TI RM48L950

RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
RM48Lx50 16/32-Bit RISC Flash Microcontroller
Check for Samples: RM48L950
1 RM48Lx50 16/32-Bit RISC Flash Microcontroller
1.1
Features
• High-Performance Microcontroller for Safety
Critical Applications
– Dual CPU’s running in lockstep
– ECC on flash and RAM interfaces
– Built-In Self Test for CPU and on-chip RAMs
– Error Signaling Module with Error Pin
– Voltage and Clock Monitoring
• ARM® Cortex™ – R4F 32-bit RISC CPU
– Efficient 1.6DMIPS/MHz with 8-stage pipeline
– Floating-Point Unit with Single/Double
Precision
– 12-Region Memory Protection Unit
– Open Architecture with 3rd Party Support
• Operating Conditions
– Up to 200MHz System Clock
– Core Supply Voltage (VCC): 1.2V nominal
– I/O Supply Voltage (VCCIO): 3.3V nominal
• Integrated Memory
– Up to 3MB Program Flash with ECC
– Up to 256KB RAM with ECC
– 64KB Flash for emulated EEPROM
• 16- bit External Memory Interface
• Common Platform Architecture
– Consistent memory map across family
– Real-Time Interrupt Timer (RTI) OS Timer
– 96-channel Vectored Interrupt Module (VIM)
– 2-channel Cyclic Redundancy Checker (CRC)
• Direct Memory Access (DMA) Controller
– 16 Channels and 32 Control Packets
– Parity protection for control packet RAM
– DMA Accesses Protected by Dedicated MPU
• Frequency-Modulated Phase-Locked-Loop
(FMPLL) with Built-In Slip Detector
• Separate Non-Modulating PLL
• IEEE 1149.1 JTAG, Boundary Scan and ARM
CoreSight Components
• JTAG Security Module
• Trace and Calibration Capabilities
– Embedded Trace Macrocell (ETM-R4)
– Data Modification Module (DMM)
– RAM Trace Port (RTP)
– Parameter Overlay Module (POM)
• Multiple Communication Interfaces
– 10/100 Mbps Ethernet MAC (EMAC)
• IEEE 802.3 compliant (3.3V-I/O only)
• Supports MII and MDIO
– USB
• 2-port USB Specification, revision
2.0-compatible host controller, based on
the OHCI Specification for USB, release
1.0
• One full-speed USB device compatible
with the USB Specification, revision 2.0
and USB Specification, revision 1.1
– Three CAN Controllers (DCAN)
• 64 mailboxes with parity protection each
• Compliant to CAN protocol version 2.0B
– Inter-Integrated Circuit (I2C)
– Three Multi-buffered Serial Peripheral
Interfaces (MibSPI)
• 128 Words with Parity Protection each
– Two Standard Serial Peripheral Interfaces
(SPI)
– Local Interconnect Network Interface (LIN)
Controller
• Compliant to LIN protocol version 2.1
– Standard Serial Communication Interface
(SCI)
• Two High-End Timer Modules (N2HET)
– N2HET1: 32 programmable channels
– N2HET2: 20 programmable channels
– 160 Word Instruction RAM with parity
protection each
– Each includes Hardware Angle Generator
– Dedicated Transfer Unit for each N2HET
(HTU)
• Two 10/12-bit Multi-Buffered ADC Modules
– ADC1: 24 channels
– ADC2: 16 channels
– 16 shared channels
– 64 result buffers with parity protection each
• Packages
– 144-pin Quad Flatpack (PGE) [Green]
– 337-Ball Grid Array (ZWT) [Green]
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCT PREVIEW information concerns products in the formative
or design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right
to change or discontinue these products without notice.
Copyright © 2011, Texas Instruments Incorporated
PRODUCT PREVIEW
1
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
1.2
•
•
www.ti.com
Applications
Industrial Safety Applications
– Industrial Automation
– Safe PLC’s (Programmable Logic Controllers)
– Power Generation and Distribution
– Turbines and Windmills
– Elevators and Escalators
Medical Applications
– Ventilators
– Defibrillators
– Infusion and Insulin pumps
– Radiation therapy
– Robotic surgery
PRODUCT PREVIEW
2
RM48Lx50 16/32-Bit RISC Flash Microcontroller
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
www.ti.com
1.3
SPNS174 – SEPTEMBER 2011
Description
The RM48Lx50 is a high performance microcontroller family for safety systems. The safety architecture
includes Dual CPUs in lockstep, CPU and Memory Built-In Self Test (BIST) logic, ECC on both the Flash
and the data SRAM, parity on peripheral memories, and loop back capability on peripheral IOs.
The RM48Lx50 integrates the ARM® Cortex™-R4F Floating Point CPU which offers an efficient 1.6
DMIPS/MHz, and has configurations which can run up to 200MHz providing up to 320 DMIPS. The device
supports the little-endian [LE32] format.
The RM48Lx50 has up to 3MB integrated Flash and up to 256KB data RAM configurations with single bit
error correction and double bit error detection. The flash memory on this device is a nonvolatile,
electrically erasable and programmable memory implemented with a 64-bit-wide data bus interface. The
flash operates on a 3.3V supply input (same level as I/O supply) for all read, program and erase
operations. When in pipeline mode, the flash operates with a system clock frequency of up to 200MHz.
The SRAM supports single-cycle read/write accesses in byte, halfword, and word modes.
The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer
micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs,
capture or compare inputs, or general-purpose I/O. It is especially well suited for applications requiring
multiple sensor information and drive actuators with complex and accurate time pulses. A High End Timer
Transfer Unit (HET-TU) can perform DMA type transactions to transfer N2HET data to or from main
memory. A Memory Protection Unit (MPU) is built into the HET-TU.
The device has two 12-bit-resolution MibADCs with 24 total channels and 64 words of parity protected
buffer RAM each. The MibADC channels can be converted individually or can be grouped by software for
sequential conversion sequences. Sixteen channels are shared between the two MibADCs. There are
three separate groupings. Each sequence can be converted once when triggered or configured for
continuous conversion mode.
The device has multiple communication interfaces: three MibSPIs, up to two SPIs, one LIN, one SCI, three
DCANs, one I2C, one Ethernet, and one USB module.. The SPI provides a convenient method of serial
interaction for high-speed communications between similar shift-register type devices. The LIN supports
the Local Interconnect standard 2.0 and can be used as a UART in full-duplex mode using the standard
Non-Return-to-Zero (NRZ) format. The DCAN supports the CAN 2.0B protocol standard and uses a serial,
multimaster communication protocol that efficiently supports distributed real-time control with robust
communication rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating
in noisy and harsh environments (e.g., automotive and industrial fields) that require reliable serial
communication or multiplexed wiring. The Ethernet module supports MII and MDIO interfaces. The USB
module includes a 2-port USB host controller and a USB device controller
The I2C module is a multi-master communication module providing an interface between the
microcontroller and an I2C compatible device via the I2C serial bus. The I2C supports both 100 Kbps and
400 Kbps speeds.
The frequency-modulated phase-locked loop (FMPLL) clock module is used to multiply the external
frequency reference to a higher frequency for internal use. The FMPLL provides one of the seven possible
clock source inputs to the global clock module (GCM). The GCM module manages the mapping between
the available clock sources and the device clock domains.
The device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous
external clock on the ECLK pin/ball. The ECLK frequency is a user-programmable ratio of the peripheral
interface clock (VCLK) frequency. This low frequency output can be monitored externally as an indicator of
the device operating frequency.
Copyright © 2011, Texas Instruments Incorporated
RM48Lx50 16/32-Bit RISC Flash Microcontroller
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
3
PRODUCT PREVIEW
The RM48Lx50 device features peripherals for real-time control-based applications, including two Next
Generation High End Timer (N2HET) timing coprocessors with up to 44 total IO terminals and a 12-bit
Analog-to-Digital converter supporting up to 24 inputs.
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
The Direct Memory Access Controller (DMA) has 16 channels, 32 control packets and parity protection on
its memory. A Memory Protection Unit (MPU) is built into the DMA to protect memory against erroneous
transfers.
The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt or
external Error pin/ball is triggered when a fault is detected. The nERROR can be monitored externally as
an indicator of a fault condition in the microcontroller.
The External Memory Interface (EMIF) provides a memory extension to asynchronous and synchronous
memories or other slave devices.
Several interfaces are implemented to enhance the debugging capabilities of application code. In addition
to the built in ARM Cortex™-R4F CoreSight™ debug features. An External Trace Macrocell (ETM)
provides instruction and data trace of program execution. For instrumentation purposes, a RAM Trace Port
Module (RTP) is implemented to support high-speed tracing of RAM and peripheral accesses by the CPU
or any other master. A Data Modification Module (DMM) gives the ability to write external data into the
device memory. Both the RTP and DMM have no or only minimum impact on the program execution time
of the application code. A Parameter Overlay Module (POM) can re-route Flash accesses to internal
memory or to the EMIF, thus avoiding the re-programming steps necessary for parameter updates in
Flash.
PRODUCT PREVIEW
With integrated safety features and a wide choice of communication and control peripherals, the
RM48Lx50 is an ideal solution for high performance real time control applications with safety critical
requirements.
