R1232D SERIES PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER NO.EA-129-0606 OUTLINE The R1232D Series are CMOS-based PWM step-down DC/DC converters with synchronous rectifier, low supply current. As an output capacitor, a 10µF or more ceramic capacitor can be used with the R1232D. Each of these ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a soft-start circuit, protection circuits, a protection against miss operation under low voltage (UVLO), a chip enable circuit, a synchronous rectifier, Nch. driver transistor, and so on. A low ripple, high efficiency step-down DC/DC converter can be easily composed of this IC with only a few kinds of external components, or an inductor and capacitors. (As for R1232D001x type, divider resistors are also necessary.) In terms of the output voltage, it is fixed internally in the R1232Dxx1x types. While in the R1232D001x types, the output voltage is adjustable with external divider resistors. As protection circuits, current limit circuit which limits peak current of LX at each clock cycle, and latch type protection circuit exist. The latch protection works if the term of the over-current condition keeps on a certain time. Latch-type protection circuit works to latch an internal driver with keeping it disable. To release the condition of protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make the supply voltage at UVLO detector threshold level or lower than UVLO. FEATURES • Two choices of Oscillator Frequency ............................ 1MHz, 2.25MHz (Small inductors can be used. 4.7µH for 1MHz/2.2µH for 2.25MHz) • Built-in Driver ON Resistance ....................................... P-channel 0.2Ω (at VIN=5.0V) • Built-in Soft-start Function............................................. Typ. 1.0ms (fosc=1MHz type) • Output Voltage .............................................................. 0.9V to 3.3V (xx1x Type) 0.8V to VIN (001x Type) • High Accuracy Output Voltage ......................................±2.0% • Built-in Current Limit Circuit .......................................... Typ. 1.4A • Package ........................................................................SON-8 (t=0.9mm) APPLICATIONS • Power source for portable equipment such as PDA, DSC, Notebook PC. • Power source for HDD 1 R1232D BLOCK DIAGRAMS R1232Dxx1A/B VDD 3 VIN 7 AGND 2 Slope Compensation Current Limit 5 VOUT 4 CE Phase Compensation Q LX S Output Contorol 8 R PWM Comparator Error Amplifer Oscillator Soft Start TEST Circuit UVLO Vref “H” Active Chip Enable 1 6 PGND TEST “L” or GND Fixed R1232D001C/D VDD 3 VIN 7 AGND 2 Slope Compensation Current Limit 5 VFB 4 CE Phase Compensation Q LX Output Contorol 8 R S PWM Comparator Error Amplifer Oscillator Soft Start TEST Circuit UVLO Vref “H” Active Chip Enable 2 1 6 PGND TEST “L” or GND Fixed R1232D SELECTION GUIDE In the R1232D Series, the output voltage, the oscillator frequency, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below; R1232Dxx1x-xx-x ←Part Number ↑ ↑↑ ↑ ↑ a bc d e Code Contents a Setting Output Voltage(VOUT): Stepwise