Freescale Semiconductor Data Sheet: Advance Information Document Number: MPC5646C Rev. 3, May 2011 MPC5646C MPC5646C Microcontroller Data Sheet • e200z4d dual issue, 32-bit core Power Architecture compliant CPU – Up to 120 MHz – 4 KB, 2/4-Way Set Associative Instruction Cache – Variable length encoding (VLE) – Embedded floating-point (FPU) unit – Supports Nexus3+ • e200z0h single issue, 32-bit core Power Architecture compliant CPU – Up to 80 MHz – Variable length encoding (VLE) – Supports Nexus3+ • Up to 3 MB on-chip flash memory: flash page buffers to improve access time • Up to 256 KB on-chip SRAM • 64 KB on-chip data flash memory to support EEPROM emulation • Up to 16 semaphores across all slave ports • User selectable MBIST • Low-power modes supported: STOP, HALT, STANDBY • 16 region Memory Protection Unit (MPU) • Dual-core Interrupt Controller (INTC). Interrupt sources can be routed to e200z4d, e200z0h, or both • Frequency-Modulated Phase-Locked Loop (FMPLL) • Crossbar switch architecture for concurrent access to peripherals, flash memory, and SRAM from multiple bus masters • 32 channel eDMA controller with DMAMUX • Timer supports input/output channels providing 16-bit input capture, output compare, and PWM functions (eMIOS) • 2 analog-to-digital converters (ADC): one 10-bit and one 12-bit • Cross Trigger Unit (CTU) to enable synchronization of ADC conversions with a timer event from the eMIOS or from the PIT • Up to 8 serial peripheral interface (DSPI) modules • Up to 10 serial communication interface (LINFlex) modules 176-pin LQFP (24 24 mm) 256 MAPBGA (17 17 mm) 208-pin LQFP (28 28 mm) • • • • • • • • • • • • • • • Up to 6 full CAN (FlexCAN) modules with 64 MBs each CAN Sampler to catch ID of CAN message 1 inter IC communication interface (I2C) module Up to 177 (LQFP) or 199 (BGA) configurable general purpose I/O pins System clocks sources – 4–40 MHz external crystal oscillator – 16 MHz internal RC oscillator – FMPLL Additionally, there are two low power oscillators: 128 kHz internal RC oscillator, 32 kHz external crystal oscillator Real Time Counter (RTC) with clock source from internal 128 kHz or 16 MHz oscillators or external 4–40 MHz crystal – Supports autonomous wake-up with 1 ms resolution with max timeout of 2 seconds – Optional support from external 32 kHz crystal oscillator, supporting wake-up with 1 second resolution and max timeout of 1 hour 1 System Timer Module (STM) with four 32-bit compare channels Up to 8 periodic interrupt timers (PIT) with 32-bit counter resolution 1 Real Time Interrupt (RTI) with 32-bit counter resolution 1 Safety Enhanced Software Watchdog Timer (SWT) that supports keyed functionality 1 dual-channel FlexRay Controller with 128 message buffers 1 Fast Ethernet Controller (FEC) On-chip voltage regulator (VREG) Cryptographic Services Engine (CSE) Offered in the following standard package types: – 176-pin LQFP, 24 24 mm, 0.5 mm Lead Pitch – 208-pin LQFP, 28 28 mm, 0.5 mm Lead Pitch – 256-ball MAPBGA, 17 17mm, 1.0 mm Lead Pitch This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2010, 2011. All rights reserved. Preliminary—Subject to Change Without Notice Table of Contents 1 2 3 4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . .9 3.1 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 3.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 3.3 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 4.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .39 4.2 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 4.2.1 NVUSRO [PAD3V5V(0)] field description . . . . .40 4.2.2 NVUSRO [PAD3V5V(1)] field description . . . . .40 4.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .40 4.4 Recommended operating conditions . . . . . . . . . . . . . .42 4.5 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .45 4.5.1 Package thermal characteristics . . . . . . . . . . . .45 4.5.2 Power considerations. . . . . . . . . . . . . . . . . . . . .45 4.6 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . .46 4.6.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . .46 4.6.2 I/O input DC characteristics . . . . . . . . . . . . . . . .46 4.6.3 I/O output DC characteristics. . . . . . . . . . . . . . .47 4.6.4 Output pin transition times . . . . . . . . . . . . . . . . .50 4.6.5 I/O pad current specification . . . . . . . . . . . . . . .51 4.7 RESET electrical characteristics. . . . . . . . . . . . . . . . . .53 4.8 Power management electrical characteristics. . . . . . . .55 4.8.1 Voltage regulator electrical characteristics . . . .55 4.8.2 VDD_BV options . . . . . . . . . . . . . . . . . . . . . . . .56 4.8.3 Voltage monitor electrical characteristics. . . . . .57 4.9 Low voltage domain power consumption . . . . . . . . . . .58 4.10 Flash memory electrical characteristics . . . . . . . . . . . .60 4.10.1 Program/Erase characteristics. . . . . . . . . . . . . .60 4.10.2 Flash memory power supply DC characteristics62 4.10.3 Flash memory start-up/switch-off timings . . . . .63 4.11 Electromagnetic compatibility (EMC) characteristics . .63 4.11.1 Designing hardened software to avoid noise 5 6 7 problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.11.2 Electromagnetic interference (EMI) . . . . . . . . . 64 4.11.3 Absolute maximum ratings (electrical sensitivity)64 4.12 Fast external crystal oscillator (4–40 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.13 Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 70 4.15 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.16 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . 72 4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.18 Fast Ethernet Controller . . . . . . . . . . . . . . . . . . . . . . . 82 4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK) . . . . . . . . . . . . . . . . . . . 82 4.18.2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK) . . . . . . . . . . . . . . . . . . . . . . . 83 4.18.3 MII Async Inputs Signal Timing (CRS and COL)84 4.18.4 MII Serial Management Channel Timing (MDIO and MDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.19 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.19.1 Current consumption . . . . . . . . . . . . . . . . . . . . 86 4.19.2 DSPI characteristics. . . . . . . . . . . . . . . . . . . . . 88 4.19.3 Nexus characteristics . . . . . . . . . . . . . . . . . . . . 96 4.19.4 JTAG characteristics. . . . . . . . . . . . . . . . . . . . . 98 Package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . 100 5.1.1 176 LQFP package mechanical drawing . . . . 100 5.1.2 208 LQFP package mechanical drawing . . . . 103 5.1.3 256 MAPBGA package mechanical drawing . 108 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 MPC5646C Microcontroller Data Sheet, Rev. 3 2 Preliminary—Subject to Change Without Notice Freescale Semiconductor 1 Introduction 1.1 Document Overview This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the MPC5646C device. To ensure a complete understanding of the device functionality, refer also to the MPC5646C Reference Manual. 1.2 Description The MPC5646C is a new family of next generation microcontrollers built on the Power Architecture embedded category. This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. The MPC5646C family expands the range of the MPC560xB microcontroller family. It provides the scalability needed to implement platform approaches and delivers the performance required by increasingly sophisticated software architectures. The advanced and cost-efficient host processor core of the MPC5646C automotive controller family complies with the Power Architecture embedded category, which is 100 percent user-mode compatible with the original Power Architecture user instruction set architecture (UISA). It operates at speeds of up to 120 MHz and offers high performance processing optimized for low power consumption. It also capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 3 4 Table 1. MPC5646C family comparison1 Feature MPC5644B Package MPC5644C 176 208 176 208 LQFP LQFP LQFP LQFP CPU Execution speed 2 256 BGA MPC5645B 176 208 176 208 LQFP LQFP LQFP LQFP 256 BGA MPC5646B MPC5646C 176 208 176 208 LQFP LQFP LQFP LQFP 256 BGA e200z4d e200z4d + e200z0h e200z4d e200z4d + e200z0h e200z4d e200z4d + e200z0h Up to 120 MHz (e200z4d) Up to 120 MHz (e200z4d) Up to 80 MHz (e200z0h)3 Up to 120 MHz (e200z4d) Up to 120 MHz (e200z4d) Up to 80 MHz (e200z0h)3 Up to 120 MHz (e200z4d) Up to 120 MHz (e200z4d) Up to 80 MHz (e200z0h)3 MPC5646C Microcontroller Data Sheet, Rev. 3 Preliminary—Subject to Change Without Notice Code flash memory 1.5 MB 2 MB Data flash memory SRAM MPC5645C 3 MB 4 x16 KB 128 KB 192 KB 160 KB 256 KB MPU 192 KB 256 KB 16-entry 4 32 ch eDMA 10-bit ADC dedicated5,6 27 ch 33 ch 27 ch 33 ch 27 ch 33 ch shared with 12-bit ADC7 27 ch 33 ch 27 ch 33 ch 27 ch 33 ch 19 ch 12-bit ADC 10 ch dedicated8 shared with 10-bit ADC7 19 ch CTU 64 ch Total timer I/O9 eMIOS 64 ch, 16-bit Freescale Semiconductor SCI (LINFlexD) 10 SPI (DSPI) 8 CAN (FlexCAN)10 6 FlexRay Yes 11 Yes STCU Ethernet I2C No Yes No Yes 1 No Yes Freescale Semiconductor Table 1. MPC5646C family comparison1 (continued) Feature Package MPC5644B MPC5644C 176 208 176 208 LQFP LQFP LQFP LQFP MPC5645B 256 BGA 176 208 176 208 LQFP LQFP LQFP LQFP 32 kHz oscillator (SXOSC) 12 GPIO Debug MPC5646C Microcontroller Data Sheet, Rev. 3 Preliminary—Subject to Change Without Notice Cryptographic Services Engine (CSE) 1 MPC5645C MPC5646B 256 BGA MPC5646C 176 208 176 208 LQFP LQFP LQFP LQFP 256 BGA Yes 147 177 147 JTAG 177 199 Nexus 3+ 147 177 147 JTAG 177 199 Nexus 3+ 147 177 147 JTAG 177 199 Nexus 3+ Optional Feature set dependent on selected peripheral multiplexing; table shows example. Based on 125 C ambient operating temperature and subject to full device characterisation. 3 The e200z0h can run at speeds up to 80 MHz. However, if system frequency is >80 MHz (e.g., e200z4d running at 120 MHz) the e200z0h needs to run at 1/2 system frequency. There is a configurable e200z0 system clock divider for this purpose. 4 DMAMUX also included that allows for software selection of 32 out of a possible 57 sources. 5 Not shared with 12-bit ADC, but possibly shared with other alternate functions. 6 There are 23 dedicated ANS plus 4 dedicated ANX channels on LQPF176. For higher pin count packages, there are 29 dedicated ANS plus 4 dedicated ANX channels. 7 16x precision channels (ANP) and 3x standard (ANS). 8 Not shared with 10-bit ADC, but possibly shared with other alternate functions. 9 As a minimum, all timer channels can function as PWM or Input Capture and Output Control. Refer to the eMIOS section of the device reference manual for information on the channel configuration and functions. 10 CAN Sampler also included that allows ID of CAN message to be captured when in low power mode. 11 STCU controls MBIST activation and reporting. 12 Estimated I/O count for proposed packages based on multiplexing with peripherals. 2 5 2 Block diagram Figure 1 shows the detailed block diagram of the MPC5646C. FEC CSE Nexus Port FlexRay Nexus 3+ Nexus Voltage regulator NMI0 e200z0h NMI1 e200z4d Instructions (Master) Data (Master) Instructions (Master) Data (Master) MPU JTAG Port 64-bit 8 x 5 crossbar switch JTAGC SRAM 2 128 KB Code Flash Data Flash 64 KB 2 1.5 MB 2 SRAM controller Flash memory controller (Slave) Nexus 3+ NMI0 (Slave) (Slave) Interrupt requests from peripheral blocks NMI1 Clocks DMAMUX MPU registers INTC eDMA CMU 16 x Semaphores CAN Sampler ( Master) FMPLL STCU 8 RTC/API 4 STM SWT ECSM MC_RGM MC_CGM MC_ME MC_PCU PIT RTI BAM SSCM WKPU Peripheral Bridge Interrupt Request 10 ch(1) 1 12-bit ADC SIUL Reset Control External Interrupt Request 27 ch or 33 ch(2) 1 10-bit ADC CTU 2 32 ch eMIOS 10 LINFlexD 8 DSPI I2C 6 FlexCAN IMUX GPIO & Pad Control (3) (3) I/O Legend: ADC BAM CSE CAN CMU CTU DMAMUX DSPI eDMA FlexCAN FEC eMIOS ECSM FMPLL FlexRay I2C IMUX INTC Notes: 1) 10 dedicated channels plus up to 19 shared channels. See the device-comparison table. 2) Package dependent. 27 or 33 dedicated channels plus up to 19 shared channels. See the device-comparison table. 3) 16 x precision channels (ANP) are mapped on input only I/O cells. Analog-to-Digital Converter Boot Assist Module Cryptographic Services Engine Controller Area Network (FlexCAN) Clock Monitor Unit Cross Triggering Unit DMA Channel Multiplexer Deserial Serial Peripheral Interface enhanced Direct Memory Access Controller Area Network controller modules Fast Ethenet Controller Enhanced Modular Input Output System Error Correction Status Module Frequency-Modulated Phase-Locked Loop FlexRay Communication Controller Inter-integrated Circuit Bus Internal Multiplexer Interrupt Controller JTAGC LINFlexD MC_ME MC_CGM MC_PCU MC_RGM MPU Nexus NMI PIT_RTI RTC/API SIUL SRAM SSCM STM SWT STCU WKPU JTAG controller Local Interconnect Network Flexible with DMA support Mode Entry Module Clock Generation Module Power Control Unit Reset Generation Module Memory Protection Unit Nexus Development Interface Non-Maskable Interrupt Periodic Interrupt Timer with Real-Time Interrupt Real-Time Clock/ Autonomous Periodic Interrupt System Integration Unit Lite Static Random-Access Memory System Status Configuration Module System Timer Module Software Watchdog Timer Self Test Control Unit Wakeup Unit Figure 1. MPC5646C block diagram MPC5646C Microcontroller Data Sheet, Rev. 3 6 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 2 summarizes the functions of the blocks present on the MPC5646C. Table 2. MPC5646C series block summary Block Function Analog-to-digital converter (ADC) Converts analog voltages to digital values Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according to the boot mode of the device Clock monitor unit (CMU) Monitors clock source (internal and external) integrity Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT Cryptographic Security Engine (CSE) Supports the encoding and decoding of any kind of data Crossbar (XBAR) switch Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width DMA Channel Multiplexer (DMAMUX) Allows to route DMA sources (called slots) to DMA channels Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices (DSPI) Error Correction Status Module (ECSM) Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes Enhanced Direct Memory Access Performs complex data transfers with minimal intervention from a host processor (eDMA) via “n” programmable channels. Enhanced modular input output system (eMIOS) Provides the functionality to generate or measure events Flash memory Provides non-volatile storage for program code, constants and variables FlexCAN (controller area network) Supports the standard CAN communications protocol FMPLL (frequency-modulated phase-locked loop) Generates high-speed system clocks and supports programmable frequency modulation FlexRay (FlexRay communication Provides high-speed distributed control for advanced automotive applications controller) Fast Ethernet Controller (FEC) Ethernet Media Access Controller (MAC) designed to support both 10 and 100 Mbps Ethernet/IEEE 802.3 networks Internal multiplexer (IMUX) SIUL subblock Allows flexible mapping of peripheral interface on the different pins of the device Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests for both e200z0h and e200z4d cores JTAG controller Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 7 Table 2. MPC5646C series block summary (continued) Block Function LinFlexD (Local Interconnect Network Flexible with DMA support) Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load Memory protection unit (MPU) Provides hardware access control for all memory references generated in a device Clock generation module (MC_CGM) Provides logic and control required for the generation of system and peripheral clocks Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called “power domains” which are controlled by the PCU Reset generation module (MC_RGM) Centralizes reset sources and manages the device reset sequence of the device Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and modetransition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications Non-Maskable Interrupt (NMI) Handles external events that must produce an immediate response, such as power down detection Nexus Development Interface (NDI) Provides real-time development capabilities for e200z0h and e200z4d core processor Periodic interrupt timer/ Real Time Produces periodic interrupts and triggers Interrupt Timer (PIT_RTI) Real-time counter (RTC/API) A free running counter used for time keeping applications, the RTC can be configured to generate an interrupt at a predefined interval independent of the mode of operation (run mode or low-power mode). Supports autonomous periodic interrupt (API) function to generate a periodic wakeup request to exit a low power mode or an interrupt request Static random-access memory (SRAM) Provides storage for program code, constants, and variables System integration unit lite (SIUL) Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration System status and configuration module (SSCM) Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable System timer module (STM) Provides a set of output compare events to support AutoSAR and operating system tasks Semaphores Provides the hardware support needed in multi-core systems for sharing resources and provides a simple mechanism to achieve lock/unlock operations via a single write access. Wake Unit (WKPU) Supports external sources that can generate interrupts or wakeup events, of which can cause non-maskable interrupt requests or wakeup events. MPC5646C Microcontroller Data Sheet, Rev. 3 8 Preliminary—Subject to Change Without Notice Freescale Semiconductor 3 Package pinouts and signal descriptions 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 PB[2] PC[8] PC[13] PC[12] PI[0] PI[1] PI[2] PI[3] PE[7] PE[6] PH[8] PH[7] PH[6] PH[5] PH[4] PE[5] PE[4] PC[4] PC[5] PE[3] PE[2] PH[9] PC[0] VSS_LV VDD_LV VDD_HV_A VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] PI[4] PI[5] PH[12] PH[11] PG[11] PG[10] PE[15] PE[14] PG[15] PG[14] PE[12] The available LQFP pinouts and the MAPBGA ballmaps are provided in the following figures. For functional port pin description, see Table 4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 176 LQFP Top view 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 PA[11] PA[10] PA[9] PA[8] PA[7] PE[13] PF[14] PF[15] VDD_HV_B VSS_HV PG[0] PG[1] PH[3] PH[2] PH[1] PH[0] PG[12] PG[13] PA[3] PI[13] PI[12] PI[11] VDD_LV VSS_LV PI[8] PB[15] PD[15] PB[14] PD[14] PB[13] PD[13] PB[12] PD[12] VDD_HV_ADC1 VSS_HV_ADC1 PB[11] PD[11] PD[10] PD[9] PB[7] PB[6] PB[5] VDD_HV_ADC0 VSS_HV_ADC0 NOTE 1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3]. 