RICOH RH5RI351B

VFM STEP-UP DC/DC CONVERTER
RH5RI××1B/××2B/××3B SERIES
APPLICATION MANUAL
NO.EA-025-0006
VFM STEP-UP DC/DC CONVERTER
RH5RI ×× 1B/ ×× 2B/ ×× 3B SERIES
OUTLINE
The RH5RI ×× 1B/×× 2B/×× 3B Series are VFM (Chopper) Step-up DC/DC converter ICs with ultra low supply
current by CMOS process.
The RH5RI×× 1B IC consists of an oscillator, a VFM control circuit, a driver transistor (Lx switch), a reference
voltage unit, an error amplifier, resistors for voltage detection, and an Lx switch protection circuit. A low ripple,
high efficiency step-up DC/DC converter can be constructed of this RH5RI×× 1B IC with only three external components, that is, an inductor, a diode and a capacitor.
The RH5RI×× 2B IC uses the same chip as that employed in the RH5RI×× 1B IC and is provided with a drive
pin (EXT) for an external transistor instead of an Lx pin, so that a power transistor with a low saturation voltage
can be externally provided, whereby a large current can be caused to flow through the inductor and accordingly a
large current can be obtained. Therefore, the RH5RI×× 2B IC is recommendable to the user who need a current
as large as several tens mA toseveral hundreds mA.
The RH5RI×× 3B IC also includes an internal chip enable circuit so that it is possible to set the standby supply current at MAX. 0.5µA.
These RH5RI×× 1B/×× 2B/×× 3B ICs are suitable for use with battery-powered instruments with low noise
and ultra low supply current.
FEATURES
• Small Number of External Components ..........Only an inductor, a diode and a capacitor (RH5RI ×× 1B)
• Ultra Low Input Current ...................................TYP. 4µA (RH5RI301B/303B at no load,with 1.5V input)
• High Output Voltage Accuracy .........................±2.5%
• Low Ripple and Low Noise
• Low Start-up Voltage (When the output current is 1mA) ......................MAX. 0.9V
• High Efficiency ...................................................TYP.80%
• Low Temperature-Drift Coefficient of Output Voltage ..........................TYP. ±50 ppm/˚C
• Small Packages ...................................................SOT-89 (RH5RI ×× 1B, RH5RI ×× 2B)
SOT-89-5 (RH5RI ×× 3B)
APPLICATIONS
• Power source for battery-powered equipment.
• Power source for cameras, camcorders, VCRs, PDAs, electronic data banks,and hand-held communication
equipment.
• Power source for appliances which require higher cell voltage than that of batteries used in the appliances.
1
RH5RI
BLOCK DIAGRAM
Vref
VLX limiter
Lx
LxSW
OUT
Buffer
–
Vss
VFM Control
+
OSC 100kHz
EXT
Error Amp.
Chip Enable
CE
(Note) Lx Pin............only for RH5RI ×× 1B and RH5RI ×× 3B
EXT Pin.........only for RH5RI ×× 2B and RH5RI×× 3B
CE Pin...........only for RH5RI ×× 3B
SELECTION GUIDE
In RH5RI Series, the output voltage, the driver, and the taping type for the ICs can be selected at the user's
request. The selection can be made by designating the part number as shown below :
}
}
}
RH5RI ×××× – ×× ← Part Number
↑ ↑
↑
a b
c
Code
Contents
a
Setting Output Voltage (VOUT):
Stepwise setting with a step of 0.1V in the range of 2.5V to 7.5V is possible.
b
Designation of Driver:
1B: Internal Lx Tr. Driver (Oscillator Frequency 100kHz)
2B: External Tr. Driver (Oscillator Frequency 100kHz)
3B: Internal Tr./External Tr. (selectively available) (Oscillator Frequency 100kHz, with chip
enable function)
c
Designation of Taping type :
Ex. SOT-89 : T1, T2
SOT-89-5 : T1, T2
(refer to Taping Specification)
“T1” is prescribed as a standard.
For example, the product with Output Voltage 5.0V, the External Driver (the Oscillator Frequency 100kHz)
and Taping Type T1, is designated by Part Number RH5RI502B-T1.