setting with a step of 0.1V in the range of 0.9V to 3.3V is possible for fixed output version."00" is for Output Voltage Adjustable version (0.8V as the feedback voltage.) b 1: fixed c d e Designation of Optional Function A: 1MHz, Fixed Output Voltage B: 2.25MHz, Fixed Output Voltage C: 1MHz, Adjustable Output Voltage D: 2.25MHz, Adjustable Output Voltage Designation of Taping Type; (Refer to Taping Specification)"TR" is prescribed as a standard. Designation of Composition of pin plating -F : Lead free plating 3 R1232D PIN CONFIGURATION SON-8 Top View 8 7 Bottom View 6 5 5 6 ∗ 1 2 7 8 ∗ 3 4 ∗ 4 3 2 1 PIN DESCRIPTIONS Pin No Symbol Pin Description 1 PGND 2 VIN Voltage Supply Pin 3 VDD Voltage Supply Pin 4 CE Chip Enable Pin (active with "H") 5 VOUT/VFB 6 TEST Test Pin (Forced to the "L" or GND level.) 7 AGND Ground Pin 8 LX Ground Pin Output/Feedback Pin LX Switching Pin (CMOS Output) ∗ Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns. ABSOLUTE MAXIMUM RATINGS Symbol Item Unit VIN VIN Supply Voltage 6.5 V VDD VDD Pin Voltage 6.5 V VLX LX Pin Voltage −0.3 to VIN + 0.3 V VCE CE Pin Input Voltage −0.3 to VIN + 0.3 V TEST Pin Input Voltage −0.3 to VIN + 0.3 V VFB VFB Pin Input Voltage −0.3 to VIN + 0.3 V ILX LX Pin Output Current ±1.5 V 480 mW VTEST PD 1 Power Dissipation (SON-8)* Topt Operating Temperature Range −40 to 85 °C Tstg Storage Temperature Range −55 to 125 °C ∗1) For the power dissipation, refer to the package information on the website. 4 Rating R1232D ELECTRICAL CHARACTERISTICS • R1232DxxxA/C Topt=25°C Symbol VIN Item Conditions Operating Input Voltage Min. Max. Unit 2.6 5.5 V ×1.020 V 0.816 V VOUT Step-down Output Voltage VIN=VCE=5.0V, IOUT=10mA ×0.980 VFB Feedback Voltage VIN=VCE=5.0V, IOUT=10mA 0.784 Step-down Output Voltage Temperature Coefficient −40°C Oscillator Frequency VIN=VCE =VSET +1.5V Supply Current VIN=VCE =5.5V, VOUT=5.5V Standby Current VCE=VOUT=0V, VIN= 5.5V ILXleak LX Leakage Current VIN=5.5V,VCE=0V VLX=0V/5.5V RONP RONN ∆VOUT/∆Topt fosc IDD Istandby Maxduty < = Topt < = Typ. 0.800 ppm/ °C ±150 85°C 0.75 1.00 1.25 MHz 70 140 190 µA 0.0 5.0 µA 0.0 5.0 µA ON Resistance of Pch Transistor VIN=5.0V, ILX=200mA 0.20 0.35 Ω ON Resistance of Nch Transistor VIN=5.0V, ILX=200mA 0.20 0.35 Ω Oscillator Maximum Duty Cycle −5.0 100 % tstart Soft-start Time VIN=VCE =5.0V, at no load 0.5 1.0 1.4 ms tprot Protection Delay Time VIN=VCE =5.0V 0.1 2.0 10.0 ms ILXlimit Lx Current Limit VIN=VCE =5.0V 1.0 1.4 VUVLO1 UVLO Detector Threshold VIN=VCE =2.6V-> 1.5V 2.10 2.25 2.40 V VUVLO2 UVLO Released Voltage VIN=VCE =1.5V-> 2.6V 2.20 VUVLO1 +0.10 2.50 V CE Input Current VIN=5.5V, VCE =5.5V/0V −0.1 0.0 0.1 µA IVOUT VOUT Leakage Current VIN=5.5V, VCE =0V, VOUT=5.5V/0V −0.1 0.0 0.1 VCEH CE "H" Input Voltage VIN=5.5V 1.5 VCEL CE "L" Input Voltage VIN=3.0V 0.3 V TEST pin "L" Input Voltage VIN=3.0V 0.3 V ICE VTESTL A µA V 5 R1232D • R1232DxxxB/D Topt=25°C Symbol VIN Conditions Operating Input Voltage Min. Typ. Max. Unit 2.6 5.5 V ×1.020 V 0.816 V VOUT Step-down Output Voltage VIN=VCE=5.0V,IOUT=10mA ×0.980 