FAIRCHILD RFP14N05L

RFD14N05L, RFD14N05LSM, RFP14N05L
Data Sheet
January 2002
14A, 50V, 0.100 Ohm, Logic Level,
N-Channel Power MOSFETs
Features
• 14A, 50V
These are N-channel power MOSFETs manufactured using
the MegaFET process. This process, which uses feature
sizes approaching those of LSI integrated circuits, gives
optimum utilization of silicon, resulting in outstanding
performance. They were designed for use in applications
such as switching regulators, switching converters, motor
drivers and relay drivers. This performance is accomplished
through a special gate oxide design which provides full rated
conductance at gate bias in the 3V-5V range, thereby
facilitating true on-off power control directly from logic level
(5V) integrated circuits.
• rDS(ON) = 0.100Ω
• Temperature Compensating PSPICE® Model
• Can be Driven Directly from CMOS, NMOS, and
TTL Circuits
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• 175oC Operating Temperature
Formerly developmental type TA09870.
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Ordering Information
Symbol
PART NUMBER
PACKAGE
BRAND
D
RFD14N05L
TO-251AA
14N05L
RFD14N05LSM
TO-252AA
14N05L
RFP14N05L
TO-220AB
FP14N05L
G
NOTE: When ordering, use the entire part number. Add the suffix 9A to
obtain the TO-252AA variant in the tape and reel, i.e., RFD14N05LSM9A.
S
Packaging
JEDEC TO-251AA
JEDEC TO-252AA
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
GATE
DRAIN (FLANGE)
SOURCE
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
©2002 Fairchild Semiconductor Corporation
RFD14N05L, RFD14N05LSM, RFP14N05L Rev. B
RFD14N05L, RFD14N05LSM, RFP14N05L
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
RFD14N05L, RFD14N05LSM,
RFP14N05L
50
50
± 10
14
Refer to Peak Current Curve
Refer to UIS Curve
48
0.32
-55 to 175
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg
UNITS
V
V
V
A
W
W/oC
oC
oC
oC
300
260
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
PARAMETER
SYMBOL
BVDSS
ID = 250µA, VGS = 0V, Figure 13
50
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA, Figure12
1
-
2
V
VDS = 40V, VGS = 0V
-
-
1
µA
Zero Gate Voltage Drain Current
IDSS
Gate to Source Leakage Current
VDS = 40V, VGS = 0V, TC = 150oC
-
-
50
µA
VGS = ±10V
-
-
±100
nA
ID = 14A, VGS = 5V, Figures 9, 11
-
-
0.100
Ω
VDD = 25V, ID = 7A,
RL = 3.57Ω, VGS = 5V,
RGS = 0.6Ω
-
-
60
ns
-
13
-
ns
-
24
-
ns
td(OFF)
-
42
-
ns
tf
-
16
-
ns
-
-
100
ns
-
-
40
nC
IGSS
Drain to Source On Resistance (Note 2)
rDS(ON)
Turn-On Time
t(ON)
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
TEST CONDITIONS
t(OFF)
Total Gate Charge
Gate Charge at 5V
Threshold Gate Charge
Qg(TOT)
VGS = 0V to 10V
VDD = 40V, ID = 14A,
RL = 2.86Ω
Figures 20, 21
Qg(5)
VGS = 0V to 5V
-
-
25
nC
Qg(TH)
VGS = 0V to 1V
-
-
1.5
nC
VDS = 25V, VGS = 0V, f = 1MHz
Figure 14
-
670
-
pF
-
185
-
pF
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
-
50
-
pF
Thermal Resistance Junction to Case
RθJC
-
-
3.125
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-251 and TO-252
-
-
100
oC/W
RθJA
TO-220
-
-
80
oC/W
Source to Drain Diode Specifications
PARAMETER
Source to Drain Diode Voltage (Note 2)
Diode Reverse Recovery Time
SYMBOL
VSD
trr
TEST CONDITIONS
MIN
TYP
MAX
UNITS
ISD = 14A
-
-
1.5
V
ISD = 14A, dISD/dt = 100A/µs
-
-
125
ns
NOTES:
2. Pulse Test: Pulse Width ≤ 300ms, Duty Cycle ≤ 2%.
3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current
Capability Curve (Figure 5).
