 5.0 V ± 10% 4.74 — — fOSC = 16 MHz, VDD = 5.0 V ± 10% 3.02 — — VDD = 3.3 V ± 10% VEXTAL 0.894 — 1.143 0.894 — 1.146 0.904 — 1.166 0.904 — 1.169 SR Oscillator frequency CC3 Value2 Conditions1 VXTAL VDD = 5.0 V ± 10% VEXTAL VXTAL V V MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 60 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics Table 25. Main Oscillator Electrical Characteristics (continued) Symbol Parameter CC3 Oscillator consumption IXOSCHS TXOSCHSSU CC3 Oscillator start-up time Conditions Value2 1 Unit Min Typ Max fOSC = 4 MHz — — 2.43 fOSC = 16 MHz — — 2.52 fOSC = 4 MHz, OSCILLATOR_MARGIN = 0 — — 6.0 fOSC = 16 MHz, OSCILLATOR_MARGIN = 1 — — 1.8 mA ms VIH SR Input high level CMOS Schmitt Trigger Oscillator bypass mode 0.65VDD VDD+0.4 V VIL SR Input low level CMOS Schmitt Trigger Oscillator bypass mode -0.4 0.35VDD V 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to +105 °C, unless otherwise specified All values need to be confirmed during device validation. 3 Data based on simulation results, not tested in production 2 3.9 Low Power Oscillator Electrical Characteristics The device provides a low power oscillator/resonator driver. PC[15] PC[15] Resonator Crystal CX RF PC[14] PC[14] CY DEVICE DEVICE Figure 11. Crystal Oscillator and Resonator Connection Scheme NOTE PC[14]/PC[15] must not be directly used to drive external circuits. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 61 Electrical Characteristics VDD VDDMIN VXTAL 1/fXOSCLP VXOSCLP 90% 10% TXOSCLPSU valid internal clock Figure 12. Low Power Oscillator Electrical Characteristics Table 26. Low Power Oscillator Electrical Characteristics Symbol Parameter fXOSCLP SR Oscillator frequency VXOSCLP CC3 Oscillation amplitude IXOSCLP CC3 Value2 Conditions1 Unit Min Typ Max 32 - 40 kHz VDD=3.3V±10%, 1.12 1.33 1.74 V VDD=5.0V±10%, 1.12 1.37 1.74 Oscillator consumption 5 µA TXOSCLPSU CC3 Oscillator start-up time 2 s VIH SR Input high level CMOS Schmitt Trigger Oscillator bypass mode 0.65VDD VDD+0.4 V VIL SR Input low level CMOS Schmitt Trigger Oscillator bypass mode 0.35VDD V -0.4 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to +105 °C, unless otherwise specified All values need to be confirmed during device validation. 3 Granted by device validation 2 3.10 FMPLL Electrical Characteristics The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 62 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics Table 27. FMPLL Electrical Characteristics Symbol Value2 Conditions1 Parameter Unit Min SR PLL reference clock3 fPLLIN ΔPLLIN SR PLL reference clock duty cycle 4 fPLLOUT CC fCPU TLOCK Typ 4 64 MHz 40 60 % 16 64 MHz 645 MHz Stable oscillator (fPLLIN = 16 MHz) 200 µs 3 PLL output clock frequency CC4 System clock frequency CC4 PLL lock time Max 4 ΔTPKJIT CC PLL jitter (pk to pk) fPLLIN = 16 MHz (resonator) 500 ps ΔTLTJIT 4 PLL long term jitter fPLLIN = 16 MHz (resonator) 1.5 ns 4 mA IPLL 1 CC CC6 Oscillator consumption TA = 25°C VDDPLL = 1.2 V ± 10%, TA = -40 to +105 °C, unless otherwise specified. All values need to be confirmed during device validation. PLLIN clock retrieved directly from XOSCHS clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN. Data based on device simulation. fCPU 64 MHz can be achieved only at up to 105 °C Data based on characterization results, not tested in production 2 3 4 5 6 3.11 Main RC Oscillator Electrical Characteristics The device provides a 16 MHz internal RC oscillator. This is used as the default clock at the power-up of the device. Table 28. Main RC Oscillator Electrical Characteristics Symbol Parameter Value2 Conditions1 Unit Min CC3 RC oscillator high frequency TA = 25 °C, trimmed IRCMRUN CC3 RC oscillator high frequency current in running mode TA = 25 °C, trimmed IRCMPWD CC3 RC oscillator high frequency current in power TA = 25 °C down mode ΔRCMTRI M CC3 RC oscillator precision after trimming of fRC TA = 25 °C fRCM ΔRCMVAR CC4 RC oscillator variation in temperature and supply with respect to fRC at TA = 55 °C in high-frequency configuration Typ Max 16 MHz 200 µA 10 µA -1 +1 % -5 +5 % 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to +105 °C, unless otherwise specified. All values need to be confirmed during device validation. 