VFB Feedback Voltage VIN=VCE=5.0V,IOUT=10mA 0.784 Step-down Output Voltage Temperature Coefficient −40°C Oscillator Frequency VIN=VCE=VSET+1.5V 1.91 2.25 2.58 MHz Supply Current VIN=VCE=5.5V, VOUT=5.5V 170 240 310 µA Standby Current VCE=VOUT=0V, VIN=5.5V 0.0 5.0 µA ILXleak LX Leakage Current VIN=5.5V, VCE=0V, VLX=0V/5.5V 0.0 5.0 µA RONP ON Resistance of Pch Transistor VIN=5.0V, ILX=200mA 0.20 0.35 Ω RONN ON Resistance of Nch Transistor VIN=5.0V, ILX=200mA 0.20 0.35 Ω ∆VOUT/∆Topt fosc IDD Istandby Maxduty < = Topt < = ppm/ °C ±150 85°C Oscillator Maximum Duty Cycle 0.800 −5.0 100 % tstart Soft-start Time VIN=VCE=5.0V, at no load 0.15 0.4 0.7 ms tprot Protection Delay Time VIN=VCE=5.0V 0.1 2.0 10.0 ms ILXlimit LX Current Limit VIN=VCE=5.0V 1.0 1.4 VUVLO1 UVLO Detector Threshold VIN=VCE=2.6V -> 1.5V 2.10 2.25 2.40 V VUVLO2 UVLO Released Voltage VIN=VCE =1.5V -> 2.6V 2.20 VUVLO1 +0.10 2.50 V CE Input Current VIN=5.5V, VCE =5.5V/0V −0.1 0.0 0.1 µA IVOUT VOUT Leakage Current VIN=5.5V, VCE=0V, VOUT=5.5V/0V −0.1 0.0 0.1 VCEH CE "H" Input Voltage VIN=5.5V 1.5 VCEL CE "L" Input Voltage VIN=3.0V 0.3 V TEST "L" Input Voltage VIN=3.0V 0.3 V ICE VTESTL 6 Item A µA V R1232D TEST CIRCUIT LX PGND VIN AGND VDD TEST CE VFB A Test Circuit for Input Current and Leakage Current PGND A LX PGND LX VIN AGND VIN AGND VDD TEST VDD TEST CE VFB CE VFB Test Circuit for Supply Current and Standby Current PGND V Test Circuit for ON resistance of LX LX VIN AGND VDD TEST CE VFB OSCILLOSCOPE Input Voltage, Output Voltage, Frequency, Lx Current Limit, Protection Delay Time, UVLO Voltage Test Circuit PGND LX VIN AGND VDD TEST CE VFB OSCILLOSCOPE Soft Start Time Test Circuit The bypass capacitor between power supply and GND is a ceramic capacitor 10µF. 7 R1232D TYPICAL APPLICATION AND TECHNICAL NOTES • Fixed Output Voltage Type L PGND VOUT LX CIN • VIN AGND VDD TEST CE VFB LOAD COUT Adjustable Output Type L PGND VOUT LX CIN VIN AGND VDD TEST CE VFB LOAD COUT Cb R1 R2 CIN 10µF C2012JB0J106MT (TDK), 10µF CM21B106M06AB (Kyocera) COUT 10µF C2012JB0J106MT (TDK), 10µF CM21B106M06AB (Kyocera) 4.7µH/2.7µH VLP5610-4R7MR90, VLP5610-2R7M1R0 (TDK) *2.2µH is also suitable for B version. L In terms of setting R1, R2, Cb, refer to the technical notes. 8 R1232D When you use these ICs, consider the following issues; • Input the same voltage into power supply pins, VIN and VDD. Set the same level as AGND and PGND. • When you control the CE pin by another power supply, do not make its "H" level more than the voltage level of VIN / VDD pin. • Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular, minimize the wiring to VIN pin and PGND pin. • At stand by mode, (CE="L"), the LX output is Hi-Z, or both P-channel transistor and N-channel transistor of LX pin turn off. • In terms of the protection circuits, current limit for the peak current of each cycle of Lx, and the latch protection circuit, which works if the over-limit current flows continuously for a certain time exist. To release the protection, once make this IC into be standby mode with chip enable pin, or make the supply voltage be down to UVLO threshold level or less. • Reinforce the VIN, PGND, and VOUT lines sufficiently. Large switching current may flow in these lines. If the impedance of VIN and PGND lines is too large, the internal voltage level in this IC may shift caused by the switching current, and the operation might be unstable. • Connect the TEST Pin to the "L" or GND level. The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values. 