2)Availability of port pin alternate functions depends on product selection. PC[7] PF[10] PF[11] PA[15] PF[13] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV_A PB[9] PB[8] PB[10] PF[0] PF[1] PF[2] PF[3] PF[4] PF[5] PF[6] PF[7] PJ[3] PJ[2] PJ[1] PJ[0] PI[15] PI[14] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] VDD_HV_A VSS_HV PD[8] PB[4] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 PB[3] PC[9] PC[14] PC[15] PJ[4] VDD_HV_A VSS_HV PH[15] PH[13] PH[14] PI[6] PI[7] PG[5] PG[4] PG[3] PG[2] PA[2] PE[0] PA[1] PE[1] PE[8] PE[9] PEp[10] A[0] PE[11] VSS_HV VDD_HV_A VSS_HV RESET VSS_LV VDD_LV VRC_CTRL PG[9] PG[8] PC[11] PC[10] PG[7] PG[6] PB[0] PB[1] PF[9] PF[8] PF[12] PC[6] Figure 2. 176-pin LQFP configuration MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 9 PB[2] PC[8] PC[13] PC[12] PL[0] PK[15] PK[14] PK[13] PK[12] PK[11] PK[10] PK[9] PI[0] PI[1] PI[2] PI[3] PE[7] PE[6] PH[8] PH[7] PH[6] PH[5] PH[4] PE[5] PE[4] PC[4] PC[5] PE[3] PE[2] PH[9] PC[0] VSS_LV VDD_LV VDD_HV_A VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] PI[4] PI[5] PH[12] PH[11] PG[11] PG[10] PE[15] PE[14] PG[15] PG[14] PE[12] 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 208 LQFP Top view 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 PA[11] PA[10] PA[9] PA[8] PA[7] PE[13] PF[14] PF[15] VDD_HV_B VSS_HV PG[0] PG[1] PH[3] PH[2] PH[1] PH[0] PG[12] PG[13] PA[3] PI[13] PI[12] PI[11] PI[10] VDD_LV VSS_LV PI[9] PI[8] PB[15] PD[15] PB[14] PD[14] PB[13] PD[13] PB[12] VDD_HV_A VSS_HV PD[12] VDD_HV_ADC1 VSS_HV_ADC1 PB[11] PD[11] PD[10] PD[9] PJ[5] PJ[6] PJ[7] PJ[8] PB[7] PB[6] PB[5] VDD_HV_ADC0 VSS_HV_ADC0 PC[7] PF[10] PF[11] PA[15] PF[13] PA[14] PJ[12] PJ[11] PA[4] PK[0] PJ[15] PJ[14] PJ[13] PA[13] PJ[10] PJ[9] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV_A PB[9] PB[8] PB[10] PF[0] PF[1] PF[2] PF[3] PF[4] PF[5] PF[6] PF[7] PJ[3] PJ[2] PJ[1] PJ[0] PI[15] PI[14] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] VDD_HV_A VSS_HV PD[8] PB[4] PB[3] PC[9] PC[14] PC[15] PJ[4] VDD_HV_A VSS_HV PH[15] PH[13] PH[14] P[I6] P[I7] PG[5] PG[4] PG[3] PG[2] PA[2] PE[0] PA[1] PE[1] PE[8] PE[9] PE[10] PA[0] PE[11] VSS_HV VDD_HV_A VSS_HV RESET VSS_LV VDD_LV VRC_CTRL PG[9] PG[8] PC[11] PC[10] PG[7] PG[6] PB[0] PB[1] PK[1] PK[2] PK[3] PK[4] PK[5] PK[6] PK[7] PK[8] PF[9] PF[8] PF[12] PC[6] NOTE 1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3]. 2) Availability of port pin alternate functions depends on product selection. Figure 3. 208-pin LQFP configuration MPC5646C Microcontroller Data Sheet, Rev. 3 10 Preliminary—Subject to Change Without Notice Freescale Semiconductor A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PC[15] PB[2] PC[13] PI[1] PE[7] PH[8] PE[2] PE[4] PC[4] PE[3] PH[9] PI[4] PH[11] PE[14] PA[10] PG[11] PH[13] PC[14] PC[8] PC[12] PI[3] PE[6] PH[5] PE[5] PC[5] PC[0] PC[2] PH[12] PG[10] PA[11] PA[9] PA[8] PH[14] VDD_HV _A PC[9] PL[0] PI[0] PH[7] PH[6] VSS_LV VDD_HV _A PA[5] PC[3] PE[15] PG[14] PE[12] PA[7] PE[13] PG[5] PI[6] PJ[4] PB[3] PC[1] PH[10] PG[3] PI[7] PH[15] PA[2] PG[4] PE[8] C D E F G H J K L M N P R T PK[15] PI[2] PH[4] VDD_LV A B C PA[6] PI[5] PG[15] PF[14] PF[15] PH[2] PG[2] PG[0] PG[1] PH[0] VDD_HV _A PA[1] PE[1] PH[1] PH[3] PG[12] PG[13] PE[0] PE[10] PA[0] VSS_HV VSS_HV VSS_HV VSS_HV VDD_HV _B PI[13] PI[12] PA[3] PE[9] VDD_HV _A PE[11] PK[1] VSS_LV VSS_HV VSS_HV VSS_HV VDD_HV _A VDD_LV VSS_LV PI[11] VSS_HV VRC_CT RL VDD_LV PG[9] VSS_LV VSS_LV VSS_HV VSS_HV PD[15] PI[8] PI[9] PI[10] RESET VSS_LV PG[8] PC[11] VSS_LV VSS_LV VSS_LV VDD_LV PD[14] PD[13] PB[14] PB[15] PC[10] PG[7] PB[0] PK[2] PD[12] PB[12] PB[13] VDD_HV _ADC1 L PG[6] PB[1] PK[4] PF[9] PB[11] PD[10] PD[11] VSS_HV _ADC1 M PK[3] PF[8] PC[6] PC[7] PJ[13] VDD_HV _A PB[10] PF[6] VDD_HV _A PJ[1] PD[2] PJ[5] PB[5] PB[6] PJ[6] PD[9] PF[12] PF[10] PF[13] PA[14] PJ[9] PA[12] PF[0] PF[5] PF[7] PJ[3] PI[15] PD[4] PD[7] PD[8] PJ[8] PJ[7] PF[11] PA[15] PJ[11] PJ[15] PA[13] PF[2] PF[3] PF[4] VDD_LV PJ[2] PJ[0] PD[0] PD[3] PD[6] VDD_HV _ADC0 PB[7] PJ[12] PA[4] PK[0] PJ[14] PJ[10] PF[1] XTAL EXTAL VSS_LV PB[9] PB[8] PI[14] PD[1] PD[5] VSS_HV _ADC0 PB[4] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 D E F G H J K N P R T Notes: 1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3]. 2) Availability of port pin alternate functions depends on product selection. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 11 A B C D E F G H J K L M N P R T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PC[15] PB[2] PC[13] PI[1] PE[7] PH[8] PE[2] PE[4] PC[4] PE[3] PH[9] PI[4] PH[11] PE[14] PA[10] PG[11] PH[13] PC[14] PC[8] PC[12] PI[3] PE[6] PH[5] PE[5] PC[5] PC[0] PC[2] PH[12] PG[10] PA[11] PA[9] PA[8] PH[14] VDD_HV_ A PC[9] PL[0] PI[0] PH[7] PH[6] VSS_LV VDD_HV_ A PA[5] PC[3] PE[15] PG[14] PE[12] PA[7] PE[13] PG[5] PI[6] PJ[4] PB[3] PK[15] PI[2] PH[4] VDD_LV PC[1] PH[10] PA[6] PI[5] PG[15] PF[14] PF[15] PH[2] PG[3] PI[7] PH[15] PG[2] VDD_LV VSS_LV PK[10] PK[9] PM[1] PM[0] PL[15] PL[14] PG[0] PG[1] PH[0] VDD_HV_ A PA[2] PG[4] PA[1] PE[1] PL[2] PM[6] PL[1] PK[11] PM[5] PL[13] PL[12] PM[2] PH[1] PH[3] PG[12] PG[13] PE[8] PE[0] PE[10] PA[0] PL[3] VSS_HV VSS_HV VSS_HV VSS_HV VSS_HV VSS_HV PK[12] VDD_HV_ B PI[13] PI[12] PA[3] PE[9] VDD_HV_ A PE[11] PK[1] PL[4] VSS_LV VSS_LV VSS_HV VSS_HV VSS_HV VSS_HV PK[13] VDD_HV_ A VDD_LV VSS_LV PI[11] VSS_HV VRC_CTR L VDD_LV PG[9] PL[5] VSS_LV VSS_LV VSS_LV VSS_HV VSS_HV VSS_HV PK[14] PD[15] PI[8] PI[9] PI[10] RESET VSS_LV PG[8] PC[11] PL[6] VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV VDD_LV PM[3] PD[14] PD[13] PB[14] PB[15] PC[10] PG[7] PB[0] PK[2] PL[7] VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV VDD_LV PM[4] PD[12] PB[12] PB[13] VDD_HV_ ADC1 L PG[6] PB[1] PK[4] PF[9] PK[5] PK[6] PK[7] PK[8] PL[8] PL[9] PL[10] PL[11] PB[11] PD[10] PD[11] VSS_HV_ ADC1 M PK[3] PF[8] PC[6] PC[7] PJ[13] VDD_HV_ A PB[10] PF[6] VDD_HV_ A PJ[1] PD[2] PJ[5] PB[5] PB[6] PJ[6] PD[9] PF[12] PF[10] PF[13] PA[14] PJ[9] PA[12] PF[0] PF[5] PF[7] PJ[3] PI[15] PD[4] PD[7] PD[8] PJ[8] PJ[7] PF[11] PA[15] PJ[11] PJ[15] PA[13] PF[2] PF[3] PF[4] VDD_LV PJ[2] PJ[0] PD[0] PD[3] PD[6] VDD_HV_ ADC0 PB[7] PJ[12] PA[4] PK[0] PJ[14] PJ[10] PF[1] XTAL EXTAL VSS_LV PB[9] PB[8] PI[14] PD[1] PD[5] VSS_HV_ ADC0 PB[4] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C D E F G H J K N P R T Notes: 1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3]. 2)Availability of port pin alternate functions depends on product selection. Figure 4. 256-pin BGA configuration 3.1 Pad types In the device the following types of pads are available for system pins and functional port pins: S = Slow1 M = Medium1, 2 1. See the I/O pad electrical characteristics in the device data sheet for details. 2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. For example, Fast/Medium pad will be Medium by default at reset. Similarly, Slow/Medium pad will be Slow by default. Only exception is PC[1] which is in medium configuration by default (refer to PCR.SRC in the reference manual, Pad Configuration Registers (PCR0—PCR198)). MPC5646C Microcontroller Data Sheet, Rev. 3 12 Preliminary—Subject to Change Without Notice Freescale Semiconductor F = Fast1, 2 I = Input only with analog feature1 A = Analog 3.2 System pins The system pins are listed in Table 3. Table 3. System pin descriptions 176 LQFP 208 LQFP 256 MAPBGA Pin number RESET Bidirectional reset with Schmitt-Trigger characteristics and noise filter. I/O M Input, weak pull-up only after PHASE2 29 29 K1 EXTAL Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode. I/O A1 — 58 74 T8 XTAL Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator bypass mode is used. I A1 — 56 72 T7 Port pin 1 3.3 Function I/O direction Pad type RESET config. For analog pads, it is not recommended to enable IBE if APC is enabled to avoid extra current in middle range voltage. Functional ports The functional port pins are listed in Table 4. Table 4. Functional port pin descriptions SIUL eMIOS_0 MC_CGM eMIOS_0 WKPU FlexCAN_1 I/O I/O O I/O I I M/S Tristate 256 MAPBGA GPIO[0] E0UC[0] CLKOUT E0UC[13] WKPU[19] CAN1RX 208 LQFP AF0 AF1 AF2 AF3 — — 176 LQFP RESET config. PCR[0] Pad type PA[0] Function I/O direction2 PCR Peripheral Port pin Alternate function1 Pin number 24 24 G4 MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 13 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — — — GPIO[1] E0UC[1] — — WKPU[2] CAN3RX NMI[0]3 SIUL eMIOS_0 — — WKPU FlexCAN_3 WKPU I/O I/O — — I I I S Tristate 19 19 F3 PCR[2] AF0 AF1 AF2 AF3 — — GPIO[2] E0UC[2] — MA[2] WKPU[3] NMI[1]3 SIUL eMIOS_0 — ADC_0 WKPU WKPU I/O I/O — O I I S Tristate 17 17 F1 PA[3] PCR[3] AF0 AF1 AF2 AF3 — — — GPIO[3] E0UC[3] LIN5TX CS4_1 RX_ER_CLK EIRQ[0] ADC1_S[0] SIUL eMIOS_0 LINFlexD_5 DSPI_1 FEC SIUL ADC_1 I/O I/O O O I I I M/S Tristate 114 138 G16 PA[4] PCR[4] AF0 AF1 AF2 AF3 — — GPIO[4] E0UC[4] — CS0_1 LIN5RX WKPU[9] SIUL eMIOS_0 — DSPI_1 LINFlexD_5 WKPU I/O I/O — I/O I I S Tristate 51 61 T2 PA[5] PCR[5] AF0 AF1 AF2 GPIO[5] E0UC[5] LIN4TX SIUL eMIOS_0 LINFlexD_4 I/O I/O O M/S Tristate 146 170 C10 PA[6] PCR[6] AF0 AF1 AF2 AF3 — — GPIO[6] E0UC[6] — CS1_1 LIN4RX EIRQ[1] SIUL eMIOS_0 — DSPI_1 LINFlexD_4 SIUL I/O I/O — O I I S Tristate 147 171 D11 PA[7] PCR[7] AF0 AF1 AF2 AF3 — — — GPIO[7] E0UC[7] LIN3TX — RXD[2] EIRQ[2] ADC1_S[1] SIUL eMIOS_0 LINFlexD_3 — FEC SIUL ADC_1 I/O I/O O — I I I M/S Tristate 128 152 C15 Port pin PCR PA[1] PCR[1] PA[2] MPC5646C Microcontroller Data Sheet, Rev. 3 14 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — — — — GPIO[8] E0UC[8] E0UC[14] — RXD[1] EIRQ[3] ABS[0] LIN3RX SIUL eMIOS_0 eMIOS_0 — FEC SIUL MC_RGM LINFlexD_3 I/O I/O I/O — I I I I M/S Input, weak pull-up 129 153 B16 PCR[9] AF0 AF1 AF2 AF3 — — GPIO[9] E0UC[9] — CS2_1 RXD[0] FAB SIUL eMIOS_0 — DSPI1 FEC MC_RGM I/O I/O — O I I M/S Pulldown 130 154 B15 PA[10] PCR[10] AF0 AF1 AF2 AF3 — — — GPIO[10] E0UC[10] SDA LIN2TX COL ADC1_S[2] SIN_1 SIUL eMIOS_0 I2C LINFlexD_2 FEC ADC_1 DSPI_1 I/O I/O I/O O I I I M/S Tristate 131 155 A15 PA[11] PCR[11] AF0 AF1 AF2 AF3 — — — — GPIO[11] E0UC[11] SCL — RX_ER EIRQ[16] LIN2RX ADC1_S[3] SIUL eMIOS_0 I2C — FEC SIUL LINFlexD_2 ADC_1 I/O I/O I/O — I I I I M/S Tristate 132 156 B14 PA[12] PCR[12] AF0 AF1 AF2 AF3 — — GPIO[12] — E0UC[28] CS3_1 EIRQ[17] SIN_0 SIUL — eMIOS_0 DSPI1 SIUL DSPI_0 I/O — I/O O I I S Tristate 53 69 P6 PA[13] PCR[13] AF0 AF1 AF2 AF3 GPIO[13] SOUT_0 E0UC[29] — SIUL DSPI_0 eMIOS_0 — I/O O I/O — M/S Tristate 52 66 R5 PA[14] PCR[14] AF0 AF1 AF2 AF3 — GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4] SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL I/O I/O I/O I/O I M/S Tristate 50 58 P4 Port pin PCR PA[8] PCR[8] PA[9] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 15 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — GPIO[15] CS0_0 SCK_0 E0UC[1] WKPU[10] SIUL DSPI_0 DSPI_0 eMIOS_0 WKPU I/O I/O I/O I/O I M/S Tristate 48 56 R2 PCR[16] AF0 AF1 AF2 AF3 GPIO[16] CAN0TX E0UC[30] LIN0TX SIUL FlexCAN_0 eMIOS_0 LINFlexD_0 I/O O I/O I M/S Tristate 39 39 L3 PB[1] PCR[17] AF0 AF1 AF2 — — — GPIO[17] — E0UC[31] LIN0RX WKPU[4] CAN0RX SIUL — eMIOS_0 LINFlexD_0 WKPU FlexCAN_0 I/O — I/O I I I S Tristate 40 40 M2 PB[2] PCR[18] AF0 AF1 AF2 AF3 GPIO[18] LIN0TX SDA E0UC[30] SIUL LINFlexD_0 I2C eMIOS_0 I/O O I/O I/O M/S Tristate 176 208 A2 PB[3] PCR[19] AF0 AF1 AF2 AF3 — — GPIO[19] E0UC[31] SCL — WKPU[11] LIN0RX SIUL eMIOS_0 I2C — WKPU LINFlexD_0 I/O I/O I/O — I I S Tristate 1 1 D4 PB[4] PCR[20] AF0 AF1 AF2 AF3 — — GPI[20] — — — ADC0_P[0] ADC1_P[0] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 88 104 T16 PB[5] PCR[21] AF0 AF1 AF2 AF3 — — GPI[21] — — — ADC0_P[1] ADC1_P[1] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 91 107 N13 PB[6] PCR[22] AF0 AF1 AF2 AF3 — — GPI[22] — — — ADC0_P[2] ADC1_P[2] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 92 108 N14 Port pin PCR PA[15] PCR[15] PB[0] MPC5646C Microcontroller Data Sheet, Rev. 3 16 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — — GPI[23] — — — ADC0_P[3] ADC1_P[3] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 93 109 R16 PCR[24] AF0 AF1 AF2 AF3 — — — — GPI[24] — — — ADC0_S[0] ADC1_S[4] WKPU[25] OSC32k_XTAL4 SIUL — — — ADC_0 ADC_1 WKPU SXOSC I — — — I I I I I — 61 77 T11 PB[9]5 PCR[25] AF0 AF1 AF2 AF3 — — — — GPI[25] — — — ADC0_S[1] ADC1_S[5] WKPU[26] OSC32k_EXTAL4 SIUL — — — ADC_0 ADC_1 WKPU SXOSC I — — — I I I I I — 60 76 T10 PB[10] PCR[26] AF0 AF1 AF2 AF3 — — — GPIO[26] SOUT_1 CAN3TX — ADC0_S[2] ADC1_S[6] WKPU[8] SIUL DSPI_1 FlexCAN_3 — ADC_0 ADC_1 WKPU I/O O — — I I I S Tristate 62 78 N7 PB[11] PCR[27] AF0 AF1 AF2 AF3 — GPIO[27] E0UC[3] — CS0_0 ADC0_S[3] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — I/O I S Tristate 97 117 M13 PB[12] PCR[28] AF0 AF1 AF2 AF3 — GPIO[28] E0UC[4] — CS1_0 ADC0_X[0] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I S Tristate 101 123 L14 PB[13] PCR[29] AF0 AF1 AF2 AF3 — GPIO[29] E0UC[5] — CS2_0 ADC0_X[1] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I S Tristate 103 125 L15 Port pin PCR PB[7] PCR[23] PB[8] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 17 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — GPIO[30] E0UC[6] — CS3_0 ADC0_X[2] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I S Tristate 105 127 K15 PCR[31] AF0 AF1 AF2 AF3 — GPIO[31] E0UC[7] — CS4_0 ADC0_X[3] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I S Tristate 107 129 K16 PC[0]6 PCR[32] AF0 AF1 AF2 AF3 GPIO[32] — TDI — SIUL — JTAGC — I/O — I — M/S Input, weak pull-up 154 178 B10 PC[1]6 PCR[33] AF0 AF1 AF2 AF3 GPIO[33] — TDO — SIUL — JTAGC — I/O — O — F/M Tristate 149 173 D9 PC[2] PCR[34] AF0 AF1 AF2 AF3 — GPIO[34] SCK_1 CAN4TX — EIRQ[5] SIUL DSPI_1 FlexCAN_4 — SIUL I/O I/O O — I M/S Tristate 145 169 B11 PC[3] PCR[35] AF0 AF1 AF2 AF3 — — — GPIO[35] CS0_1 MA[0] — CAN1RX CAN4RX EIRQ[6] SIUL DSPI_1 ADC_0 — FlexCAN_1 FlexCAN_4 SIUL I/O I/O O S Tristate 144 168 C11 AF0 AF1 AF2 AF3 ALT4 — — — GPIO[36] E1UC[31] — SIUL eMIOS_1 — I/O I/O — M/S Tristate 159 183 A9 FR_B_TX_EN SIN_1 CAN3RX EIRQ[18] Flexray DSPI_1 FlexCAN_3 SIUL O I I I AF0 AF1 AF2 AF3 ALT4 — GPIO[37] SOUT_1 CAN3TX — FR_A_TX EIRQ[7] SIUL DSPI_1 FlexCAN_3 — Flexray SIUL I/O O O — O I M/S Tristate 158 182 B9 Port pin PCR PB[14] PCR[30] PB[15] PC[4] PC[5] PCR[36] PCR[37] I I I MPC5646C Microcontroller Data Sheet, Rev. 3 18 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 GPIO[38] LIN1TX E1UC[28] — SIUL LINFlexD_1 eMIOS_1 — I/O O I/O — S Tristate 44 52 N3 PCR[39] AF0 AF1 AF2 AF3 — — GPIO[39] — E1UC[29] — LIN1RX WKPU[12] SIUL — eMIOS_1 — LINFlexD_1 WKPU I/O — I/O — I I S Tristate 45 53 N4 PC[8] PCR[40] AF0 AF1 AF2 AF3 GPIO[40] LIN2TX E0UC[3] — SIUL LINFlexD_2 eMIOS_0 — I/O O I/O — S Tristate 175 207 B3 PC[9] PCR[41] AF0 AF1 AF2 AF3 — — GPIO[41] — E0UC[7] — LIN2RX WKPU[13] SIUL — eMIOS_0 — LINFlexD_2 WKPU I/O — I/O — I I S Tristate 2 2 C3 PC[10] PCR[42] AF0 AF1 AF2 AF3 GPIO[42] CAN1TX CAN4TX MA[1] SIUL FlexCAN_1 FlexCAN_4 ADC_0 I/O O O O M/S Tristate 36 36 L1 PC[11] PCR[43] AF0 AF1 AF2 AF3 — — — GPIO[43] — — MA[2] CAN1RX CAN4RX WKPU[5] SIUL — — ADC_0 FlexCAN_1 FlexCAN_4 WKPU I/O — — O I I I S Tristate 35 35 K4 PC[12] PCR[44] AF0 AF1 AF2 AF3 ALT4 — — GPIO[44] E0UC[12] — — FR_DBG[0] SIN_2 EIRQ[19] SIUL eMIOS_0 — — Flexray DSPI_2 SIUL I/O I/O — — O I I M/S Tristate 173 205 B4 PC[13] PCR[45] AF0 AF1 AF2 AF3 ALT4 GPIO[45] E0UC[13] SOUT_2 — FR_DBG[1] SIUL eMIOS_0 DSPI_2 — Flexray I/O I/O O — O M/S Tristate 174 206 A3 Port pin PCR PC[6] PCR[38] PC[7] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 19 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 ALT4 — GPIO[46] E0UC[14] SCK_2 — FR_DBG[2] EIRQ[8] SIUL eMIOS_0 DSPI_2 — Flexray SIUL I/O I/O I/O — O I M/S Tristate 3 3 B2 PCR[47] AF0 AF1 AF2 AF3 ALT4 GPIO[47] E0UC[15] CS0_2 — FR_DBG[3] EIRQ[20] SIUL eMIOS_0 DSPI_2 — Flexray SIUL I/O I/O I/O — O I M/S Tristate 4 4 A1 PD[0] PCR[48] AF0 AF1 AF2 AF3 — — — GPI[48] — — — ADC0_P[4] ADC1_P[4] WKPU[27] SIUL — — — ADC_0 ADC_1 WKPU I — — — I I I I Tristate 77 93 R12 PD[1] PCR[49] AF0 AF1 AF2 AF3 — — — GPI[49] — — — ADC0_P[5] ADC1_P[5] WKPU[28] SIUL — — — ADC_0 ADC_1 WKPU I — — — I I I I Tristate 78 94 T13 PD[2] PCR[50] AF0 AF1 AF2 AF3 — — GPI[50] — — — ADC0_P[6] ADC1_P[6] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 79 95 N11 PD[3] PCR[51] AF0 AF1 AF2 AF3 — — GPI[51] — — — ADC0_P[7] ADC1_P[7] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 80 96 R13 PD[4] PCR[52] AF0 AF1 AF2 AF3 — — GPI[52] — — — ADC0_P[8] ADC1_P[8] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 81 97 P12 Port pin PCR PC[14] PCR[46] PC[15] MPC5646C Microcontroller Data Sheet, Rev. 3 20 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — — GPI[53] — — — ADC0_P[9] ADC1_P[9] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 82 98 T14 PCR[54] AF0 AF1 AF2 AF3 — — GPI[54] — — — ADC0_P[10] ADC1_P[10] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 83 99 R14 PD[7] PCR[55] AF0 AF1 AF2 AF3 — — GPI[55] — — — ADC0_P[11] ADC1_P[11] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 84 100 P13 PD[8] PCR[56] AF0 AF1 AF2 AF3 — — GPI[56] — — — ADC0_P[12] ADC1_P[12] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 87 103 P14 PD[9] PCR[57] AF0 AF1 AF2 AF3 — — GPI[57] — — — ADC0_P[13] ADC1_P[13] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 94 114 N16 PD[10] PCR[58] AF0 AF1 AF2 AF3 — — GPI[58] — — — ADC0_P[14] ADC1_P[14] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 95 115 M14 PD[11] PCR[59] AF0 AF1 AF2 AF3 — — GPI[59] — — — ADC0_P[15] ADC1_P[15] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 96 116 M15 Port pin PCR PD[5] PCR[53] PD[6] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 21 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — GPIO[60] CS5_0 E0UC[24] — ADC0_S[4] SIUL DSPI_0 eMIOS_0 — ADC_0 I/O O I/O — I S Tristate 100 120 L13 PCR[61] AF0 AF1 AF2 AF3 — GPIO[61] CS0_1 E0UC[25] — ADC0_S[5] SIUL DSPI_1 eMIOS_0 — ADC_0 I/O I/O I/O — I S Tristate 102 124 K14 PD[14] PCR[62] AF0 AF1 AF2 AF3 ALT4 — GPIO[62] CS1_1 E0UC[26] — FR_DBG[0] ADC0_S[6] SIUL DSPI_1 eMIOS_0 — Flexray ADC_0 I/O O I/O — O I S Tristate 104 126 K13 PD[15] PCR[63] AF0 AF1 AF2 AF3 ALT4 — GPIO[63] CS2_1 E0UC[27] — FR_DBG[1] ADC0_S[7] SIUL DSPI_1 eMIOS_0 — Flexray ADC_0 I/O O I/O — O I S Tristate 106 128 J13 PE[0] PCR[64] AF0 AF1 AF2 AF3 — — GPIO[64] E0UC[16] — — CAN5RX WKPU[6] SIUL eMIOS_0 — — FlexCAN_5 WKPU I/O I/O — — I I S Tristate 18 18 G2 PE[1] PCR[65] AF0 AF1 AF2 AF3 GPIO[65] E0UC[17] CAN5TX — SIUL eMIOS_0 FlexCAN_5 — I/O I/O O — M/S Tristate 20 20 F4 PE[2] PCR[66] AF0 AF1 AF2 AF3 ALT4 — — GPIO[66] E0UC[18] — — FR_A_TX_EN SIN_1 EIRQ[21] SIUL eMIOS_0 — — Flexray DSPI_1 SIUL I/O I/O — — O I I M/S Tristate 156 180 A7 Port pin PCR PD[12] PCR[60] PD[13] MPC5646C Microcontroller Data Sheet, Rev. 3 22 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — — GPIO[67] E0UC[19] SOUT_1 — FR_A_RX WKPU[29] SIUL eMIOS_0 DSPI_1 — Flexray WKPU I/O I/O O — I I M/S Tristate 157 181 A10 PCR[68] AF0 AF1 AF2 AF3 ALT4 — GPIO[68] E0UC[20] SCK_1 — FR_B_TX EIRQ[9] SIUL eMIOS_0 DSPI_1 — Flexray SIUL I/O I/O I/O — O I M/S Tristate 160 184 A8 PE[5] PCR[69] AF0 AF1 AF2 AF3 — — GPIO[69] E0UC[21] CS0_1 MA[2] FR_B_RX WKPU[30] SIUL eMIOS_0 DSPI_1 ADC_0 Flexray WKPU I/O I/O I/O O I I M/S Tristate 161 185 B8 PE[6] PCR[70] AF0 AF1 AF2 AF3 — GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22] SIUL eMIOS_0 DSPI_0 ADC_0 SIUL I/O I/O O O I M/S Tristate 167 191 B6 PE[7] PCR[71] AF0 AF1 AF2 AF3 — GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23] SIUL eMIOS_0 DSPI_0 ADC_0 SIUL I/O I/O O O I M/S Tristate 168 192 A5 PE[8] PCR[72] AF0 AF1 AF2 AF3 GPIO[72] CAN2TX E0UC[22] CAN3TX SIUL FlexCAN_2 eMIOS_0 FlexCAN_3 I/O O I/O O M/S Tristate 21 21 G1 PE[9] PCR[73] AF0 AF1 AF2 AF3 — — — GPIO[73] — E0UC[23] — WKPU[7] CAN2RX CAN3RX SIUL — eMIOS_0 — WKPU FlexCAN_2 FlexCAN_3 I/O — I/O — I I I S Tristate 22 22 H1 PE[10] PCR[74] AF0 AF1 AF2 AF3 — GPIO[74] LIN3TX CS3_1 E1UC[30] EIRQ[10] SIUL LINFlexD_3 DSPI_1 eMIOS_1 SIUL I/O O O I/O I S Tristate 23 23 G3 Port pin PCR PE[3] PCR[67] PE[4] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 23 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — — GPIO[75] E0UC[24] CS4_1 — LIN3RX WKPU[14] SIUL eMIOS_0 DSPI_1 — LINFlexD_3 WKPU I/O I/O O — I I S Tristate 25 25 H3 PCR[76] AF0 AF1 AF2 AF3 — — — — GPIO[76] — E1UC[19] — CRS SIN_2 EIRQ[11] ADC1_S[7] SIUL — eMIOS_1 — FEC DSPI_2 SIUL ADC_1 I/O — I/O — I I I I M/S Tristate 133 157 C14 PE[13] PCR[77] AF0 AF1 AF2 AF3 — GPIO[77] SOUT_2 E1UC[20] — RXD[3] SIUL DSPI_2 eMIOS_1 — FEC I/O O I/O — I M/S Tristate 127 151 C16 PE[14] PCR[78] AF0 AF1 AF2 AF3 — GPIO[78] SCK_2 E1UC[21] — EIRQ[12] SIUL DSPI_2 eMIOS_1 — SIUL I/O I/O I/O — I M/S Tristate 136 160 A14 PE[15] PCR[79] AF0 AF1 AF2 AF3 GPIO[79] CS0_2 E1UC[22] SCK_6 SIUL DSPI_2 eMIOS_1 DSPI_6 I/O I/O I/O I/O M/S Tristate 137 161 C12 PF[0] PCR[80] AF0 AF1 AF2 AF3 — GPIO[80] E0UC[10] CS3_1 — ADC0_S[8] SIUL eMIOS_0 DSPI_1 — ADC_0 I/O I/O O — I S Tristate 63 79 P7 PF[1] PCR[81] AF0 AF1 AF2 AF3 — GPIO[81] E0UC[11] CS4_1 — ADC0_S[9] SIUL eMIOS_0 DSPI_1 — ADC_0 I/O I/O O — I S Tristate 64 80 T6 PF[2] PCR[82] AF0 AF1 AF2 AF3 — GPIO[82] E0UC[12] CS0_2 — ADC0_S[10] SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O I/O — I S Tristate 65 81 R6 Port pin PCR PE[11] PCR[75] PE[12] MPC5646C Microcontroller Data Sheet, Rev. 3 24 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — GPIO[83] E0UC[13] CS1_2 — ADC0_S[11] SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O O — I S Tristate 66 82 R7 PCR[84] AF0 AF1 AF2 AF3 — GPIO[84] E0UC[14] CS2_2 — ADC0_S[12] SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O O — I S Tristate 67 83 R8 PF[5] PCR[85] AF0 AF1 AF2 AF3 — GPIO[85] E0UC[22] CS3_2 — ADC0_S[13] SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O O — I S Tristate 68 84 P8 PF[6] PCR[86] AF0 AF1 AF2 AF3 — GPIO[86] E0UC[23] CS1_1 — ADC0_S[14] SIUL eMIOS_0 DSPI_1 — ADC_0 I/O I/O O — I S Tristate 69 85 N8 PF[7] PCR[87] AF0 AF1 AF2 AF3 — GPIO[87] — CS2_1 — ADC0_S[15] SIUL — DSPI_1 — ADC_0 I/O — O — I S Tristate 70 86 P9 PF[8] PCR[88] AF0 AF1 AF2 AF3 GPIO[88] CAN3TX CS4_0 CAN2TX SIUL FlexCAN_3 DSPI_0 FlexCAN_2 I/O O O O M/S Tristate 42 50 N2 PF[9] PCR[89] AF0 AF1 AF2 AF3 — — — GPIO[89] E1UC[1] CS5_0 — CAN2RX CAN3RX WKPU[22] SIUL eMIOS_1 DSPI_0 — FlexCAN_2 FlexCAN_3 WKPU I/O I/O O — I I I S Tristate 41 49 M4 PF[10] PCR[90] AF0 AF1 AF2 AF3 GPIO[90] CS1_0 LIN4TX E1UC[2] SIUL DSPI_0 LINFlexD_4 eMIOS_1 I/O O O I/O M/S Tristate 46 54 P2 Port pin PCR PF[3] PCR[83] PF[4] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 25 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — — GPIO[91] CS2_0 E1UC[3] — LIN4RX WKPU[15] SIUL DSPI_0 eMIOS_1 — LINFlexD_4 WKPU I/O O I/O — I I S Tristate 47 55 R1 PCR[92] AF0 AF1 AF2 AF3 GPIO[92] E1UC[25] LIN5TX — SIUL eMIOS_1 LINFlexD_5 — I/O I/O O — M/S Tristate 43 51 P1 PF[13] PCR[93] AF0 AF1 AF2 AF3 — — GPIO[93] E1UC[26] — — LIN5RX WKPU[16] SIUL eMIOS_1 — — LINFlexD_5 WKPU I/O I/O — — I I S Tristate 49 57 P3 PF[14] PCR[94] AF0 AF1 AF2 AF3 ALT4 GPIO[94] CAN4TX E1UC[27] CAN1TX MDIO SIUL FlexCAN_4 eMIOS_1 FlexCAN_1 FEC I/O O I/O O I/O M/S Tristate 126 150 D14 PF[15] PCR[95] AF0 AF1 AF2 AF3 — — — — GPIO[95] E1UC[4] — — RX_DV CAN1RX CAN4RX EIRQ[13] SIUL eMIOS_1 — — FEC FlexCAN_1 FlexCAN_4 SIUL I/O I/O — — I I I I M/S Tristate 125 149 D15 PG[0] PCR[96] AF0 AF1 AF2 AF3 ALT4 GPIO[96] CAN5TX E1UC[23] — MDC SIUL FlexCAN_5 eMIOS_1 — FEC I/O O I/O — O F Tristate 122 146 E13 PG[1] PCR[97] AF0 AF1 AF2 AF3 — — — GPIO[97] — E1UC[24] — TX_CLK CAN5RX EIRQ[14] SIUL — eMIOS_1 — FEC FlexCAN_5 SIUL I/O — I/O — I I I M Tristate 121 145 E14 Port pin PCR PF[11] PCR[91] PF[12] MPC5646C Microcontroller Data Sheet, Rev. 3 26 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 GPIO[98] E1UC[11] SOUT_3 — SIUL eMIOS_1 DSPI_3 — I/O I/O O — M/S Tristate 16 16 E4 PCR[99] AF0 AF1 AF2 AF3 — GPIO[99] E1UC[12] CS0_3 — WKPU[17] SIUL eMIOS_1 DSPI_3 — WKPU I/O I/O I/O — I S Tristate 15 15 E1 PG[4] PCR[100] AF0 AF1 AF2 AF3 GPIO[100] E1UC[13] SCK_3 — SIUL eMIOS_1 DSPI_3 — I/O I/O I/O — M/S Tristate 14 14 F2 PG[5] PCR[101] AF0 AF1 AF2 AF3 — — GPIO[101] E1UC[14] — — WKPU[18] SIN_3 SIUL eMIOS_1 — — WKPU DSPI_3 I/O I/O — — I I S Tristate 13 13 D1 PG[6] PCR[102] AF0 AF1 AF2 AF3 GPIO[102] E1UC[15] LIN6TX — SIUL eMIOS_1 LINFlexD_6 — I/O I/O O — M/S Tristate 38 38 M1 PG[7] PCR[103] AF0 AF1 AF2 AF3 — — GPIO[103] E1UC[16] E1UC[30] — LIN6RX WKPU[20] SIUL eMIOS_1 eMIOS_1 — LINFlexD_6 WKPU I/O I/O I/O — I I S Tristate 37 37 L2 PG[8] PCR[104] AF0 AF1 AF2 AF3 — GPIO[104] E1UC[17] LIN7TX CS0_2 EIRQ[15] SIUL eMIOS_1 LINFlexD_7 DSPI_2 SIUL I/O I/O O I/O I S Tristate 34 34 K3 PG[9] PCR[105] AF0 AF1 AF2 AF3 — — GPIO[105] E1UC[18] — SCK_2 LIN7RX WKPU[21] SIUL eMIOS_1 — DSPI_2 LINFlexD_7 WKPU I/O I/O — I/O I I S Tristate 33 33 J4 Port pin PCR PG[2] PCR[98] PG[3] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 27 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — GPIO[106] E0UC[24] E1UC[31] — SIN_4 SIUL eMIOS_0 eMIOS_1 — DSPI_4 I/O I/O I/O — I S Tristate 138 162 B13 PCR[107] AF0 AF1 AF2 AF3 GPIO[107] E0UC[25] CS0_4 CS0_6 SIUL eMIOS_0 DSPI_4 DSPI_6 I/O I/O I/O I/O M/S Tristate 139 163 A16 PG[12] PCR[108] AF0 AF1 AF2 AF3 ALT4 GPIO[108] E0UC[26] SOUT_4 — TXD[2] SIUL eMIOS_0 DSPI_4 — FEC I/O I/O O — O M/S Tristate 116 140 F15 PG[13] PCR[109] AF0 AF1 AF2 AF3 ALT4 GPIO[109] E0UC[27] SCK_4 — TXD[3] SIUL eMIOS_0 DSPI_4 — FEC I/O I/O I/O — O M/S Tristate 115 139 F16 PG[14] PCR[110] AF0 AF1 AF2 AF3 — GPIO[110] E1UC[0] LIN8TX — SIN_6 SIUL eMIOS_1 LINFlexD_8 — DSPI_6 I/O I/O O — I S Tristate 134 158 C13 PG[15] PCR[111] AF0 AF1 AF2 AF3 — GPIO[111] E1UC[1] SOUT_6 — LIN8RX SIUL eMIOS_1 DSPI_6 — LINFlexD_8 I/O I/O O — I M/S Tristate 135 159 D13 PH[0] PCR[112] AF0 AF1 AF2 AF3 ALT4 — GPIO[112] E1UC[2] — — TXD[1] SIN_1 SIUL eMIOS_1 — — FEC DSPI_1 I/O I/O — — O I M/S Tristate 117 141 E15 PH[1] PCR[113] AF0 AF1 AF2 AF3 ALT4 GPIO[113] E1UC[3] SOUT_1 — TXD[0] SIUL eMIOS_1 DSPI_1 — FEC I/O I/O O — O M/S Tristate 118 142 F13 Port pin PCR PG[10] PCR[106] PG[11] MPC5646C Microcontroller Data Sheet, Rev. 3 28 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 ALT4 GPIO[114] E1UC[4] SCK_1 — TX_EN SIUL eMIOS_1 DSPI_1 — FEC I/O I/O I/O — O M/S Tristate 119 143 D16 PCR[115] AF0 AF1 AF2 AF3 ALT4 GPIO[115] E1UC[5] CS0_1 — TX_ER SIUL eMIOS_1 DSPI_1 — FEC I/O I/O I/O — O M/S Tristate 120 144 F14 PH[4] PCR[116] AF0 AF1 AF2 AF3 GPIO[116] E1UC[6] SOUT_7 — SIUL eMIOS_1 DSPI_7 — I/O I/O O — M/S Tristate 162 186 D7 PH[5] PCR[117] AF0 AF1 AF2 AF3 — GPIO[117] E1UC[7] — — SIN_7 SIUL eMIOS_1 — — DSPI_7 I/O I/O — — I S Tristate 163 187 B7 PH[6] PCR[118] AF0 AF1 AF2 AF3 GPIO[118] E1UC[8] SCK_7 MA[2] SIUL eMIOS_1 DSPI_7 ADC_0 I/O I/O I/O O M/S Tristate 164 188 C7 PH[7] PCR[119] AF0 AF1 AF2 AF3 ALT4 GPIO[119] E1UC[9] CS3_2 MA[1] CS0_7 SIUL eMIOS_1 DSPI_2 ADC_0 DSPI_7 I/O I/O O O I/O M/S Tristate 165 189 C6 PH[8] PCR[120] AF0 AF1 AF2 AF3 GPIO[120] E1UC[10] CS2_2 MA[0] SIUL eMIOS_1 DSPI_2 ADC_0 I/O I/O O O M/S Tristate 166 190 A6 PH[9]6 PCR[121] AF0 AF1 AF2 AF3 — GPIO[121] — — — TCK SIUL — — — JTAGC I/O — — — I S Input, weak pull-up 155 179 A11 PH[10]6 PCR[122] AF0 AF1 AF2 AF3 — GPIO[122] — — — TMS SIUL — — — JTAGC I/O — — — I M/S Input, weak pull-up 148 172 D10 Port pin PCR PH[2] PCR[114] PH[3] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 29 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 GPIO[123] SOUT_3 CS0_4 E1UC[5] SIUL DSPI_3 DSPI_4 eMIOS_1 I/O O I/O I/O M/S Tristate 140 164 A13 PCR[124] AF0 AF1 AF2 AF3 GPIO[124] SCK_3 CS1_4 E1UC[25] SIUL DSPI_3 DSPI_4 eMIOS_1 I/O I/O O I/O M/S Tristate 141 165 B12 PH[13] PCR[125] AF0 AF1 AF2 AF3 GPIO[125] SOUT_4 CS0_3 E1UC[26] SIUL DSPI_4 DSPI_3 eMIOS_1 I/O O I/O I/O M/S Tristate 9 9 B1 PH[14] PCR[126] AF0 AF1 AF2 AF3 GPIO[126] SCK_4 CS1_3 E1UC[27] SIUL DSPI_4 DSPI_3 eMIOS_1 I/O I/O O I/O M/S Tristate 10 10 C1 PH[15] PCR[127] AF0 AF1 AF2 AF3 GPIO[127] SOUT_5 — E1UC[17] SIUL DSPI_5 — eMIOS_1 I/O O — I/O M/S Tristate 8 8 E3 PI[0] PCR[128] AF0 AF1 AF2 AF3 GPIO[128] E0UC[28] LIN8TX — SIUL eMIOS_0 LINFlexD_8 — I/O I/O O — S Tristate 172 196 C5 PI[1] PCR[129] AF0 AF1 AF2 AF3 — — GPIO[129] E0UC[29] — — WKPU[24] LIN8RX SIUL eMIOS_0 — — WKPU LINFlexD_8 I/O I/O — — I I S Tristate 171 195 A4 PI[2] PCR[130] AF0 AF1 AF2 AF3 GPIO[130] E0UC[30] LIN9TX — SIUL eMIOS_0 LINFlexD_9 — I/O I/O O — S Tristate 170 194 D6 PI[3] PCR[131] AF0 AF1 AF2 AF3 — — GPIO[131] E0UC[31] — — WKPU[23] LIN9RX SIUL eMIOS_0 — — WKPU LINFlexD_9 I/O I/O — — I I S Tristate 169 193 B5 Port pin PCR PH[11] PCR[123] PH[12] MPC5646C Microcontroller Data Sheet, Rev. 3 30 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 GPIO[132] E1UC[28] SOUT_4 — SIUL eMIOS_1 DSPI_4 — I/O I/O O — M/S Tristate 143 167 A12 PCR[133] AF0 AF1 AF2 AF3 ALT4 GPIO[133] E1UC[29] SCK_4 CS2_5 CS2_6 SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6 I/O I/O I/O O O M/S Tristate 142 166 D12 PI[6] PCR[134] AF0 AF1 AF2 AF3 ALT4 GPIO[134] E1UC[30] CS0_4 CS0_5 CS0_6 SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6 I/O I/O I/O I/O I/O S Tristate 11 11 D2 PI[7] PCR[135] AF0 AF1 AF2 AF3 ALT4 GPIO[135] E1UC[31] CS1_4 CS1_5 CS1_6 SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6 I/O I/O O O O S Tristate 12 12 E2 PI[8] PCR[136] AF0 AF1 AF2 AF3 — GPIO[136] — — — ADC0_S[16] SIUL — — — ADC_0 I/O — — — I S Tristate 108 130 J14 PI[9] PCR[137] AF0 AF1 AF2 AF3 — GPIO[137] — — — ADC0_S[17] SIUL — — — ADC_0 I/O — — — I S Tristate — 131 J15 PI[10] PCR[138] AF0 AF1 AF2 AF3 — GPIO[138] — — — ADC0_S[18] SIUL — — — ADC_0 I/O — — — I S Tristate — 134 J16 PI[11] PCR[139] AF0 AF1 AF2 AF3 — — GPIO[139] — — — ADC0_S[19] SIN_3 SIUL — — — ADC_0 DSPI_3 I/O — — — I I S Tristate 111 135 H16 Port pin PCR PI[4] PCR[132] PI[5] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 31 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — GPIO[140] CS0_3 CS0_2 — ADC0_S[20] SIUL DSPI_3 DSPI_2 — ADC_0 I/O I/O I/O — I S Tristate 112 136 G15 PCR[141] AF0 AF1 AF2 AF3 — GPIO[141] CS1_3 CS1_2 — ADC0_S[21] SIUL DSPI_3 DSPI_2 — ADC_0 I/O O O — I S Tristate 113 137 G14 PI[14] PCR[142] AF0 AF1 AF2 AF3 — — GPIO[142] — — — ADC0_S[22] SIN_4 SIUL — — — ADC_0 DSPI_4 I/O — — — I I S Tristate 76 92 T12 PI[15] PCR[143] AF0 AF1 AF2 AF3 — GPIO[143] CS0_4 CS2_2 — ADC0_S[23] SIUL DSPI_4 DSPI_2 — ADC_0 I/O I/O O — I S Tristate 75 91 P11 PJ[0] PCR[144] AF0 AF1 AF2 AF3 — GPIO[144] CS1_4 CS3_2 — ADC0_S[24] SIUL DSPI_4 DSPI_2 — ADC_0 I/O O O — I S Tristate 74 90 R11 PJ[1] PCR[145] AF0 AF1 AF2 AF3 — — GPIO[145] — — — ADC0_S[25] SIN_5 SIUL — — —— ADC_0 DSPI_5 I/O — — — I I S Tristate 73 89 N10 PJ[2] PCR[146] AF0 AF1 AF2 AF3 — GPIO[146] CS0_5 CS0_6 CS0_7 ADC0_S[26] SIUL DSPI_5 DSPI_6 DSPI_7 ADC_0 I/O I/O I/O I/O I S Tristate 72 88 R10 PJ[3] PCR[147] AF0 AF1 AF2 AF3 — GPIO[147] CS1_5 CS1_6 CS1_7 ADC0_S[27] SIUL DSPI_5 DSPI_6 DSPI_7 ADC_0 I/O O O O I S Tristate 71 87 P10 Port pin PCR PI[12] PCR[140] PI[13] MPC5646C Microcontroller Data Sheet, Rev. 3 32 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 GPIO[148] SCK_5 E1UC[18] — SIUL DSPI_5 eMIOS_1 — I/O I/O I/O — M/S Tristate 5 5 D3 PCR[149] AF0 AF1 AF2 AF3 — GPIO[149] — — — ADC0_S[28] SIUL — — — ADC_0 I/O — — — I S Tristate — 113 N12 PJ[6] PCR[150] AF0 AF1 AF2 AF3 — GPIO[150] — — — ADC0_S[29] SIUL — — — ADC_0 I/O — — — I S Tristate — 112 N15 PJ[7] PCR[151] AF0 AF1 AF2 AF3 — GPIO[151] — — — ADC0_S[30] SIUL — — — ADC_0 I/O — — — I S Tristate — 111 P16 PJ[8] PCR[152] AF0 AF1 AF2 AF3 — GPIO[152] — — — ADC0_S[31] SIUL — — — ADC_0 I/O — — — I S Tristate — 110 P15 PJ[9] PCR[153] AF0 AF1 AF2 AF3 — GPIO[153] — — — ADC1_S[8] SIUL — — — ADC_1 I/O — — — I S Tristate — 68 P5 PJ[10] PCR[154] AF0 AF1 AF2 AF3 — GPIO[154] — — — ADC1_S[9] SIUL — — — ADC_1 I/O — — — I S Tristate — 67 T5 PJ[11] PCR[155] AF0 AF1 AF2 AF3 — GPIO[155] — — — ADC1_S[10] SIUL — — — ADC_1 I/O — — — I S Tristate — 60 R3 Port pin PCR PJ[4] PCR[148] PJ[5] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 33 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — GPIO[156] — — — ADC1_S[11] SIUL — — — ADC_1 I/O — — — I S Tristate — 59 T1 PCR[157] AF0 AF1 AF2 AF3 — — — — GPIO[157] — CS1_7 — CAN4RX ADC1_S[12] CAN1RX WKPU[31] SIUL — DSPI_7 — FlexCAN_4 ADC_1 FlexCAN_1 WKPU I/O — O — I I I I S Tristate — 65 N5 PJ[14] PCR[158] AF0 AF1 AF2 AF3 GPIO[158] CAN1TX CAN4TX CS2_7 SIUL FlexCAN_1 FlexCAN_4 DSPI_7 I/O O O O M/S Tristate — 64 T4 PJ[15] PCR[159] AF0 AF1 AF2 AF3 — GPIO[159] — CS1_6 — CAN1RX SIUL — DSPI_6 — FlexCAN_1 I/O — O — I M/S Tristate — 63 R4 PK[0] PCR[160] AF0 AF1 AF2 AF3 GPIO[160] CAN1TX CS2_6 — SIUL FlexCAN_1 DSPI_6 — I/O O O — M/S Tristate — 62 T3 PK[1] PCR[161] AF0 AF1 AF2 AF3 — GPIO[161] CS3_6 — — CAN4RX SIUL DSPI_6 — — FlexCAN_4 I/O O — — I M/S Tristate — 41 H4 PK[2] PCR[162] AF0 AF1 AF2 AF3 GPIO[162] CAN4TX — — SIUL FlexCAN_4 — — I/O O — — M/S Tristate — 42 L4 PK[3] PCR[163] AF0 AF1 AF2 AF3 — — GPIO[163] E1UC[0] — — CAN5RX LIN8RX SIUL eMIOS_1 — — FlexCAN_5 LINFlexD_8 I/O I/O — — I I M/S Tristate — 43 N1 Port pin PCR PJ[12] PCR[156] PJ[13] MPC5646C Microcontroller Data Sheet, Rev. 3 34 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 GPIO[164] LIN8TX CAN5TX E1UC[1] SIUL LINFlexD_8 FlexCAN_5 eMIOS_1 I/O O O I/O M/S Tristate — 44 M3 PCR[165] AF0 AF1 AF2 AF3 — — GPIO[165] — — — CAN2RX LIN2RX SIUL — — — FlexCAN_2 LINFlexD_2 I/O — — — I I M/S Tristate — 45 M5 PK[6] PCR[166] AF0 AF1 AF2 AF3 GPIO[166] CAN2TX LIN2TX — SIUL FlexCAN_2 LINFlexD_2 — I/O O O — M/S Tristate — 46 M6 PK[7] PCR[167] AF0 AF1 AF2 AF3 — — GPIO[167] — — — CAN3RX LIN3RX SIUL — — — FlexCAN_3 LINFlexD_3 I/O — — — I I M/S Tristate — 47 M7 PK[8] PCR[168] AF0 AF1 AF2 AF3 GPIO[168] CAN3TX LIN3TX — SIUL FlexCAN_3 LINFlexD_3 — I/O O O — M/S Tristate — 48 M8 PK[9] PCR[169] AF0 AF1 AF2 AF3 — GPIO[169] — — — SIN_4 SIUL — — — DSPI_4 I/O — — — I M/S Tristate — 197 E8 PK[10] PCR[170] AF0 AF1 AF2 AF3 GPIO[170] SOUT_4 — — SIUL DSPI_4 — — I/O O — — M/S Tristate — 198 E7 PK[11] PCR[171] AF0 AF1 AF2 AF3 GPIO[171] SCK_4 — — SIUL DSPI_4 — — I/O I/O — — M/S Tristate — 199 F8 PK[12] PCR[172] AF0 AF1 AF2 AF3 GPIO[172] CS0_4 — — SIUL DSPI_4 — — I/O I/O — — M/S Tristate — 200 G12 Port pin PCR PK[4] PCR[164] PK[5] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 35 Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 — GPIO[173] CS3_6 CS2_7 SCK_1 CAN3RX SIUL DSPI_6 DSPI_7 DSPI_1 FlexCAN_3 I/O O O I/O I M/S Tristate — 201 H12 PCR[174] AF0 AF1 AF2 AF3 GPIO[174] CAN3TX CS3_7 CS0_1 SIUL FlexCAN_3 DSPI_7 DSPI_1 I/O O O I/O M/S Tristate — 202 J12 PK[15] PCR[175] AF0 AF1 AF2 AF3 — — GPIO[175] — — — SIN_1 SIN_7 SIUL — — — DSPI_1 DSPI_7 I/O — — — I I M/S Tristate — 203 D5 PL[0] PCR[176] AF0 AF1 AF2 AF3 GPIO[176] SOUT_1 SOUT_7 — SIUL DSPI_1 DSPI_7 — I/O O O — M/S Tristate — 204 C4 PL[1] PCR[177] AF0 AF1 AF2 AF3 GPIO[177] — — — SIUL — — — I/O — — — M/S Tristate — — F7 PL[2] PCR[178]7 AF0 AF1 AF2 AF3 GPIO[178] — MDO08 — SIUL — Nexus — I/O — O — M/S Tristate — — F5 PL[3] PCR[179] AF0 AF1 AF2 AF3 GPIO[179] — MDO1 — SIUL — Nexus — I/O — O — M/S Tristate — — G5 PL[4] PCR[180] AF0 AF1 AF2 AF3 GPIO[180] — MDO2 — SIUL — Nexus — I/O — O — M/S Tristate — — H5 PL[5] PCR[181] AF0 AF1 AF2 AF3 GPIO[181] — MDO3 — SIUL — Nexus — I/O — O — M/S Tristate — — J5 PL[6] PCR[182] AF0 AF1 AF2 AF3 GPIO[182] — MDO4 — SIUL — Nexus — I/O — O — M/S Tristate — — K5 Port pin PCR PK[13] PCR[173] PK[14] MPC5646C Microcontroller Data Sheet, Rev. 3 36 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Functional port pin descriptions (continued) Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 GPIO[183] — MDO5 — SIUL — Nexus — I/O — O — M/S Tristate — — L5 PCR[184] AF0 AF1 AF2 AF3 — GPIO[184] — — — EVTI SIUL — — — Nexus I/O — — — I S Pull-up — — M9 PL[9] PCR[185] AF0 AF1 AF2 AF3 GPIO[185] — MSEO0 — SIUL — Nexus — I/O — O — M/S Tristate — — M10 PL[10] PCR[186] AF0 AF1 AF2 AF3 GPIO[186] — MCKO — SIUL — Nexus — I/O — O — F/S Tristate — — M11 PL[11] PCR[187] AF0 AF1 AF2 AF3 GPIO[187] — MSEO1 — SIUL — Nexus — I/O — O — M/S Tristate — — M12 PL[12] PCR[188] AF0 AF1 AF2 AF3 GPIO[188] — EVTO — SIUL — Nexus — I/O — O — M/S Tristate — — F11 PL[13] PCR[189] AF0 AF1 AF2 AF3 GPIO[189] — MDO6 — SIUL — Nexus — I/O — O — M/S Tristate — — F10 PL[14] PCR[190] AF0 AF1 AF2 AF3 GPIO[190] — MDO7 — SIUL — Nexus — I/O — O — M/S Tristate — — E12 PL[15] PCR[191] AF0 AF1 AF2 AF3 GPIO[191] — MDO8 — SIUL — Nexus — I/O — O — M/S Tristate — — E11 PM[0] PCR[192] AF0 AF1 AF2 AF3 GPIO[192] — MDO9 — SIUL — Nexus — I/O — O — M/S Tristate — — E10 Port pin PCR PL[7] PCR[183] PL[8] MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 37 Table 4. Functional port pin descriptions (continued) 1 2 3 4 5 6 Alternate function1 Function Peripheral I/O direction2 Pad type RESET config. 