3 Guaranteed by device simulation, not tested in production 4 Guaranteed by device characterization, not tested in production 2 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 63 Electrical Characteristics 3.12 Low Power RC Oscillator Electrical Characteristics The device provides a low power internal RC oscillator. This can be used as the reference clock for the RTC module. Table 29. Low Power RC Oscillator Electrical Characteristics Symbol Parameter Conditions Value2 1 Unit Min CC3 RC oscillator low frequency fRCL 3 CC RC oscillator low frequency current IRCL Typ TA = 25 °C, trimmed Max 128 kHz TA = 25 °C, trimmed 5 µA ΔRCLTRIM CC3 RC oscillator precision after trimming of fRCL TA = 25 °C -2 +2 % High frequency ΔRCLVAR CC RC oscillator variation in temperature and supply with respect to fRC at TA = 55 °C in high configuration frequency configuration -10 +10 % 3 3 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to +105 °C, unless otherwise specified. All values need to be confirmed during device validation. 3 Guaranteed by device simulation, not tested in production 2 3.13 Flash Memory Electrical Characteristics Table 30. Program and Erase Specifications Symbol Parameter Min Value Typical Value1 Initial Max2 Max3 Unit Tdwprogram Double Word (64 bits) Program Time4 — 22 500 μs T16kpperase 16 KB Block Pre-program and Erase Time — 500 5000 ms T32kpperase 32 KB Block Pre-program and Erase Time — 600 5000 ms T128kpperase 128 KB Block Pre-program and Erase Time — 1300 7500 ms 1 Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2 Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3 The maximum program & erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4 Actual hardware programming times. This does not include software overhead. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 64 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics Table 31. Flash Module Life Value Symbol Parameter 3.14 Unit Min Typ P/E Number of program/erase cycles per block for 16 Kbyte blocks over the operating temperature range (TJ) — 100,000 — cycles P/E Number of program/erase cycles per block for 32 Kbyte blocks over the operating temperature range (TJ) — 10,000 100,000 (TBD) cycles P/E Number of program/erase cycles per block for 128 Kbyte blocks over the operating temperature range (TJ) — 1,000 100,000 (TBD) cycles Blocks with 0 - 1,000 P/E cycles 20 — years Blocks with 10,000 P/E cycles 10 — years Blocks with 100,000 P/E cycles 1-5 (TBD) — years Retention Minimum data retention at 85 °C average ambient temperature1 1 Conditions Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range. Analog to Digital Converter (ADC) Electrical Characteristics The device provides a 10-bit Successive Approximation Register (SAR) Analog to Digital Converter. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 65 Electrical Characteristics Offset Error OSE Gain Error GE 1023 1022 1021 1020 1019 1 LSB ideal = VDDA / 1024 1018 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (5) (2) The ideal transfer curve (3) Differential non-linearity error (DNL) 4 (4) Integral non-linearity error (INL) (4) (5) Center of a step of the actual transfer curve 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error OSE Figure 13. ADC Characteristics and Error Definitions 3.14.1 Input Impedance and ADC Accuracy In the following analysis, the input circuit corresponding to the precise channels is considered. To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 66 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330kΩ is obtained (REQ = 1 / (fc*CS), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be designed to respect the Equation 5: Eqn. 5 R S + R F + R L + R SW + R AD 1 V A • --------------------------------------------------------------------------- < --- LSB R EQ 2 Equation 5 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter RF Current Limiter RL CF Channel Selection Sampling RSW1 RAD CP1 CP2 CS RS Source Impedance RF Filter Resistance CF Filter Capacitance Current Limiter Resistance RL RSW1 Channel Selection Switch Impedance