9 R1232D OPERATION of step-down DC/DC converter and Output Current The step-down DC/DC converter charges energy in the inductor when LX transistor is ON, and discharges the energy from the inductor when LX transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams: <Basic Circuits> <Current through L> i1 Lx Tr VIN SD IOUT L i2 VOUT CL Step 1: P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from Ilmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr. Step 2: When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL at ILmax, and current IL (=i2) flows. Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr. Turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value increases from this Ilmin (>0). In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant. • Continuous Conduction Mode The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the same as those when P-channel Tr. turns on and off. The difference between ILmax and ILmin, which is represented by ∆I; ∆I=ILmax−ILmin=VOUT×topen/L=(VIN−VOUT)×ton/L ........................................................Equation 1 Where, t=1/fosc=ton+toff duty (%)=ton/t×100=ton×fosc×100 topen < = toff In Equation 1, VOUT×topen/L and (VIN−VOUT) ×ton/L are respectively shown the change of the current at ON, and the change of the current at OFF. Even if the output current (IOUT) is, topen < toff as illustrated in the above diagram is not realized with this IC. At least, topen is equal toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The mode is referred to as the continuous mode. 10 R1232D In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc tonc=t×VOUT/VIN............................................................................................................. Equation 2 When the ton=tonc, the mode is the continuous mode. OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS When P-channel Tr. of LX is ON: (Wherein, Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. and N-channel Tr. of LX are respectively described as RONP and RONN, and the DC resistor of the inductor is described as RL.) VIN=VOUT+(RONP+RL)×IOUT+L×IRP/ton .............................................................................. Equation 3 When P-channel Tr. of LX is "OFF"(N-channel Tr. is "ON"): L×IRP/toff=VF+VOUT+RONN×IOUT ....................................................................................... Equation 4 Put Equation 4 to Equation 3 and solve for ON duty of P-channel transistor, Don=ton/(toff+ton), DON=(VOUT−RONN×IOUT+RL×IOUT)/(VIN+RONN×IOUT−RONP×IOUT) ........................................... Equation 5 