4
RM48Lx50 16/32-Bit RISC Flash Microcontroller
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
64K
64K
64K
TRACECTL
ETMDATA[31:0]
TRACECLKIN
TRACECLK
DMMSYNC
DMMDATA[15:0]
Color Legend for Power Domains
Core/RAM
always on
RAM
Core
#1
#2
ETM-R4
RTP
DMA
Dual Cortex-R4F
CPUs in Lockstep
DMMCLK
DMMnENA
256K
RAM
with
ECC
RTPnENA
64K
3M
Flash
with
ECC
RTPSYNC
RTPDATA[15:0]
Functional Block Diagram
RTPCLK
1.4
POM
HTU1
DMM
#3
#1
#2
#4
#3
#5
EMAC
HTU2
USB Host
Switched Central Resource Switched Central Resource Switched Central Resource
Main Cross Bar: Arbitration and Prioritization Control
USB Slaves
USB1.OverCurrent
USB1.RCV
USB1.VM
USB1.VP
USB1.PortPower
USB1.SPEED
USB1.SUSPEND
USB1.TXDAT
USB1.TXEN
USB1.TXSE0
USB2.OverCurrent
USB2.RCV
USB2.VM
USB2.VP
USB2.PortPower
USB2.SPEED
USB2.SUSPEND
USB2.TXDAT
USB2.TXEN
USB2.TXSE0
Host
RTI
GIO
GIOB[7:0]
N2HET2
GIOA[7:0]
N2HET1[31:0]
N2HET1
ADREFLO
AD2EVT
VCCAD
VSSAD
ADREFHI
AD2IN[15:0]
ADREFLO
AD1EVT
AD1IN[7:0]
AD1IN[23:8]
MibADC2
N2HET2[15:0]
Device
VCCAD
VSSAD
ADREFHI
nPORRST
nRST
ECLK
ESM
nERROR
DCAN1
DCAN2
DCAN3
USB_FUNC.GZO
USB_FUNC.PUENO
USB_FUNC.PUENON
USB_FUNC.RXDI
USB_FUNC.RXDMI
USB_FUNC.RXDPI
USB_FUNC.SE0O
USB_FUNC.SUSPENDO
USB_FUNC.TXDO
USB_FUNC.VBUSI
EMIF
MibADC1
VIM
MibSPI1
SPI2
DCC2
MibSPI3
SPI4
I2C
CAN1_RX
CAN1_TX
CAN2_RX
CAN2_TX
CAN3_RX
CAN3_TX
MIBSPI1_CLK
MIBSPI1_SIMO[1:0]
MIBSPI1_SOMI[1:0]
MIBSPI1_nCS[5:0]
MIBSPI1_nENA
DCC1
I2C_SCL
MII
PMM
I2C_SDA
MDIO
EMIF_nWAIT
EMIF_CLK
EMIF_CKE
EMIF_nCS[4:2]
EMIF_nCS[0]
EMIF_ADDR[21:0]
EMIF_BA[1:0]
EMIF_DATA[15:0]
EMIF_nDQM[1:0]
EMIF_nOE
EMIF_nWE
EMIF_nRAS
EMIF_nCAS
EMIF_nRW
SYS
IOMM
EMAC Slaves
MDCLK
MDIO
MII_RXD[3:0]
MII_RXER
MII_TXD[3:0]
MII_TXEN
MII_TXCLK
MII_RXCLK
MII_CRS
MII_RXDV
MII_COL
Peripheral Central Resource Bridge
Switched Central Resource
MibSPI5
SPI2_CLK
SPI2_SIMO
SPI2_SOMI
SPI2_nCS[1:0]
SPI2_nENA
MIBSPI3_CLK
MIBSPI3_SIMO
MIBSPI3_SOMI
MIBSPI3_nCS[5:0]
MIBSPI3_nENA
SPI4_CLK
SPI4_SIMO
SPI4_SOMI
SPI4_nCS0
SPI4_nENA
MIBSPI5_SIMO[3:0]
MIBSPI5_SOMI[3:0]
MIBSPI5_nCS[3:0]
MIBSPI5_nENA
LIN
LIN_RX
LIN_TX
SCI
SCI_RX
SCI_TX
Figure 1-1. Functional Block Diagram
Copyright © 2011, Texas Instruments Incorporated
RM48Lx50 16/32-Bit RISC Flash Microcontroller
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
5
PRODUCT PREVIEW
CRC
N2HET2[18,16]
64 KB Flash
for EEPROM
Emulation
with ECC
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
1
2
RM48Lx50 16/32-Bit RISC Flash Microcontroller
......................................................
.................................
Device Operating Conditions .......................
Terminal Functions
3.1
4.8
4.9
4.10
4.11
4.12
11
PRODUCT PREVIEW
3.6
3.7
......................
Input Timings .......................................
Output Timings .....................................
Low-EMI Output Buffers ............................
Output Buffer Drive Strengths
3.8
3.9
3.10
5.1
5.2
Peripheral Legend ................................. 117
Multi-Buffered 12bit Analog-to-Digital Converter
..................................................... 117
5.3
General-Purpose Input/Output
5.5
5.6
48
5.7
50
5.8
5.9
51
52
53
55
56
6
................. 84
........................ 91
DMA Controller ..................................... 94
Real Time Interrupt Module ........................ 97
Error Signaling Module ............................. 99
Reset / Abort / Error Sources ..................... 103
Digital Windowed Watchdog ...................... 105
Debug Subsystem ................................. 106
Peripheral Information and Electrical
Specifications ......................................... 117
5.4
51
80
Vectored Interrupt Manager
4.21
48
80
Parity Protection for Accesses to peripheral RAMs
External Memory Interface (EMIF)
4.20
47
77
4.15
4.19
5
69
70
4.14
4.18
System Information and Electrical Specifications
.............................................................
4.1
Device Power Domains .............................
4.2
Voltage Monitor Characteristics ....................
4.3
Power Sequencing and Power On Reset ..........
4.4
Warm Reset (nRST) ................................
4.5
ARM© Cortex-R4F™ CPU Information .............
67
On-Chip SRAM Initialization and Testing ........... 82
4.17
44
Wait States Required ............................... 45
Power Consumption Over Recommended
Operating Conditions ............................... 46
Input/Output Electrical Characteristics Over
Recommended Operating Conditions .............. 47
3.4
3.5
59
Clock Monitoring
4.13
4.16
12
Device Recommended Operating Conditions ...... 44
Switching Characteristics over Recommended
Operating Conditions for Clock Domains ........... 45
..............................................
....................................
Glitch Filters ........................................
Device Memory Map ................................
Flash Memory ......................................
Tightly-Coupled RAM Interface Module ............
Clocks
......................................................
Absolute Maximum Ratings Over Operating
Free-Air Temperature Range, ...................... 44
3.2
3.3
6
4.7
ZWT BGA Package Ball-Map (337 Ball Grid Array)
2.4
4
4.6
............................................................... 1
1.1
Features .............................................. 1
1.2
Applications .......................................... 2
1.3
Description ........................................... 3
1.4
Functional Block Diagram ............................ 5
1.1
Device Configuration ................................. 7
Device Package and Terminal Functions ......... 10
2.2
PGE QFP Package Pinout (144-Pin) ............... 10
2.3
3
www.ti.com
....................
Enhanced High-End Timer (N2HET) ..............
Controller Area Network (DCAN) ..................
Local Interconnect Network Interface (LIN) .......
Serial Communication Interface (SCI) ............
Inter-Integrated Circuit (I2C) ......................
126
127
131
132
133
134
Multi-Buffered / Standard Serial Peripheral Interface
..................................................... 137
................
...................
Mechanical Data ......................................
6.1
Thermal Data ......................................
6.2
Packaging Information ............................
5.10
Ethernet Media Access Controller
149
5.11
Universal Serial Bus Controller
152
Contents
153
153
153
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
1.1
Device Configuration
1.1.1
Device and Development-Support Tool Nomenclature
The figure below illustrates the numbering and symbol nomenclature for the RM48Lx50 .
x
RM 4 8 L 9 5 0 ZWT T R
Prefix:
Shipping Options:
x = Not Qualified
Removed when qualified
R = Tape and Reel
RM = Real Time Microcontroller
Temperature Range:
T = -40...+105oC
CPU:
Package Type:
4 = ARM Cortex-R4
PGE = 144 Pin Package
ZWT = 337 BGA Package
Series Number
Architecture:
Reserved
Flash / RAM Size:
Network Interfaces:
9 = 3MB flash, 256kB RAM
7 = 2MB flash, 256kB RAM
5 = 2MB flash, 192kB RAM
5 = Ethernet and USB
PRODUCT PREVIEW
L = Lockstep
Figure 1-1. RM48x Device Numbering Conventions
1.1.2
Orderable Part Numbers
Table 1-1. Orderable Part Numbers
(1)
(2)
Orderable Part #
Part #
Flash
RAM
EMAC (1)
USB (2)
RM48L550PGET
RM48L550
2MB
192kB
Yes
Yes
RM48L550ZWTT
RM48L550
2MB
192kB
Yes
Yes
RM48L750PGET
RM48L750
2MB
256kB
Yes
Yes
RM48L750ZWTT
RM48L750
2MB
256kB
Yes
Yes
RM48L950PGET
RM48L950
3MB
256kB
Yes
Yes
RM48L950ZWTT
RM48L950
3MB
256kB
Yes
Yes
10/100
2 host ports, or 1 host port + 1 device port
1.1.3
Device Identification
1.1.3.1
Device Identification Code Register
The device identification code register identifies several aspects of the device including the silicon version.
The details of the device identification code register are shown in Table 1-2. The device identification code
register value for this device is:
• Rev 0 = 0x802AAD05
Contents
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
7
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Figure 1-2. Device ID Bit Allocation Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
CP-15
UNIQUE ID
TECH
R-1
R-00000000010101
R-0
15
12
11
2
1
0
TECH
14
13
I/O
VOLT
AGE
PERIPH
PARITY
FLASH ECC
10
9
RAM
ECC
8
7
6
VERSION
5
4
3
1
0
1
R-101
R-0
R-1
R-10
R-1
R-00000
R-1
R-0
R-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
PRODUCT PREVIEW
8
Contents
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 1-2. Device ID Bit Allocation Register Field Descriptions
Bit
Field
31
CP15
Value
Description
Indicates the presence of coprocessor 15
1
30-17
UNIQUE ID
16-13
TECH
10101
CP15 present
Silicon version (revision) bits.
This bitfield holds a unique number for a dedicated device configuration (die).
Process technology on which the device is manufactured.
0101
I/O VOLTAGE
I/O voltage of the device.
0
11
PERIPHERAL
PARITY
FLASH ECC
Parity on peripheral memories
Flash ECC
10
8
I/O are 3.3v
Peripheral Parity
1
10-9
F021
RAM ECC
Program memory with ECC
Indicates if RAM memory ECC is present.
1
ECC implemented
7-3
REVISION
Revision of the Device.
2-0
101
The platform family ID is always 0b101
1.1.3.2
Die Identification Registers
The four die ID registers at addresses 0xFFFFE1F0, 0xFFFFE1F4, 0xFFFFE1F8 and FFFFE1FC form a
128-bit dieid with the information as shown in Table Table 1-3.