2
RH5RI
PIN CONFIGURATION
• SOT-89
• SOT-89-5
5
(mark side)
1
2
×× 1A/×× 2B
4
(mark side)
3
1
2
3
PIN DESCRIPTION
Pin No.
Symbol
Description
×× 1B
×× 2B
×× 3B
1
1
5
VSS
Ground Pin
2
2
2
OUT
Step-up Output Pin, Power Supply (for device itself)
3
—
4
Lx
—
3
3
EXT
—
—
1
CE
Switching Pin (Nch Open Drain)
External Tr. Drive Pin (CMOS Output)
Chip Enable Pin (Active Low)
3
RH5RI
ABSOLUTE MAXIMUM RATINGS
Symbol
Rating
Unit
Output Pin Voltage
+12
V
VLX
Lx Pin Voltage
+12
V
Note1
VEXT
EXT Pin Voltage
–0.3 to VOUT+0.3
V
Note2
VCE
CE Pin Voltage
–0.3 to VOUT+0.3
V
Note3
ILX
Lx Pin Output Current
250
mA
Note1
IEXT
EXT Pin Current
±50
mA
Note2
PD
Power Dissipation
500
mW
VOUT
Item
Vss=0V
Topt
Operating Temperature Range
–30 to +80
˚C
Tstg
Storage Temperature Range
–55 to +125
˚C
Tsolder
Lead Temperature (Soldering)
Note
260˚C,10s
(Note 1) Applicable to RH5RI ×× 1A and RH5RI ×× 3B.
(Note 2) Applicable to RH5RI ×× 2B and RH5RI ×× 3B.
(Note 3) Applicable to RH5RI ×× 3B.
ABSOLUTE MAXIMUM RATINGS
Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any
conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above
these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress
ratings only and do not necessarily imply functional operation below these limits.
4
RH5RI
ELECTRICAL CHARACTERISTICS
• RH5RI301B
VOUT=3.0V
Symbol
VOUT
VIN
Item
Conditions
Output Voltage
MIN.
TYP.
MAX.
Unit
2.925
3.000
3.075
V
8
V
0.9
V
Input Voltage
Vstart
Start-up Voltage
IOUT=1mA,VIN:0→2V
Vhold
Hold-on Voltage
IOUT=1mA,VIN:2→0V
IIN1
Input Current 1
IIN2
Input Current 2
ILX
Lx Switching Current
ILXleak
Lx Leakage Current
0.7
To be measured at VIN
at no load
To be measured at VIN
VIN=3.5V
VLX=0.4V
V
4
8
µA
2
5
µA
60
mA
VLX=6V,VIN=3.5V
Maximum Oscillator
fosc
0.8
Note
0.5
µA
80
100
120
kHz
65
75
85
%
70
80
0.65
0.8
Frequency
Maxdty
η
Oscillator Duty Cycle
on (VLX “L” ) side
Efficiency
VLXlim
VLX Voltage Limit
Lx Switch On
%
1.0
V
Note
Unless otherwise provided, VIN=1.8V, Vss=0V, IOUT=10mA, Topt=25˚C, and use External Circuit of Typical
Application (FIG. 1).
(Note)
ILX is gradually increased by the external inductor after Lx Switch is turned ON. In accordance with the increase of ILX, VLX is also increased.
When VLX reaches VLXlim, Lx Switch is turned OFF by Lx Switch Protection Circuit. The time period from the time at which VLX reaches VLXlim to
the time at which Lx Switch is turned OFF is about 3µs.
5
RH5RI
• RH5RI501B
VOUT=5.0V
Symbol
VOUT
VIN
Item
Conditions
Output Voltage
MIN.
TYP.
MAX.
Unit
4.875
5.000
5.125
V
8
V
0.9
V
Input Voltage
Vstart
Start-up Voltage
IOUT=1mA,VIN:0 →2V
Vhold
Hold-on Voltage
IOUT=1mA,VIN:2→0V
IIN1
Input Current 1
0.8
0.7
To be measured at VIN
at no load
IIN2
Input Current 2
To be measured at VIN
Note
V
6
12
µA
2
5
µA
VIN=5.5V
ILX
Lx Switching Current
ILXleak
Lx Leakage Current
VLX=0.4V
mA
VLX=6V,VIN=5.5V
Maximum Oscillator
fosc
80
0.5
µA
80
100
120
kHz
65
75
85
%
70
80
0.65
0.8
Frequency
Maxdty
η
Oscillator Duty Cycle
on (VLX “L” ) side
Efficiency
VLXlim
VLX Voltage Limit
Lx Switch On
%
1.0
V
Note2
Unless otherwise provided, VIN=3V, Vss=0V, IOUT=10mA, Topt=25˚C, and use External Circuit of Typical
Application (FIG. 1).