Ripple Current is as follows; IRP=(VIN−VOUT−RONP×IOUT−RL×IOUT)×DON/fosc/L .............................................................. Equation 6 wherein, peak current that flows through L, and LX Tr. is as follows; ILmax=IOUT+IRP/2 .......................................................................................................... Equation 7 Consider ILmax, condition of input and output and select external components. ÌThe above explanation is directed to the calculation in an ideal case in continuous mode. 11 R1232D How to Adjust Output Voltage and about Phase Compensation As for Adjustable Output type, feedback pin (VFB) voltage is controlled to maintain 0.8V. Output Voltage, VOUT is as following equation; VOUT R1+R2=VFB:R2 VOUT=VFB×(R1+R2)/R2 Thus, with changing the value of R1 and R2, output voltage can be set in the specified range. In the DC/DC converter, with the load current and external components such as L and C, phase might be behind 180 degree. In this case, the phase margin of the system will be less and stability will be worse. To prevent this, phase margin should be secured with proceeding the phase. A pole is formed with external components L and COUT. fpole ~ 1/2π LCOUT A zero (signal back to zero) is formed with R1 and Cb. ≅fzero ~ 1/(2p×R1×Cb) First, choose the appropriate value of R1, R2 and Cb. Set R1+R2 value 100kΩ or less. For example, if L=4.7µH, COUT =10µF, the cut off frequency of the pole is approximately 23kHz. To make the cut off frequency of the zero by R1, R2, and Cb be higher than 23kHz, set R1=33kΩ and Cb=100pF.If VOUT is set at 2.0V, R2=22kΩ is appropriate. 12 R1232D External Components 1.Inductor Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows, magnetic saturation occurs and makes transform efficiency be worse. Supposed that the load current is at the same, the smaller value of L is used, the larger the ripple current is. Provided that the allowable current is large in that case and DC current is small, therefore, for large output current, efficiency is better than using an inductor with a large value of L and vice versa. 2.Capacitor As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) Ceramic type of a capacity at least 10µF for stable operation. COUT can reduce ripple of the output voltage, therefore as much as 10µF ceramic type is recommended. TIMING CHART Output Short Intemal Opertional Intemal Soft-start Set Voltage Amplifier Output CE pin Voltage Output Short Intemal Oscillator Waveform Lx Pin Output Latched Soft-start Time Stable Delay Time of Protection The timing chart as shown above describes the waveforms starting from the IC is enabled with CE and latched with protection. During the soft-start time, until the level is rising up to the internal soft-start set voltage, the duty cycle of LX is gradually wider and wider to prevent the over-shoot of the voltage. During the term, the output of amplifier is "H". After the output voltage reaches the set output voltage, they are balanced well. Herein, if the output pin would be short circuit, the output of