©2002 Fairchild Semiconductor Corporation
RFD14N05L, RFD14N05LSM, RFP14N05L Rev. B
RFD14N05L, RFD14N05LSM, RFP14N05L
Typical Performance Curves
Unless Otherwise Specified
POWER DISSIPATION MULTIPLIER
1.2
16
ID, DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
12
8
4
0.2
0
125
50
75
100
TC , CASE TEMPERATURE (oC)
25
0
150
0
175
25
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
50
75
100
125
TC, CASE TEMPERATURE (oC)
150
175
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
TEMPERATURE
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
0.5
0.2
0.1
PDM
0.1
0.05
t1
t2
0.02
0.01
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-2
10-1
10-3
t, RECTANGULAR PULSE DURATION (s)
100
101
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
TC = 25oC
TJ = MAX. RATED
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
10ms
100ms
DC
0.5
1
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
©2002 Fairchild Semiconductor Corporation
100
200
IDM, PEAK CURRENT CAPABILITY (A)
ID, DRAIN CURRENT (A)
100
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
100
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
I
= I25
175 - TC
150
VGS = 5V
TC = 25oC
10
-5
10-4
10
VGS = 10V
10-3
10-2
10-1
t, PULSE WIDTH (s)
100
101
FIGURE 5. PEAK CURRENT CAPABILITY
RFD14N05L, RFD14N05LSM, RFP14N05L Rev. B
RFD14N05L, RFD14N05LSM, RFP14N05L
Typical Performance Curves
Unless Otherwise Specified (Continued)
35
VGS = 10V
VGS = 5V
30
ID, DRAIN CURRENT (A)
IAS, AVALANCHE CURRENT (A)
50
STARTING TJ = 25oC
10
STARTING TJ = 150oC
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
0.01
VGS = 4V
25
PULSE DURATION = 80µs, TC = 25oC
DUTY CYCLE = 0.5% MAX.
20
15
VGS = 3V
10
5
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS-VDD) +1]
1
VGS = 4.5V
0.1
1
tAV , TIME IN AVALANCHE (ms)
0
10
VGS = 2.5V
1.5
6.0
3.0
4.5
VDS, DRAIN TO SOURCE VOLTAGE (V)
0
7.5
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 7. SATURATION CHARACTERISTICS
250
35
-55oC
30
ID = 7A
25oC
rDS(ON) , DRAIN TO SOURCE
ON RESISTANCE (mΩ)
IDS(ON), DRAIN TO SOURCE CURRENT (A)
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
175oC
25
20
15
10
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX.
VDD = 15V
5
1.5
3.0
4.5
6.0
VGS, GATE TO SOURCE VOLTAGE (V)
50
td(OFF)
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
100
tr
80
tf
60
40
td(ON)
20
0
20
30
40
10
RGS , GATE TO SOURCE RESISTANCE (Ω)
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE
©2002 Fairchild Semiconductor Corporation
3.0
3.5
4.0
4.5
VGS , GATE TO SOURCE VOLTAGE (V)
5.0
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
120
0
0
2.5
2.5
VDD = 25V, ID = 14A, RL = 3.57Ω
ID = 3.5A
100
7.5
140
SWITCHING TIME (ns)
150
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX.
FIGURE 8. TRANSFER CHARACTERISTICS
160
ID = 28A
200
0
0
ID = 14A
50
2.0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX.
VGS = 10V, ID = 14A
1.5
1.0
0.5
0
-80
-40
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
160
200
FIGURE 11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
RFD14N05L, RFD14N05LSM, RFP14N05L Rev. B
RFD14N05L, RFD14N05LSM, RFP14N05L
Typical Performance Curves
2.0
VGS = VDS, ID = 250µA
ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.5
1.0
0.5
0
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
CISS
C, CAPACITANCE (pF)
0.5
0
-80
600
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
COSS
200
CRSS
0
40
80
120
160
TJ , JUNCTION TEMPERATURE (oC)
200
50
40
5
VDD = BVDSS
VDD = BVDSS
4
30
3
20
2
0.75 BVDSS
0.50 BVDSS
0.25 BVDSS
RL = 3.57Ω
IG(REF) = 0.4mA
VGS = 5V
10
1
0
0
I G ( REF )
20 ------------------------I G ( ACT )
0
5
10
15
20
VDS , DRAIN TO SOURCE VOLTAGE (V)
-40
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
VDS , DRAIN TO SOURCE VOLTAGE (V)
800
0
1.0
200
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
400
1.5
25
VGS , GATE TO SOURCE VOLTAGE (V)
NORMALIZED GATE