(Note)
6
ILX is gradually increased by the external inductor after Lx Switch is turned ON. In accordance with the increase of ILX, VLX is also increased.
When VLX reaches VLXlim, Lx Switch is turned OFF by Lx Switch Protection Circuit. The time period from the time at which VLX reaches VLXlim to
the time at which Lx Switch is turned OFF is about 3µs.
RH5RI
• RH5RI302B
VOUT=3.0V
Symbol
VOUT
VIN
Item
Conditions
Output Voltage
MIN.
TYP.
MAX.
Unit
2.925
3.000
3.075
V
8
V
Input Voltage
Oscillator Start-up Voltage
EXT at no load,VOUT:0 →2V
0.7
0.8
V
IDD1
Supply Current 1
EXT at no load,VOUT=2.88V
30
50
µA
IDD2
Supply Current 2
EXT at no load,VOUT=3.5V
2
5
µA
IEXTH
EXT “H” Output Current
VEXT=VOUT–0.4V
–1.5
mA
IEXTL
EXT “L” Output Current
VEXT=0.4V
Vstart
fosc
Maximum Oscillator
1.5
Note
mA
80
100
120
kHz
65
75
85
%
Frequency
Maxdty
Oscillator Duty Cycle
VEXT “H” side
Unless otherwise provided, VIN=1.8V, Vss=0V, IOUT=10mA, Topt=25˚C, and use External Circuit of Typical
Application (FIG. 2).
• RH5RI502B
VOUT=5.0V
Symbol
VOUT
VIN
Item
Conditions
Output Voltage
MIN.
TYP.
MAX.
Unit
4.875
5.000
5.125
V
8
V
Input Voltage
Oscillator Start-up Voltage
EXT at no load,VOUT:0→2V
0.7
0.8
V
IDD1
Supply Current 1
EXT at no load,VOUT=4.8V
60
90
µA
IDD2
Supply Current 2
EXT at no load,VOUT=5.5V
2
5
µA
IEXTH
EXT “H” Output Current
VEXT=VOUT–0.4V
–2
mA
IEXTL
EXT “L” Output Current
VEXT=0.4V
Vstart
fosc
Maximum Oscillator
2
Note
mA
80
100
120
kHz
65
75
85
%
Frequency
Maxdty
Oscillator Duty Cycle
VEXT “H” side
Unless otherwise provided, VIN=3V, Vss=0V, IOUT=10mA, Topt=25˚C, and use External Circuit of Typical
Application (FIG. 2).
7
RH5RI
• RH5RI303B
VOUT=3.0V
Symbol
VOUT
VIN
Item
Conditions
Output Voltage
TYP.
MAX.
Unit
2.925
3.000
3.075
V
8
V
0.9
V
Input Voltage
Vstart
Start-up Voltage
IOUT=1mA,VIN:0→2V
Vhold
Hold-on Voltage
IOUT=1mA,VIN:2→0V
η
MIN.
Input Current 1
IIN2
Input Current 2
ILX
Lx Switching Current
0.7
70
Efficiency
IIN1
0.8
To be measured at VIN
at no load
To be measured at VIN
VIN=3.5V
VLX=0.4V
V
80
%
4
8
µA
2
5
µA
60
mA
ILXleak
Lx Leakage Current
VLX=6V,VIN=3.5V
0.5
µA
IEXTH
EXT “H” Output Current
VEXT=VOUT –0.4V
–1.5
mA
IEXTL
EXT “L” Output Current
VEXT=0.4V
1.5
mA
VCEH1
CE “H” Level 1
VOUT≥1.5V
VOUT –0.4
V
VCEL1
CE “L” Level 1
VOUT≥1.5V
VCEH2
CE “H” Level 2
0.8V≤VOUT<1.5V
VCEL2
CE “L” Level 2
0.8V≤VOUT<1.5V
0.1
V
0.5
µA
ICEH
CE “H” Input Current
CE=3V
ICEL
CE “L” Input Current
CE=0V
fosc
Maximum Oscillator
Maxdty
Oscillator Duty Cycle
VLXlim
VLX Voltage Limit
0.4
VOUT–0.1
V
V
–0.5
µA
80
100
120
kHz
on (VLX “L” )side
65
75
85
%
Lx Switch on
0.65
0.8
1.0
V
Frequency
Note
Note
Unless otherwise provided, VIN=1.8V, VSS=0V, IOUT=10mA, Topt=25˚C, and use External Circuit of Typical
Application (FIG. 3).