176 LQFP 208 LQFP 256 MAPBGA Pin number AF0 AF1 AF2 AF3 GPIO[193] — MDO10 — SIUL — Nexus — I/O — O — M/S Tristate — — E9 PCR[194] AF0 AF1 AF2 AF3 GPIO[194] — MDO11 — SIUL — Nexus — I/O — O — M/S Tristate — — F12 PM[3] PCR[195] AF0 AF1 AF2 AF3 GPIO[195] — — — SIUL — — — I/O — — — M/S Tristate — — K12 PM[4] PCR[196] AF0 AF1 AF2 AF3 GPIO[196] — — — SIUL — — — I/O — — — M/S Tristate — — L12 PM[5] PCR[197] AF0 AF1 AF2 AF3 GPIO[197] — — — SIUL — — — I/O — — — M/S Tristate — — F9 PM[6] PCR[198] AF0 AF1 AF2 AF3 GPIO[198] — — — SIUL — — — I/O — — — M/S Tristate — — F6 Port pin PCR PM[1] PCR[193] PM[2] Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 000 AF0; PCR.PA = 001 AF1; PCR.PA = 010 AF2; PCR.PA = 011 AF3; PCR.PA = 100 ALT4. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module. NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is ignored. SXOSC’s OSC32k_XTAL and OSC32k_EXTAL pins are shared with GPIO functionality. When used as crystal pins, other functionality of the pin cannot be used and it should be ensured that application never programs OBE and PUE bit of the corresponding PCR to "1". If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature as PB[10] can induce coupling on PB[9] and disturb oscillator frequency. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively). PH[9:10] are available as JTAG pins (TCK and TMS respectively). It is up to the user to configure these pins as GPIO when needed. MPC5646C Microcontroller Data Sheet, Rev. 3 38 Preliminary—Subject to Change Without Notice Freescale Semiconductor 7 When MBIST is enabled to run ( STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V before the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST operation. When MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally drive the pad. 8 These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development Interface "Port Control Register" rather than the SIUL. Specifically, the debugger can enable the MDO[7:0], MSEO[1:0], and MCKO ports by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled by programming NDI ((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]). 4 Electrical Characteristics This section contains electrical characteristics of the device as well as temperature and power considerations. This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS_HV). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins. The parameters listed in the following tables represent the characteristics of the device and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. 4.1 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 5 are used and the parameters are tagged accordingly in the tables where appropriate. Table 5. Parameter classifications Classification tag Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. 4.2 NVUSRO register Portions of the device configuration, such as high voltage supply is controlled via bit values in the Non-Volatile User Options Register (NVUSRO). For a detailed description of the NVUSRO register, see MPC5646C Reference Manual. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 39 4.2.1 NVUSRO [PAD3V5V(0)] field description Table 6 shows how NVUSRO [PAD3V5V(0)] controls the device configuration for VDD_HV_A domain. Table 6. PAD3V5V(0) field description 1 Value1 Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V '1' is delivery value. It is part of shadow flash memory, thus programmable by customer. The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value. 4.2.2 NVUSRO [PAD3V5V(1)] field description Table 7 shows how NVUSRO [PAD3V5V(1)] controls the device configuration the device configuration for VDD_HV_B domain. Table 7. PAD3V5V(1) field description 1 Value1 Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V '1' is delivery value. It is part of shadow flash memory, thus programmable by customer. The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value. 4.3 Absolute maximum ratings Table 8. Absolute maximum ratings Value Symbol Parameter Conditions Unit Min Max SR Digital ground on VSS_HV pins — 0 0 V VDD_HV_A SR Voltage on VDD_HV_A pins with respect to ground (VSS_HV) — –0.3 6.0 V VDD_HV_B1 SR Voltage on VDD_HV_B pins with respect to common ground (VSS_HV) — –0.3 6.0 V SR Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (VSS_HV) — VSS_HV 0.1 VSS_HV 0.1 V Relative to VDD_LV 0 VDD_LV + 1 V VSS_HV VSS_LV VRC_CTRL2 Base control voltage for external BCP68 NPN device MPC5646C Microcontroller Data Sheet, Rev. 3 40 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 8. Absolute maximum ratings (continued) Value Symbol VSS_ADC Parameter VDD_HV_ADC14 SR Voltage on VDD_HV_ADC1 with respect to ground (VSS_HV) 4 5 6 Max VSS_HV 0.1 VSS_HV + 0.1 V –0.3 6.0 V — Relative to VDD_HV_A 3 VDD_HV_A 0.3 VDD_HV_A+0.3 — –0.3 6.0 Relative to VDD_HV_A2 VDD_HV_A0.3 VDD_HV_A+0.3 SR Voltage on any GPIO pin with respect to ground (VSS_HV) Relative to VDD_HV_A/HV_B IINJPAD SR Injected input current on any pin during overload condition — –10 10 IINJSUM SR Absolute sum of all injected input currents during overload condition — –50 50 SR Sum of all the static I/O current within a supply segment (VDD_HV_A or VDD_HV_B) TSTORAGE 3 Min VIN IAVGSEG5 2 Unit — SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (VSS_HV) VDD_HV_ADC0 SR Voltage on VDD_HV_ADC0 with respect to ground (VSS_HV) 1 Conditions VDD_HV_A/HV_B VDD_HV_A/HV_B 0.3 +0.3 VDD = 5.0 V ± 10%, PAD3V5V = 0 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 64 SR Storage temperature — –556 150 V V mA mA °C VDD_HV_B can be independently controlled from VDD_HV_A. These can ramp up or ramp down in any order. Design is robust against any supply order. This voltage is internally generated by the device and no external voltage should be supplied. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is 6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be within ±300 mV of VDD_HV_B when these channels are used for ADC_1. Any temperature beyond 125 °C should limit the current to 50 mA (max). This is the storage temperature for the flash memory. NOTE Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (VIN > VDD_HV_A/HV_B or VIN < VSS_HV), the voltage on pins with respect to ground (VSS_HV) must not exceed the recommended values. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 41 4.4 Recommended operating conditions Table 9. Recommended operating conditions (3.3 V) Value Symbol Parameter Unit Min Max VSS_HV SR Digital ground on VSS_HV pins — 0 0 V VDD_HV_A1 SR Voltage on VDD_HV_A pins with respect to ground (VSS_HV) — 3.0 3.6 V VDD_HV_B1 SR Voltage on VDD_HV_B pins with respect to ground (VSS_HV) — 3.0 3.6 V VSS_LV2 SR Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (VSS_HV) — VSS_HV 0.1 VSS_HV + 0.1 V Relative to VDD_LV 0 VDD_LV + 1 V — VSS_HV 0.1 VSS_HV + 0.1 V — 3.05 3.6 V VRC_CTRL3 VSS_ADC Base control voltage for external BCP68 NPN device SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (VSS_HV) VDD_HV_ADC04 SR Voltage on VDD_HV_ADC0 with respect to ground (VSS_HV) VDD_HV_ADC17 SR Voltage on VDD_HV_ADC1 with respect to ground (VSS_HV) VIN SR Voltage on any GPIO pin with respect to ground (VSS_HV) Relative to VDD_HV_A6 VDD_HV_A 0.1 VDD_HV_A + 0.1 — Relative to VDD_HV_A6 3.0 3.6 V VDD_HV_A 0.1 VDD_HV_A + 0.1 — VSS_HV 0.1 — Relative to VDD_HV_A/HV_B — VDD_HV_A/HV_B + 0.1 V IINJPAD SR Injected input current on any pin during overload condition — 5 5 IINJSUM SR Absolute sum of all injected input currents during overload condition — 50 50 SR VDD_HV_A slope to ensure correct power up8 — — 0.5 V/µs — 0.5 — V/min –40 125 °C 40 150 TVDD 1 Conditions TA SR Ambient temperature under bias TJ SR Junction temperature under bias fCPU up to 120 MHz 2% — mA 100 nF EMI capacitance and 10 µF bulk capacitance need to be provided between each VDD/VSS_HV pair. MPC5646C Microcontroller Data Sheet, Rev. 3 42 Preliminary—Subject to Change Without Notice Freescale Semiconductor 2 3 4 5 6 7 8 100 nF EMI capacitance and 10 µF bulk capacitance need to be provided between each of the four VDD_LV/VSS_LV supply pairs. For details refer to the Power Management chapter of the MPC5646C Reference Manual. This voltage is internally generated by the device and no external voltage should be supplied. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is reset. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is 6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be within ±100 mV of VDD_HV_B when these channels are used for ADC_1. Guaranteed by the device validation. Table 10. Recommended operating conditions (5.0 V) Value Symbol Parameter Conditions Max 0 0 V 4.5 5.5 V 3.0 5.5 — 3.0 5.5 V — 3.0 3.6 V — VSS_HV – 0.1 VSS_HV + 0.1 V Relative to VDD_LV 0 VDD_LV + 1 V — VSS_HV – 0.1 VSS_HV + 0.1 V 4.5 5.5 V 3.0 5.5 Relative to VDD_HV_A6 VDD_HV_A – 0.1 VDD_HV_A + 0.1 — 4.5 5.5 Voltage drop(2) 3.0 5.5 Relative to VDD_HV_A6 VDD_HV_A 0.1 VDD_HV_A + 0.1 VSS_HV SR Digital ground on VSS_HV pins — VDD_HV_A1 SR Voltage on VDD_HV_A pins with respect to ground (VSS_HV) — VDD_HV_B SR Generic GPIO functionality Ethernet/3.3 V functionality (See the notes in all figures in Section 3, “Package pinouts and signal descriptions” for the list of channels operating in VDD_HV_B domain) VSS_LV3 SR Voltage on VSS_LV (Low voltage digital supply) pins with respect to ground (VSS_HV) VRC_CTRL4 VSS_ADC Base control voltage for external BCP68 NPN device SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (VSS_HV) VDD_HV_ADC05 SR Voltage on VDD_HV_ADC0 with respect to ground (VSS_HV) VDD_HV_ADC17 SR Voltage on VDD_HV_ADC1 with respect to ground (VSS_HV) Unit Min Voltage drop 2 — Voltage drop (2) V MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 43 Table 10. Recommended operating conditions (5.0 V) (continued) Value Symbol VIN 1 2 3 4 5 6 7 8 Parameter Conditions SR Voltage on any GPIO pin with respect to ground (VSS_HV) Unit Min Max — VSS_HV –0.1 — Relative to VDD_HV_A/HV_B — VDD_HV_A/HV_B + 0.1 V IINJPAD SR Injected input current on any pin during overload condition — –5 5 mA IINJSUM SR Absolute sum of all injected input currents during overload condition — –50 50 TVDD SR VDD_HV_A slope to ensure correct power up8 — — 0.5 V/µs — 0.5 — V/min TA C-Grade Part SR Ambient temperature under bias — 40 85 TJ C-Grade Part SR Junction temperature under bias — 40 110 TA V-Grade Part SR Ambient temperature under bias — 40 105 TJ V-Grade Part SR Junction temperature under bias — 40 130 TA M-Grade Part SR Ambient temperature under bias — 40 125 TJ M-Grade Part SR Junction temperature under bias — 40 150 °C 100 nF EMI capacitance and 10 µF bulk capacitance needs to be provided between each VDD_HV_A/HV_B/VSS_HV pair. Full device operation is guaranteed by design from 3.0 V–5.5 V. OSC electrical characteristics (startup time, IDD, negative resistance, ESR and duty cycle) will not be guaranteed to stay within the stated limits when operating below 4.5 V and above 3.6 V. However, OSC functionality is guaranteed within the entire range (3.0 V–5.5 V). 100 nF EMI capacitance and 40 µF bulk capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. This voltage is internally generated by the device and no external voltage should be supplied. 100 nF capacitance needs to be provided between VDD_HV_(ADC0/ADC1)/VSS_HV_(ADC0/ADC1) pair. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is 6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be within ±100 mV of VDD_HV_B when these channels are used for ADC_1. Guaranteed by device validation. NOTE SRAM retention guaranteed to LVD levels. MPC5646C Microcontroller Data Sheet, Rev. 3 44 Preliminary—Subject to Change Without Notice Freescale Semiconductor 4.5 Thermal characteristics 4.5.1 Package thermal characteristics Table 11. LQFP thermal characteristics1 Symbol RJA CC CC RJA 1 2 3 4 5 6 7 C D D Parameter Conditions 2 Thermal resistance, junction-to-ambient natural convection4 Single-layer board—1s Thermal resistance, junction-to-ambient natural convection7 Four-layer board—2s2p7 Value3 Pin count 176 Unit Min Typ Max — — 385 °C/W 6 208 — — 41 °C/W 176 — — 31 °C/W 208 — — 34 °C/W Thermal characteristics are targets based on simulation that are subject to change per device characterization. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C. All values need to be confirmed during device validation. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-2 and JESD51-6 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Table 12. 256 MAPBGA thermal characteristics1 Symbol RJA CC C Parameter — Thermal resistance, junction-to-ambient natural convection Conditions Single-layer board—1s Four-layer board—2s2p Value Unit 432 °C/W 26 3 1 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction-to-ambient thermal resistance determined per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification. 3 Junction-to-ambient thermal resistance determined per JEDEC JESD51-6 with the board horizontal. 2 4.5.2 Power considerations The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using Equation 1: TJ = TA + (PD RJA) Eqn. 1 Where: TA is the ambient temperature in °C. RJA is the package junction-to-ambient thermal resistance, in °C/W. PD is the sum of PINT and PI/O (PD = PINT + PI/O). PINT is the product of IDD and VDD, expressed in watts. This is the chip internal power. PI/O represents the power dissipation on input and output pins; user determined. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 45 Most of the time for the applications, PI/O < PINT and may be neglected. On the other hand, PI/O may be significant, if the device is configured to continuously drive external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: PD = K / (TJ + 273 °C) Eqn. 2 K = PD (TA + 273 °C) + RJA PD2 Eqn. 3 Therefore, solving equations 1 and 2: Where: K is a constant for the particular part, which may be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations 1 and 2 iteratively for any value of TA. 4.6 4.6.1 I/O pad electrical characteristics I/O pad types The device provides four main I/O pad types depending on the associated alternate functions: • • • • • Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission. Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission. Fast pads—These pads provide maximum speed. These are used for improved Nexus debugging capability. Input only pads—These pads are associated to ADC channels and 32 kHz low power external crystal oscillator providing low input leakage. Low power pads—These pads are active in standby mode for wakeup source. Also, medium/slow and fast/medium pads are available in design which can be configured to behave like a slow/medium and medium/fast pads depending upon the slew-rate control. Medium and fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. 