Table 1-3. Die-ID Registers
Item
# of Bits
X Coord. on Wafer
8
Bit Location
7..0
Y Coord. on Wafer
8
15..8
Wafer #
6
21..16
Lot #
24
45..22
Reserved
82
127..46
Contents
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
9
PRODUCT PREVIEW
12
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2 Device Package and Terminal Functions
PGE QFP Package Pinout (144-Pin)
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
TMS
N2HET1[28]
N2HET1[08]
MIBSPI1NCS[0]
VCCIO
VSS
VSS
VCC
MIBSPI5CLK
MIBSPI5SIMO[0]
MIBSPI5SOMI[0]
MIBSPI5NENA
MIBSPI1NENA
MIBSPI1CLK
MIBSPI1SOMI
MIBSPI1SIMO
N2HET1[26]
N2HET1[24]
CAN1RX
CAN1TX
VSS
VCC
AD1EVT
AD1IN[15] / AD2IN[15]
AD1IN[23] / AD2IN[07]
AD1IN[08] / AD2IN[08]
AD1IN[14] / AD2IN[14]
AD1IN[22] / AD2IN[06]
AD1IN[06]
AD1IN[13] / AD2IN[13]
AD1IN[05]
AD1IN[12] / AD2IN[12]
AD1IN[04]
AD1IN[11] / AD2IN[11]
AD1IN[03]
AD1IN[02]
2.2
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
AD1IN[10] / AD2IN[10]
AD1IN[01]
AD1IN[09] / AD2IN[09]
VCCAD
VSSAD
ADREFLO
ADREFHI
AD1IN[21] / AD2IN[05]
AD1IN[20] / AD2IN[04]
AD1IN[19] / AD2IN[03]
AD1IN[18] / AD2IN[02]
AD1IN[07]
AD1IN[0]
AD1IN[17] / AD2IN[01]
AD1IN[16] / AD2IN[0]
VCC
VSS
MIBSPI3NCS[0]
MIBSPI3NENA
MIBSPI3CLK
MIBSPI3SIMO
MIBSPI3SOMI
VSS
VCC
VCC
VSS
nPORRST
VCC
VSS
VSS
VCCIO
N2HET1[15]
MIBSPI1NCS[2]
N2HET1[13]
N2HET1[06]
MIBSPI3NCS[1]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
GIOB[3]
GIOA[0]
MIBSPI3NCS[3]
MIBSPI3NCS[2]
GIOA[1]
N2HET1[11]
FLTP1
FLTP2
GIOA[2]
VCCIO
VSS
CAN3RX
CAN3TX
GIOA[5]
N2HET1[22]
GIOA[6]
VCC
OSCIN
Kelvin_GND
OSCOUT
VSS
GIOA[7]
N2HET1[01]
N2HET1[03]
N2HET1[0]
VCCIO
VSS
VSS
VCC
N2HET1[02]
N2HET1[05]
MIBSPI5NCS[0]
N2HET1[07]
TEST
N2HET1[09]
N2HET1[4]
PRODUCT PREVIEW
nTRST
TDI
TDO
TCK
RTCK
VCC
VSS
nRST
nERROR
N2HET1[10]
ECLK
VCCIO
VSS
VSS
VCC
N2HET1[12]
N2HET1[14]
GIOB[0]
N2HET1[30]
CAN2TX
CAN2RX
MIBSPI1NCS[1]
LINRX
LINTX
GIOB[1]
VCCP
VSS
VCCIO
VCC
VSS
N2HET1[16]
N2HET1[18]
N2HET1[20]
GIOB[2]
VCC
VSS
Figure 2-3. PGE QFP Package Pinout (144-Pin)
Note: Pins can have multiplexed functions. Only the default function is depicted in above diagram.
10
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
ZWT BGA Package Ball-Map (337 Ball Grid Array)
A
B
C
D
E
F
G
H
J
K
L
M
N
P
T
U
V
W
AD1IN
[06]
AD1IN[11]
/
AD2IN[11]
VSSAD
VSSAD
19
AD1IN[08] AD1IN[14] AD1IN[13]
/
/
/
AD2IN[08] AD2IN[14] AD2IN[13]
AD1IN
[04]
AD1IN
[02]
VSSAD
18
AD1IN
[05]
AD1IN[10]
/
AD2IN[10]
AD1IN
[01]
19
VSS
VSS
TMS
N2HET1
[10]
MIBSPI5
NCS[0]
MIBSPI1
SIMO
MIBSPI1
NENA
MIBSPI5
CLK
MIBSPI5
SIMO[0]
N2HET1
[28]
DMM_
DATA[0]
CAN3RX
18
VSS
TCK
TDO
nTRST
N2HET1
[08]
MIBSPI1
CLK
MIBSPI1
SOMI
MIBSPI5
NENA
MIBSPI5
SOMI[0]
N2HET1
[0]
DMM_
DATA[1]
CAN3TX
NC
17
TDI
RST
EMIF_
ADDR[21]
EMIF_
nWE
MIBSPI5
SOMI[1]
DMM_
CLK
MIBSPI5
SIMO[3]
MIBSPI5
SIMO[2]
N2HET1
[31]
EMIF_
nCS[3]
EMIF_
nCS[2]
EMIF_
nCS[4]
EMIF_
nCS[0]
NC
16
RTCK
NC
EMIF_
ADDR[20]
EMIF_
BA[1]
MIBSPI5
SIMO[1]
DMM_
NENA
MIBSPI5
SOMI[3]
MIBSPI5
SOMI[2]
DMM_
SYNC
NC
NC
NC
NC
NC
15
NC
NC
EMIF_
EMIF_
ETM
ETM
ETM
ETM
ETM
ETM
ETM
ETM
ETM
ADDR[19] ADDR[18] DATA[06] DATA[05] DATA[04] DATA[03] DATA[02] DATA[16] DATA[17] DATA[18] DATA[19]
14
N2HET1
[26]
nERROR
EMIF_
EMIF_
ETM
ADDR[17] ADDR[16] DATA[07]
VCCIO
13
N2HET1
[17]
N2HET1
[19]
EMIF_
ADDR[15]
NC
ETM
DATA[12]
VCCIO
12
ECLK
N2HET1
[04]
EMIF_
ADDR[14]
NC
ETM
DATA[13]
VCCIO
VSS
VSS
VCC
VSS
11
N2HET1
[14]
N2HET1
[30]
EMIF_
ADDR[13]
NC
ETM
DATA[14]
VCCIO
VSS
VSS
VSS
10 CAN1TX
CAN1RX
EMIF_
ADDR[12]
NC
ETM
DATA[15]
VCC
VCC
VSS
VCCIO
VCCIO
VCC
R
AD1IN[15] AD1IN[22]
/
/
AD1EVT
AD2IN[15] AD2IN[06]
AD1IN
[03]
AD1IN[09]
/
17
AD2IN[09]
AD1IN[23] AD1IN[12] AD1IN[19]
/
/
/
ADREFLO
AD2IN[07] AD2IN[12] AD2IN[03]
VSSAD
16
AD1IN[21] AD1IN[20]
/
/
ADREFHI
AD2IN[05] AD2IN[04]
VCCAD
15
AD1IN
[0]
14
NC
13
NC
NC
VCCIO
NC
NC
AD1IN[18]
/
AD2IN[02]
VCCIO
ETM
DATA[01]
NC
AD1IN[17] AD1IN[16]
/
/
AD2IN[01] AD2IN[0]
VSS
VCCIO
ETM
DATA[0]
MIBSPI5
NCS[3]
NC
NC
NC
12
VSS
VSS
VCCPLL
ETME
TRACE
CTL
NC
NC
NC
NC
11
VSS
VSS
VCC
VCC
ETM
TRACE
CLKOUT
NC
NC
MIBSPI3
NCS[0]
GIOB[3]
10
VCC
VCCIO
VCCIO
VCCIO
AD1IN
[07]
9
N2HET1
[27]
NC
EMIF_
ADDR[11]
NC
ETM
DATA[08]
VCC
VSS
VSS
VSS
VSS
VSS
VCCIO
ETM
TRACE
CLKIN
NC
NC
MIBSPI3
CLK
MIBSPI3
9
NENA
8
NC
NC
EMIF_
ADDR[10]
NC
ETM
DATA[09]
VCCP
VSS
VSS
VCC
VSS
VSS
VCCIO
ETM
DATA[31]
NC
NC
MIBSPI3
SOMI
MIBSPI3
8
SIMO
7
LINRX
LINTX
EMIF_
ADDR[9]
NC
ETM
DATA[10]
VCCIO
VCCIO
ETM
DATA[30]
NC
NC
N2HET1
[09]
nPORRST 7
6
GIOA[4]
MIBSPI5
NCS[1]
EMIF_
ADDR[8]
NC
ETM
DATA[11]
VCCIO
VCCIO
ETM
DATA[29]
NC
NC
N2HET1
[05]
MIBSPI5
6
NCS[2]
5
GIOA[0]
GIOA[5]
EMIF_
ADDR[7]
EMIF_
ADDR[1]
ETM
ETM
ETM
ETM
ETM
ETM
DATA[23] DATA[24] DATA[25] DATA[26] DATA[27] DATA[28]
NC
NC
MIBSPI3
NCS[1]
N2HET1
[02]
5
4
N2HET1
[16]
N2HET1
[12]
EMIF_
ADDR[6]
EMIF_
ADDR[0]
NC
NC
3
N2HET1
[29]
N2HET1
[22]
MIBSPI3
NCS[3]
SPI2
NENA
N2HET1
[11]
2
VSS
MIBSPI3
NCS[2]
GIOA[1]
SPI2
SOMI
1
VSS
VSS
GIOA[2]
A
B
C
VCCIO
VCCIO
VCCIO
FLTP2
FLTP1
NC
N2HET1
[21]
N2HET1
[23]
NC]
NC
NC
NC
NC
EMIF_
nCAS
NC
NC
NC
NC
4
MIBSPI1
NCS[1]
MIBSPI1
NCS[2]
GIOA[6]
MIBSPI1
NCS[3]
EMIF_
CLK
EMIF_
CKE
NH2ET1
[25]
SPI2
NCS[0]
EMIF_
nWAIT
EMIF_
nRAS
NC
NC
NC
N2HET1
[06]
3
SPI2 CLK
GIOB[2]
GIOB[5]
CAN2TX
GIOB[6]
GIOB[1]
KELVIN_
GND
GIOB[0]
N2HET1
[13]
N2HET1
[20]
MIBSPI1
NCS[0]
NC
TEST
N2HET1
[01]
VSS
2
SPI2
SIMO
GIOA[3]
GIOB[7]
GIOB[4]
CAN2RX
N2HET1
[18]
OSCIN
OSCOUT
GIOA[7]
N2HET1
[15]
N2HET1
[24]
NC
N2HET1
[07]
N2HET1
[03]
VSS
VSS
1
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
ETM
ETM
ETM
DATA[20] DATA[21] DATA[22]
VCC
VCC
VCCIO
VCCIO
Figure 2-4. ZWT Package Pinout. Top View
Note: Balls can have multiplexed functions. Only the default function is depicted in above diagram, except
for the EMIF signals that are multiplexed with ETM signals.
Copyright © 2011, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
11
PRODUCT PREVIEW
2.3
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
2.4
www.ti.com
Terminal Functions
Section 2.4.1 and Section 2.4.2 identify the external signal names, the associated pin/ball numbers along
with the mechanical package designator, the pin/ball type (Input, Output, IO, Power or Ground), whether
the pin/ball has any internal pullup/pulldown, whether the pin/ball can be configured as a GIO, and a
functional pin/ball description. The first signal name listed is the primary function for that terminal. The
signal name in Bold is the function being described. Refer to the I/O Multiplexing Module (IOMM) User
Guide for information on how to select between different multiplexed functions.