RAD Sampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance Figure 14. Input Equivalent Circuit (Precise Channels) MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 67 Electrical Characteristics EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source Filter RS Current Limiter RF RS RF CF RL RSW RAD CP CS Extended Switch Sampling RSW1 RSW2 RAD RL CF VA Channel Selection CP1 CP3 CP2 CS Source Impedance Filter Resistance Filter Capacitance Current Limiter Resistance Channel Selection Switch Impedance (two contributions RSW1 and RSW2) Sampling Switch Impedance Pin Capacitance (three contributions, CP1, CP2 and CP3) Sampling Capacitance Figure 15. Input Equivalent Circuit (Extended Channels) A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 14): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). Voltage Transient on CS VCS VA VA2 ΔV < 0.5 LSB 1 2 τ1 < (RSW + RAD) CS << TS τ2 = RL (CS + CP1 + CP2) VA1 TS t Figure 16. Transient Behavior during Sampling Phase In particular two different transient periods can be distinguished: • A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 68 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics CP • CS τ 1 = ( R SW + R AD ) • --------------------CP + CS Eqn. 6 Equation 6 can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS is always much longer than the internal time constant: Eqn. 7 τ 1 < ( R SW + R AD ) • C S « T S The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to Equation 8: Eqn. 8 V A1 • ( C S + C P1 + C P2 ) = V A • ( C P1 + C P2 ) • A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Eqn. 9 τ 2 < R L • ( C S + C P1 + C P2 ) In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time TS, a constraints on RL sizing is obtained: Eqn. 10 10 • τ 2 = 10 • R L • ( C S + C P1 + C P2 ) < TS Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. Equation 11 must be respected (charge balance assuming now CS already charged at VA1): Eqn. 11 VA2 • ( C S + C P1 + C P2 + C F ) = V A • C F + V A1 • ( C P1 + C P2 + C S ) The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 69 Electrical Characteristics Analog Source Bandwidth (VA) TC ≤ 2 RFCF (Conversion Rate vs. Filter Pole) fF = f0 (Anti-aliasing Filtering Condition) Noise 2 f0 ≤ fC (Nyquist) f0 f Anti-Aliasing Filter (fF = RC Filter pole) fF Sampled Signal Spectrum (fC = conversion Rate) f0 f fC f Figure 17. Spectral Representation of Input Signal Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive Equation 12 between the ideal and real sampled voltage on CS: Eqn. 12 VA C P1 + C P2 + C F ----------- = ------------------------------------------------------V A2 C P1 + C P2 + C F + C S From this formula, in the worst case (when VA is maximum, that is for instance 5V), assuming to accept a maximum error of half a count, a constraint is evident on CF value: Eqn. 13 C F > 2048 • C S 3.14.2 ADC Electrical Characteristics MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 70 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics Table 32. ADC Electrical Characteristics Symbol Parameter Value2 Conditions1 Unit Min Typ Max VSSA SR Voltage on VSSA (ADC reference) pin with respect to ground (VSS)3 -0.1 0.1 V VDDA SR Voltage on VDDA pin (ADC reference) with respect to ground (VSS) VDD-0.1 VDD+0.1 V VAINx SR Analog input voltage4 VSSA-0.1 VDDA+0.1 V fADC SR ADC analog frequency 6 32 MHz 1.5 µs tADC_PU SR ADC power up delay tADC_S CC5 Sample time6 fADC = 32 MHz, ADC_conf_sample_input = 17 0.5 fADC = 6 MHz, ADC_conf_sample_input = 127 tADC_C CC5 Conversion time7 fADC = 32 MHz, ADC_conf_comp = 2 µs 21 0.625 µs CS CC5 ADC input sampling capacitance 3 pF CP1 CC5 ADC input pin capacitance 1 3 pF CP2 CC5 ADC input pin capacitance 2 1 pF CP3 CC5 ADC input pin capacitance 3 1 pF RSW1 CC5 Internal resistance of analog source 3 kΩ RSW2 CC5 Internal resistance of analog source 2 kΩ RAD CC5 Internal resistance of analog source 0.1 kΩ IINJ SR Input current Injection Current injection on one ADC input, different from the converted one -10 10 mA INL CC5 Integral Non Linearity No overload -1.5 1.5 LSB DNL CC5 Differential Non Linearity No overload -1.0 1.0 LSB -1.0 1.0 LSB -1.0 1.0 