amplifier would become "H" again, and the condition would continue for 2.0ms (Typ.), latch circuit would work and the output of LX would be latched with "OFF". (Output ="High-Z") If the output short is released before the latch circuit works (within 2ms after output shorted), the output of amplifier is balanced in the stable state again. Once the IC is latched, to release the protection, input "L" with CE pin, or make the supply voltage at UVLO level or less. 13 R1232D TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current (CIN = 10µF, COUT = 10µF) R1232D121A VIN=5.0V 1.250 1.200 1.150 VIN=5.0V 3.400 Output Voltage VOUT(V) 1.300 Output Voltage VOUT(V) R1232D331A 1.100 3.350 3.300 3.250 3.200 1 10 100 Output Current IOUT(mA) 1000 1 R1232D121B 1.250 1.200 1.150 1.100 VIN=5.0V 3.400 Output Voltage VOUT(V) Output Voltage VOUT(V) 1000 R1232D331B VIN=5.0V 1.300 10 100 Output Current IOUT(mA) 3.350 3.300 3.250 3.200 1 10 100 Output Current IOUT(mA) 1000 1 10 100 Output Current IOUT(mA) 1000 2) Efficiency vs. Output Current (CIN = 10µF, COUT = 10µF) VIN=3.3V, 5.0V 100 90 80 70 60 50 40 30 20 10 0 (VIN=5.0V) (VIN=3.3V) 1 10 100 Output Current IOUT(mA) R1232D121B 14 R1232D331A Efficiency(%) Efficiency(%) R1232D121A 1000 VIN=5.0V 100 90 80 70 60 50 40 30 20 10 0 1 10 100 Output Current IOUT(mA) R1232D331B 1000 VIN=3.3V, 5.0V 100 90 80 70 60 50 40 30 20 10 0 Efficiency(%) Efficiency(%) R1232D (VIN=5.0V) (VIN=3.3V) 1 10 100 Output Current IOUT(mA) VIN=5.0V 100 90 80 70 60 50 40 30 20 10 0 1000 1 10 100 Output Current IOUT(mA) 1000 3) Output Waveform R1232D121A 0.04 0.03 0.02 0.01 0 -0.01 -0.02 -0.03 -0.04 -3 -2 -1 0 1 Time t(ns) 2 VIN=5.0V, IOUT=600mA 0.04 Output Ripple Voltage(V) Output Ripple Voltage(V) R1232D331A VIN=5.0V, IOUT=600mA 0.03 0.02 0.01 0 -0.01 -0.02 -0.03 -0.04 3 -3 -2 R1232D121B 0.02 0 -0.02 -0.04 -1.0 -0.5 0 0.5 Time t(ns) 2 3 1.0 1.5 VIN=5.0V, IOUT=600mA 0.04 Output Ripple Voltage(V) Output Ripple Voltage(V) 0.04 -0.06 -1.5 0 1 Time t(ns) R1232D331B VIN=5.0V, IOUT=600mA 0.06 -1 0.03 0.02 0.01 0 -0.01 -0.02 -0.03 -0.04 -1.5 -1.0 -0.5 0 0.5 Time t(ns) 1.0 1.5 15 R1232D 4) Load Transient Response Output Current 10mA→600mA 0.2 0.4 0.6 0.3 0.2 0.1 0 0 -0.1 Output Voltage -50 0 50 100 Time t (µs) -0.2 -0.3 200 150 VIN=5.0V 0.7 0.6 0.4 Output Current 600mA→10mA 0.2 0.3 0.1 0 -50 0.8 0.4 0.6 0.3 0.2 0.1 0 0 -0.1 Output Voltage -50 0 50 100 Time t (µs) 150 -0.2 Output Current IOUT(A) Output Current 10mA→600mA 0.5 Output Voltage VOUT(V) Output Current IOUT(A) 0.6 0.2 0.2 Output Voltage 0 50 100 Time t (µs) 150 -0.1 200 R1232D121B VIN=5.0V 0.4 0.5 0.4 0 R1232D121B 0.8 0.8 -0.3 200 VIN=5.0V 0.8 0.7 0.6 0.4 Output Current 600mA→10mA 0.2 0.5 0.4 0 0.3 Output Voltage 0.2 0.1 0 -50 0 50 100 Time t (µs) 150 -0.1 200 5) Output Voltage vs. Input Voltage R1232D121A 1.21 1.20 1.19 1.18 2.5 3.0 3.5 4.0 4.5 5.0 Input Voltage VIN(V) 5.5 6.0 IOUT=600mA 3.32 Output Voltage VOUT(V) 1.22 Output Voltage VOUT(V) R1232D331A IOUT=600mA 3.31 3.30 3.29 3.28 3.0 3.5 4.0 4.5 5.0 5.5 Input Voltage VIN(V) 6) Oscillator Frequency vs. Input