NOTE
All I/O signals except nRST are configured as inputs while nPORRST is low and immediately
after nPORRST goes High.
All output-only signals are configured as inputs while nPORRST is low, and are configured
as outputs immediately after nPORRST goes High.
While nPORRST is low, the input buffers are disabled, and the output buffers are tri-stated.
PRODUCT PREVIEW
2.4.1
PGE Package
2.4.1.1
Multi-Buffered Analog-to-Digital Converters (MibADC)
Table 2-4. PGE Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2)
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
Pull Type
Input
-
-
Description
ADREFHI (1)
66
ADREFLO (1)
67
Input
ADC low reference supply
VCCAD (1)
69
Power
Operating supply for ADC
(1)
VSSAD
68
Ground
AD1EVT/MII_RX_ER
86
Input
MIBSPI3NCS[0]/AD2EVT
55
I/O
AD1IN[0]
60
Input
AD1IN[01]
71
AD1IN[02]
73
AD1IN[03]
74
AD1IN[04]
76
AD1IN[05]
78
AD1IN[06]
80
AD1IN[07]
61
(1)
12
ADC high reference
supply
Pull Down
Programmable,
20uA
ADC1 event trigger input,
or GIO
Pull Up
Programmable,
20uA
ADC2 event trigger input,
or GIO
-
-
ADC1 analog input
The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores.
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 2-4. PGE Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2) (continued)
144
PGE
AD1IN[08] / AD2IN[08]
83
AD1IN[09] / AD2IN[09]
70
AD1IN[10] / AD2IN[10]
72
AD1IN[11] / AD2IN[11]
75
AD1IN[12] / AD2IN[12]
77
AD1IN[13] / AD2IN[13]
79
AD1IN[14] / AD2IN[14]
82
AD1IN[15] / AD2IN[15]
85
AD1IN[16] / AD2IN[0]
58
AD1IN[17] / AD2IN[01]
59
AD1IN[18] / AD2IN[02]
62
AD1IN[19] / AD2IN[03]
63
AD1IN[20] / AD2IN[04]
64
AD1IN[21] / AD2IN[05]
65
AD1IN[22] / AD2IN[06]
81
AD1IN[23] / AD2IN[07]
84
Copyright © 2011, Texas Instruments Incorporated
Signal
Type
Default
Pull State
Pull Type
Input
-
-
Description
ADC1/ADC2 shared
analog inputs
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
PRODUCT PREVIEW
Terminal
Signal Name
13
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
2.4.1.2
www.ti.com
Enhanced High-End Timer Modules (N2HET)
Table 2-5. PGE Enhanced High-End Timer Modules (N2HET)
Terminal
Signal Name
144
PGE
PRODUCT PREVIEW
N2HET1[0]/SPI4CLK
25
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]
23
N2HET1[02]/SPI4SIMO
30
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]
24
N2HET1[04]
36
N2HET1[05]/SPI4SOMI/N2HET2[12]
31
N2HET1[06]/SCIRX
38
N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/
N2HET2[14]
33
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
106
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO
35
N2HET1[10]/MII_TX_CLK/USB1.TXEN
/MII_TX_AVCLK4
118
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI
I/O
Default Pull
State
Pull Down
Pull Type
Programmable,
20uA
Description
N2HET1
time
input
capture
or
output
compare, or GIO.
Each terminal has a
suppression filter that
ignores input pulses
smaller
than
a
programmable duration.
6
N2HET1[12]/MII_CRS
124
N2HET1[13]/SCITX
39
N2HET1[14]/USB1.TXSE0
125
N2HET1[15]/MIBSPI1NCS[4]
41
N2HET1[16]
139
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND
130
N2HET1[18]
140
MIBSPI1NCS[2]/N2HET1[19]/MDIO
40
N2HET1[20]
141
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
15
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP
96
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]
91
MIBSPI3NCS[1]/N2HET1[25]/MDCLK
37
N2HET1[26]/MII_RXD[1]
92
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]
4
N2HET1[28]/MII_RXCLK/MII_RX_AVCLK4
107
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]
3
N2HET1[30]/MII_RX_DV/USB1.SPEED
127
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]
54
14
Signal
Type
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 2-5. PGE Enhanced High-End Timer Modules (N2HET) (continued)
Terminal
Signal Name
144
PGE
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]
9
GIOA[6]/N2HET2[4]
16
GIOA[7]/N2HET2[6]
22
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]
23
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]
24
N2HET1[05]/SPI4SOMI/N2HET2[12]
31
N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/
N2HET2[14]
33
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO
35
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI
6
I/O
Default Pull
State
Pull Down
Pull Type
Programmable,
20uA
Description
N2HET2
time
input
capture
or
output
compare, or GIO
Each terminal has a
suppression filter that
ignores input pulses
smaller
than
a
programmable duration.
General-Purpose Input / Output (GIO)
PRODUCT PREVIEW
2.4.1.3
Signal
Type
Table 2-6. PGE General-Purpose Input / Output (GIO)
Terminal
Signal Name
144
PGE
GIOA[0]
2
GIOA[1]
5
GIOA[2]/N2HET2[0]
9
GIOA[5]/EXTCLKIN
14
GIOA[6]/N2HET2[4]
16
GIOA[7]/N2HET2[6]
22
GIOB[0]
126
GIOB[1]
133
GIOB[2]
142
GIOB[3]
1
2.4.1.4
Signal
Type
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
General-purpose I/O.
All GIO terminals are
capable of generating
interrupts to the CPU on
rising / falling / both
edges.
Controller Area Network Controllers (DCAN)
Table 2-7. PGE Controller Area Network Controllers (DCAN)
Terminal
Signal Name
144
PGE
Signal
Type
Pull Up
Pull Type
Programmable,
20uA
Description
CAN1RX
90
CAN1TX
89
CAN2RX
129
CAN2 receive, or GIO
CAN2TX
128
CAN2 transmit, or GIO
CAN3RX
12
CAN3 receive, or GIO
CAN3TX
13
CAN3 transmit, or GIO
Copyright © 2011, Texas Instruments Incorporated
I/O
Default
Pull State
CAN1 receive, or GIO
CAN1 transmit, or GIO
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
15
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
2.4.1.5
www.ti.com
Local Interconnect Network Interface Module (LIN)
Table 2-8. PGE Local Interconnect Network Interface Module (LIN)
Terminal
Signal Name
144
PGE
LINRX
131
LINTX
132
2.4.1.6
Signal
Type
I/O
Default
Pull State
Pull Up
Pull Type
Programmable,
20uA
Description
LIN receive, or GIO
LIN transmit, or GIO
Standard Serial Communication Interface (SCI)
Table 2-9. PGE Standard Serial Communication Interface (SCI)
Terminal
Signal Name
144
PGE
N2HET1[06]/SCIRX
38
N2HET1[13]/SCITX
39
2.4.1.7
Signal
Type
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
SCI receive, or GIO
SCI transmit, or GIO
Inter-Integrated Circuit Interface Module (I2C)
PRODUCT PREVIEW
Table 2-10. PGE Inter-Integrated Circuit Interface Module (I2C)
Terminal
Signal Name
144
PGE
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]
4
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]
3
2.4.1.8
Signal
Type
I/O
Default
Pull State
Pull Up
Pull Type
Programmable,
20uA
Description
I2C serial data, or GIO
I2C serial clock, or GIO
Standard Serial Peripheral Interface (SPI)
Table 2-11. PGE Standard Serial Peripheral Interface (SPI)
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
N2HET1[0]/SPI4CLK
25
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]
24
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]
23
SPI4 enable, or GIO
N2HET1[02]/SPI4SIMO
30
SPI4 slave-input
master-output, or GIO
N2HET1[05]/SPI4SOMI/N2HET2[12]
31
SPI4 slave-output
master-input, or GIO
16
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
SPI4 clock, or GIO
SPI4 chip select, or GIO
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.1.9
Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
Table 2-12. PGE Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
144
PGE
Signal
Type
I/O
Default
Pull State
Pull Up
Pull Type
Description
MIBSPI1CLK
95
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV
105
Programmable,
20uA
MibSPI1 clock, or GIO
MIBSPI1NCS[1]/N2HET1[17]/MII_COL
/USB1.SUSPEND
130
MIBSPI1NCS[2]/N2HET1[19]/MDIO
40
N2HET1[15]/MIBSPI1NCS[4]
41
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]
91
Pull Down
Programmable,
20uA
MibSPI1 chip select, or
GIO
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP
96
Pull Up
Programmable,
20uA
MibSPI1 enable, or GIO
MIBSPI1SIMO
93
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
106
Pull Down
Programmable,
20uA
MibSPI1 slave-in
master-out, or GIO
MIBSPI1SOMI
94
Pull Up
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV
105
Programmable,
20uA
MibSPI1 slave-out
master-in, or GIO
MIBSPI3CLK
53
Pull Up
55
Programmable,
20uA
MibSPI3 clock, or GIO
MIBSPI3NCS[0]/AD2EVT/GIOB[2]
MIBSPI3NCS[1]/N2HET1[25]/MDCLK
37
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]
4
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]
3
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI
6
Pull Up
Programmable,
20uA
MibSPI3 chip select, or
GIO
MIBSPI3NENA /MIBSPI3NCS[5]/N2HET1[31]
54
Pull Up
Programmable,
20uA
MibSPI3 chip select, or
GIO
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]
54
MibSPI3 enable, or GIO
MIBSPI3SIMO
52
MibSPI3 slave-in
master-out, or GIO
MIBSPI3SOMI
51
MibSPI3 slave-out
master-in, or GIO
MIBSPI5CLK/MII_TXEN
100
MIBSPI5NCS[0]
32
MIBSPI5NENA/MII_RXD[3]/USB1.VM
97
MibSPI5 enable, or GIO
MIBSPI5SIMO[0]/MII_TXD[1]
99
MibSPI5 slave-in
master-out, or GIO
MIBSPI5SOMI[0]/MII_TXD[0]
98
MibSPI5 slave-out
master-in, or GIO
MibSPI1 chip select, or
GIO
MibSPI1 slave-in
master-out, or GIO
I/O
I/O
Pull Up
Programmable,
20uA
PRODUCT PREVIEW
Terminal
Signal Name
MibSPI3 chip select, or
GIO
MibSPI5 clock, or GIO
MibSPI5 chip select, or
GIO
2.4.1.10 Ethernet Controller
Table 2-13. PGE Ethernet Controller: MDIO Interface
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
MIBSPI3NCS[1]/N2HET1[25]/MDCLK
37
Output
Pull Up
MIBSPI1NCS[2]/N2HET1[19]/MDIO
40
I/O
Pull Up
Copyright © 2011, Texas Instruments Incorporated
Pull Type
Fixed, 20uA
Description
Serial clock output