LSB 5 OFS CC Offset error GNE CC5 Gain error After offset cancellation MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 71 Electrical Characteristics Table 32. ADC Electrical Characteristics (continued) Symbol Value2 1 Parameter Conditions Unit Min TUEP TUEX 1 2 3 4 5 6 7 CC5 Total Unadjusted Error for No overload precise channels, input overload conditions on only pins adjacent channel -2 CC5 Total Unadjusted Error for No overload extended channel, overload conditions on adjacent channel -3 Typ Max 2 LSB LSB 3 LSB LSB VDDA = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to +105 °C, unless otherwise specified. All values need to be confirmed during device validation. Analog and digital VSS must be common (to be tied together externally). VAINx may exceed VSSA and VDDA limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF Guaranteed by design During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tADC_S. After the end of the sample time tADC_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC_S depend on programming. This parameter does not include the sample time tADC_S, but only the time for determining the digital result and the time to load the result’s register with the conversion result. 3.15 AC Specifications 3.15.1 Pad AC Specifications Table 33. Pad AC specifications (5.0 V, IPP_HVE=1)1 Num 1 2 Tswitchon1 (ns) Pad Slow Medium Rise/Fall2 (ns) Current slew3 (mA/ns) Frequency (MHz) Load drive (pF) Min Typ Max Min Typ Max Min Typ Max Min Typ Max 1.5 - 30 6 - 50 - - 4 0.04 - 2 25 1.5 - 30 9 - 100 - - 2 0.04 - 2 50 1.5 - 30 12 - 125 - - 2 0.04 - 2 100 1.5 - 30 16 - 150 - - 2 0.04 - 2 200 1 - 15 3 - 10 - - 40 2.5 - 7 25 1 - 15 5 - 20 - - 20 2.5 - 7 50 1 - 15 9 - 40 - - 13 2.5 - 8 100 1 - 15 12 - 70 - - 7 2.5 - 8 200 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 72 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics Table 33. Pad AC specifications (5.0 V, IPP_HVE=1)1 (continued) Num 3 Tswitchon1 (ns) Pad Fast Rise/Fall2 (ns) Current slew3 (mA/ns) Frequency (MHz) Load drive (pF) Min Typ Max Min Typ Max Min Typ Max Min Typ Max 1 - 6 1 - 4 - - 100 18 - 55 25 1 - 6 1.5 - 6 - - 80 18 - 55 50 1 - 6 3 - 12 - - 40 18 - 55 100 1 - 6 5 - 16 - - 25 18 - 55 200 4 Symmetric 1 - 5 1 - 4 - - 50 10 - 25 25 5 Pull Up/Down (5.5 V max) - - - - - 5000 - - - - - - 50 1 Propagation delay from VDD/2 of internal signal to Pchannel/Nchannel on condition Slope at rising/falling edge 3 Data based on characterization results, not tested in production 2 Table 34. Pad AC specifications (3.3 V, IPP_HVE=0)1 Num 1 2 3 Tswitchon1 (ns) Pad Slow Medium Fast Rise/Fall2 (ns) Current slew3 (mA/ns) Frequency (MHz) Load drive (pF) Min Typ Max Min Typ Max Min Typ Max Min Typ Max 3 - 40 4 - 40 - - 4 0.01 - 2 25 3 - 40 6 - 50 - - 2 0.01 - 2 50 3 - 40 10 - 75 - - 2 0.01 - 2 100 3 - 40 14 - 100 - - 2 0.01 - 2 200 1 - 15 2 - 12 - - 40 2.5 - 7 25 1 - 15 4 - 25 - - 20 2.5 - 7 50 1 - 15 8 - 40 - - 13 2.5 - 7 100 1 - 15 14 - 70 - - 7 2.5 - 7 200 1 - 6 1 - 4 - - 72 3 - 40 25 1 - 6 1.5 - 7 - - 55 3 - 40 50 1 - 6 3 - 12 - - 40 3 - 40 100 1 - 6 5 - 18 - - 25 3 - 40 200 4 Symmetric 1 - 6 2 - 6 - - 50 3 - 25 25 5 Pull Up/Down (3.6 V max) - - - - - 7500 - - - - - - 50 1 Propagation delay from VDD/2 of internal signal to Pchannel/Nchannel on condition Slope at rising/falling edge 3 Data based on characterization results, not tested in production 2 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 73 Electrical Characteristics VDD/2 Pad Data Input Rising Edge Output Delay Falling Edge Output Delay VOH VOL Pad Output Figure 18. Pad Output Delay 3.16 AC Timing 3.16.1 IEEE 1149.1 Interface Timing Table 35. JTAG Interface Timing1 Num Characteristic Min Max Unit tJCYC CC2 TCK Cycle Time 100 — ns 2 tJDC CC2 40 60 ns 3 tTCKRISE CC2 TCK Rise and Fall Times (40% – 70%) — 3 ns tTMSS, tTDIS CC2 TMS, TDI Data Setup Time 5 — ns tTMSH, tTDIH CC2 TMS, TDI Data Hold Time 25 — ns 6 tTDOV CC2 TCK Low to TDO Data Valid — 35 ns 7 tTDOI CC2 TCK Low to TDO Data Invalid 0 — ns tTDOHZ CC2 TCK Low to TDO High Impedance — 30 ns tBSDV CC2 TCK Falling Edge to Output Valid — 35 ns 1 4 5 8 9 2 TCK Clock Pulse Width (Measured at VDD/2) 10 tBSDVZ CC TCK Falling Edge to Output Valid out of High Impedance — 50 ns 11 tBSDHZ CC2 TCK Falling Edge to Output High Impedance — 50 ns 12 tBSDST CC2 Boundary Scan Input Valid to TCK Rising Edge 50 — ns tBSDHT CC2 50 — ns 13 1 Symbol TCK Rising Edge to Boundary Scan Input Invalid These specifications apply to JTAG boundary scan only. JTAG timing specified at VDD = 3.0 V to 5.5 V, TA = -40 to 105 °C, and CL = 50 pF with SRC = 0b11. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 74 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 2 Parameter values guaranteed by design. TCK 2 3 2 1 3 Figure 19. JTAG Test Clock Input Timing TCK 4 5 TMS, TDI 6 7 8 TDO Figure 20. JTAG Test Access Port Timing MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 75 Electrical Characteristics TCK 9 11 Output Signals 10 Output Signals 12 13 Input Signals Figure 21. JTAG Boundary Scan Timing MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 76 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 3.16.2 Nexus Debug Interface Table 36. Nexus Debug Port Timing1 Num 1 2 Symbol tMCYC tMDC Characteristic CC2 MCKO Cycle Time CC 2 MCKO Duty Cycle 2 Max Unit 22 — ns 40 60 % –2 14 ns –2 14 ns 3 3 tMDOV CC 4 tMSEOV CC2 tEVTOV CC 2 MCKO Low to EVTO Data Valid –2 14 ns 2 EVTI Pulse Width 4 — tTCYC 5 MCKO Low to MDO Data Valid Min MCKO Low to MSEO Data Valid3 3 6 tEVTIPW CC 7 tEVTOPW CC2 EVTO Pulse Width 1 — tMCYC 8 tTCYC CC2 TCK Cycle Time4 100 — ns tTDC CC2 TCK Duty Cycle 40 60 % 10 tNTDIS, tNTMSS CC2 TDI, TMS Data Setup Time 25 — ns 11 tNTDIH, tNTMSH CC2 TDI, TMS Data Hold Time 5 — ns 12 tJOV CC2 TCK Low to TDO Data Valid 0 35 ns 9 1 JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at VDD = 3.0 V to 5.5V, TA = -40 to 105 °C, and CL = 50 pF (Cl=30 pF on MCKO), with SRC = 0b11. 2 Parameter values guaranteed by design. 3 MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 4 The system clock frequency needs to be three times faster that the TCK frequency. Figure 22. Nexus Clock Timing 1 2 MCKO 3 4 5 MDO MSEO EVTO Output Data Valid Figure 23. Nexus Output Timing MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 77 Electrical Characteristics TCK 9 8 9 Figure 24. Nexus TCK Timing TCK 10 11 TMS, TDI 12 TDO Figure 25. Nexus TDI, TMS, TDO Timing 3.16.3 Interface to TFT LCD Panels Figure 26 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure signals are shown with positive polarity. The sequence of events for active matrix interface timing is: • DCU_CLK latches data into the panel on its positive edge (when positive polarity is selected). In active mode, DCU_CLK runs continuously. This signal frequency could be from 5 to 66 MHz depending on the panel type. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 78 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics • • • DCU_HSYNC causes the panel to start a new line. It always encompasses at least one PCLK pulse. DCU_VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse. DCU_DE acts like an output enable signal to the LCD panel. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off. DCU_VSYNC LINE 1 DCU_HSYNC LINE 2 LINE 3 LINE 4 LINE n-1 LINE n DCU_HSYNC DCU_DE 1 2 3 m-1 m DCU_CLK DCU_LD[23:0] Figure 26. TFT LCD InterfaceTiming Overview1 3.16.3.1 Interface to TFT LCD Panels—Pixel Level Timings Figure 27 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and data. All parameters shown in the diagram are programmable. This timing diagram corresponds to positive polarity of the DCU_CLK signal (meaning the data and sync signals change on the rising edge) and active-high polarity of the DCU_HSYNC, DCU_VSYNC and DCU_DE signals. The user can select the polarity of the DCU_HSYNC and DCU_VSYNC signals via the SYN_POL register, whether active-high or active-low. The default is active-high. The DCU_DE signal is always active-high. Pixel clock inversion and a flexible programmable pixel clock delay are also supported. They are programmed via the DCU Clock Confide Register (DCCR) in the system clock module. The DELTA_X and DELTA_Y parameters are programmed via the DISP_SIZE register. The PW_H, BP_H and FP_H parameters are programmed via the HSYN PARA register. The PW_V, BP_V and FP_V parameters are programmed via the VSYN_PARA register. Table 37. LCD Interface Timing Parameters—Horizontal and Vertical Num Symbol Characteristic Value Unit 1 tPCP CC1 31.25 ns 2 tPWH CC1 HSYNC pulse width PW_H * tPCP ns 3 tBPH CC1 HSYNC back porch width BP_H * tPCP ns 4 tFPH CC1 HSYNC front porch width FP_H * tPCP ns tSW CC1 Screen width DELTA_X * tPCP ns 5 Display pixel clock period 1. In Figure 26, the “DCU_LD[23:0]” signal is an aggregation of the DCU’s RGB signals—DCU_R[0:7], DCU_G[0:7] and DCU_B[0:7]. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 79 Electrical Characteristics Table 37. LCD Interface Timing Parameters—Horizontal and Vertical (continued) Num Characteristic 1 Value Unit 6 tHSP CC HSYNC (line) period (PW_H + BP_H + FP_H + DELTA_X ) * tPCP ns 7 tPWV CC1 VSYNC pulse width PWV * tHSP ns tBPV CC1 VSYNC back porch width BP_V * tHSP ns tFPV CC1 VSYNC front porch width FP_V * tHSP ns tSH 1 CC Screen height DELTA_Y * tHSP ns tVSP CC1 VSYNC (frame) period (PW_V + BP_V + FP_V + DELTA_Y ) * tHSP ns 8 1 Symbol Parameter values guaranteed by design. tHSP Start of line tPWH tFPH tSW tBPH tPCP DCU_CLK DCU_LD[23:0] Invalid Data 2 1 3 DELTA_X Invalid Data DCU_HSYNC DCU_DE Figure 27. Horizontal Sync Timing tVSP Start of Frame tSH tBPV tPWV tFPV tHCP DCU_HSYNC DCU_LD[23:0] (Line Data) Invalid Data 1 2 3 DELTA_Y Invalid Data DCU_HSYNC DCU_DE Figure 28. Vertical Sync Pulse MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 80 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 3.16.3.2 Interface to TFT LCD Panels—Access Level Table 38. LCD Interface Timing Parameters1,2,3,4—Access Level Num 1 2 3 4 5 Symbol Characteristic Min. Value Typical Value 31.25 — 40 — Max. Value Unit 1 tCKP CC5 PDI Clock Period 2 tCHD CC5 Duty cycle 3 tDSU 5 CC interface data setup time 6 — ns 4 tDHD CC5 PDI interface data access hold time 1 — ns 5 tCSU CC5 PDI interface control signal setup time 3 — ns 6 tCHD CC5 PDI interface control signal hold time 1 — ns 5 ns 60 % 7 CC TFT interface data valid after pixel clock — 6 ns 8 CC5 TFT interface HSYNC valid after pixel clock — 5 ns 9 CC5 TFT interface VSYNC valid after pixel clock — 5.5 ns 10 CC5 TFT interface DE valid after pixel clock — 5.6 ns 11 CC5 TFT interface hold time for data and control bits 12 CC5 Relative skew between the data bits 2 — — ns 3.7 ns The characteristics in this table are based on the assumption that data is output at +ve edge and displays latch data on -ve edge Intra bit skew is less than 2 ns Load CL = 50 pf for frequency up to 20 MHz Load CL = 25 pf for display freq from 20 to 32 MHz Parameter values guaranteed by design. tCHD tCSU tDSU tDHD DCU_HSYNC DCU_VSYNC DCU_DE DCU_CLK tCKH tCKL DCU_LD[23:0] Figure 29. LCD Interface Timing Parameters—Access Level 3.16.4 External Interrupt (IRQ) and Non-Maskable Interrupt (NMI) Timing MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 81 Electrical Characteristics Table 39. IRQ and NMI Timing Num 2 Characteristic Min. Value Max. Value Unit tIPWL CC1 IRQ/NMI Pulse Width Low 200 — ns 2 tIPWH CC1 200 — ns 3 tICYC CC1 IRQ/NMI Edge to Edge Time2 400 — ns Min. Value2 Max. Value Unit 1 1 Symbol IRQ/NMI Pulse Width High Parameter values guaranteed by design. Applies when IRQ/NMI pins are configured for rising edge or falling edge events, but not both. 1,2 1,2 3 Figure 30. IRQ and NMI Timing 3.16.5 Enhanced Modular I/O Subsystem (eMIOS) Timing Table 40. eMIOS Timing1 Num 1 2 Symbol Characteristic tMIPW CC3 eMIOS Input Pulse Width 4 — tCYC tMOPW CC3 1 — tCYC eMIOS Output Pulse Width 1 eMIOS timing specified at fSYS = 64 MHz, VDD12 = 1.14 V to 1.32 V, VDDE_x = 3.0 V to 5.5 V, TA = -40 to 105 °C, and CL = 50 pF with SRC = 0b00 2 There is no limitation on the peripheral for setting the minimum pulse width, the actual width is restricted by the pad delays. Refer to the pad specification section for the details. 3 Parameter values guaranteed by design. 