Voltage R1232D121A 16 R1232D121B 6.0 Output Voltage VOUT(V) 0.4 0.8 Output Current IOUT(A) 0.6 0.5 Output Voltage VOUT(V) 0.8 Output Current IOUT(A) R1232D121A VIN=5.0V Output Voltage VOUT(V) R1232D121A R1232D IOUT=600mA 1.05 1.00 0.95 0.90 2.5 3.0 3.5 4.0 4.5 5.0 Input Voltage VIN(V) 5.5 IOUT=600mA 2.4 Frequency fosc(MHz) Frequency fosc(MHz) 1.10 2.3 2.2 2.1 2.0 2.5 6.0 3.0 3.5 4.0 4.5 5.0 Input Voltage VIN(V) 5.5 6.0 7) Lx Transistor On Resistance vs. Input Voltage Switching Tr. Pch on Resistance 0.14 0.13 0.12 0.11 0.10 0.09 2.5 3.0 3.5 4.0 4.5 5.0 Input Voltage VIN(V) 5.5 6.0 IOUT=200mA 0.14 on Resistance(Ω) on Resistance(Ω) Synchronous Rectifier Tr. Nch on Resistance IOUT=200mA 0.13 0.12 0.11 0.10 0.09 2.5 3.0 3.5 4.0 4.5 5.0 Input Voltage VIN(V) 5.5 6.0 8) Turn-on speed by CE pin R1232D121A R1232D121A VIN=5.0V, L=4.7µH Rload=0Ω VIN=5.0V, L=4.7µH Rload=12Ω CE 5V/div CE 5V/div VOUT 1V/div VOUT 1V/div IL 200mA/div IL 200mA/div 200µs/div R1232D331B 200µs/div R1232D331B 17 R1232D VIN=5.0V, L=2.7µH Rload=0Ω VIN=5.0V, L=2.7µH Rload=33Ω CE 5V/div CE 5V/div VOUT 1V/div VOUT 1V/div IL 200mA/div IL 200mA/div 100µs/div 100µs/div 9) Output Voltage vs. Temperature R1232D121A 1.22 1.20 1.18 1.16 1.14 -40 -15 10 35 60 Temperature Topt(°C) VIN=5.0V 3.40 Output Voltage VOUT(V) 1.24 Output Voltage VOUT(V) R1232D331A VIN=5.0V 3.35 3.30 3.25 3.20 -40 85 -15 10 35 60 Temperature Topt(°C) 85 10) Oscillator Frequency vs. Temperature R1232D121A 1.20 1.10 1.00 0.90 0.80 0.70 -40 18 2.50 Frequency fOCS(MHz) Frequency fOCS(MHz) 1.30 R1232D331B VIN=5.0V -15 10 35 60 Temperature Topt(°C) 85 VIN=5.0V 2.40 2.30 2.20 2.10 2.00 -40 -15 10 35 60 Temperature Topt(°C) 85 R1232D 11) Supply Current vs. Temperature R1232D121A 125 120 115 110 -40 -15 10 35 60 Temperature Topt(°C) VIN=5.0V 230 Supply Current IDD1(µA) 130 Supply Current IDD1(µA) R1232D331B VIN=5.0V 225 220 215 210 -40 85 -15 10 35 60 Temperature Topt(°C) 85 12) Soft-start time vs. Temperature R1232D121A 1100 900 700 500 -40 600 Soft-start Time tstart(ms) Soft-start Time tstart(ms) 1300 R1232D331B VIN=5.0V, Rload=0Ω -15 10 35 60 Temperature Topt(°C) 550 500 450 400 350 300 -40 85 VIN=5.0V, Rload=0Ω -15 10 35 60 Temperature Topt(°C) 85 13) UVLO Voltage vs. Temperature R1232D121A UVLO Released Voltage UVLO02(V) UVLO Detector Voltage UVLO01(V) R1232D121A 2.40 2.30 2.20 2.10 -40 -15 10 35 60 Temperature Topt(°C) 85 2.50 2.40 2.30 2.20 -40 -15 10 35 60 Temperature Topt(°C) 85 19 R1232D 14) CE Input Voltage vs. Temperature R1232D121A 1.5 CE Input Voltage "L" VCEL(V) 1.5 CE Input Voltage "H" VCEH(V) R1232D121A VIN=5.0V, CE=H Threshold 1.3 1.0 0.8 0.5 -40 -15 10 35 60 Temperature Topt(°C) 1.3 1.0 0.8 0.5 -40 85 VIN=5.0V, CE=L Threshold -15 10 35 60 Temperature Topt(°C) 85 15) TEST Input Voltage vs. Temperature R1232D121A VIN=5.0V TEST Input Voltage VTESTL(V) 1.5 1.3 1.0 0.8 0.5 -40 -15 10 35 60 Temperature Topt(°C) 85 16) Lx Transistor On Resistance vs. Temperature 20 0.30 Rectifier Tr.Nch ON Resistance VIN=5.0V 0.20 0.10 0.00 -40 -15 10 35 60 Temperature Topt(°C) 85 Nch. Lx Transistor