HUF76132P3, HUF76132S3S Data Sheet January 2003 75A, 30V, 0.011 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs Features These N-Channel power MOSFETs are manufactured using the innovative UltraFET™ process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. • 75A, 30V • Logic Level Gate Drive • Ultra Low On-Resistance, rDS(ON) = 0.011Ω • Temperature Compensating PSPICE® Model • Temperature Compensating SABER© Model • Thermal Impedance SPICE Model • Thermal Impedance SABER Model • Peak Current vs Pulse Width Curve • UIS Rating Curve Formerly developmental type TA76132. • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information Symbol PART NUMBER PACKAGE D BRAND HUF76132P3 TO-220AB 76132P HUF76132S3S TO-263AB 76132S G NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUF76132S3ST. S Packaging JEDEC TO-220AB JEDEC TO-263AB SOURCE DRAIN GATE DRAIN (FLANGE) ©2003 Fairchild Semiconductor Corporation GATE DRAIN (FLANGE) SOURCE HUF76132P3, HUF76132S3S Rev. C1 HUF76132P3, HUF76132S3S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 30 V Drain to Gate Voltage (R GS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR 30 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 75 44 41 Figure 4 A A A Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Figures 6, 17, 18 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 0.97 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -40 to 150 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, VGS = 0V (Figure 12) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS , ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 75A, VGS = 10V (Figure 9, 10) - 0.0085 0.011 Ω ID = 44A, VGS = 5V (Figure 9) - 0.013 0.016 Ω ID = 41A, VGS = 4.5V (Figure 9) - 0.015 0.018 Ω THERMAL SPECIFICATIONS Thermal Resistance Junction to Case R θJC (Figure 3) - - 1.03 oC/W Thermal Resistance Junction to Ambient RθJA TO-220, TO-262 and TO-263 - - 62 oC/W VDD = 15V, ID ≅ 41A, RL = 0.366Ω, VGS = 4.5V, RGS = 6.2Ω (Figures 15, 21, 22) - - 185 ns - 17 - ns - 105 - ns td(OFF) - 33 - ns tf - 42 - ns tOFF - - 113 ns SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time ©2003 Fairchild Semiconductor Corporation tON td(ON) tr HUF76132P3, HUF76132S3S Rev. C1 HUF76132P3, HUF76132S3S Electrical Specifications TA = 25oC, Unless Otherwise Specified (Continued) PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - - 72 ns - 11 - ns - 37 - ns td(OFF) - 65 - ns tf - 42 - ns tOFF - - 160 ns - 44 52 nC - 25 30 nC - 1.8 2.2 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 15V, ID ≅ 75A, RL = 0.20, VGS = 10V, RGS = 6.8Ω (Figures 16, 21, 22) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V VDD = 15V, ID ≅ 44A, RL = 0.341Ω Ig(REF) = 1.0mA VGS = 0V to 1V (Figures 14, 19, 20) Threshold Gate Charge Qg(TH) Gate to Source Gate Charge Qgs - 4.80 - nC Gate to Drain “Miller” Charge Qgd - 13.50 - nC - 1650 - pF - 850 - pF - 200 - pF CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage MIN TYP MAX UNITS ISD = 44A - - 1.25 V trr ISD = 44A, dISD/dt = 100A/µs - - 71 ns QRR ISD = 44A, dISD/dt = 100A/µs - - 104 nC VSD Reverse Recovery Time Reverse Recovered Charge Typical Performance Curves TEST CONDITIONS Unless Otherwise Specified 80 1.0 VGS = 10V ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE ©2003 Fairchild Semiconductor Corporation 150 60 40 VGS = 4.5V 20 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE HUF76132P3, HUF76132S3S Rev. C1 HUF76132P3, HUF76132S3S Typical Performance Curves Unless Otherwise Specified (Continued) 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10 -1 100 10 1 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 2000 TC = 25oC FOR TEMPERATURES ABOVE 25 oC DERATE PEAK IDM, PEAK CURRENT (A) 1000 CURRENT AS FOLLOWS: VGS = 10V I = 150 - TC I25 125 VGS = 5V 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 50 10-5 10-4 10 -3 10-2 t, PULSE WIDTH (s) 10-1 100 101 FIGURE 4. PEAK CURRENT CAPABILITY ID, DRAIN CURRENT (A) TJ = MAX RATED TC = 25oC 100 100µs IAS, AVALANCHE CURRENT (A) 500 1000 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD ) +1] 100 1ms 10 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 