4.6.2 I/O input DC characteristics Table 13 provides input DC electrical characteristics as described in Figure 5. MPC5646C Microcontroller Data Sheet, Rev. 3 46 Preliminary—Subject to Change Without Notice Freescale Semiconductor VIN VDD VIH VHYS VIL PDIx = ‘1 (GPDI register of SIUL) PDIx = ‘0’ Figure 5. I/O input DC electrical characteristics definition Table 13. I/O input DC electrical characteristics Symbol C Value2 Conditions1 Parameter Unit Min Typ Max VIH SR P Input high level CMOS (Schmitt Trigger) — 0.65VDD — VDD + 0.4 VIL SR P Input low level CMOS (Schmitt Trigger) — 0.3 — 0.35VDD — 0.1VDD — — — 2 — — 2 — D No injection TA = 40 °C on adjacent TA = 25 °C pin TA = 105 °C — 12 500 P TA = 125 °C — 70 1000 — — — 404 ns — 10004 — — ns VHYS CC C Input hysteresis CMOS (Schmitt Trigger) ILKG CC P Digital input leakage P WFI SR P Width of input pulse rejected by analog filter3 WNFI SR P Width of input pulse accepted by analog filter(3) V nA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All values need to be confirmed during device validation. 3 Analog filters are available on all wakeup lines. 4 The width of input pulse in between 40 ns to 1000 ns is indeterminate. It may pass the noise or may not depending on silicon sample to sample variation. 1 2 4.6.3 I/O output DC characteristics The following tables provide DC characteristics for bidirectional pads: MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 47 • • • • Table 14 provides weak pull figures. Both pull-up and pull-down resistances are supported. Table 15 provides output driver characteristics for I/O pads when in SLOW configuration. Table 16 provides output driver characteristics for I/O pads when in MEDIUM configuration. Table 17 provides output driver characteristics for I/O pads when in FAST configuration. Table 14. I/O pull-up/pull-down DC electrical characteristics Symbol |IWPU| CC C P C P |IWPD| CC P C P Parameter Value Conditions1,2 Unit Min Typ Max 10 — 150 10 — 250 10 — 150 10 — 150 10 — 250 10 — 150 Weak pull-up VIN = VIL, VDD = PAD3V5V = 0 current absolute 5.0 V ± 10% PAD3V5V = 13 value VIN = VIL, VDD = PAD3V5V = 1 3.3 V ± 10% Weak pull-down VIN = VIH, VDD = PAD3V5V = 0 current absolute 5.0 V ± 10% PAD3V5V = 1 value VIN = VIH, VDD = PAD3V5V = 1 3.3 V ± 10% µA µA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3 The configuration PAD3V5 = 1 when V DD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. 1 2 Table 15. SLOW configuration output buffer electrical characteristics Symbol C Parameter VOH CC P Output high level SLOW configuration C P VOL CC P Output low level SLOW configuration C P Value Conditions1,2 Unit Min Typ Max Push Pull IOH = 3 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD — — IOH = 3 mA, VDD = 5.0 V ± 10%, PAD3V5V = 13 0.8VDD — — — — — — 0.1VDD IOL = 3 mA, VDD = 5.0 V ± 10%, PAD3V5V = 1(3) — — 0.1VDD IOL = 1.5 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 0.5 IOH = 1.5 mA, VDD 0.8 VDD = 3.3 V ± 10%, PAD3V5V = 1 Push Pull IOL = 3 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 V V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3 The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. 1 2 MPC5646C Microcontroller Data Sheet, Rev. 3 48 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 16. MEDIUM configuration output buffer electrical characteristics Symbol VOH VOL CC CC C Parameter Value Conditions1,2 Unit Min Typ Max Push Pull IOH = 3 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD — — C IOH = 1.5 mA, VDD = 5.0 V ± 10%, PAD3V5V = 13 0.8VDD — — C IOH = 2 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD 0.8 — — Push Pull IOL = 3 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 0.2VDD C IOL = 1.5 mA, VDD = 5.0 V ± 10%, PAD3V5V = 1(3) — — 0.1VDD C IOL = 2 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 0.5 C Output high level MEDIUM configuration C Output low level MEDIUM configuration V V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3 The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. 1 2 Table 17. FAST configuration output buffer electrical characteristics Symbol VOH CC C Parameter Value Conditions1,2 Unit Min Typ Max P Output high level Push Pull IOH = 14 mA, FAST VDD = 5.0 V ± 10%, PAD3V5V = 0 configuration 0.8VDD — — C IOH = 7 mA, VDD = 5.0 V ± 10%, PAD3V5V = 13 0.8VDD — — C IOH = 11 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD 0.8 — — V MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 49 Table 17. FAST configuration output buffer electrical characteristics (continued) Symbol VOL C CC Value Conditions1,2 Parameter Unit Min Typ Max P Output low level Push Pull IOL = 14 mA, FAST VDD = 5.0 V ± 10%, PAD3V5V = 0 configuration — — 0.1VDD C IOL = 7 mA, VDD = 5.0 V ± 10%, PAD3V5V = 1(3) — — 0.1VDD C IOL = 11 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 0.5 V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3 The configuration PAD3V5 = 1 when V DD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus outputs (MDOx, EVTO, MCKO) are configured in input or in high impedance state. 1 2 4.6.4 Output pin transition times Table 18. Output pin transition times Symbol Ttr CC C D T D Ttr CC Parameter Output transition time CL = 25 pF output pin4 CL = 50 pF SLOW configuration CL = 100 pF D CL = 25 pF T CL = 50 pF D CL = 100 pF D Output transition time CL = 25 pF output pin(4) CL = 50 pF MEDIUM configuration CL = 100 pF T D Value3 Conditions1,2 D CL = 25 pF T CL = 50 pF D CL = 100 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 Unit Min Typ Max — — 50 — — 100 — — 125 — — 40 — — 50 — — 75 — — 10 — — 20 — — 40 — — 12 — — 25 — — 40 ns ns MPC5646C Microcontroller Data Sheet, Rev. 3 50 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 18. Output pin transition times (continued) Symbol Ttr CC C D Value3 1,2 Parameter Conditions Output transition time CL = 25 pF output pin(4) CL = 50 pF FAST configuration CL = 100 pF CL = 25 pF CL = 50 pF Unit VDD = 5.0 V ± 10%, PAD3V5V = 0 VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF Min Typ Max — — 4 — — 6 — — 12 — — 4 — — 7 — — 12 ns VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3 All values need to be confirmed during device validation. 4 C includes device and package capacitances (C L PKG < 5 pF). 1 2 4.6.5 I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply is associated to a VDD/VSS_HV supply pair as described in Table 19. Table 20 provides I/O consumption figures. In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG maximum value. In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single segment should remain below the IDYNSEG maximum value. Table 19. I/O supplies Package I/O Supplies 256 MAPBGA Equivalent to 208-pin LQFP segment pad distribution + G6, G11, H11, J11 208 LQFP pin6 (VDD_HV_A) pin7 (VSS_HV) pin27 (VDD_HV_A) pin28 (VSS_HV) pin73 (VSS_HV) pin75 (VDD_HV_A) pin101 (VDD_HV_A) pin102 (VSS_HV) pin132 (VSS_HV) pin133 (VDD_HV_A) pin147 (VSS_HV) pin148 (VDD_HV_B) pin174 (VSS_HV) pin175 (VDD_HV_A) — 176 LQFP pin6 (VDD_HV_A) pin7 (VSS_HV) pin27 (VDD_HV_A) pin28 (VSS_HV) pin57 (VSS_HV) pin59 (VDD_HV_A) pin85 (VDD_HV_A) pin86 (VSS_HV) pin123 (VSS_HV) pin124 (VDD_HV_B) pin150 (VSS_HV) pin151 (VDD_HV_A) — — MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 51 Table 20. I/O consumption Symbol ISWTSLW,4 ISWTMED(4) ISWTFST(4) IRMSSLW C Typ Max VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 19.9 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 15.5 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 28.8 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 16.3 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 113.5 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 52.1 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 2.22 — — 3.13 — — 6.54 — — 1.51 — — 2.14 — — 4.33 — — 6.5 — — 13.32 — — 18.26 — — 4.91 — — 8.47 — — 10.94 — — 21.05 mA — — 33 — — 55.77 — — 14 — — 20 CL = 100 pF, 40 MHz — — 34.89 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 654 CC D Peak I/O current for CL = 25 pF SLOW configuration CC D Peak I/O current for MEDIUM configuration CL = 25 pF CC D Peak I/O current for FAST configuration CL = 25 pF CC D Root mean square CL = 25 pF, 2 MHz I/O current for SLOW CL = 25 pF, 4 MHz configuration CL = 100 pF, 2 MHz CL = 25 pF, 4 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 2 MHz CC D Root mean square I/O current for MEDIUM configuration CL = 25 pF, 13 MHz CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 CL = 100 pF, 13 MHz CL = 25 pF, 13 MHz CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 13 MHz IRMSFST CC D Root mean square CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%, I/O current for FAST PAD3V5V = 0 CL = 25 pF, 64 MHz configuration CL = 100 pF, 40 MHz CL = 25 pF, 40 MHz CL = 25 pF, 64 MHz IAVGSEG SR D Sum of all the static I/O current within a supply segment Unit Min CL = 25 pF, 2 MHz IRMSMED Value3 Conditions1,2 Parameter VDD = 3.3 V ± 10%, PAD3V5V = 1 mA mA mA mA mA mA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3 All values need to be confirmed during device validation. 4 Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. 1 2 MPC5646C Microcontroller Data Sheet, Rev. 3 52 Preliminary—Subject to Change Without Notice Freescale Semiconductor 4.7 RESET electrical characteristics The device implements a dedicated bidirectional RESET pin. VDD_HV_A VDDMIN RESET VIH VIL device reset forced by RESET device start-up phase Figure 6. Start-up reset requirements VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST Figure 7. Noise filtering on reset signal Table 21. Reset electrical characteristics Symbol VIH C Parameter SR P Input High Level CMOS (Schmitt Trigger) Value2 Conditions1 — Unit Min Typ Max 0.65VDD — VDD + 0.4 V MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 53 Table 21. Reset electrical characteristics (continued) Symbol C Parameter Value2 1 Conditions Unit Min Typ Max VIL SR P Input low Level CMOS (Schmitt Trigger) — 0.3 — 0.35VDD V VHYS CC C Input hysteresis CMOS (Schmitt Trigger) — 0.1VDD — — V Push Pull, IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD V Push Pull, IOL = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 13 — — 0.1VDD Push Pull, IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 CL = 25 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 10 CL = 50 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 CL = 100 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 40 CL = 25 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 12 CL = 50 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25 CL = 100 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 40 WFRST SR P Reset input filtered pulse — — — 40 ns WNFRST SR P Reset input not filtered pulse — 1000 — — ns |IWPU| CC P Weak pull-up current absolute value VDD = 3.3 V ± 10%, PAD3V5V = 1 10 — 150 µA VDD = 5.0 V ± 10%, PAD3V5V = 0 10 — 150 VDD = 5.0 V ± 10%, PAD3V5V = 15 10 — 250 VOL Ttr CC P Output low level CC D Output transition time output pin4 MEDIUM configuration ns VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All values need to be confirmed during device validation. 3 This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the RGM module section of the device Reference Manual). 4 C includes device and package capacitance (C L PKG < 5 pF). 5 The configuration PAD3V5 = 1 when V DD = 5 V is only transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. 1 2 MPC5646C Microcontroller Data Sheet, Rev. 3 54 Preliminary—Subject to Change Without Notice Freescale Semiconductor 4.8 Power management electrical characteristics 4.8.1 Voltage regulator electrical characteristics The device implements an internal voltage regulator to generate the low voltage core supply VDD_LV from the high voltage supply VDD_HV_A. The following supplies are involved: • HV: High voltage external power supply for voltage regulator module. This must be provided externally through VDD_HV_A power pin. LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the on-chip VREG with an external ballast (BCP68 NPN device). It is further split into four main domains to ensure noise isolation between critical LV modules within the device: — LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding. — LV_CFLA0/CFLA1: Low voltage supply for the two code Flash modules. It is shorted with LV_COR through double bonding. — LV_DFLA: Low voltage supply for data Flash module. It is shorted with LV_COR through double bonding. — LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding. • 100 nf VDD_LV 100 nf VSS_LV VDD_LV 100 nf VSS_LV VDD_LV VSS_LV 40 f (4 10 f) PD0 (always on domain) PD0 Logic PD1 Switchable Domain (FMPLL, Flash) (CREGn) 32 KB Split 56 KB Split 8 KB Split CTRL CTRL CTRL VDD_LV HPVDD VSS_LV Off chip BCP68 NPN driver VRC_CTRL sw1 (<0.1) HPREG LPVDD 10 f LPREG Chip Boundary (CDEC2) VDD_BV VDD_HV_A HPVDD LPVDD VSS_HV 100 nf Figure 8. Voltage regulator capacitance connection The internal voltage regulator requires external bulk capacitance (CREGn) to be connected to the device to provide a stable low voltage digital supply to the device. Also required for stability is the CDEC2 capacitor at ballast collector. This is needed to minimize sharp injection current when ballast is turning ON. Apart from the bulk capacitance, user should connect MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 55 EMI/decoupling cap (CREGP) at each VDD_LV/VSS_LV pin pair. 4.8.1.1 • • • Recommendations The external NPN driver must be BCP68 type. VDD_LV should be implemented as a power plane from the emitter of the ballast transistor. 10 F capacitors should be connected to the 4 pins closest to the outside of the package and should be evenly distributed around the package. For BGA packages, the balls should be used are D8, H14, R9, J3–one cap on each side of package. — There should be a track direct from the capacitor to this pin (pin also connects to VDD_LV plane). The tracks ESR should be less than 100 m. — The remaining VDD_LV pins (exact number will vary with package) should be decoupled with 0.1 F caps, connected to the pin as per 10 F. (see Section 4.4, “Recommended operating conditions”). 4.8.2 • • VDD_BV options Option 1: VDD_BV shared with VDD_HV_A VDD_BV must be star routed from VDD_HV_A from the common source. This is to eliminate ballast noise injection on the MCU. Option 2: VDD_BV independent of the MCU supply VDD_BV > 2.6 V for correct functionality. The device is not monitoring this supply hence the external component must meet the 2.6 V criteria through external monitoring if required. Table 22. Voltage regulator electrical characteristics Symbol C Parameter Value2 Conditions1 Unit Min Typ Max CREGn SR — External ballast stability capacitance — 40 — 60 F RREG SR — Stability capacitor equivalent serial resistance — — — 0.2 CREGP SR — Decoupling capacitance (Close to the pin) VDD_HV_A/HV_B/VSS_HV pair 100 — nF VDD_LV/VSS_LV pair 100 — nF CDEC2 SR — Stability capacitance regulator VDD_HV_A/VSS_HV supply (Close to the ballast collector) 10 — 40 F VMREG CC P Main regulator output voltage Before trimming — 1.32 — V After trimming — 1.28 — — — 350 mA IMREG = 200 mA — — 2 mA IMREG = 0 mA — — 1 VLPREG CC P Low power regulator output voltage After trimming — 1.23 — V ILPREG SR — Low power regulator current provided to VDD_LV domain — — 50 mA IMREG IMREGINT SR — Main regulator current provided to VDD_LV domain CC D Main regulator module current consumption — — MPC5646C Microcontroller Data Sheet, Rev. 3 56 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 22. Voltage regulator electrical characteristics (continued) Symbol ILPREGINT C Parameter Conditions Typ Max — — 600 ILPREG = 0 mA; TA = 55 °C — 20 — CC D Main LVDs and reference current consumption (low power and main regulator switched off) TA = 55 °C — 2 — A CC D Main LVD current consumption (switch-off during standby) TA = 55 °C — 1 — A — — 6004 mA — IVREDLVD12 IDD_HV_A Unit Min CC D Low power regulator module current ILPREG = 15 mA; consumption TA = 55 °C IVREGREF Value2 1 CC D In-rush current on VDD_HV_A3 during power-up — A VDD_HV_A = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. All values need to be confirmed during device validation. 3 Assumption is V DD_HV_A is now supplying the external ballast. This current is the ballast inrush current. 4 Inrush current is seen more like steps of 600 mA peak. The startup of the regulator happens in steps of 50 mV in ~25 steps to reach ~1.2 V VDD_LV. Each step peak current is within 600 mA 1 2 4.8.3 Voltage monitor electrical characteristics The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors to monitor the VDD_HV_A and the VDD_LV voltage while device is supplied: • • • • • POR monitors VDD_HV_A during the power-up phase to ensure device is maintained in a safe reset state LVDHV3 monitors VDD_HV_A to ensure device is reset below minimum functional supply LVDHV5 monitors VDD_HV_A when application uses device in the 5.0 V±10% range LVDLVCOR monitors power domain No. 1 (PD1) LVDLVBKP monitors power domain No. 0 (PD0). VDD_LV is same as PD0 supply. NOTE When enabled, PD2 (RAM retention) is monitored through LVD_DIGBKP. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 57 VDDHV/LV VLVDHVxH/LVxH VLVDHVxL/LVxL RESET Figure 9. Low voltage monitor vs. Reset Table 23. Low voltage monitor electrical characteristics Symbol C Parameter Value2 Conditions1 Unit Min Typ Max VPORUP SR P Supply for functional POR module — 1.0 — 5.5 VPORH CC P Power-on reset threshold — 1.5 — 2.6 VLVDHV3H CC T LVDHV3 low voltage detector high threshold — 2.7 — 2.85 VLVDHV3L CC T LVDHV3 low voltage detector low threshold — 2.6 — 2.74 VLVDHV5H CC T LVDHV5 low voltage detector high threshold — 4.3 — 4.5 VLVDHV5L CC T LVDHV5 low voltage detector low threshold — 4.2 — VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold TA = 25 °C, after trimming V 4.4 3 1.14 1.143 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. All values need to be confirmed during device validation. 