On Resistance RONN(Ω) Pch. Lx Transistor On Resistance RONP(Ω) Driver Tr. Pch ON Resistance 0.30 VIN=5.0V 0.20 0.10 0.00 -40 -15 10 35 60 Temperature Topt(°C) 85 R1232D 17) Current Limit vs. Temperature R1232D121A -1.05 -1.30 -1.55 -1.80 -40 -15 10 35 60 Temperature Topt(°C) VIN=5.0V -0.80 Lx Current Limit ILXlimit(A) -0.80 Lx Current Limit ILXlimit(A) R1232D331B VIN=5.0V -1.05 -1.30 -1.55 -1.80 -40 85 -15 10 35 60 Temperature Topt(°C) 85 18) Protection Delay Time vs. Temperatures 10.0 R1232D331B VIN=5.0V Protection Delay Time tprot(ms) Protection Delay Time tprot(ms) R1232D121A 7.5 5.0 2.5 0.0 -40 -15 10 35 60 Temperature Topt(°C) 85 6.0 VIN=5.0V 5.0 4.0 3.0 2.0 1.0 0.0 -40 -15 10 35 60 Temperature Topt(°C) 85 21 PACKAGE INFORMATION • PE-SON-8-0510 SON-8 Unit: mm PACKAGE DIMENSIONS 2.9±0.2 0.15 +0.1 −0.15 0.13±0.05 0.475TYP 1 0.23±0.1 0.2±0.1 5 0.2±0.1 2.8±0.2 3.0±0.2 8 0.15 +0.1 −0.15 4 Attention : Tab suspension leads in the parts have VDD or GND level. (They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. 0.9MAX. 0.13±0.05 Bottom View 0.1 0.65 0.3±0.1 0.1 M TAPING SPECIFICATION 4.0±0.1 +0.1 φ1.5 0 2.0±0.05 3.3 4.0±0.1 2.0MAX. ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) 2±0.5 0 ∅ 180 −1.5 ∅ 60 +1 0 21±0.8 ∅13±0.2 11.4±1.0 9.0±0.3 8.0±0.3 3.2 3.5±0.05 1.75±0.1 0.2±0.1 PACKAGE INFORMATION PE-SON-8-0510 POWER DISSIPATION (SON-8) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.5mm × 44pcs Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Free Air Power Dissipation 480mW 300mW Thermal Resistance θja=(125−25°C)/0.48W=208°C/W 333°C/W On Board 480 500 400 40 Free Air 300 200 40 Power Dissipation PD(mW) 600 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area (Unit : mm) RECOMMENDED LAND PATTERN 0.65 0.65 1.15 0.35 (Unit: mm) MARK INFORMATION ME-R1232D-0510 R1232D SERIES MARK SPECIFICATION • SON-8 to 1 1 R • 2 3 4 5 6 5 , 4 6 : Product Code (refer to Part Number vs. Product Code) : Lot Number Part Number vs. Product Code Part Number Product Code Part Number Product Code Part Number Product Code 1 2 3 4 1 2 3 4 1 2 3 4 R1232D091A K 0 9 A R1232D091B K 0 9 B R1232D001C K 0 1 C R1232D101A K 1 0 A R1232D101B K 1 0 B R1232D001D K 0 1 D R1232D111A K 1 1 A R1232D111B K 1 1 B R1232D121A K 1 2 A R1232D121B K 1 2 B R1232D131A K 1 3 A R1232D131B K 1 3 B R1232D141A K 1 4 A R1232D141B K 1 4 B R1232D151A K 1 5 A R1232D151B K 1 5 B R1232D161A K 1 6 A R1232D161B K 1 6 B R1232D171A K 1 7 A R1232D171B K 1 7 B R1232D181A K 1 8 A R1232D181B K 1 8 B R1232D191A K 1 9 A R1232D191B K 1 9 B R1232D201A K 2 0 A R1232D201B K 2 0 B R1232D211A K 2 1 A R1232D211B K 2 1 B R1232D221A K 2 2 A R1232D221B K 2 2 B R1232D231A K 2 3 A R1232D231B K 2 3 B R1232D241A K 2 4 A R1232D241B K 2 4 B R1232D251A K 2 5 A R1232D251B K 2 5 B R1232D261A K 2 6 A R1232D261B K 2 6 B R1232D271A K 2 7 A R1232D271B K 2 7 B R1232D281A K 2 8 A R1232D281B K 2 8 B R1232D291A K 2 9 A R1232D291B K 2 9 B R1232D301A K 3 0 A R1232D301B K 3 0 B R1232D311A K 3 1 A R1232D311B K 3 1 B R1232D321A K 3 2 A R1232D321B K 3 2 B R1232D331A K 3 3 A R1232D331B K 3 3 B