STARTING TJ = 25oC STARTING TJ = 150oC BVDSS MAX = 30V 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100 10 0.01 0.1 1 tAV, TIME IN AVALANCHE (ms) 10 NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA ©2003 Fairchild Semiconductor Corporation FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY HUF76132P3, HUF76132S3S Rev. C1 HUF76132P3, HUF76132S3S Typical Performance Curves 120 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID, DRAIN CURRENT (A) 100 VGS = 5V VGS = 10V -40oC 150oC VGS = 4.5V 100 I D, DRAIN CURRENT (A) 120 Unless Otherwise Specified (Continued) 80 25oC 60 40 80 VGS = 3.5V 60 40 VGS = 3V 20 20 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25 oC VDD = 15V 0 0 0 1 2 3 4 VGS, GATE TO SOURCE VOLTAGE (V) 5 0 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ON RESISTANCE (mΩ) rDS(ON), DRAIN TO SOURCE 16 ID = 51A 14 ID = 25A 12 10 8 6 2 4 6 8 4 1.2 1.0 0.8 0.6 -60 10 0 60 120 180 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 1.0 0.8 0 60 120 180 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ©2003 Fairchild Semiconductor Corporation NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 3 1.6 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, I D = 75A 1.4 VGS, GATE TO SOURCE VOLTAGE (V) 0.6 -60 2 FIGURE 8. SATURATION CHARACTERISTICS PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID = 75A 1 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS 18 VGS = 4V ID = 250µA 1.1 1.0 0.9 -60 0 60 120 TJ , JUNCTION TEMPERATURE (oC) 180 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF76132P3, HUF76132S3S Rev. C1 HUF76132P3, HUF76132S3S Typical Performance Curves Unless Otherwise Specified (Continued) 10 2500 CISS VGS , GATE TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) 2000 VGS = 0V, f = 1MHz CISS = C GS + CGD CRSS = CGD COSS ≈ CDS + C GD 1500 COSS 1000 500 CRSS 0 0 5 15 10 25 20 VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 51A ID = 25A 2 0 0 30 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 40 30 20 Qg, GATE CHARGE (nC) 50 NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 400 400 300 VGS = 10V, VDD = 15V, ID = 75A, RL= 0.20Ω SWITCHING TIME (ns) SWITCHING TIME (ns) VGS = 4.5V, VDD = 15V, ID = 41A, RL= 0.312Ω tr 200 tf 100 td(OFF) 300 td(OFF) 200 tf tr 100 td(ON) td(ON) 0 0 10 20 30 40 0 50 0 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE 20 30 40 10 RGS, GATE TO SOURCE RESISTANCE (Ω) 50 FIGURE 16. SWITCHING TIME vs GATE RESISTANCE Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT ©2003 Fairchild Semiconductor Corporation FIGURE 18. UNCLAMPED ENERGY WAVEFORMS HUF76132P3, HUF76132S3S Rev. C1 HUF76132P3, HUF76132S3S Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 10 VGS Qg(5) + - VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 0 10% DUT RGS VGS 90% VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT ©2003 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUF76132P3, HUF76132S3S Rev. C1 HUF76132P3, HUF76132S3S PSPICE Electrical Model SUBCKT HUF76132 2 1 3 ; REV May 1998 CA 12 8 2.35e-9 CB 15 14 2.35e-9 CIN 6 8 1.45e-9 LDRAIN DPLCAP DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD 10 RLDRAIN RSLC1 51 RSLC2 5 51 ESLC EVTHRES + 19 8 + IT 8 17 1 LGATE GATE 1 11 + 50 RDRAIN 6 8 ESG DBREAK + EBREAK 11 7 17 18 33.34 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 LDRAIN 2 5 1e-9 LGATE 1 9 5.42e-9 LSOURCE 3 7 4.16e-9 DRAIN 2 5 EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD 8 SOURCE 3 7 RSOURCE RLSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 3.5e-4 RGATE 9 20 2.61 RLDRAIN 2 5 10 RLGATE 1 9 54.2 RLSOURCE 3 7 41.6 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 6.5-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 VBAT 5 8 EDS - - IT 14 + + - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*450),3))} .MODEL DBODYMOD D (IS = 1.79e-12 IKF = 20 RS = 5.32e-3 TRS1 = 7e-4 TRS2 = 1.21e-6 CJO = 2.65e-9 TT = 3.24e-8 M = 4.2e-1 XTI=6) .MODEL DBREAKMOD D (RS = 8.25e-2 TRS1 = 9.12e-4 TRS2 = 8.14e-7) .MODEL DPLCAPMOD D (CJO = 1.3e-9 IS = 1e-30 N = 10 M = 6.1e-1) .MODEL MMEDMOD NMOS (VTO = 1.86 KP = 4 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.61) .MODEL