(Note) ILX is gradually increased by the external inductor after Lx Switch is turned ON. In accordance with the increase of ILX, VLX is also increased.
When VLX reaches VLXlim, Lx Switch is turned OFF by Lx Switch Protection Circuit. The time period from the time at which VLX reaches VLXlim to
the time at which Lx Switch is turned OFF is about 3µs.
8
RH5RI
• RH5RI503B
VOUT=5.0V
Symbol
VOUT
VIN
Item
Conditions
Output Voltage
TYP.
MAX.
Unit
4.875
5.000
5.125
V
8
V
0.9
V
Input Voltage
Vstart
Start-up Voltage
IOUT=1mA,VIN:0→2V
Vhold
Hold-on Voltage
IOUT=1mA,VIN:2→0V
η
MIN.
Efficiency
IIN1
Input Current 1
IIN2
Input Current 2
ILX
Lx Switching Current
0.8
0.7
70
To be measured at VIN
at no load
To be measured at VIN
VIN=5.5V
VLX=0.4V
V
85
%
6
12
µA
2
5
µA
80
mA
ILXleak
Lx Leakage Current
VLX=6V,VIN=5.5V
0.5
µA
IEXTH
EXT “H” Output Current
VEXT=VOUT –0.4V
–2.0
mA
IEXTL
EXT “L” Output Current
VEXT=0.4V
2.0
mA
VCEH1
CE “H” Level 1
VOUT≥1.5V
VOUT–0.4
V
VCEL1
CE “L” Level 1
VOUT≥1.5V
VCEH2
CE “H” Level 2
0.8V≤VOUT<1.5V
VCEL2
CE “L” Level 2
0.8V≤VOUT<1.5V
0.1
V
0.5
µA
ICEH
CE “H” Input Current
CE=5V
ICEL
CE “L” Input Current
CE=0V
fosc
Maximum Oscillator
Maxdty
Oscillator Duty Cycle
VLXlim
VLX Voltage Limit
0.4
VOUT–0.1
V
V
–0.5
µA
80
100
120
kHz
on (VLX “L” )side
65
75
85
%
Lx Switch on
0.65
0.8
1.0
V
Frequency
Note
Note
Unless otherwise provided, VIN=3V, VSS=0V, IOUT=10mA, Topt=25˚C and use External Circuit of Typical
Application (FIG. 3).
(Note) ILX is gradually increased by the external inductor after Lx Switch is turned ON. In accordance with the increase of ILX, VLX is also increased.
When VLX reaches VLXlim, Lx Switch is turned OFF by Lx Switch Protection Circuit. The time period from the time at which VLX reaches VLXlim to
the time at which Lx Switch is turned OFF is about 3µs.
9
RH5RI
OPERATION OF STEP-UP DC/DC CONVERTER
Step-up DC/DC Converter charges energy in the inductor when Lx Transistor (LxTr) is on, and discharges the
energy with the addition of the energy from Input Power Source thereto, so that a higher output voltage than the
input voltage is obtained.
The operation will be explained with reference to the following diagrams :
< Basic Circuits >
< Current through L >
IL
i2
L
VIN
ILmax
IOUT
SD
ILmin
topen
VOUT
i1
Lx Tr
CL
t
toff
ton
T=1/fosc
Step 1 : LxTr is turned ON and current IL (=i1 ) flows, so that energy is charged in L. At this moment, IL(=i1 )
is increased from ILmin (=0) to reach ILmax in protection to the on-time period (ton) of LxTr.
Step 2 : When LxTr is turned OFF, Schottky diode (SD) is turned on in order that L maintains IL at ILmax, so that
current IL (=i2) is released.