3 The min. and max variation across process voltage and temperature will be available after device characterization. Expected to be within 10 mV. 1 2 4.9 Low voltage domain power consumption Table 24 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application. MPC5646C Microcontroller Data Sheet, Rev. 3 58 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 24. Low voltage power domain electrical characteristics Symbol C IDDMAX4 CC D RUN mode maximum average current IDDRUN CC T RUN mode typical average current7 T IDDHALT IDDSTOP — at 120 MHz at 80 MHz 11 CC P HALT mode current CC P STOP mode current 12 — No clocks active — 1758,9 2409,10 mA 110 — 8 25 9 10 150 mA 35 mA 9,13 309 mA TA = 25 °C — 60 175 µA TA = 150 °C — 1000 3000 µA TA = 25 °C — 45 135 µA TA = 150 °C — 800 2000 µA TA = 25 °C — 25 75 µA TA = 150 °C — 500 1000 µA — TA = 25 °C — — 5 µA — TA = 25 °C — — 3 mA 16 MHz IRC — TA = 25 °C — — 500 µA 128 kHz IRC — TA = 25 °C — — 5 µA Adders in LP CC T 32 kHz OSC mode 4–40 MHz OSC 8 mA 109 No clocks active 6 3005,6 — IDDSTDBY1 CC T STANDBY1 mode (8 KB RAM current16 P retained) 7 210 TA = 150 °C No clocks active 5 — 400 IDDSTDBY2 CC P STANDBY2 mode (64 KB RAM current15 P retained) 4 Max3 — No clocks active 3 Typ2 TA = 25 °C IDDSTDBY3 CC P STANDBY3 mode (96 KB RAM current14 P retained) 2 TA = 25 °C Unit Min TA = 25 °C P 1 Value Conditions1 Parameter 1200 µA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified All temperatures are based on an ambient temperature. Target typical current consumption for the following typical operating conditions and configuration. Process = typical, Voltage = 1.2 V. Target maximum current consumption for mode observed under typical operating conditions. Process = Fast, Voltage = 1.32 V. Running consumption is given on voltage regulator supply (VDDREG). It does not include consumption linked to I/Os toggling. This value is highly dependent on the application. The given value is thought to be a worst case value with all cores and peripherals running, and code fetched from code flash while modify operation on-going on data flash. It is to be noticed that this value can be significantly reduced by application: switch-off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible. Higher current may sunk by device during power-up and standby exit. Please refer to in rush current in Table 22. Maximum “allowed” current is package dependent. Only for the “P” classification: Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled. RUN current measured with typical application with accesses on both code flash and RAM. Subject to change, Configuration: 1 e200z4d + 4 kbit/s Cache, 1 eDMA (32 ch), 4 FlexCAN (2 500 kbit/s, 2 125 kbit/s), 10 LINFlexD (20 kbit/s), 8 DSPI (4 2 Mbit/s, 3 4 Mbit/s, 1 10 Mbit/s), 40 PWM (200 Hz), 40 ADC Input, 1 CTU (40 ch.), 1 FlexRay (2 ch., 10 Mbit/s), 1 RTC, 4 PIT, 1 SWT, 1 STM. Ethernet and e200z0h disabled. Also reduced timed I/O channels for smaller packages. RUN current measured with typical application with accesses on both code flash and RAM. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 59 9 This value is obtained from limited sample set Subject to change, Configuration: 1 e200z4d + 4 kbit/s Cache, 1 e200z0h (1/2 system frequency), CSE, 1 eDMA (10 ch.), 6 FlexCAN (4 500 kbit/s, 2 125 kbit/s), 4 LINFlexD (20 kbit/s), 6 DSPI (2 2 Mbit/s, 3 4 Mbit/s, 1 10 Mbit/s), 16 Timed I/O, 16 ADC Input, 1 FlexRay (2 ch., 10 Mbit/s), 1 FEC (100 Mbit/s), 1 RTC, 4 PIT, 1 SWT, 1 STM. For lower pin count packages reduce the amount of timed I/O’s and ADC channels. RUN current measured with typical application with accesses on both code flash and RAM. 11 Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz ON. 16 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but no reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission), instance: 3-9 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]-PA[11] and PC[12]-PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication, instance: 1-7 clocks gated). RTC/API ON. PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs. 12 Only for the “P” classification: No clock, FIRC 16 MHz OFF, SIRC128 kHz ON, PLL OFF, HPvreg OFF, LPVreg ON. All possible peripherals off and clock gated. Flash in power down mode. 13 This current is the maximum value at room temperature for any sample. The condition is same as note 11. 14 Only for the “P” classification: LPreg ON, HPVreg OFF, 96 KB RAM ON, device configured for minimum consumption, all possible modules switched-off. 15 Only for the “P” classification: LPreg ON, HPVreg OFF, 64 KB RAM ON, device configured for minimum consumption, all possible modules switched-off. 16 LPreg ON, HPVreg OFF, 8 KB RAM ON, device configured for minimum consumption, all possible modules switched OFF. 10 4.10 Flash memory electrical characteristics 4.10.1 Program/Erase characteristics Table 25 shows the code flash memory program and erase characteristics. Table 25. Code flash memory—Program and erase specifications Value Symbol C Parameter Unit Min Typ1 Initial max2 Max3 Double word (64 bits) program time4 — 18 50 500 µs 16 KB block pre-program and erase time — 200 500 5000 ms T32Kpperase 32 KB block pre-program and erase time — 300 600 5000 ms T128Kpperase 128 KB block pre-program and erase time — 600 1300 5000 ms — — 30 30 µs Tdwprogram T16Kpperase Teslat C CC D Erase Suspend Latency tESRT C Erase Suspend Request Rate 20 — — — ms tPABT D Program Abort Latency — — 10 10 µs tEAPT D Erase Abort Latency — — 30 30 µs 1 Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2 Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3 The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4 Actual hardware programming times. This does not include software overhead. MPC5646C Microcontroller Data Sheet, Rev. 3 60 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 26 shows the data flash memory program and erase characteristics. Table 26. Data flash memory—Program and erase specifications Value Symbol C Parameter Unit Min Typ1 Initial max2 Max3 Word (32 bits) program time4 — 30 70 500 µs 16 KB block pre-program and erase time — 700 800 5000 ms D Erase Suspend Latency — — 30 30 µs C Erase Suspend Request Rate 10 — — — ms tPABT D Program Abort Latency — — 12 12 µs tEAPT D Erase Abort Latency — — 30 30 µs Twprogram C T16Kpperase Teslat CC tESRT 1 Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2 Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3 The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4 Actual hardware programming times. This does not include software overhead. Table 27. Flash memory module life Value Symbol C Parameter Conditions Unit Min P/E CC Retention CC 1 Typ C Number of program/erase cycles per block for 16 Kbyte blocks over the operating temperature range (TJ) — 100,000 100,000 cycles Number of program/erase cycles per block for 32 Kbyte blocks over the operating temperature range (TJ) — 10,000 100,000 cycles Number of program/erase cycles per block for 128 Kbyte blocks over the operating temperature range (TJ) — 1,000 100,000 cycles Blocks with 0–1,000 P/E cycles 20 — years Blocks with 10,000 P/E cycles 10 — years Blocks with 100,000 P/E cycles 5 — years C Minimum data retention at 85 °C average ambient temperature1 Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 61 ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability. Table 28. Flash memory read access timing Conditions1 Symbol fREAD CC C Parameter Code flash memory Max Data flash memory Unit P Maximum frequency for Flash reading 5 wait states 13 wait states 120 2% C 3 wait state 9 wait state 80 2% D 3 wait states2 C — MHz 64 2% — 7 wait states VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. Wait states are subject to change per device characterization. 1 2 4.10.2 Flash memory power supply DC characteristics Table 29 shows the flash memory power supply DC characteristics on external supply. Table 29. Flash memory power supply DC electrical characteristics Symbol Parameter Value2 Conditions1 Unit Min Typ Max ICFREAD3 CC Sum of the current consumption Flash memory module read Code flash on VDD_HV_A on read access memory fCPU = 120 MHz 2%4 33 IDFREAD(3) Data flash memory 13 Code flash ICFMOD(3) CC Sum of the current consumption Program/Erase on-going while reading flash memory memory on VDD_HV_A (program/erase) registers IDFMOD(3) Data flash fCPU = 120 MHz 2% (4) memory 52 ICFLPW(3) CC Sum of the current consumption on VDD_HV_A during flash memory low power mode Code flash memory 1.1 mA ICFPWD(3) CC Sum of the current consumption on VDD_HV_A during flash memory power down mode (3) IDFPWD Code flash memory 150 µA Data flash memory 150 mA mA 13 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified. All values need to be confirmed during device validation. 3 Data based on characterization results, not tested in production. 4 fCPU 120 MHz 2% can be achieved over full temperature 125 °C ambient, 150 °C junction temperature. 2 MPC5646C Microcontroller Data Sheet, Rev. 3 62 Preliminary—Subject to Change Without Notice Freescale Semiconductor 4.10.3 Flash memory start-up/switch-off timings Table 30. Start-up time/Switch-off time Symbol TFLARSTEXIT C CC D Delay for flash memory module to exit reset mode Code flash memory — Data flash memory TFLALPEXIT CC T Delay for flash memory module to exit low-power mode Code flash memory — TFLAPDEXIT CC T Delay for flash memory module to exit power-down mode Code flash memory — 1 Code flash memory Unit Min Typ Max — — 125 — — — — 0.5 µs Data flash memory TFLALPENTRY CC T Delay for flash memory module to enter low-power mode Value Conditions1 Parameter — — — — — — — 30 0.5 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. 4.11 Electromagnetic compatibility (EMC) characteristics Susceptibility tests are performed on a sample basis during product characterization. 4.11.1 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user apply EMC software optimization and pre-qualification tests in relation with the EMC level requested for the application. • • Software recommendations The software flowchart must include the management of runaway conditions such as: — Corrupted program counter — Unexpected reset — Critical data corruption (control registers) Pre-qualification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 63 4.11.2 Electromagnetic interference (EMI) The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI measurements. Table 31. EMI radiated emission measurement1,2 Value Symbol C Parameter Conditions Unit Min — SR — Scan range Typ Max — 0.150 fCPU SR — Operating frequency — — 120 — MHz VDD_LV SR — LV operating voltages — — 1.28 — V No PLL frequency VDD = 5 V, TA = 25 °C, modulation LQFP176 package Test conforming to IEC 61967-2, ± 2% PLL frequency fOSC = 40 MHz/fCPU = 120 MHz modulation — — 18 dBµV — — 143 dBµV SEMI CC T Peak level 1000 MHz 1 EMI testing and I/O port waveforms per IEC 61967-1, -2, -4. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative. 3 All values need to be confirmed during device validation. 2 4.11.3 Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. 4.11.3.1 Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts (n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard. Table 32. ESD absolute maximum ratings1,2 Conditions Class Max value3 Unit VESD(HBM) Electrostatic discharge voltage (Human Body Model) TA = 25 °C conforming to AEC-Q100-002 H1C 2000 V VESD(MM) Electrostatic discharge voltage (Machine Model) TA = 25 °C conforming to AEC-Q100-003 M2 200 VESD(CDM) Electrostatic discharge voltage (Charged Device Model) TA = 25 °C conforming to AEC-Q100-011 C3A 500 Symbol Ratings 750 (corners) 1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 3 Data based on characterization results, not tested in production. MPC5646C Microcontroller Data Sheet, Rev. 3 64 Preliminary—Subject to Change Without Notice Freescale Semiconductor 4.11.3.2 Static latch-up (LU) Two complementary static tests are required on six parts to assess the latch-up performance: • • A supply over-voltage is applied to each power supply pin. A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with the EIA/JESD 78 IC latch-up standard. Table 33. Latch-up results Symbol Parameter LU 4.12 Static latch-up class Conditions Class TA = 125 °C conforming to JESD 78 II level A Fast external crystal oscillator (4–40 MHz) electrical characteristics The device provides an oscillator/resonator driver. Figure 10 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator. Table 34 provides the parameter description of 4 MHz to 40 MHz crystals used for the design simulations. EXTAL C1 Crystal XTAL XTAL RD DEVICE C2 VDD I R EXTAL EXTAL Resonator DEVICE XTAL DEVICE Figure 10. Crystal oscillator and resonator connection scheme NOTE XTAL/EXTAL must not be directly used to drive external circuits. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 65 Table 34. Crystal description Crystal motional capacitance (Cm) fF Crystal motional inductance (Lm) mH Load on xtalin/xtalout C1 = C2 (pF)1 Shunt capacitance between xtalout and xtalin C02 (pF) Nominal frequency (MHz) NDK crystal reference Crystal equivalent series resistance ESR 4 NX8045GB 300 2.68 591.0 21 2.93 300 2.46 160.7 17 3.01 150 2.93 86.6 15 2.91 12 120 3.11 56.5 15 2.93 16 120 3.90 25.3 10 3.00 50 6.18 2.56 8 3.49 8 10 NX5032GA 40 NX5032GA 1 The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them. 2 The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.). S_MTRANS bit (ME_GS register) 1 0 VXTAL 1/fMXOSC VFXOSC 90% VFXOSCOP 10% TMXOSCSU valid internal clock Figure 11. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics Table 35. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics Symbol fFXOSC gmFXOSC C Parameter SR — Fast external crystal oscillator frequency Value2 Conditions1 — CC C Fast external crystal VDD = 3.3 V ± 10% oscillator VDD = 5.0 V ± 10% transconductance Unit Min Typ Max 4.0 — 40.0 MHz 8.699 13.159 15.846 mA/V 9.440 13.159 16.859 MPC5646C Microcontroller Data Sheet, Rev. 3 66 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 35. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics Symbol VFXOSC VFXOSCOP IFXOSC,3 TFXOSCSU C Parameter Conditions Value2 1 Unit Min Typ Max CC T Oscillation fOSC = 40 MHz amplitude at EXTAL For both VDD = 3.3 V ± 10%, VDD = 5.0 V ± 10% — 0.95 — CC P Oscillation operating point — 1.8 CC T Fast external crystal VDD = 3.3 V ± 10%, oscillator fOSC = 40 MHz consumption VDD = 5.0 V ± 10%, fOSC = 40 MHz — 2 2.2 — 2.3 2.5 VDD = 3.3 V ± 10%, fOSC = 16 MHz — 1.3 1.5 VDD = 5.0 V ± 10%, fOSC = 16 MHz — 1.6 1.8 — — 5 ms — CC T Fast external crystal fOSC = 40 MHz oscillator start-up For both VDD = 3.3 V ± time 10%, VDD = 5.0 V ± 10% V V mA VIH SR P Input high level CMOS (Schmitt Trigger) Oscillator bypass mode 0.65VDD_HV_A — VDD_HV_A + 0.4 V VIL SR P Input low level CMOS (Schmitt Trigger) Oscillator bypass mode 0.3 — 0.35VDD_HV_A V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. All values need to be confirmed during device validation. 3 Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals). 1 2 4.13 Slow external crystal oscillator (32 kHz) electrical characteristics The device provides a low power oscillator/resonator driver. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 67 OSC32K_EXTAL OSC32K_EXTAL Resonator Crystal C1 RP OSC32K_XTAL OSC32K_XTAL C2 DEVICE DEVICE Figure 12. Crystal oscillator and resonator connection scheme NOTE OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits. l C0 C1 Crystal Cm C2 Rm Lm C1 C2 Figure 13. Equivalent circuit of a quartz crystal Table 36. Crystal motional characteristics1 Value Symbol Parameter Conditions Unit Min Typ Max Lm Motional inductance — — 11.796 — KH Cm Motional capacitance — — 2 — fF — 18 — 28 pF AC coupled @ C0 = 2.85 pF4 — — 65 k (4) — — 50 pF(4) — — 35 AC coupled @ C0 = 9.0 pF(4) — — 30 C1/C2 Load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground2 Rm3 Motional resistance AC coupled @ C0 = 4.9 pF AC coupled @ C0 = 7.0 MPC5646C Microcontroller Data Sheet, Rev. 3 68 Preliminary—Subject to Change Without Notice Freescale Semiconductor 1 The crystal used is Epson Toyocom MC306. This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package. 3 Maximum ESR (Rm) of the crystal is 50 k 4 C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins. 2 OSCON bit (OSC_CTL register) 1 0 VOSC32K_XTAL 1/fLPXOSC32K VLPXOSC32K 90% 10% TLPXOSC32KSU valid internal clock Figure 14. Slow external crystal oscillator (32 kHz) electrical characteristics Table 37. Slow external crystal oscillator (32 kHz) electrical characteristics Symbol C Parameter fSXOSC SR — Slow external crystal oscillator frequency gmSXOSC CC — Slow external crystal oscillator transconductance VSXOSC CC T Oscillation amplitude ISXOSCBIAS CC T Oscillation bias current Value2 Conditions1 Unit Min Typ Max 32 32.768 40 kHz VDD = 3.3 V ± 10%, 17.45 — 28.23 µA/V VDD = 5.0 V ± 10% 17.79 — 29.91 — 1.2 1.4 1.7 V — 1.2 — 4.4 µA — ISXOSC CC T Slow external crystal oscillator consumption — — — 7 µA TSXOSCSU CC T Slow external crystal oscillator start-up time — — — 23 s VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. All values need to be confirmed during device validation. 