MSTROMOD NMOS (VTO = 2.2 KP = 120 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.63 KP =1e-1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 26.1 RS=1e-1) .MODEL RBREAKMOD RES (TC1 = 9.97e-4 TC2 = 1.24e-7) .MODEL RDRAINMOD RES (TC1 = 7.2e-2 TC2 = 1e-4) .MODEL RSLCMOD RES (TC1 = 1.07e-3 TC2 = 1.25e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-11 TC2 = 1e-11) .MODEL RVTHRESMOD RES (TC1 = -2e-3 TC2 = -9.2e-6) .MODEL RVTEMPMOD RES (TC1 = -1.08e-3 TC2 = 9.73e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.00 VOFF= -1.00) VON = -1.00 VOFF= -6.00) VON = 0.00 VOFF= 1.65) VON = 1.65 VOFF= 0.00) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2003 Fairchild Semiconductor Corporation HUF76132P3, HUF76132S3S Rev. C1 HUF76132P3, HUF76132S3S SABER Electrical Model nom temp=25 deg c 30v LL Ultrafet REV May 1998 template huf76132 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is=1.79e-12,cjo=2.65e-9,tt=3.24e-8, m=4.2e-1, xti=6) d..model dbreakmod = () d..model dplcapmod = (cjo=1.3e-9,is=1e-30,n=10,m=6.1e-1) m..model mmedmod = (type=_n,vto=1.86,kp=4,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.2,kp=120,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.63,kp=1e-1,is=1e-30, tox=1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-6.00,voff=-1.00) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.00,voff=-6.00) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=0,voff=1.65) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=1.65,voff=0) LDRAIN DPLCAP DRAIN 2 5 10 RSLC1 51 RLDRAIN RDBREAK RSLC2 c.ca n12 n8 = 2.35e-9 c.cb n15 n14 = 2.35e-9 c.cin n6 n8 = 1.45e-9 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 l.ldrain n2 n5 = 5.42e-9 l.lgate n1 n9 = 1.00e-9 l.lsource n3 n7 = 4.16e-9 EVTEMP RGATE + 18 22 9 20 MWEAK DBODY EBREAK + 17 18 MMED MSTRO CIN m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u 71 11 16 6 RLGATE - 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 res.rbreak n17 n18 = 1, tc1=9.97e-4,tc2=1.24e-7 res.rdbody n71 n5 =5.32e-3, tc1=7.0e-4, tc2=1.21e-6 res.rdbreak n72 n5 =8.25e-2, tc1=9.12e-4, tc2=8.14e-7 res.rdrain n50 n16 = 3.5e-4, tc1=7.2e-2,tc2=1e-4 res.rgate n9 n20 = 2.61 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 54.2 res.rlsource n3 n7 = 41.6 res.rslc1 n5 n51 = 1e-6, tc1=1.07e-3,tc2=-1.25e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 6.5e-3, tc1=1e-11,tc2=1e-11 res.rvtemp n18 n19 = 1, tc1=-1.08e-3,tc2=9.73e-7 res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-9.2e-6 21 RDBODY DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 72 ISCL S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 33.34 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/450))** 3)) } } ©2003 Fairchild Semiconductor Corporation HUF76132P3, HUF76132S3S Rev. C1 HUF76132P3, HUF76132S3S SPICE Thermal Model th JUNCTION REV May 1998 HUF76132 CTHERM1 th 6 5.00e-3 CTHERM2 6 5 1.18e-2 CTHERM3 5 4 15.5e-2 CTHERM4 4 3 1.85e-2 CTHERM5 3 2 2.00e-2 CTHERM6 2 tl 2.5e-2 RTHERM1 RTHERM1 th 6 1.51e-2 RTHERM2 6 5 1.51e-2 RTHERM3 5 4 3.03e-2 RTHERM4 4 3 6.05e-2 RTHERM5 3 2 1.81e-1 RTHERM6 2 tl 2.45e-1 RTHERM2 CTHERM1 6 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model HUF76132 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 6.50e-3 ctherm.ctherm2 6 5 = 1.18e-2 ctherm.ctherm3 5 4 = 1.55e-2 ctherm.ctherm4 4 3 = 1.85e-2 ctherm.ctherm5 3 2 = 2.00e-2 ctherm.ctherm6 2 tl = 2.50e-2 rtherm.rtherm1 th 6 = 1.51e-2 rtherm.rtherm2 6 5 = 1.51e-2 rtherm.rtherm3 5 4 = 3.03e-2 rtherm.rtherm4 4 3 = 6.05e-2 rtherm.rtherm5 3 2 = 1.81e-1 rtherm.rtherm6 2 tl = 2.45e-1 } 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2003 Fairchild Semiconductor Corporation CASE HUF76132P3, HUF76132S3S Rev. C1 TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FACT™ ActiveArray™ FACT Quiet Series™ Bottomless™ FAST® CoolFET™ FASTr™ CROSSVOLT™ FRFET™ DOME™ GlobalOptoisolator™ EcoSPARK™ GTO™ E2CMOS™ HiSeC™ I2C™ EnSigna™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™ ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic® TruTranslation™ UHC™ UltraFET® VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I2