Step 3 : IL (=i2) is gradually decreased, and IL reaches ILmin (=0) after a time period of topen, so that SD is
turned OFF.
In the case of VFM control system, the output voltage is maintained constant by controlling the oscillator frequency (fosc) with the on-time period (ton) being maintained constant.
In the above two diagrams, the maximum value (ILmax) and the minimum value (ILmin) of the current which
flows through the inductor are the same as those when LxTr is ON and also when LxTr is OFF.
The difference between ILmax and ILmin, which is represented by ∆I, is:
∆I=ILmax–ILmin=VIN · ton/L=(VOUT–VIN) · topen/L ..........................................Equation 1
wherein T=1/fosc=ton+toff
duty (%)=ton/T · 100=ton · fosc · 100
topen≤toff
In Equation 1,VIN · ton/L and (VOUT –VIN) · topen/L are respectively the change in the current at ON, and the
change in the current at OFF.
In the VFM system, topen < toff as illustrated in the above diagram. In this case, the energy charged in the
inductor during the time period of ton is discharged in its entirely during the time period of toff, so that ILmin
becomes zero (ILmin=0).
10
RH5RI
SELECTION OF PERIPHERAL COMPONENTS
When LxTr is on, the energy PON charged in the inductor is provided by Equation 2 as follows :
ton
PON=∫0ton (VIN · IL (t)) dt=∫0 (VIN2 · t/L) dt
=VIN2 · ton2/(2 · L).................................................................................................... Equation 2
In the case of the step-up DC/DC converter, the energy is also supplied from the input power source at the time
of OFF.
Thus, POFF =∫0topen(VIN · IL (t)) dt=∫0topen (VIN · (VOUT–VIN) · t/L)dt
=VIN · (VOUT –VIN) · topen2/(2 · L)
Here, topen=VIN · ton/(VOUT–VIN) from Equation 1, and when this is substituted into the above equation.
=VIN3 · ton2/(2 · L · (VOUT–VIN)) ............................................................................Equation 3
Input power PIN is (PON+POFF)/T. When this is converted in its entirely to the output.
PIN=(PON+POFF)/T=VOUT · IOUT=POUT .........................................................................Equation 4
Equation 5 can be obtained as follows by solving Equation 4 for IOUT by substituting Equation 2 and 3 into
Equation 4 :
IOUT=VIN2 · ton2/(2 · L · T · (VOUT–VIN)
=VIN2 · maxdty2/(20000 · fosc · L · (VOUT –VIN)) ...................................................Equation 5
The peak current which flows through L · LxTr · SD is
ILmax=VIN · ton/L .......................................................................................................... Equation 6
Therefore, it is necessary that the setting of the input/output conditions and the selection of peripheral components be made with ILmax taken into consideration.
HINTS
The above explanation is directed to the calculation in an ideal case where it is supposed that there is no
energy loss in the external components and LxSW. In an actual case, the maximum output current will be 50
to 80% of the above calculated maximum output current. In particular, care must be taken because VIN is
decreased in an amount corresponding to the voltage reduction caused by LxSW when IL is large or VIN is
small. Furthermore, It is required that with respect to VOUT, Vf of the diode (about 0.3V in the case of a
Schottky type diode) be taken into consideration.
When ILX and VLX exceed their respective ratings, use RH5RI ×× 2B and RH5RI ×× 3B ICs with the attachment of an external transistor with a low saturation voltage thereto.