Serial data input/output
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
17
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 2-14. PGE Ethernet Controller: Media Independent Interface (MII)
Terminal
Signal Name
144
PGE
Signal
Type
N2HET1[12]/MII_CRS
124
N2HET1[28]/MII_RXCLK/MII_RX_AVCLK4
107
I/O
Pull Down
N2HET1[30]/MII_RX_DV/USB1.SPEED
127
Input
Pull Down
AD1EVT/MII_RX_ER
86
N2HET1[28]/MII_RX_CLK/MII_RX_AVCLK4
107
I/O
Receive clock
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]
92
Input
Receive data
N2HET1[26]/MII_RXD[1]
92
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP
96
PRODUCT PREVIEW
97
118
N2HET1[10]/MII_TX_CLK/USB1.TXEN
/MII_TX_AVCLK4
118
MIBSPI5SOMI[0]/MII_TXD[0]
98
Pull Down
-
Description
130
N2HET1[10]/MII_TX_CLK/USB1.TXEN/
MII_TX_AVCLK4
Pull Up
Pull Type
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND
MIBSPI5NENA/MII_RXD[3]/USB1.VM
Input
Default
Pull State
Fixed, 20uA
Fixed, 20uA
Collision detect
Carrier sense and receive
valid
MII output receive clock
Received data valid
Receive error
Pull Up
I/O
Pull Down
Fixed, 20uA
-
MII output transmit clock
Transmit clock
Output
Pull Up
-
MIBSPI5SIMO[0]/MII_TXD[1]
99
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV
105
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
106
Pull Down
-
MIBSPI5CLK/MII_TXEN
100
Pull Up
-
Transmit data
Transmit enable
2.4.1.11 USB Host Port Controller Interface
Table 2-15. PGE USB Host Port Controller Interface (USB1, USB2)
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
Pull Type
Description
Input
Pull Down
Fixed, 20uA
Overcurrent indication
from USB power switch
Pull Up
Fixed, 20uA
Receive data from USB
port transceiver
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]
/USB1.OverCurrent
106
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV
105
MIBSPI5NENA/MII_RXD[3]/USB1.VM
97
NRZI encoded D-minus
from USB port transceiver
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP
96
NRZI encoded D-plus
from USB port transceiver
GIOB[1]/USB1.PortPower
133
N2HET1[30]/MII_RX_DV/USB1.SPEED
127
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND
Pull Down
-
130
Pull Up
-
GIOB[0]/USB1.TXDAT
126
Pull Down
-
N2HET1[10]/MII_TX_CLK/USB1.TXEN
/MII_TX_AVCLK4
118
Transmit enable to port
transceiver
N2HET1[14]/USB1.TXSE0
125
Single-ended zero to port
transceiver
18
Output
Transmit speed indication
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 2-15. PGE USB Host Port Controller Interface (USB1, USB2) (continued)
144
PGE
Signal
Type
Default
Pull State
Pull Type
Input
Pull Down
Fixed, 20uA
Pull Down
Fixed, 20uA
Description
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI
6
GIOB[3]/USB2.RCV/USB_FUNC.RXDI
1
GIOA[1]/USB2.VM/USB_FUNC.RXDMI
5
NRZI encoded D-minus
from USB port transceiver
GIOA[0]/USB2.VP/USB_FUNC.RXDPI
2
NRZI encoded D-plus
from USB port transceiver
N2HET1[07]/USB2.PortPower/
USB_FUNC.GZO/N2HET2[14]
33
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]
24
Transmit speed indication
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO
35
Port suspend indication
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]
9
NRZI encoded D-plus to
port transceiver
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]
23
Transmit enable to port
transceiver
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
15
Single-ended zero to port
transceiver
Output
Pull Down
-
Table 2-16. PGE USB Device Port Controller Interface (USB_FUNC)
Terminal
Signal
Type
Default
Pull State
Pull Type
Description
Output
Pull Down
-
Pull Up enable, allows for
software-programmable
USB device
connect/disconnect
Signal Name
144
PGE
N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/N2HET2[14]
33
N2HET1[01]/SPI4NENA/USB2.TXEN/USB_FUNC.PUENO/
N2HET2[8]
23
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/USB_FUNC.PUENO
N/
N2HET2[10]
24
GIOB[3]/USB2.RCV/USB_FUNC.RXDI
1
GIOA[1]/USB2.VM/USB_FUNC.RXDMI
5
USB device logic value of
D-minus
GIOA[0]/USB2.VP/USB_FUNC.RXDPI
2
USB device logic value of
D-plus
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
15
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO
35
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]
9
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI
6
Copyright © 2011, Texas Instruments Incorporated
PUENO inverted
Input
Output
Pull Down
Pull Down
Fixed, 20uA
-
USB device single-ended
data input
USB device single-ended
zero
USB device suspend
output
USB device transmit data
Input
Pull Down
Fixed, 20uA
USB device power
connected
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
19
PRODUCT PREVIEW
Terminal
Signal Name
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.1.12 System Module Interface
Table 2-17. PGE System Module Interface
Terminal
Signal Name
144
PGE
Signal
Type
PRODUCT PREVIEW
nPORRST
46
Input
nRST
116
I/O
nERROR
117
I/O
Default
Pull State
Pull Type
Pull Down 100uA
Pull Up
Description
Power-on reset, cold reset
External power supply
monitor circuitry must
drive nPORRST low when
any of the supplies to the
microcontroller fall out of
thespecified range. This
terminal has a glitch filter.
See Section 4.8.
100uA
System reset, warm reset,
bidirectional.
The internal circuitry
indicates any reset
condition by driving nRST
low.
The external circuitry can
assert a system reset by
driving nRST low. To
ensure that an external
reset is not arbitrarily
generated, TI
recommends that an
external pull-up resistor is
connected to this terminal.
This terminal has a glitch
filter. See Section 4.8.
Pull Down 20uA
ESM Error Signal
Indicates error of high
severity. See
Section 4.18.
2.4.1.13 Clock Inputs and Outputs
Table 2-18. PGE Clock Inputs and Outputs
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
Pull Type
-
-
Description
OSCIN
18
Input
KELVIN_GND
19
Input
OSCOUT
20
Output
ECLK
119
I/O
Pull Down
Programmable,
20uA
External prescaled clock
output, or GIO.
GIOA[5]/EXTCLKIN
14
Input
Pull Down
20uA
External clock input #1
20
From external
crystal/resonator, or
external clock input
Kelvin ground for oscillator
To external
crystal/resonator
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.1.14 Test and Debug Modules Interface
Table 2-19. PGE Test and Debug Modules Interface
Terminal
Signal Name
144
PGE
Signal
Type
Default
Pull State
TEST
34
I/O
nTRST
109
Input
RTCK
113
Output
TCK
112
Input
TDI
110
I/O
Pull Up
TDO
111
I/O
Pull Down
TMS
108
I/O
Pull Up
Pull Type
Pull Down Fixed, 100uA
Description
Test enable
JTAG test hardware reset
-
-
JTAG return test clock
Pull Down Fixed, 100uA
JTAG test clock
JTAG test data in
JTAG test data out
JTAG test select
2.4.1.15 Flash Supply and Test Pads
Table 2-20. PGE Flash Supply and Test Pads
144
PGE
VCCP
134
FLTP1
7
FLTP2
8
Signal
Type
Default
Pull State
Pull Type
Input
-
-
Description
Flash pump supply
Flash test pads. These
terminals are reserved for
TI use only. For proper
operation these terminals
must connect only to a
test pad or not be
connected at all [no
connect (NC)].
2.4.1.16 Supply for Core Logic: 1.2V nominal
Table 2-21. PGE Supply for Core Logic: 1.2V nominal
Terminal
Signal Name
144
PGE
VCC
17
VCC
29
VCC
45
VCC
48
VCC
49
VCC
57
VCC
87
VCC
101
VCC
114
VCC
123
VCC
137
VCC
143
Copyright © 2011, Texas Instruments Incorporated
Signal
Type
Default
Pull State
Pull Type
-
-
-
Description
Core supply
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
21
PRODUCT PREVIEW
Terminal
Signal Name
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.1.17 Supply for I/O Cells: 3.3V nominal
Table 2-22. PGE Supply for I/O Cells: 3.3V nominal
Terminal
Signal Name
144
PGE
VCCIO
10
VCCIO
26
VCCIO
42
VCCIO
104
VCCIO
120
VCCIO
136
Signal
Type
Default
Pull State
Pull Type
Input
-
-
Description
Operating supply for I/Os
2.4.1.18 Ground Reference for All Supplies Except VCCAD
Table 2-23. PGE Ground Reference for All Supplies Except VCCAD
Terminal
Signal Name
144
PGE
PRODUCT PREVIEW
VSS
11
VSS
21
VSS
27
VSS
28
VSS
43
VSS
44
VSS
47
VSS
50
VSS
56
VSS
88
VSS
102
VSS
103
VSS
115
VSS
121
VSS
122
VSS
135
VSS
138
22
Signal
Type
Default
Pull State
Pull Type
Input
-
-
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Description
Ground reference
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2
ZWT Package
2.4.2.1
Multi-Buffered Analog-to-Digital Converters (MibADC)
Table 2-24. ZWT Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2)
Terminal
Signal Name
ADREFHI (1)
337
ZWT
V15
Signal
Type
Default
Pull State
Pull Type
Input
-
-
Description
ADC high reference
supply
ADREFLO (1)
V16
Input
ADC low reference supply
VCCAD (1)
W15
Power
Operating supply for ADC
V19
Ground
-
-
Pull Down
Programmable,
20uA
ADC1 event trigger input,
or GIO
Pull Up
Programmable,
20uA
ADC2 event trigger input,
or GIO
VSSAD
ADC supply power
W16
W18
N19
Input
MIBSPI3NCS[0]/AD2EVT/GIOB[2]
V10
I/O
AD1IN[0]
W14
Input
-
-
ADC1 analog input
AD1IN[01]
V17
AD1IN[02]
V18
Input
-
-
ADC1/ADC2 shared
analog inputs
AD1IN[03]
T17
AD1IN[04]
U18
AD1IN[05]
R17
AD1IN[06]
T19
AD1IN[07]
V14
AD1IN[08] / AD2IN[08]
P18
AD1IN[09] / AD2IN[09]
W17
AD1IN[10] / AD2IN[10]
U17
AD1IN[11] / AD2IN[11]
U19
AD1IN[12] / AD2IN[12]
T16
AD1IN[13] / AD2IN[13]
T18
AD1IN[14] / AD2IN[14]
R18
AD1IN[15] / AD2IN[15]
P19
AD1IN[16] / AD2IN[0]
V13
AD1IN[17] / AD2IN[01]
U13
AD1IN[18] / AD2IN[02]
U14
AD1IN[19] / AD2IN[03]
U16
AD1IN[20] / AD2IN[04]
U15
AD1IN[21] / AD2IN[05]
T15
AD1IN[22] / AD2IN[06]
R19
AD1IN[23] / AD2IN[07]
R16
(1)
The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores.