3 Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal. 1 2 MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 69 4.14 FMPLL electrical characteristics The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver. Table 38. FMPLL electrical characteristics Symbol C Parameter Conditions Value2 1 Unit Min Typ Max fPLLIN SR — FMPLL reference clock3 — 4 — 64 MHz PLLIN SR — FMPLL reference clock duty cycle(3) — 40 — 60 % — 16 — 120 MHz fPLLOUT CC P FMPLL output clock frequency fCPU SR — System clock frequency — — — 120 + 2%4 MHz fFREE CC P Free-running frequency — 20 — 150 MHz tLOCK CC P FMPLL lock time 40 100 µs tLTJIT CC — FMPLL long term jitter IPLL CC C FMPLL consumption Stable oscillator (fPLLIN = 16 MHz) fPLLIN = 40 MHz (resonator), fPLLCLK @ 120 MHz, 4000 cycles — — 6 (for < 1ppm) ns TA = 25 °C — — 3 mA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. All values need to be confirmed during device validation. 3 PLLIN clock retrieved directly from 4-40 MHz XOSC or 16 MIRC. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN. 4 f CPU 120 + 2% MHz can be achieved at 125 °C. 1 2 4.15 Fast internal RC oscillator (16 MHz) electrical characteristics The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device and can also be used as input to PLL. Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics Symbol C Parameter Value2 Conditions1 Unit Min Typ Max 16 — CC P Fast internal RC oscillator high frequency SR — TA = 25 °C, trimmed — — 12 3, CC T Fast internal RC oscillator high frequency current in running mode TA = 25 °C, trimmed — — 200 µA IFIRCPWD CC D Fast internal RC oscillator high frequency current in power D down mode D TA = 25 °C — — 100 nA TA = 55 °C — — 200 nA TA = 125 °C — — 1 µA fFIRC IFIRCRUN MHz 20 MPC5646C Microcontroller Data Sheet, Rev. 3 70 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics Symbol C Parameter Conditions Unit Min Typ Max sysclk = off — 500 — sysclk = 2 MHz — 600 — sysclk = 4 MHz — 700 — sysclk = 8 MHz — 900 — sysclk = 16 MHz — 1250 — VDD = 5.0 V ± 10% — — 2.0 VDD = 3.3 V ± 10% — — 5 — TA = 125 °C VDD = 5.0 V ± 10% — — 2.0 — VDD = 3.3 V ± 10% — — 5 +1 IFIRCSTOP CC T Fast internal RC oscillator high TA = 25 °C frequency and system clock current in stop mode TFIRCSU Value2 1 CC C Fast internal RC oscillator start-up time — TA = 55 °C CC C Fast internal RC oscillator precision after software trimming of fFIRC TA = 25 °C 1 — FIRCTRIM CC C Fast internal RC oscillator trimming step TA = 25 °C — 1.6 — 5 — FIRCPRE FIRCVAR CC C Fast internal RC oscillator variation over temperature and supply with respect to fFIRC at TA = 25 °C in high-frequency configuration µA µs % % +5 % VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. All values need to be confirmed during device validation. 3 This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. 1 2 4.16 Slow internal RC oscillator (128 kHz) electrical characteristics The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module. Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics Symbol fSIRC C Parameter Value2 Conditions1 Unit Min Typ Max CC P Slow internal RC oscillator low frequency SR — TA = 25 °C, trimmed — 128 — kHz — 100 — 150 ISIRC3, CC C Slow internal RC oscillator low frequency current TA = 25 °C, trimmed — — 5 µA TSIRCSU CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V ± 10% time — 8 12 µs MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 71 Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics (continued) Symbol C Value2 1 Parameter Conditions Unit Min Typ Max SIRCPRE CC C Slow internal RC oscillator precision after software trimming of fSIRC TA = 25 °C 2 — +2 SIRCTRIM CC C Slow internal RC oscillator trimming step — — 2.7 — SIRCVAR CC C Slow internal RC oscillator variation High frequency configuration in temperature and supply with respect to fSIRC at TA = 55 °C in high frequency configuration 10 — +10 % % VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. All values need to be confirmed during device validation. 3 This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. 1 2 4.17 4.17.1 ADC electrical characteristics Introduction The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit). NOTE Due to ADC limitations, the two ADCs cannot sample a shared channel at the same time i.e., their sampling windows cannot overlap if a shared channel is selected. If this is done, neither of the ADCs can guarantee their conversion accuracies. MPC5646C Microcontroller Data Sheet, Rev. 3 72 Preliminary—Subject to Change Without Notice Freescale Semiconductor Offset Error OSE Gain Error GE 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (2) The ideal transfer curve (5) (3) Differential non-linearity error (DNL) 4 (4) Integral non-linearity error (INL) (4) (5) Center of a step of the actual transfer curve 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error OSE Figure 15. ADC_0 characteristic and error definitions 4.17.1.1 Input impedance and ADC accuracy In the following analysis, the input circuit corresponding to the precise channels is considered. To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 73 In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330 k is obtained (REQ = 1 / (fc CS), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be designed to respect the Equation 4: Eqn. 4 R S + R F + R L + R SW + R AD 1 V A --------------------------------------------------------------------------- --- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source Filter RS Current Limiter RF Sampling RSW1 RAD RL CF VA Channel Selection CP1 CP2 CS RS Source Impedance RF Filter Resistance CF Filter Capacitance Current Limiter Resistance RL RSW1 Channel Selection Switch Impedance RAD Sampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance Figure 16. Input equivalent circuit (precise channels) EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS Filter RF RL CF VA RS RF CF RL RSW RAD CP CS Current Limiter CP1 Channel Selection Extended Switch Sampling RSW1 RSW2 RAD CP3 CP2 CS Source Impedance Filter Resistance Filter Capacitance Current Limiter Resistance Channel Selection Switch Impedance (two contributions RSW1 and RSW2) Sampling Switch Impedance Pin Capacitance (three contributions, CP1, CP2 and CP3) Sampling Capacitance Figure 17. Input equivalent circuit (extended channels) MPC5646C Microcontroller Data Sheet, Rev. 3 74 Preliminary—Subject to Change Without Notice Freescale Semiconductor A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 16): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). Voltage Transient on CS VCS VA VA2 V <0.5 LSB 1 2 1 < (RSW + RAD) CS << TS 2 = RL (CS + CP1 + CP2) VA1 TS t Figure 18. Transient behavior during sampling phase In particular two different transient periods can be distinguished: 1. A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is CP CS 1 = R SW + R AD --------------------CP + CS Eqn. 5 Equation 5 can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS is always much longer than the internal time constant: Eqn. 6 1 R SW + R AD C S « T S The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to Equation 7: Eqn. 7 V A1 C S + C P1 + C P2 = V A C P1 + C P2 2. A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Eqn. 8 2 R L C S + C P1 + C P2 In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time TS, a constraints on RL sizing is obtained: MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 75 Eqn. 9 10 2 = 10 R L C S + C P1 + C P2 TS Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge balance assuming now CS already charged at VA1): Eqn. 10 VA2 C S + C P1 + C P2 + C F = V A C F + V A1 C P1 + C P2 + C S The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing. Analog source bandwidth (VA) TC < 2 RFCF (Conversion rate vs. filter pole) Noise fF = f0 (Anti-aliasing filtering condition) 2 f0 < fC (Nyquist) f0 f Anti-aliasing filter (fF = RC filter pole) fF f Sampled signal spectrum (fC = Conversion rate) f0 fC f Figure 19. Spectral representation of input signal Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on CS: Eqn. 11 VA C P1 + C P2 + C F ------------ = -------------------------------------------------------V A2 C P1 + C P2 + C F + C S MPC5646C Microcontroller Data Sheet, Rev. 3 76 Preliminary—Subject to Change Without Notice Freescale Semiconductor From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on CF value: ADC_0 (10-bit) Eqn. 12 C F 2048 C S ADC_1 (12-bit) Eqn. 13 C F 8192 C S 4.17.1.2 ADC electrical characteristics Table 41. ADC input leakage current Value Symbol C Parameter Conditions Unit Min Typ Max ILKG CC C Input leakage current TA = 40 °C No current injection on adjacent pin — 1 — C TA = 25 °C — 1 — C TA = 105 °C — 8 200 P TA = 125 °C — 45 400 nA NOTE All ADC conversion characteristics described in the table below are applicable only for the precision channels. The data for semi-precision and extended channels is awaited and same will be subsequently updated in later revs. Table 42. ADC conversion characteristics (10-bit ADC_0) Symbol C Parameter Value Conditions1 Unit Min Typ Max VSS_ADC0 SR — Voltage on VSS_HV_ADC0 (ADC_0 reference) pin with respect to ground (VSS_HV)2 — 0.1 — 0.1 V VDD_ADC0 SR — Voltage on VDD_HV_ADC0 pin (ADC_0 reference) with respect to ground (VSS_HV) — VDD_HV_A 0.1 — VDD_HV_A + 0.1 V VAINx SR — Analog input voltage3 — VSS_ADC0 0.1 — VDD_ADC0 + 0.1 V fADC0 SR — ADC_0 analog frequency — 6 — 32 + 2% MHz — — — 1.5 µs tADC0_PU SR — ADC_0 power up delay MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 77 Table 42. ADC conversion characteristics (10-bit ADC_0) (continued) Symbol C Parameter tADC0_S CC T Sample time4 tADC0_C CC P Conversion time5,6 2 Unit Min Typ Max fADC = 32 MHz 0.125 — µs fADC = 30 MHz 0.150 fADC = 32 MHz 0.625 — µs fADC = 30 MHz 0.700 — CS CC D ADC_0 input sampling capacitance — — — 3 pF CP1 CC D ADC_0 input pin capacitance 1 — — — 3 pF CP2 CC D ADC_0 input pin capacitance 2 — — — 1 pF CP3 CC D ADC_0 input pin capacitance 3 — — — 1 pF RSW1 CC D Internal resistance of analog source — — — 3 k RSW2 CC D Internal resistance of analog source — — — 2 k RAD CC D Internal resistance of analog source — — — 2 k IINJ SR — Input current Injection Current injection on one ADC_0 input, different from the converted one VDD = 3.3 V ± 10% 5 — 5 mA VDD = 5.0 V ± 10% 5 — 5 | INL | CC T Absolute value for No overload integral non-linearity — 0.5 1.5 LSB | DNL | CC T Absolute differential No overload non-linearity — 0.5 1.0 LSB | OFS | CC T Absolute offset error — — 0.5 — LSB | GNE | CC T Absolute gain error — — 0.6 — LSB TUEP CC P Total unadjusted Without current injection error7 for precise T With current injection channels, input only pins 2 0.6 2 LSB CC T Total unadjusted Without current injection error(7) for extended T With current injection channel 3 TUEX 1 Value Conditions1 3 4 3 1 3 LSB 4 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. Analog and digital VSS_HV must be common (to be tied together externally). MPC5646C Microcontroller Data Sheet, Rev. 3 78 Preliminary—Subject to Change Without Notice Freescale Semiconductor 3 4 5 6 7 VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tADC0_S. After the end of the sample time tADC0_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC0_S depend on programming. Conversion time = Bit evaluation time + Sampling time + 1 Clock cycle delay. Refer to ADC conversion table for detailed calculations. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors. Offset Error OSE Gain Error GE 4095 4094 4093 4092 4091 1 LSB ideal = AVDD / 4096 4090 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (5) (2) The ideal transfer curve (3) Differential non-linearity error (DNL) 4 (4) Integral non-linearity error (INL) (4) (5) Center of a step of the actual transfer curve 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 4090 4091 4092 4093 4094 4095 Vin(A) (LSBideal) Offset Error OSE Figure 20. ADC_1 characteristic and error definitions MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 79 NOTE All ADC conversion characteristics described in the table below are applicable only for the precision channels. The data for semi-precision and extended channels is awaited and same will be subsequently updated in later revs. Table 43. Conversion characteristics (12-bit ADC_1) Symbol Parameter Value Conditions1 Unit Min Typ Max VSS_ADC1 SR Voltage on VSS_HV_ADC1 (ADC_1 reference) pin with respect to ground (VSS_HV)2 — 0.1 0.1 V VDD_ADC13 SR Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (VSS_HV) — VDD_HV_A 0.1 VDD_HV_A + 0.1 V VAINx3,4 SR Analog input voltage5 — VSS_ADC1 0.1 VDD_ADC1 + 0.1 V fADC1 SR ADC_1 analog frequency — 8 + 2% 32 + 2% MHz tADC1_PU SR ADC_1 power up delay — tADC1_S CC Sample time6 VDD=5.0 V — 440 Sample time(6) VDD=3.3 V — 530 Conversion time7, 8 VDD=5.0 V fADC1 = 32 MHz 2 Conversion time(7), fADC 1= 30 MHz 2.1 tADC1_C CC (6) 1.5 µs ns µs VDD =5.0 V Conversion time(7), (6) fADC 1= 20 MHz 3 fADC1 = 15 MHz 3.01 VDD=3.3 V Conversion time(7), (6) VDD =3.3 V CS CC ADC_1 input sampling capacitance — 5 pF CP1 CC ADC_1 input pin capacitance 1 — 3 pF MPC5646C Microcontroller Data Sheet, Rev. 3 80 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 43. Conversion characteristics (12-bit ADC_1) (continued) Symbol Value Conditions1 Parameter Unit Min CC ADC_1 input pin capacitance 2 — 1 pF CP3 CC ADC_1 input pin capacitance 3 — 1.5 pF RSW1 CC Internal resistance of analog source — 1 k RSW2 CC Internal resistance of analog source — 2 k RAD CC Internal resistance of analog source — 0.3 k IINJ SR Input current Injection mA Current injection on one ADC_1 input, different from the converted one VDD = 3.3 V ± 10% 5 — 5 VDD = 5.0 V ± 10% 5 — 5 INLP CC Absolute Integral non-linearity-Preci se channels No overload 1 3 LSB INLX CC Absolute Integral non-linearity-Exten ded channels No overload 1.5 5 LSB DNL CC Absolute Differential non-linearity No overload 0.5 1 LSB OFS CC Absolute Offset error — 2 LSB GNE CC Absolute Gain error — 2 LSB TUEP9 CC Total Unadjusted Error for precise channels, input only pins CC Without current injection 6 6 With current injection 8 8 10 10 LSB 12 12 LSB Total Unadjusted Error for extended Without current channel injection With current injection 2 Max CP2 TUEX(9) 1 Typ VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. Analog and digital VSS_HV must be common (to be tied together externally). MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 81 3 4 5 6 7 8 9 PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be within ±100 mV of VDD_HV_B when these channels are used for ADC_1. VDD_HV_ADC1 can operate at 5V condition while VDD_HV_B can operate at 3.3V provided that ADC_1 channels coming from VDD_HV_B domain are limited in max swing as VDD_HV_B. VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0xFFF. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tADC1_S. After the end of the sample time tADC1_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC1_S depend on programming. Conversion time = Bit evaluation time + Sampling time + 1 Clock cycle delay. Refer to ADC conversion table for detailed calculations. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors. 4.18 Fast Ethernet Controller MII signals use CMOS signal levels compatible with devices operating at 3.3 V. Signals are not TTL compatible. They follow the CMOS electrical characteristics. 4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK) The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency in 2:1 mode and two times the RX_CLK frequency in 1:1 mode. Table 44. MII Receive Signal Timing Spec Characteristic Min Max Unit M1 RXD[3:0], RX_DV, RX_ER to RX_CLK setup 5 — ns M2 RX_CLK to RXD[3:0], RX_DV, RX_ER hold 5 — ns M3 RX_CLK pulse width high 35% 65% RX_CLK period M4 RX_CLK pulse width low 35% 65% RX_CLK period MPC5646C Microcontroller Data Sheet, Rev. 3 82 Preliminary—Subject to Change Without Notice Freescale Semiconductor M3 RX_CLK (input) M4 RXD[3:0] (inputs) RX_DV RX_ER M1 M2 Figure 21. MII receive signal timing diagram 4.18.2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK) The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the TX_CLK frequency in 2:1 mode and two times the TX_CLK frequency in 1:1 mode. The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs. Refer to the Fast Ethernet Controller (FEC) chapter of the JPC5604B Reference Manual for details of this option and how to enable it. Table 45. MII transmit signal timing1 1 Spec Characteristic Min Max Unit M5 TX_CLK to TXD[3:0], TX_EN, TX_ER invalid 5 — ns M6 TX_CLK to TXD[3:0], TX_EN, TX_ER valid — 25 ns M7 TX_CLK pulse width high 35% 65% TX_CLK period M8 TX_CLK pulse width low 35% 65% TX_CLK period Output pads configured with SRE = 0b11. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 83 M7 TX_CLK (input) M5 M8 TXD[3:0] (outputs) TX_EN TX_ER M6 Figure 22. MII transmit signal timing diagram 4.18.3 MII Async Inputs Signal Timing (CRS and COL) Table 46. MII Async Inputs Signal Timing1 1 Spec Characteristic Min Max Unit M9 CRS, COL minimum pulse width 1.5 — TX_CLK period Output pads configured with SRE = 0b11. CRS, COL M9 Figure 23. MII async inputs timing diagram 4.18.4 MII Serial Management Channel Timing (MDIO and MDC) The FEC functions correctly with a maximum MDC frequency of 2.5 MHz. Table 47. MII serial management channel timing1 Spec Characteristic Min Max Unit M10 MDC falling edge to MDIO output invalid (minimum propagation delay) 0 — ns M11 MDC falling edge to MDIO output valid (max prop delay) — 25 ns M12 MDIO (input) to MDC rising edge setup 28 — ns M13 MDIO (input) to MDC rising edge hold 0 — ns MPC5646C Microcontroller Data Sheet, Rev. 3 84 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 47. MII serial management channel timing1 (continued) Spec 1 Characteristic Min Max Unit M14 MDC pulse width high 40% 60% MDC period M15 MDC pulse width low 40% 60% MDC period Output pads configured with SRE = 0b11. M14 M15 MDC (output) M10 MDIO (output) M11 MDIO (input) M12 M13 Figure 24. MII serial management channel timing diagram MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 85 4.19 4.19.1 On-chip peripherals Current consumption Table 48. On-chip peripherals current consumption1 Value2 Symbol C Parameter Conditions Unit Min IDD_HV_A(CAN) CC IDD_HV_A(eMIOS) CC D CAN (FlexCAN) supply current on VDD_HV_A 500 Kbps 125 Kbps Total (static + dynamic) consumption: FlexCAN in loop-back mode XTAL@8 MHz used as CAN engine clock source Message sending period is 580 µs D eMIOS supply current on VDD_HV_A Static consumption: eMIOS channel OFF Global prescaler enabled Typ 7.652 fperiph + 84.73 CC D SCI (LINFlex) supply current on VDD_HV_A Total (static + dynamic) consumption: LIN mode Baudrate: 20 Kbps IDD_HV_A(SPI) CC D SPI (DSPI) supply current on VDD_HV_A Ballast static consumption (only clocked) µA 8.0743 fperiph + 26.757 28.7 fperiph Dynamic consumption: It does not change varying the frequency (0.003 mA) IDD_HV_A(SCI) Max 3 4.7804 fperiph + 30.946 Ballast dynamic consumption (continuous communication): Baudrate: 2 Mbit Trasmission every 8 µs Frame: 16 bits 1 16.3 fperiph MPC5646C Microcontroller Data Sheet, Rev. 3 86 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 48. On-chip peripherals current consumption1 Value2 Symbol C Parameter Conditions Unit Min IDD_HV_A(ADC) CC IDD_HV_ADC(ADC) CC 1 2 D ADC supply current on VDD_HV_A D ADC supply current on VDD_HV_ADC Typ Max VDD = 5.5 V Ballast static consumption (no conversion) 0.0409 fperiph VDD = 5.5 V Ballast dynamic consumption (continuous conversion) 0.0049 fperiph VDD = 5.5 V Analog static consumption (no conversion) 0.0017 fperiph VDD = 5.5 V Analog dynamic consumption (continuous conversion) 0.075 fperiph + 0.032 IDD_HV(FLASH) CC D CFlash + DFlash supply current on VDD_HV_ADC VDD = 5.5 V — 13.25 IDD_HV(PLL) CC D PLL supply current on VDD_HV VDD = 5.5 V — 0.0031 fperiph mA Operating conditions: TA = 25 °C, fperiph = 8 MHz to 120 MHz. fperiph is in absolute value. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 87 4.19.2 DSPI characteristics Table 49. DSPI timing Spec Characteristic Symbol Unit Min Max Refer note1 — ns tCSC — 115 ns tASC 15 — ns 1 DSPI Cycle Time tSCK — Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1->0 — Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1->1 2 CS to SCK Delay2 tCSC 7 — ns 3 After SCK Delay3 tASC 15 — ns 4 SCK Duty Cycle tSDC 0.4 tSCK 0.6 tSCK ns — Slave Setup Time (SS active to SCK setup time) tSUSS 5 — ns — Slave Hold Time (SS active to SCK hold time) tHSS 10 — ns 5 Slave Access Time (SS active to SOUT valid)4 tA — 42 ns 6 Slave SOUT Disable Time (SS inactive to SOUT High-Z or invalid) tDIS — 25 ns 7 CSx to PCSS time tPCSC 0 — ns 8 PCSS to PCSx time tPASC 0 — ns MPC5646C Microcontroller Data Sheet, Rev. 3 88 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 49. DSPI timing (continued) Spec 9 10 11 12 1 2 3 4 5 6 7 8 Characteristic Symbol Data Setup Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)5 Master (MTFE = 1, CPHA = 1) tSUI Data Hold Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)5 Master (MTFE = 1, CPHA = 1) tHI Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) tSUO Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) tHO Unit Min Max 36 5 36 36 — — — — ns ns ns ns 0 4 0 0 — — — — ns ns ns ns — — — — 12 37 12 12 ns ns ns ns 06 9.5 07 08 — — — — ns ns ns ns This value of this parameter is dependent upon the external device delays and the other parameters mentioned in this table. The maximum value is programmable in DSPI_CTARn [PSSCK] and DSPI_CTARn [CSSCK]. For JPC5604B, the spec value of tCSC will be attained only if TDSPI x PSSCK x CSSCK > tCSC . The maximum value is programmable in DSPI_CTARn [PASC] and DSPI_CTARn [ASC]. For JPC5604B, the spec value of tASC will be attained only if TDSPI x PASC x ASC > tASC. The parameter value is obtained from tSUSS and tSUO for slave. This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b00. For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 0) is 2 ns. For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 0) is 2 n. For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 1) is 2 ns. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 89 2 3 CSx 1 4 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 9 SIN 10 First Data Last Data Data 12 SOUT First Data 11 Data Last Data Note: Numbers shown reference Table 49. Figure 25. DSPI classic SPI timing–master, CPHA = 0 CSx SCK Output (CPOL = 0) 10 SCK Output (CPOL = 1) 9 SIN Data First Data 12 SOUT First Data Last Data 11 Data Last Data Note: Numbers shown reference Table 49. Figure 26. DSPI classic SPI timing–master, CPHA = 1 MPC5646C Microcontroller Data Sheet, Rev. 3 90 Preliminary—Subject to Change Without Notice Freescale Semiconductor 3 2 SS 1 4 SCK Input (CPOL = 0) 4 SCK Input (CPOL = 1) 5 SOUT First Data 9 SIN 12 11 Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 49. Figure 27. DSPI classic SPI timing–slave, CPHA = 0 MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 91 SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 12 SOUT First Data 9 SIN Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 49. Figure 28. DSPI classic SPI timing–slave, CPHA = 1 MPC5646C Microcontroller Data Sheet, Rev. 3 92 Preliminary—Subject to Change Without Notice Freescale Semiconductor 3 CSx 4 1 2 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 9 SIN First Data 10 Last Data Data 12 SOUT First Data 11 Data Last Data Note: Numbers shown reference Table 49. Figure 29. DSPI modified transfer format timing–master, CPHA = 0 MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 93 CSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) 10 9 SIN First Data Data 12 SOUT First Data Data Last Data 11 Last Data Note: Numbers shown reference Table 49. Figure 30. DSPI modified transfer format timing–master, CPHA = 1 MPC5646C Microcontroller Data Sheet, Rev. 3 94 Preliminary—Subject to Change Without Notice Freescale Semiconductor 3 2 SS 1 SCK Input (CPOL = 0) 4 4 SCK Input (CPOL = 1) First Data SOUT Data 6 Last Data 10 9 Data First Data SIN 12 11 5 Last Data Note: Numbers shown reference Table 49. Figure 31. DSPI modified transfer format timing–slave, CPHA = 0 SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 12 First Data SOUT 9 SIN Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 49. Figure 32. DSPI modified transfer format timing–slave, CPHA = 1 MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 95 8 7 PCSS CSx Note: Numbers shown reference Table 49. Figure 33. DSPI PCS strobe (PCSS) timing 4.19.3 Nexus characteristics Table 50. Nexus debug port timing1 Spec Characteristic Symbol Min Max Unit 1 MCKO Cycle Time2 tMCYC 16.3 — ns 2 MCKO Duty Cycle tMDC 40 60 % 3 MCKO Low to MDO, MSEO, EVTO Data Valid3 tMDOV –0.1 0.25 tMCYC 4 EVTI Pulse Width tEVTIPW 4.0 — tTCYC 5 EVTO Pulse Width tEVTOPW 1 6 TCK Cycle Time4 tTCYC 40 — ns 7 TCK Duty Cycle tTDC 40 60 % 8 TDI, TMS Data Setup Time tNTDIS, tNTMSS 8 — ns 9 TDI, TMS Data Hold Time tNTDIH, tNTMSH 5 — ns 10 TCK Low to TDO Data Valid tJOV 0 25 ns tMCYC 1 JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at VDDE = 4.0 – 5.5 V, TA = TL to TH, and CL = 30 pF with SRC = 0b11. 2 MCKO can run up to 1/2 of full system frequency. It can also run at system frequency when it is <60 MHz. 3 MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 4 The system clock frequency needs to be three times faster than the TCK frequency. MPC5646C Microcontroller Data Sheet, Rev. 3 96 Preliminary—Subject to Change Without Notice Freescale Semiconductor 1 2 MCKO 3 MDO MSEO EVTO Output Data Valid 5 EVTI 4 Figure 34. Nexus output timing MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 97 6 7 TCK 8 9 TMS, TDI 10 TDO Figure 35. Nexus TDI, TMS, TDO timing 4.19.4 JTAG characteristics Table 51. JTAG characteristics Value No. Symbol C Parameter Unit Min Typ Max 1 tJCYC CC D TCK cycle time 64 — — ns 2 tTDIS CC D TDI setup time 10 — — ns 3 tTDIH CC D TDI hold time 5 — — ns 4 tTMSS CC D TMS setup time 10 — — ns 5 tTMSH CC D TMS hold time 5 — — ns MPC5646C Microcontroller Data Sheet, Rev. 3 98 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 51. JTAG characteristics (continued) Value No. Symbol C Parameter Unit Min Typ Max 6 tTDOV CC D TCK low to TDO valid — — 33 ns 7 tTDOI CC D TCK low to TDO invalid 6 — — ns — tTDC CC D TCK Duty Cycle 40 — 60 % — tTCKRISE CC D TCK Rise and Fall Times — — 3 ns TCK 2/4 DATA INPUTS 3/5 INPUT DATA VALID 6 DATA OUTPUTS OUTPUT DATA VALID 7 DATA OUTPUTS Note: Numbers shown reference Table 51. Figure 36. Timing diagram - JTAG boundary scan MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 99 5 Package characteristics 5.1 Package mechanical data 5.1.1 176 LQFP package mechanical drawing MPC5646C Microcontroller Data Sheet, Rev. 3 100 Preliminary—Subject to Change Without Notice Freescale Semiconductor Figure 37. 176 LQFP mechanical drawing (Part 1 of 3) MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 101 Figure 38. 176 LQFP mechanical drawing (Part 2 of 3) MPC5646C Microcontroller Data Sheet, Rev. 3 102 Preliminary—Subject to Change Without Notice Freescale Semiconductor E E Figure 39. 176 LQFP mechanical drawing (Part 3 of 3) 5.1.2 208 LQFP package mechanical drawing MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 103 Figure 40. 208 LQFP mechanical drawing (Part 1 of 3) MPC5646C Microcontroller Data Sheet, Rev. 3 104 Preliminary—Subject to Change Without Notice Freescale Semiconductor Figure 41. 208 LQFP mechanical drawing (Part 2 of 3) MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 105 Figure 42. 208 LQFP mechanical drawing (Part 3 of 3) MPC5646C Microcontroller Data Sheet, Rev. 3 106 Preliminary—Subject to Change Without Notice Freescale Semiconductor MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 107 5.1.3 256 MAPBGA package mechanical drawing Figure 43. 256 MAPBGA mechanical drawing (Part 1 of 2) MPC5646C Microcontroller Data Sheet, Rev. 3 108 Preliminary—Subject to Change Without Notice Freescale Semiconductor Figure 44. 256 MAPBGA mechanical drawing (Part 2 of 2) MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 109 6 Ordering information Example code: M PC 56 4 6 B C F0 M LL 1 R Qualification Status Power Architecture Automotive Platform Core Version Flash Size (core dependent) Product Optional fields Fab and mask indicator Temperature spec. Package Code CPU Frequency R = Tape & Reel (blank if Tray) Product Version B = Body C = Gateway Qualification Status M = MC status S = Auto qualified P = PC status Optional fields C = CSE module available Blank = none of these options available PC = Power Architecture Automotive Platform 56 = Power Architecture in 90 nm Core Version 4 = e200z4d core version (highest core version in the case of multiple cores) Flash Memory Size 4 = 1.5 MB 5 = 2 MB 6 = 3 MB Fab and mask version indicator F = ATMC 0 = First version of the mask Temperature spec. C = –40 °C to 85 °C V = –40 °C to 105 °C M = –40 °C to 125 °C Package Code LU = 176 LQFP LT = 208 LQFP MJ = 256 MAPBGA CPU Frequency 1 = e200z4d operates up to 120 MHz 8 = e200z4d operates up to 80 MHz Shipping Method R = Tape and reel Blank = Tray Figure 45. Commercial product code structure MPC5646C Microcontroller Data Sheet, Rev. 3 110 Preliminary—Subject to Change Without Notice Freescale Semiconductor 7 Revision history Table 52 summarizes revisions to this document. Table 52. Revision history Revision Date Changes 1 15 April 2010 Initial Release 2 17 Aug 2010 • • • • • • • • • • • • • • • • • • • • • • • • • Editing and formatting updates throughout the document. Updated Voltage regulator capacitance connection figure. Added a new sub-section “VDD_BV Options” Program and erase specifications: -Updated Tdwprogram TYP to 22 us -Updated T128Kpperase Max to 5000 ms -Added tESUS parameter Added 208 MAPBGA thermal characteristics Added recommendation in the Voltage regulator electrical characteristics section. Added Crystal description table in Fast external crystal oscillator (4 to 140 MHz) electrical characteristics section and corrected the cross-reference to the same. Added new sections - Pad types, System pins and functional ports Updated TYP numbers in the Flash program and erase specifications table Added a new table: Program and erase specifications (Data Flash) Flash read access timing table: Added Data flash memory numbers Flash power supply DC electrical characteristics table: Updated IDFREAD and IDFMOD values for Data flash, Removed IDFLPW parameter Updated feature list. Family comparison table: Updated ADC channels and added ADC footnotes. Block diagram: Updated ADC channels and added legends. Series block summary: Added new blocks. Functional Port Pin Descriptions table: Added OSC32k_XTAL and OSC32k_EXTAL function at PB8 and PB9 port pins. Electrical Characteristics: Replaced VSS with VSS_HV throughout the section. Absolute maximum ratings, Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V) tables: VRC_CTRL min is updated to "0". Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V) tables: Clarified VIN parameter, clarified footnote 2 in both tables. LQFP thermal characteristics section: Updated numbers for LQFP packages. Low voltage power domain electrical characteristics table: Clarified footnotes based upon review comments. Code flash memory—Program and erase specifications: Updated tESRT to 20 ms. ADC electrical characteristics section: Replace ADC0 with ADC_0 and ADC1 with ADC_1 throughout the document. DSPI characteristics section: Replaced PCSx with CSx in all figures and tables. MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 111 Table 52. Revision history (continued) Revision Date Changes 3 TBD • Replaced VIL min from –0.4 V to –0.3 V in the following tables: - I/O input DC electrical characteristics - Reset electrical characteristics - Fast external crystal oscillator (4 to 40 MHz) electrical characteristics • Updated Crystal oscillator and resonator connection scheme figure • Specified NPN transistor as the recommended BCP68 transistor throughout the document • Code and Data flash memory—Program and erase specifications tables: Renamed the parameter tESUS to Teslat • Revised the footnotes in the “Functional port pin descriptions” table. • In the “System pin descriptions” table, added a footnote to the A pads regarding not using IBE. For ports PB[12–15], changed ANX to ADC0_X. • Revised the presentation of the ADC functions on the following ports: PB[4–7] PD[0–11] • ADC conversion characteristics (10-bit ADC_0) table and Conversion characteristics (12-bit ADC_1) table- Updated footnote 5 and 7 respectively for the definition of the conversion time. • Data flash memory—Program and erase specifications: Updated Twprogram to 500 µs and T16Kpperase to 500 µs. Corrected Teslat classsification from “C” to “D”. • Code flash memory—Program and erase specifications: Corrected Teslat classification from “C” to “D”. • Flash Start-up time/Switch-off time: Changed TFLARSTEXIT classification from “C” to “D”. • Functional port pin description: Added a footnote at the PB [9] port pin. • Absolute maximum ratings table: Added footnote 1. • Low voltage power domain electrical characteristics table: Updated IDDHALT, IDDSTOP, IDDSTBY3, IDDSTDBY2, IDDSTDBY1. • Slow external crystal oscillator (32 kHz) electrical characteristics table: Updated gmSXOSC, VSXOSC, ISXOSCBIAS and ISXOSC. • FMPLL electrical characteristics table: Updated tLTJIT. • Fast internal RC oscillator (16 MHz) electrical characteristics table: Updated TFIRCSU and IFIRCPWD. • MII serial management channel timing table: Updated M12 • JTAG characteristics table: Updated tTDOV. • Low voltage monitor electrical characteristics table: Updated VLVDHV3H, VLVDHV3L, VLVDHV5H, VLVDHV5L. • DSPI electricals table: Updated spec 1, 5, 6. Updated footnote 2 and 3. Added tCSC, tASC, tSUSS, tHSS. • IO consumption table: Updated all parameter values. • DSPI electricals: Updated tCSC max to 115 ns. • Low voltage power domain electrical characteristics table: Added footnote 9. • ADC electrical characteristics: Added 2 notes above 10-bit and 12-bit conversion tables. MPC5646C Microcontroller Data Sheet, Rev. 3 112 Preliminary—Subject to Change Without Notice Freescale Semiconductor Appendix A Abbreviations Table 53 lists abbreviations used but not defined elsewhere in this document. Table 53. Abbreviations Abbreviation CS Meaning Chip select EVTO Event out MCKO Message clock out MDO Message data out MSEO Message start/end out MTFE Modified timing format enable SCK Serial communications clock SOUT Serial data out TBD To be defined TCK Test clock input TDI Test data input TDO Test data output TMS Test mode select MPC5646C Microcontroller Data Sheet, Rev. 3 Freescale Semiconductor Preliminary—Subject to Change Without Notice 113 How to Reach Us: Home Page: www.freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010, 2011. All rights reserved. For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] Document Number: MPC5646C Rev. 3 May 2011 MPC5646C Microcontroller Data Sheet, Rev. 3 114 Preliminary—Subject to Change Without Notice Freescale Semiconductor