11
RH5RI
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current
RH5RI351B
3.0
1.0V
VIN=0.9V
2.0V
2.0
1.5
1.0
0.5
0
0
60
40
80
Output Current IOUT(mA)
RH5RI501B
Output Voltage VOUT(V)
3.5
3.0V
3.0
1.0V
2.5
VIN=0.9V
2.0
1.5
1.0
0.5
4.0V
2.0V
VIN=0.9V
3
2
1
20
4.0V
5
40
80
60
Output Current IOUT(mA)
2.0V
3
VIN=0.9V
2
1
100
0
20
3.5
1.0V
VIN=0.9V
2.0V
3.0V
2.5
2.0
1.5
1.0
0.5
400
200
Output Current IOUT(mA)
600
L=28µH
6
5
4
VIN=0.9V
100
80
40
60
Output Current IOUT(mA)
RH5RI502B
L=28µH
Output Voltage VOUT(V)
Output Voltage VOUT(V)
3.0V
1.5V
4
0
20
4.0
12
L=120µH
6
RH5RI352B
0
0
100
40
60
80
Output Current IOUT(mA)
RH5RI501B
L=82µH
3.0V
1.5V
4
0
100
5
3.0
2.0V
0
20
6
0
0
Output Voltage VOUT(V)
3.0V
L=120µH
4.0
Output Voltage VOUT(V)
Output Voltage VOUT(V)
3.5
2.5
RH5RI351B
L=82µH
4.0
1.5V
2.0V
3.0V
4.0V
3
2
1
0
0
200
400
Output Current IOUT(mA)
600
RH5RI
2) Efficiency vs. Output Current
100
90
80
70
1.0V
60
V
IN
=0.9V
50
40
30
20
10
0
20
0
RH5RI351B
L=82µH
3.0V
Efficiency η(%)
Efficiency η(%)
RH5RI351B
2.0V
60
40
80
Output Current IOUT(mA)
100
RH5RI501B
RH5RI501B
Efficiency η(%)
RH5RI352B
1.0V
VIN=0.9V
0
2.0V
Efficiency η(%)
100
90
80
4.0V
70
3.0V
60
1.5V
2.0V
50 VIN=0.9V
40
30
20
10
0
60
100
40
0
20
80
Output Current I OUT(mA)
3.0V
400
200
Output Current I OUT(mA)
600
L=120µH
100
4.0V
90
80
3.0V
70
1.5V
60 VIN=0.9V
2.0V
50
40
30
20
10
0
40
0
20
80
100
60
Output Current IOUT(mA)
RH5RI502B
L=28µH
Efficiency η(%)
Efficiency η(%)
L=82µH
100
90
80
70
60
50
40
30
20
10
0
L=120µH
100
90
80
3.0V
70
2.0V
1.0V
60
50 VIN=0.9V
40
30
20
10
0
60
80
20
40
0
100
Output Current IOUT(mA)
L=28µH
100
90
80
4.0V
70
3.0V
2.0V
60
1.5V
50
40
VIN=0.9V
30
20
10
0
600
200
0
400
Output Current IOUT(mA)
13
RH5RI
3) Output Current vs.Ripple Voltage
100
80
3.0V
60
2.0V
1.5V
40
RH5RI351B
L=82µH
Ripple Voltage Vr (mV p-p)
Ripple Voltage Vr (mV p-p)
RH5RI351A
120
20
100
80
3.0V
60
1.5V
20
VIN=0.9V
40
60
80
Output Current IOUT(mA)
Ripple Voltage Vr (mV p-p)
RH5RI501B
0
100
0
100
4.0V
80
3.0V
60
2.0V
40
20
VIN=0.9V
0
40
20
60
80
Output Current IOUT(mA)
120
4.0V
100
3.0V
80
60
2.0V
40
20
VIN=0.9V
20
40
60
80
Output Current IOUT(mA)
RH5RI502B
L=28µH
250
2.0V
3.0V
1.5V
VIN=0.9V
0
14
100
100
200
300
Output Current IOUT(mA)
400
100
L=120µH
140
0
0
Ripple Voltage Vr (mV p-p)
Ripple Voltage Vr (mV p-p)
RH5RI352B
200
180
160
140
120
100
80
60
40
20
0
40
20
60
80
Output Current I OUT(mA)
RH5RI501B
L=82µH
Ripple Voltage Vr (mV p-p)
20
120
0
2.0V
40
VIN=0.9V
0
0
L=120µH
120
3.0V
100
L=28µH
4.0V
200
2.0V
150
100
50
VIN=0.9V
0
0
200
400
Output Current IOUT(mA)
600
RH5RI
L=82µH
1.2
1.0
Vstart
0.8
0.6
Vhold
0.4
0.2
0
0
5
10
Output Current IOUT(mA)
15
RH5RI352B
L=28µH
2.5
2.0
1.5
Vstart
1.0
Vhold
0.5
0
100
150
50
Output Current IOUT(mA)
0
200
5) Output Voltage vs. Temperature
Start-up/Hold-on Voltage Vstart/Vhold (V)
RH5RI351B
Start-up/Hold-on Voltage Vstart/Vhold (V)