Copyright © 2011, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
23
PRODUCT PREVIEW
W19
AD1EVT/MII_RX_ER
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
2.4.2.2
www.ti.com
Enhanced High-End Timer Modules (N2HET)
Table 2-25. ZWT Enhanced High-End Timer Modules (N2HET)
Terminal
Signal Name
337
ZWT
N2HET1[0]/SPI4CLK
K18
N2HET1[01]/SPI4NENA/N2HET2[8]
V2
N2HET1[02]/SPI4SIMO
W5
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]
U1
N2HET1[04]
B12
PRODUCT PREVIEW
N2HET1[05]/SPI4SOMI/N2HET2[12]
V6
N2HET1[06]/SCIRX
W3
N2HET1[07]/USB2.PortPower/
USB_FUNC.GZO/N2HET2[14]
T1
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
E18
N2HET1[09]/N2HET2[16]/
USB2.SUSPEND/USB_FUNC.SUSPENDO
V7
N2HET1[10]/MII_TX_CLK/
USB1.TXEN/MII_TX_AVCLK4
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
N2HET1
time
capture
or
compare, or GIO.
input
output
Each terminal has a
suppression filter that
ignores
input
pulses
smaller
than
a
programmable duration.
D19
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI
E3
N2HET1[12]/MII_CRS
B4
N2HET1[13]/SCITX
N2
N2HET1[14]/USB1.TXSE0
A11
N2HET1[15]/MIBSPI1NCS[4]
N1
N2HET1[16]
A4
N2HET1[17]
A13
N2HET1[18]
J1
N2HET1[19]
B13
N2HET1[20]
P2
N2HET1[21]
H4
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
B3
N2HET1[23]
J4
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]
P1
N2HET1[25]
M3
N2HET1[26]/MII_RXD[1]
A14
N2HET1[27]
A9
N2HET1[28]/MII_RX_CLK/MII_RX_AVCLK4
K19
N2HET1[29]
A3
N2HET1[30]/MII_RX_DV/USB1.SPEED
B11
N2HET1[31]
J17
24
Signal
Type
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 2-25. ZWT Enhanced High-End Timer Modules (N2HET) (continued)
337
ZWT
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]
C1
EMIF_ADDR[0]/N2HET2[1]
D4
GIOA[3]/N2HET2[2]
E1
EMIF_ADDR[1]/N2HET2[3]
D5
GIOA[6]/N2HET2[4]
H3
EMIF_BA[1]/N2HET2[5]
D16
GIOA[7]/N2HET2[6]
M1
EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7]
N17
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]
V2
EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9]
K17
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]
U1
EMIF_ADDR[6]/RTP_DATA[13]/NHET2[11]
C4
N2HET1[05]/SPI4SOMI/N2HET2[12]
V6
EMIF_ADDR[7]/RTP_DATA[12]/NHET2[13]
C5
N2HET1[07]/USB2.PortPower/
USB_FUNC.GZO/N2HET2[14]
T1
EMIF_ADDR[8]/RTP_DATA[11]/N2HET2[15]
C6
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO
V7
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI
E3
Copyright © 2011, Texas Instruments Incorporated
Signal
Type
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
N2HET2
time
capture
or
compare, or GIO.
input
output
Each terminal has a
suppression filter that
ignores
input
pulses
smaller
than
a
programmable duration.
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
PRODUCT PREVIEW
Terminal
Signal Name
25
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
2.4.2.3
www.ti.com
General-Purpose Input / Output (GIO)
Table 2-26. ZWT General-Purpose Input / Output (GIO)
Terminal
Signal Name
337
ZWT
GIOA[0]/USB2.VP/USB_FUNC.RXDPI
A5
GIOA[1]/USB2.VM/USB_FUNC.RXDMI
C2
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]
C1
GIOA[3]/N2HET2[2]
E1
GIOA[4]
A6
GIOA[5]/EXTCLKIN
B5
GIOA[6]/N2HET2[4]
H3
GIOA[7]/N2HET2[6]
M1
GIOB[0]/USB1.TXDAT
M2
GIOB[1]/USB1.PortPower
K2
GIOB[2]
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
General-purpose I/O.
All GIO terminals are
capable of generating
interrupts to the CPU on
rising / falling / both
edges.
F2
GIOB[3]/USB2.RCV
W10
PRODUCT PREVIEW
GIOB[4]
G1
GIOB[5]
G2
GIOB[6]
J2
GIOB[7]
F1
26
Signal
Type
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.4
Controller Area Network Controllers (DCAN)
Table 2-27. ZWT Controller Area Network Controllers (DCAN)
Terminal
Signal Name
337
ZWT
Signal
Type
Pull Up
Pull Type
Programmable,
20uA
Description
CAN1RX
B10
CAN1TX
A10
CAN2RX
H1
CAN2 receive, or GIO
CAN2TX
H2
CAN2 transmit, or GIO
CAN3RX
M19
CAN3 receive, or GIO
CAN3TX
M18
CAN3 transmit, or GIO
2.4.2.5
I/O
Default
Pull State
CAN1 receive, or GIO
CAN1 transmit, or GIO
Local Interconnect Network Interface Module (LIN)
Table 2-28. ZWT Local Interconnect Network Interface Module (LIN)
337
ZWT
LINRX
A7
LINTX
B7
2.4.2.6
Signal
Type
I/O
Default
Pull State
Pull Up
Pull Type
Programmable,
20uA
Description
PRODUCT PREVIEW
Terminal
Signal Name
LIN receive, or GIO
LIN transmit, or GIO
Standard Serial Communication Interface (SCI)
Table 2-29. ZWT Standard Serial Communication Interface (SCI)
Terminal
Signal Name
337
ZWT
N2HET1[06]/SCIRX
W3
N2HET1[13]/SCITX
N2
Copyright © 2011, Texas Instruments Incorporated
Signal
Type
Default
Pull State
Pull Type
I/O
Pull Down
Programmable,
20uA
Description
SCI receive, or GIO
SCI transmit, or GIO
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
27
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
2.4.2.7
www.ti.com
Inter-Integrated Circuit Interface Module (I2C)
Table 2-30. ZWT Inter-Integrated Circuit Interface Module (I2C)
Terminal
Signal Name
337
ZWT
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]
B2
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]
C3
2.4.2.8
Signal
Type
I/O
Default
Pull State
Pull Up
Pull Type
Programmable,
20uA
Description
I2C serial data, or GIO
I2C serial clock, or GIO
Standard Serial Peripheral Interface (SPI)
Table 2-31. ZWT Standard Serial Peripheral Interface (SPI)
Terminal
Signal Name
337
ZWT
Signal
Type
PRODUCT PREVIEW
SPI2NCS[0]
N3
SPI2NENA/SPI2NCS[1]
D3
SPI2 chip select, or GIO
SPI2NENA/SPI2NCS[1]
D3
SPI2 enable, or GIO
SPI2SIMO
D1
SPI2 slave-input
master-output, or GIO
SPI2SOMI
D2
SPI2 slave-output
master-input, or GIO
N2HET1[0]/SPI4CLK
K18
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]
U1
N2HET1[01]/SPI4NENA/USB2.TXEN/
USB_FUNC.PUENO/N2HET2[8]
V2
SPI4 enable, or GIO
N2HET1[02]/SPI4SIMO
W5
SPI4 slave-input
master-output, or GIO
N2HET1[05]/SPI4SOMI/N2HET2[12]
V6
SPI4 slave-output
master-input, or GIO
Pull Down
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Programmable,
20uA
Description
E2
I/O
Pull Up
Pull Type
SPI2CLK
28
I/O
Default
Pull State
Programmable,
20uA
SPI2 clock, or GIO
SPI2 chip select, or GIO
SPI4 clock, or GIO
SPI4 chip select, or GIO
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.9
Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
Table 2-32. ZWT Multi-Buffered Serial Peripheral Interface Modules (MibSPI)
337
ZWT
MIBSPI1CLK
F18
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV
R2
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND
F3
MIBSPI1NCS[2]/N2HET1[19]/MDIO
G3
Signal
Type
I/O
Default
Pull State
Pull Up
Pull Type
Description
Programmable,
20uA
MibSPI1 clock, or GIO
Pull Down
Programmable,
20uA
MibSPI1 chip select, or
GIO
Pull Up
Programmable,
20uA
MibSPI1 enable, or GIO
MibSPI1 chip select, or
GIO
MIBSPI1NCS[3]/N2HET1[21]
J3
N2HET1[15]/MIBSPI1NCS[4]
N1
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]
P1
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP
G19
MIBSPI1SIMO
F19
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/USB1.OverCurrent
E18
Pull Down
Programmable,
20uA
MibSPI1 slave-in
master-out, or GIO
MIBSPI1SOMI
G18
Pull Up
Programmable,
20uA
MibSPI1 slave-out
master-in, or GIO
Pull Up
Programmable,
20uA
MibSPI3 clock, or GIO
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV
MibSPI1 slave-in
master-out, or GIO
R2
MIBSPI3CLK
V9
MIBSPI3NCS[0]/AD2EVT/GIOB[2]
V10
MIBSPI3NCS[1]/N2HET1[25]/MDCLK
V5
I/O
MibSPI3 chip select, or
GIO
MIBSPI3NCS[2]/I2C_SDA/N2HET1[27]
B2
MIBSPI3NCS[3]/I2C_SCL/N2HET1[29]
C3
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI
E3
Pull Up
Programmable,
20uA
MibSPI3 chip select, or
GIO
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]