3.16.6 FlexCAN Timing The CAN functions are available as TX pins at normal IO pads and as RX pins at the always on domain. There is no filter for the wakeup dominant pulse. Any high-to-low edge can cause wakeup if configured. Table 41. FlexCAN Timing1 Num Symbol Characteristic Min. Value Max. Value Unit 1 tCANOV CC2 CTNX Output Valid after CLKOUT Rising Edge (Output Delay) — 22.48 ns 2 tCANSU CC2 CNRX Input Valid to CLKOUT Rising Edge (Setup Time) — 12.46 ns MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 82 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 1 FlexCAN timing specified at fSYS = 64 MHz, VDD12 = 1.14 V to 1.32 V, VDDE_x = 3.0 V to 5.5 V, TA = -40 to 105 °C, and CL = 50 pF with SRC = 0b00. 2 Parameter values guaranteed by design. 3.16.7 Deserial Serial Peripheral Interface (DSPI) Table 42. DSPI Timing1 Num 1 2 4 5 6 7 CC2 tCSC 2 CC 2 SCK Cycle TIme3,4 5 PCS to SCK Delay 6 Max Unit 60 — ns - — ns CC After SCK Delay 20 — ns 4 tSDC CC2 SCK Duty Cycle tSCK/2 –2ns tSCK/2 ns + 2ns 5 tA CC2 Slave Access Time (PCSx active to SOUT driven) — 25 ns 6 tDIS CC2 Slave SOUT Disable Time (PCSx inactive to SOUT High-Z or invalid) — 25 ns 7 tSUI CC2 Data Setup Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)7 Master (MTFE = 1, CPHA = 1) 35 5 5 35 — — — — ns ns ns ns Data Hold Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)7 Master (MTFE = 1, CPHA = 1) –4 10 26 –4 — — — — ns ns ns ns Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA=0) Master (MTFE = 1, CPHA=1) — — — — 15 35 30 15 ns ns ns ns Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) –15 5.5 0 –15 — — — — ns ns ns ns 10 3 tSCK Min tASC 9 1 Characteristic 3 8 2 Symbol tHI tSUO tHO CC2 CC2 CC2 DSPI timing specified at VDDE_x = 3.0 V to 5.5V, TA = -40 to 105 °C, and CL = 50 pF with SRC = 0b11. Parameter values guaranteed by design. The minimum SCK Cycle Time restricts the baud rate selection for given system clock rate. The actual minimum SCK Cycle Time is limited by pad performance. The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK], program PSSCK=2 & CSSCK = 2 The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC] This delay value is corresponding to SMPL_PT=00b which is bit field 9 and 8 of DSPI_MCR register. MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 83 Electrical Characteristics 2 3 PCSx 1 4 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 7 8 First Data SIN Last Data Data 10 SOUT First Data 9 Data Last Data Figure 31. DSPI Classic SPI Timing — Master, CPHA = 0 PCSx SCK Output (CPOL=0) 8 SCK Output (CPOL=1) 7 SIN Data First Data 10 SOUT First Data Last Data 9 Data Last Data Figure 32. DSPI Classic SPI Timing — Master, CPHA = 1 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 84 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 3 2 PCSx 1 4 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 First Data SOUT 7 6 Data Last Data Data Last Data 8 First Data SIN 9 10 Figure 33. DSPI Classic SPI Timing — Slave, CPHA = 0 PCSx SCK Input (CPOL=0) SCK Input (CPOL=1) 9 5 10 SOUT First Data 7 SIN Data Last Data Data Last Data 6 8 First Data Figure 34. DSPI Classic SPI Timing — Slave, CPHA = 1 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 85 Electrical Characteristics 3 PCSx 4 1 2 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 7 SIN 8 First Data Last Data Data 10 SOUT 9 First Data Data Last Data Figure 35. DSPI Modified Transfer Format Timing — Master, CPHA = 0 PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 8 7 SIN First Data Data 10 SOUT First Data Data Last Data 9 Last Data Figure 36. DSPI Modified Transfer Format Timing — Master, CPHA = 1 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 86 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 3 2 PCSx 1 SCK Input (CPOL=0) 4 4 SCK Input (CPOL=1) 10 9 5 First Data SOUT Data Last Data 8 7 Data First Data SIN 6 Last Data Figure 37. DSPI Modified Transfer Format Timing — Slave, CPHA = 0 PCSx SCK Input (CPOL=0) SCK Input (CPOL=1) 9 5 10 First Data SOUT 7 SIN Data Last Data Data Last Data 6 8 First Data Figure 38. DSPI Modified Transfer Format Timing — Slave, CPHA = 1 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 87 Electrical Characteristics 3.16.8 I2C Timing Table 43. I2C Input Timing Specifications—SCL and SDA Num 1 2 Symbol Characteristic Min. Value Max. Value Unit 1 — CC1 Start condition hold time 2 — IP-Bus Cycle2 2 — CC1 Clock low time 8 — IP-Bus Cycle2 4 — CC1 Data hold time 0.0 — ns 6 — CC1 Clock high time 4 — IP-Bus Cycle2 7 — CC1 Data setup time 0.0 — ns 2 — IP-Bus Cycle2 2 — IP-Bus Cycle2 1 Start condition setup time (for repeated start condition only) 8 — CC 9 — CC1 Stop condition setup time Parameter values guaranteed by design. Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device Table 44. I2C Output Timing Specifications—SCL and SDA Num Symbol Characteristic Min. Value Max. Value Unit 11 — CC2 Start condition hold time 6 — IP-Bus Cycle3 21 — CC2 Clock low time 10 — IP-Bus Cycle2 34 — CC2 SCL/SDA rise time — 99.6 ns 41 — CC2 Data hold time 7 — IP-Bus Cycle2 51 — CC2 SCL/SDA fall time — 99.5 ns 1 6 — CC2 Clock high time 10 — IP-Bus Cycle2 71 — CC2 Data setup time 2 — IP-Bus Cycle2 81 — CC2 Start condition setup time (for repeated start condition only) 20 — IP-Bus Cycle2 91 — CC2 Stop condition setup time 10 — IP-Bus Cycle2 Programming IBFD (I2C bus Frequency Divider) with the maximum frequency results in the minimum output timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed in IFDR. 2 Parameter values guaranteed by design. 3 Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device 4 Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values. 1 MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 88 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 5 6 2 SCL 1 4 7 8 3 9 SDA Figure 39. I2C Input/Output Timing 3.16.9 3.17 Mechanical Outline Drawings 144 LQFP MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 89 Electrical Characteristics Figure 40. LQFP144 Mechanical Drawing (Part 1 of 3) MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 90 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics Figure 41. LQFP144 Mechanical Drawing (Part 2 of 3) MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 91 Electrical Characteristics Figure 42. LQFP144 Mechanical Drawing (Part 3 of 3) MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 92 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics 3.18 176 LQFP Figure 43. LQFP176 Mechanical Drawing (Part 1 of 3) MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 93 Electrical Characteristics Figure 44. LQFP176 Mechanical Drawing (Part 2 of 3) MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 94 Preliminary—Subject to Change Without Notice Freescale Semiconductor Electrical Characteristics Figure 45. LQFP176 Mechanical Drawing (Part 3 of 3) MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 95 Ordering Information 4 Ordering Information Table 45 shows the orderable part numbers for the MPC5606S series. Table 45. Orderable Part Number Summary Flash/SRAM Package Speed (MHz) MPC5602SEMLQ 256 KB/24 KB 144 LQFP 64 MPC5604SEMLQ 512 KB/48 KB 144 LQFP 64 MPC5604SEMLQ 512 KB/48 KB Part Number MPC5606SEMLQ MPC5606SEMLU 1 144 LQFP 64 1 144 LQFP 64 1 176 LQFP 64 1 MB/48 KB 1 MB/48 KB Device also includes 160 KB of graphics SRAM. Figure 46. Commercial product code structure Example code: M PC 56 0 4 S E M LL R Qualification Status PowerPC Core Automotive Platform Core Version Flash Size (core dependent) Product Optional fields Temperature spec. Package Code R = Tape & Reel (blank if Tray) 1 Qualification Status Flash Size (z0 core) Temperature spec. M = MC status S = Auto qualified P = PC status 2 = 256 KB 4 = 512 KB 6 = 1024 KB C = –40° C to 85°C V = –40° C to 105°C M = –40° C to 125°C Automotive Platform Product Package Code 56 = PPC in 90nm 57 = PPC in 65nm B = Body C = Gateway LQ = 144 LQFP LU = 176 LQFP MG = 208 MAPBGA1 208 MAPBGA available only as development package for Nexus2+ MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 96 Preliminary—Subject to Change Without Notice Freescale Semiconductor Ordering Information MPC560xS Microcontroller Data Sheet Data Sheet, Rev. 1 Freescale Semiconductor Preliminary—Subject to Change Without Notice 97 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] Document Number: MPC5606S Rev. 1 10/2008 Preliminary—Subject to Change Without Notice Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © Freescale Semiconductor, Inc. 2008. All rights reserved.