Start-up/Hold-on Voltage Vstart/Vhold (V)
Start-up/Hold-on Voltage Vstart/Vhold (V)
4) Start-up/Hold-on Voltage vs. Output Current
RH5RI501B
1.6
1.4
1.2
1.0
Vstart
0.8
0.6
Vhold
0.4
0.2
0
0
10
5
Output Current I OUT(mA)
RH5RI502B
L=28µH
2.5
2.0
Vstart
1.5
1.0
Vhold
0.5
0
150
100
50
Output Current IOUT(mA)
0
RH5RI501B
Start-up Voltage Vstart(V)
Output Voltage VOUT(V)
5.10
5.05
5.00
4.95
4.90
4.85
20
0
40
Temperature Topt(˚C)
200
RH5RI501B
5.15
–20
15
6) Start-up Voltage vs. Temperature
5.20
4.80
–40
L=82µH
60
80
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
–40
–20
20
0
40
Temperature Topt(˚C)
60
80
15
RH5RI
7) Hold-on Voltage vs. Temperature
8) Supply Current 1 vs.Temperature
RH5RI501B
RH5RI502B
60
Supply Current IDD1( µA)
Hold-on Voltage Vhold (V)
0.8
0.7
0.6
0.5
0.4
0.3
0.2
–40
–20
0
20
40
Temperature Topt(˚C)
60
50
40
30
20
10
0
–40
80
–20
RH5RI501B
Lx Switching Current ILX (mA)
1.2
1.0
0.8
0.6
0.4
60
80
11) Lx Leakage Current vs.Temperature
Lx Leakage Current ILXleak( µA)
RH5RI501B
0.30
0.25
0.20
0.15
0.10
0.05
0
–40
16
–20
20
0
40
Temperature Topt(˚C)
60
200
180
160
140
120
100
80
60
40
20
0
–40
–20
0
20
40
Temperature Topt(˚C)
60
80
12) Maximum Oscillator Frequency vs.Temperature
80
Maximum Oscillator Frequency fosc (kHz)
Input Current IIN2( µA)
1.6
1.4
0
20
40
Temperature Topt(˚C)
80
RH5RI501B
1.8
–20
60
10) Lx Switching Current vs.Temperature
9) Input Current 2 vs.Temperature
0.2
0
–40
0
20
40
Temperature Topt(˚C)
RH5RI501B
160
140
120
100
80
60
40
20
0
–40
–20
40
0
20
Temperature Topt(˚C)
60
80
RH5RI
13) Oscillatar Duty Cycle vs. Temperature
14) Vlx Voltage Limit vs. Temperature
RH5RI501B
1.00
VLX Voltage Limit VLXlim(V)
Oscillator Duty Cycle Maxdty(%)
RH5RI501B
100
90
80
70
60
50
–40
–20
20
0
40
Temperature Topt(˚C)
60
80
–20
RH5RI502B
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
–40
–20
20
0
40
Temperature Topt(˚C)
20
0
40
Temperature Topt(˚C)
60
80
60
80
16) Output Current vs. Temperature
EXT "L" Output Current IEXTL(mA)
EXT "H" Output Current IEXTH(mA)
15) Output Current vs. Temperature
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
–40
60
80
RH5RI502B
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
–40
–20
0
20
40
Temperature Topt(˚C)
17
RH5RI
TYPICAL APPLICATIONS
• RH5RI ×× 1B
Diode
Inductor
VOUT
Lx
OUT
Vss
+
VIN
Capacitor
Components Inductor (L)
Diode (D)
: 82µH (Sumida Electric Co., Ltd.)
: MA721 (Matsushita Electronics Corporation, Schottky Type)
Capacitor (CL) : 22µF (Tantalum Type)
FIG. 1
• RH5RI ×× 2B
Inductor
Diode
VOUT
Cb
OUT
EXT
Vss
VIN
Tr
Components Inductor (L)
Rb
Capacitor
: 28µH (Troidal Core)
Diode (D)
: HRP22 (Hitachi, Schottky Type)
Capacitor (CL)
: 100µF (Tantalum Type)
Transistor (Tr)
: 2SD1628G
Base Resistor (Rb)
: 300Ω
Base Capacitor (Cb)
: 0.01µF
FIG. 2
18
+
RH5RI
• RH5RI ×× 3B
Diode
Inductor
VOUT
Lx
NC
OUT
EXT
CE
Vss
+
VIN
Capacitor
Components Inductor (L)
: 82µH (Sumida Electric Co., Ltd.)