THRESHOLD VOLTAGE
2.0
Unless Otherwise Specified (Continued)
t, TIME (µs)
I G ( REF )
80 ------------------------I G ( ACT )
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260,
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 15. TRANSCONDUCTANCE vs DRAIN CURRENT
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT
©2002 Fairchild Semiconductor Corporation
FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
RFD14N05L, RFD14N05LSM, RFP14N05L Rev. B
RFD14N05L, RFD14N05LSM, RFP14N05L
Test Circuits and Waveforms
(Continued)
tON
tOFF
td(ON)
VDS
td(OFF)
tr
VDS
tf
90%
90%
RL
VGS
+
-
DUT
10%
10%
0
VDD
90%
RGS
VGS
VGS
0
50%
10%
FIGURE 18. SWITCHING TIME TEST CIRCUIT
50%
PULSE WIDTH
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 10V
VGS
Qg(5)
+
VDD
DUT
IG(REF)
VGS = 5V
VGS
-
VGS = 1V
0
Qg(TH)
IG(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT
©2002 Fairchild Semiconductor Corporation
FIGURE 21. GATE CHARGE WAVEFORMS
RFD14N05L, RFD14N05LSM, RFP14N05L Rev. B
RFD14N05L, RFD14N05LSM, RFP14N05L
PSPICE Electrical Model
.SUBCKT RFP14N05L 2 1 3 ;
rev 9/15/94
CA 12 8 1.464e-9
CB 15 14 1.64e-9
CIN 6 8 6.17e-10
DPLCAP
RSCL1
RSCL2
ESG
+
GATE
1
9
6
8
ESCL
LGATE RGATE
11
RDRAIN
16
VTO
+
21
EVTO
20 +
18
+
DBODY
EBREAK 17
18
MOS2
6
MOS1
8
RIN
CIN
8
RSOURCE
7
LSOURCE
3
SOURCE
S2A
S1A
12
S1A
S1B
S2A
S2B
DBREAK
50
MOS1 16 6 8 8 MOSMOD M = 0.99
MOS2 16 21 8 8 MOSMOD M = 0.01
RBREAK 17 18 RBKMOD 1
RDRAIN 50 16 RDSMOD 33.1e-3
RGATE 9 20 5.85
RIN 6 8 1e9
RSCL1 5 51 RSCLMOD 1e-6
RSCL2 5 50 1e3
RSOURCE 8 7 RDSMOD 14.3e-3
RVTO 18 19 RVTOMOD 1
+ 51
5
51
EBREAK 11 7 17 18 65.35
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTO 20 6 18 8 1
LDRAIN 2 5 1e-9
LGATE 1 9 5.68e-9
LSOURCE 3 7 5.35e-9
DRAIN
2
LDRAIN
DBODY 7 5 DBDMOD
DBREAK 5 11 DBKMOD
DPLCAP 10 5 DPLCAPMOD
IT 8 17 1
5
10
S1B
RBREAK
15
14
13
13
8
17
18
S2B
RVTO
13
CA
CB
+
EGS
6
8
IT
+ 14
EDS 5
8
19
VBAT
+
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 0.485
ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/46,7))}
.MODEL DBDMOD D (IS = 2.23e-13 RS = 1.15e-2 TRS1 = 1.64e-3 TRS2 = 7.89e-6 CJO = 6.83e-10 TT = 3.68e-8)
.MODEL DBKMOD D (RS = 3.8e-1 TRS1 = 1.89e-3 TRS2 = 1.13e-5)
.MODEL DPLCAPMOD D (CJO = 25.7e-11 IS = 1e-30 N = 10)
.MODEL MOSMOD NMOS (VTO = 1.935 KP = 18.89 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL RBKMOD RES (TC1 = 7.18e-4 TC2 = 1.53e-6)
.MODEL RDSMOD RES (TC1 = 4.45e-3 TC2 = 2.9e-5)
.MODEL RSCLMOD RES (TC1 = 2.8e-3 TC2 = 6.0e-6)
.MODEL RVTOMOD RES (TC1 = -1.7e-3 TC2 = -2.0e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.55 VOFF= -1.55)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.55 VOFF= -3.55)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.55 VOFF= 2.45)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.45 VOFF= -2.55)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global
Temperature Options; authored by William J. Hepp and C. Frank Wheatley.
©2002 Fairchild Semiconductor Corporation
RFD14N05L, RFD14N05LSM, RFP14N05L Rev. B
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
Bottomless™
CoolFET™
CROSSVOLT™
DenseTrench™
DOME™
EcoSPARK™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
FAST 
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench 
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER 
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET 
VCX™
STAR*POWER is used under license
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
2. A critical component is any component of a life
systems which, (a) are intended for surgical implant into
support device or system whose failure to perform can
the body, or (b) support or sustain life, or (c) whose
be reasonably expected to cause the failure of the life
failure to perform when properly used in accordance
support device or system, or to affect its safety or
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. H4