W9
Pull Up
Programmable,
20uA
MibSPI3 chip select, or
GIO
MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31]
W9
MibSPI3 enable, or GIO
MIBSPI3SIMO
W8
MibSPI3 slave-in
master-out, or GIO
MIBSPI3SOMI
V8
MibSPI3 slave-out
master-in, or GIO
MIBSPI5CLK/DMM_DATA[4]/MII_TXEN
H19
MIBSPI5NCS[0]/DMM_DATA[5]
E19
MIBSPI5NCS[1]/DMM_DATA[6]
B6
MIBSPI5NCS[2]/DMM_DATA[2]
W6
I/O
Pull Up
Programmable,
20uA
MibSPI5 clock, or GIO
MibSPI5 chip select, or
GIO
MIBSPI5NCS[3]/DMM_DATA[3]
T12
MIBSPI5NENA/DMM_DATA[7]/MII_RXD[3]/
USB1.VM
H18
MibSPI5 enable, or GIO
MIBSPI5SIMO[0]/DMM_DATA[8]/MII_TXD[1]
J19
MIBSPI5SIMO[1]/DMM_DATA[9]
E16
MibSPI5 slave-in
master-out, or GIO
MIBSPI5SIMO[2]/DMM_DATA[10]
H17
MIBSPI5SIMO[3]/DMM_DATA[11]
G17
MIBSPI5SOMI[0]/DMM_DATA[12]/MII_TXD[0]
J18
MIBSPI5SOMI[1]/DMM_DATA[13]
E17
MIBSPI5SOMI[2]/DMM_DATA[14]
H16
MIBSPI5SOMI[3]/DMM_DATA[15]
G16
Copyright © 2011, Texas Instruments Incorporated
PRODUCT PREVIEW
Terminal
Signal Name
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
29
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.10 Ethernet Controller
Table 2-33. ZWT Ethernet Controller: MDIO Interface
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
MIBSPI3NCS[1]/N2HET1[25]/MDCLK
V5
Output
Pull Up
MIBSPI1NCS[2]/N2HET1[19]/MDIO
G3
I/O
Pull Up
Pull Type
Fixed, 20uA
Description
Serial clock output
Serial data input/output
Table 2-34. ZWT Ethernet Controller: Media Independent Interface (MII)
Terminal
Signal Name
337
ZWT
Signal
Type
PRODUCT PREVIEW
N2HET1[12]/MII_CRS
B4
N2HET1[28]/MII_RXCLK/MII_RX_AVCLK4
K19
I/O
Pull Down
N2HET1[30]/MII_RX_DV/USB1.SPEED
B11
Input
Pull Down
AD1EVT/MII_RX_ER
N19
N2HET1[28]/MII_RX_CLK/MII_RX_AVCLK4
K19
I/O
Receive clock
N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0]
P1
Input
Receive data
A14
G19
MIBSPI5NENA/MII_RXD[3]/USB1.VM
H18
N2HET1[10]/MII_TX_CLK/USB1.TXEN/
MII_TX_AVCLK4
D19
N2HET1[10]/MII_TX_CLK/USB1.TXEN
/MII_TX_AVCLK4
D19
MIBSPI5SOMI[0]/MII_TXD[0]
J18
MIBSPI5SIMO[0]/MII_TXD[1]
J19
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV
R2
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
MIBSPI5CLK/MII_TXEN
30
Pull Down
-
Description
F3
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP
Pull Up
Pull Type
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND
N2HET1[26]/MII_RXD[1]
Input
Default
Pull State
Fixed, 20uA
Fixed, 20uA
Collision detect
Carrier sense and receive
valid
MII output receive clock
Received data valid
Receive error
Pull Up
I/O
Pull Down
Fixed, 20uA
-
MII output transmit clock
Transmit clock
Output
Pull Up
-
E18
Pull Down
-
H19
Pull Up
-
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Transmit data
Transmit enable
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.11 USB Host Port Controller Interface
Table 2-35. ZWT USB Host Port Controller Interface (USB1, USB2)
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Description
Input
Pull Down
Fixed, 20uA
Overcurrent indication
from USB power switch
Pull Up
Fixed, 20uA
Receive data from USB
port transceiver
N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/
USB1.OverCurrent
E18
MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/
USB1.RCV
R2
MIBSPI5NENA/MII_RXD[3]/USB1.VM
H18
NRZI encoded D-minus
from USB port transceiver
MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/
USB1.VP
G19
NRZI encoded D-plus
from USB port transceiver
GIOB[1]/USB1.PortPower
K2
N2HET1[30]/MII_RX_DV/USB1.SPEED
B11
Output
Pull Down
-
MIBSPI1NCS[1]/N2HET1[17]/MII_COL/
USB1.SUSPEND
F3
Pull Up
-
GIOB[0]/USB1.TXDAT
M2
Pull Down
-
N2HET1[10]/MII_TX_CLK/USB1.TXEN/
MII_TX_AVCLK4
D19
Transmit enable to port
transceiver
N2HET1[14]/USB1.TXSE0
A11
Single-ended zero to port
transceiver
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI
E3
Transmit speed indication
Input
Pull Down
Fixed, 20uA
Pull Down
Fixed, 20uA
GIOB[3]/USB2.RCV/USB_FUNC.RXDI
W10
GIOA[1]/USB2.VM/USB_FUNC.RXDMI
C2
NRZI encoded D-minus
from USB port transceiver
GIOA[0]/USB2.VP/USB_FUNC.RXDPI
A5
NRZI encoded D-plus
from USB port transceiver
N2HET1[07]/USB2.PortPower/
USB_FUNC.GZO/N2HET2[14]
T1
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/
USB_FUNC.PUENON/N2HET2[10]
U1
Transmit speed indication
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/
USB_FUNC.SUSPENDO
V7
Port suspend indication
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]
C1
NRZI encoded D-plus to
port transceiver
N2HET1[01]/SPI4NENA/USB2.TXEN\
USB_FUNC.PUENO/N2HET2[8]
V2
Transmit enable to port
transceiver
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
B3
Single-ended zero to port
transceiver
Output
Pull Down
-
Table 2-36. ZWT USB Device Port Controller Interface (USB_FUNC)
Terminal
Signal Name
337
ZWT
N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/N2HET2[14]
T1
N2HET1[01]/SPI4NENA/USB2.TXEN/USB_FUNC.PUENO/
N2HET2[8]
V2
N2HET1[03]/SPI4NCS[0]/USB2.SPEED/USB_FUNC.PUENO
N/
N2HET2[10]
U1
Copyright © 2011, Texas Instruments Incorporated
Signal
Type
Default
Pull State
Pull Type
Description
Output
Pull Down
-
Pull Up enable, allows for
software-programmable
USB device
connect/disconnect
PUENO inverted
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
31
PRODUCT PREVIEW
Terminal
Signal Name
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 2-36. ZWT USB Device Port Controller Interface (USB_FUNC) (continued)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Input
Pull Down
Pull Type
GIOB[3]/USB2.RCV/USB_FUNC.RXDI
W10
GIOA[1]/USB2.VM/USB_FUNC.RXDMI
C2
USB device logic value of
D-minus
GIOA[0]/USB2.VP/USB_FUNC.RXDPI
A5
USB device logic value of
D-plus
N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O
B3
N2HET1[09]/N2HET2[16]/USB2.SUSPEND/USB_FUNC.SUS
PENDO
V7
GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0]
C1
N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/
USB2.OverCurrent/USB_FUNC.VBUSI
E3
Output
Pull Down
Fixed, 20uA
Description
-
USB device single-ended
data input
USB device single-ended
zero
USB device suspend
output
USB device transmit data
Input
Pull Down
Fixed, 20uA
USB device power
connected
PRODUCT PREVIEW
32
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.12 External Memory Interface (EMIF)
Table 2-37. External Memory Interface (EMIF)
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Pull Down
-
Description
EMIF_CKE
L3
Output
EMIF_CLK
K3
I/O
EMIF_nWE/EMIF_RNW
D17
Output
ETMDATA[13]/EMIF_nOE
E12
EMIF_nWAIT
P3
I/O
Pull Up
EMIF_nWE/EMIF_RNW
D17
Output
Pull Up
EMIF_nCAS
R4
Output
EMIF column address
strobe
EMIF_nRAS
R3
Output
EMIF row address strobe
EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7]
N17
Output
EMIF chip select,
synchronous
EMIF_nCS[2]
L17
Output
EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9]
K17
Output
EMIF_nCS[4]/RTP_DATA[07]
M17
Output
EMIF chip selects,
asynchronous
This applies to chip
selects 2, 3 and 4
Copyright © 2011, Texas Instruments Incorporated
EMIF Clock Enablen
EMIF clock. This is an
output signal in functional
mode. It is gated off by
default, so that the signal
is tri-stated. PINMUX29[8]
must be cleared to enable
this output.
Pull Up
-
EMIF Read-Not-Write
Pull Down
-
EMIF Read Enable
Fixed, 20uA
-
EMIF Extended Wait
Signal
EMIF Write Enable.
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
33
PRODUCT PREVIEW
Terminal
Signal Name
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 2-37. External Memory Interface (EMIF) (continued)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Description
Pull Down
-
EMIF Data Mask or Write
Strobe.
Data mask for SDRAM
devices, write strobe for
connected asynchronous
devices.