Diode (D)
: MA721 (Matsushita Electronics Corporation, Schottky Type)
Capacitor (CL) : 22µF (Tantalum Type)
FIG. 3
Inductor
Diode
Cb
NC
Lx
VOUT
OUT
EXT
CE Vss
VIN
Tr
Components Inductor (L)
Rb
+
Capacitor
: 28µH (Troidal Core)
Diode (D)
: HRP22 (Hitachi, Schottky Type)
Capacitor (CL)
: 100µF (Tantalum Type)
Transistor (Tr)
: 2SD1628G
Base Resistor (Rb)
: 300Ω
Base Capacitor (Cb) : 0.01µF
FIG. 4
19
RH5RI
• CE pin Drive Circuit
Diode
Inductor
RH5RI ×× 3B
Lx
NC
VOUT
OUT
EXT
CE Vss
Pull-up
resistor
+
Capacitor
VIN
CE
Tr
FIG. 5
20
RH5RI
APPLICATION CIRCUITS
• 12V Step-up Circuit
Inductor
Diode
VOUT
RH5RI502B
Cb
ZD:6.8V
+
OUT
VIN
Capacitor
EXT
Vss
RZD
Rb
Tr
Starter Circuit
(Note) When the Output Current is small or the Output Voltage is unstable,use the Rzd for flowing the bias current through the Zener diode ZD.
FIG. 6
• Step-down Circuit
Inductor
VOUT
PNP Tr
Diode
Rb2
RH5RI ××1B
VIN
OUT
Lx
Rb1
Vss
+
Capacitor
Starter Circuit
(Note) When the Lx pin Voltage is over the rating at the time PNP Tr is OFF,use a RH5RI ×× 2B and drive the PNP Tr. by the external NPN Tr.
FIG. 7
21
RH5RI
• Step-up/Step-down Circuit with Flyback
Diode
Trance1:1
VOUT
RH5RI ××1B
OUT
Lx
VIN
+
Vss
Capacitor
Starter Circuit
(Note) Use a RH5RI ×× 2B,depend on the Output Current.
FIG. 8
*The Starter Circuit is necessary for all above circuits.
1.For Step-up Circuit.
Starter Circuit
VOUT side
VIN side
1.For Step-down and Step-up/Step-down Circuit.
VIN side
VOUT side
RST
Tr
Starter Circuit
ZDST
ZDst 2.5V≤ZDST≤Designation of Output Voltage
Rst Input Bias Current of ZDST and Tr.
(several kΩ to several hundreds kΩ)
22
RH5RI
APPLICATION HINTS
When using these ICs, be sure to take care of the following points :
• Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, when an external component is connected to OUT Pin, make minimum connection with the capacitor.
• Make sufficient grounding. A large current flows through Vss Pin by switching. When the impedance
of the Vss connection is high, the potential within the IC is varied by the switching current. This
mayresult in unstable operation of the IC.
• Use capacitor with a capacity of 10µF or more, and with good high frequency characteristics such as
tantalum capacitor. We recommend the use of a capacitor with an allowable voltage which is at least
three times the output set voltage. This is because there may be the case where a spike-shaped high
voltage is generated by the inductor when Lx transistor is turned off.
• Take the utmost care when choosing an inductor. Namely, choose such an inductor that has sufficiently small d.c. resistance and large allowable current, and hardly reaches magnetic saturation. When
the inductance value of the inductor is small, there may be the case where ILX exceeds the absolute
maximum ratings at the maximum load. Use an inductor with an appropriate inductance (refer to
Selectionof peripheral components).
• Use a diode of a Schottky type with high switching speed, and also take care of the rated current (refer
to Selection of peripheral components).
The performance of power source circuits using these ICs largely depends upon the peripheral components. Take the utmost care
in the selection of the peripheral components. In particular, design the peripheral circuits in such a manner that the values such as voltage, current and power of each component, PCB patterns and the IC do not exceed their respective rated values.
23