PRODUCT PREVIEW
ETMDATA[15]/EMIF_nDQM[0]
E10
Output
ETMDATA[14]/EMIF_nDQM[1]
E11
Output
ETMDATA[12]/EMIF_BA[0]
E13
Output
EMIF bank address or
address line
EMIF_BA[1]/N2HET2[5]
D16
Output
EMIF bank address or
address line
EMIF_ADDR[0]/N2HET2[1]
D4
Output
EMIF address
EMIF_ADDR[1]/N2HET2[3]
D5
Output
ETMDATA[11]/EMIF_ADDR[2]
E6
Output
ETMDATA[10]/EMIF_ADDR[3]
E7
Output
ETMDATA[09]/EMIF_ADDR[4
E8
Output
ETMDATA[08]/EMIF_ADDR[5]
E9
Output
EMIF_ADDR[6]/RTP_DATA[13]
C4
Output
EMIF_ADDR[7]/RTP_DATA[12]
C5
Output
EMIF_ADDR[8]/RTP_DATA[11]
C6
Output
EMIF_ADDR[9]/RTP_DATA[10]
C7
Output
EMIF_ADDR[10]/RTP_DATA[09]
C8
Output
EMIF_ADDR[11]/RTP_DATA[08]
C9
Output
EMIF_ADDR[12]/RTP_DATA[06]
C10
Output
EMIF_ADDR[13]/RTP_DATA[05]
C11
Output
EMIF_ADDR[14]/RTP_DATA[04]
C12
Output
EMIF_ADDR[15]/RTP_DATA[03]
C13
Output
EMIF_ADDR[16]/RTP_DATA[02]
D14
Output
EMIF_ADDR[17]/RTP_DATA[01]
C14
Output
EMIF_ADDR[18]/RTP_DATA[0]
D15
Output
EMIF_ADDR[19]/RTP_nENA
C15
Output
EMIF_ADDR[20]/RTP_nSYNC
C16
Output
EMIF_ADDR[21]/RTP_CLK
C17
Output
ETMDATA[16]/EMIF_DATA[0]
K15
I/O
ETMDATA[17]/EMIF_DATA[1]
L15
I/O
ETMDATA[18]/EMIF_DATA[2]
M15
I/O
ETMDATA[19]/EMIF_DATA[3]
N15
I/O
ETMDATA[20]/EMIF_DATA[4]
E5
I/O
ETMDATA[21]/EMIF_DATA[5]
F5
I/O
ETMDATA[22]/EMIF_DATA[6]
G5
I/O
ETMDATA[23]/EMIF_DATA[7]
K5
I/O
ETMDATA[24]/EMIF_DATA[8]
L5
I/O
ETMDATA[25]/EMIF_DATA[9]
M5
I/O
ETMDATA[26]/EMIF_DATA[10]
N5
I/O
ETMDATA[27]/EMIF_DATA[11]
P5
I/O
ETMDATA[28]/EMIF_DATA[12]
R5
I/O
ETMDATA[29]/EMIF_DATA[13]
R6
I/O
ETMDATA[30]/EMIF_DATA[14]
R7
I/O
ETMDATA[31]/EMIF_DATA[15]
R8
I/O
34
Pull Down
Pull Down
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
-
Fixed, 20uA
EMIF Data
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.13 Embedded Trace Macrocell for Cortex-R4F CPU (ETM-R4F)
Table 2-38. Embedded Trace Macrocell for Cortex-R4F CPU (ETM-R4F)
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Description
ETMTRACECLKIN/EXTCLKIN2
R9
Input
Pull Down
Fixed, 20uA
ETM Trace Clock Input
ETMTRACECLKOUT
R10
Output
Pull Down
-
ETM Trace Clock Output
ETMTRACECTL
R11
Output
Pull Down
-
ETM trace control
ETMDATA[0]
R12
ETMDATA[01]
R13
ETMDATA[02]
J15
ETMDATA[03]
H15
ETMDATA[04]
G15
ETMDATA[05]
F15
ETMDATA[06]
E15
ETMDATA[07]
E14
ETMDATA[08]/EMIF_ADDR[5]
E9
ETMDATA[09]/EMIF_ADDR[4]
E8
ETMDATA[10]/EMIF_ADDR[3]
E7
ETMDATA[11]/EMIF_ADDR[2]
E6
ETMDATA[12]/EMIF_BA[0]
E13
ETMDATA[13]/EMIF_nOE
E12
ETMDATA[14]/EMIF_nDQM[1]
E11
ETMDATA[15]/EMIF_nDQM[0]
E10
ETMDATA[16]/EMIF_DATA[0]
K15
ETMDATA[17]/EMIF_DATA[1]
L15
ETMDATA[18]/EMIF_DATA[2]
M15
ETMDATA[19]/EMIF_DATA[3]
N15
ETMDATA[20]/EMIF_DATA[4]
E5
ETMDATA[21]/EMIF_DATA[5]
F5
ETMDATA[22]/EMIF_DATA[6]
G5
ETMDATA[23]/EMIF_DATA[7]
K5
ETMDATA[24]/EMIF_DATA[8]
L5
ETMDATA[25]/EMIF_DATA[9]
M5
ETMDATA[26]/EMIF_DATA[10]
N5
ETMDATA[27]/EMIF_DATA[11]
P5
ETMDATA[28]/EMIF_DATA[12]
R5
ETMDATA[29]/EMIF_DATA[13]
R6
ETMDATA[30]/EMIF_DATA[14]
R7
ETMDATA[31]/EMIF_DATA[15]
R8
Copyright © 2011, Texas Instruments Incorporated
ETM data
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
PRODUCT PREVIEW
Terminal
Signal Name
35
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.14 RAM Trace Port (RTP)
Table 2-39. RAM Trace Port (RTP)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Description
Pull Down
Programmable,
20uA
RTP packet clock, or GIO
EMIF_ADDR[21]/RTP_CLK
C17
I/O
EMIF_ADDR[19]/RTP_nENA
C15
I/O
EMIF_ADDR[20]/RTP_nSYNC
C16
I/O
RTP synchronization, or
GIO
EMIF_ADDR[18]/RTP_DATA[0]
D15
I/O
RTP packet data, or GIO
EMIF_ADDR[17]/RTP_DATA[01]
C14
EMIF_ADDR[16]/RTP_DATA[02]
D14
EMIF_ADDR[15]/RTP_DATA[03]
C13
EMIF_ADDR[14]/RTP_DATA[04]
C12
EMIF_ADDR[13]/RTP_DATA[05]
C11
EMIF_ADDR[12]/RTP_DATA[06]
C10
EMIF_nCS[4]/RTP_DATA[07]
M17
PRODUCT PREVIEW
EMIF_ADDR[11]/RTP_DATA[08]
C9
EMIF_ADDR[10]/RTP_DATA[09]
C8
EMIF_ADDR[9]/RTP_DATA[10]
C7
EMIF_ADDR[8]/RTP_DATA[11]
C6
EMIF_ADDR[7]/RTP_DATA[12]
C5
EMIF_ADDR[6]/RTP_DATA[13]
C4
EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7]
N17
EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9]
K17
36
Pull Up
Programmable,
20uA
Pull Down
Programmable,
20uA
Pull Up
Programmable,
20uA
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
RTP packet handshake,
or GIO
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.15 Data Modification Module (DMM)
Table 2-40. Data Modification Module (DMM)
Terminal
Signal Name
337
ZWT
Signal
Type
F17
F16
DMM_SYNC
J16
DMM synchronization, or
GIO
DMM_DATA[0]
L19
DMM data, or GIO
DMM_DATA[1]
L18
W6
T12
MIBSPI5CLK/DMM_DATA[4]/MII_TXEN
H19
MIBSPI5NCS[0]/DMM_DATA[5]
E19
DMM handshake, or GIO
B6
MIBSPI5NENA/DMM_DATA[7]/MII_RXD[3]/USB1.VM
H18
MIBSPI5SIMO[0]/DMM_DATA[8]/MII_TXD[1]
J19
MIBSPI5SIMO[1]/DMM_DATA[9]
E16
MIBSPI5SIMO[2]/DMM_DATA[10]
H17
MIBSPI5SIMO[3]/DMM_DATA[11]
G17
MIBSPI5SOMI[0]/DMM_DATA[12]/MII_TXD[0]
J18
MIBSPI5SOMI[1]/DMM_DATA[13]
E17
MIBSPI5SOMI[2]/DMM_DATA[14]
H16
MIBSPI5SOMI[3]/DMM_DATA[15]
G16
Copyright © 2011, Texas Instruments Incorporated
DMM clock, or GIO
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
PRODUCT PREVIEW
MIBSPI5NCS[1]/DMM_DATA[6]
Programmable,
20uA
Description
DMM_nENA
MIBSPI5NCS[3]/DMM_DATA[3]
Pull Up
Pull Type
DMM_CLK
MIBSPI5NCS[2]/DMM_DATA[2]
I/O
Default
Pull State
37
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.16 System Module Interface
Table 2-41. ZWT System Module Interface
Terminal
Signal Name
337
ZWT
Signal
Type
PRODUCT PREVIEW
nPORRST
W7
Input
nRST
B17
I/O
nERROR
B14
I/O
Default
Pull State
Pull Type
Pull Down 100uA
Pull Up
Description
Power-on reset, cold reset
External power supply
monitor circuitry must
drive nPORRST low when
any of the supplies to the
microcontroller fall out of
thespecified range. This
terminal has a glitch filter.
See Section 4.8.
100uA
System reset, warm reset,
bidirectional.
The internal circuitry
indicates any reset
condition by driving nRST
low.
The external circuitry can
assert a system reset by
driving nRST low. To
ensure that an external
reset is not arbitrarily
generated, TI
recommends that an
external pull-up resistor is
connected to this terminal.
This terminal has a glitch
filter. See Section 4.8.
Pull Down 20uA
ESM Error Signal
Indicates error of high
severity. See
Section 4.18.
2.4.2.17 Clock Inputs and Outputs
Table 2-42. ZWT Clock Inputs and Outputs
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
-
Pull Type
OSCIN
K1
Input
KELVIN_GND
L2
Input
OSCOUT
L1
Output
A12
I/O
Pull Down
Programmable,
20uA
External prescaled clock
output, or GIO.
GIOA[5]/EXTCLKIN
B5
Input
Pull Down
20uA
External clock input #1
ETMTRACECLKIN/EXTCLKIN2
R9
Input
VCCPLL
P11
Input
ECLK
38
-
Description
From external
crystal/resonator, or
external clock input
Kelvin ground for oscillator
To external
crystal/resonator
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
External clock input #2
-
Dedicated core supply for
PLL's
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.18 Test and Debug Modules Interface
Table 2-43. ZWT Test and Debug Modules Interface
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
TEST
U2
I/O
nTRST
D18
Input
RTCK
A16
Output
TCK
B18
Input
TDI
A17
I/O
Pull Up
TDO
C18
I/O
Pull Down
TMS
C19
I/O
Pull Up
Pull Type
Pull Down Fixed, 100uA
Description
Test enable
JTAG test hardware reset
-
-
JTAG return test clock
Pull Down Fixed, 100uA
JTAG test clock
JTAG test data in
JTAG test data out
JTAG test select
2.4.2.19 Flash Supply and Test Pads
Table 2-44. ZWT Flash Supply and Test Pads
337
ZWT
VCCP
F8
FLTP1
J5
FLTP2
H5
Signal
Type
Default
Pull State
Pull Type
Input
-
-
Description
Flash pump supply
Flash test pads. These
terminals are reserved for
TI use only. For proper
operation these terminals
must connect only to a
test pad or not be
connected at all [no
connect (NC)].
2.4.2.20 No Connects
Table 2-45. No Connects
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Pull Type
NC
A8
-
-
-
NC
B8
-
-
-
NC
B9
-
-
-
Copyright © 2011, Texas Instruments Incorporated
Description
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
39
PRODUCT PREVIEW
Terminal
Signal Name
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 2-45. No Connects (continued)
Terminal
Signal Name
337
ZWT
Signal
Type
Default
Pull State
Pull Type
Description
No Connects. These balls
are not connected to any
internal logic and can be
connected to the PCB
ground without affecting
the functionality of the
device.
Any other ball marked as
"NC" may be internally
connected to some
functionality. It is
recommended for such
balls to be left
unconnected.
PRODUCT PREVIEW
NC
D6
-
-
-
NC
D7
-
-
-
NC
D8
-
-
-
NC
D9
-
-
-
NC
D10
-
-
-
NC
D11
-
-
-
NC
D12
-
-
-
NC
E4
-
-
-
NC
F4
-
-
-
NC
G4
-
-
-
NC
K4
-
-
-
NC
L4
-
-
-
NC
M4
-
-
-
NC
N4
-
-
-
NC
N18
-
-
-
NC
P4
NC
P15
-
-
-
NC
P16
-
-
-
NC
P17
-
-
-
NC
R1
-
-
-
NC
R14
-
-
-
NC
R15
-
-
-
NC
T5
-
-
-
NC
T6
-
-
-
NC
T7
-
-
-
NC
T8
-
-
-
NC
T13
-
-
-
NC
T14
-
-
-
NC
V4
-
-
-
NC
W4
-
-
-
40
-
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.21 Supply for Core Logic: 1.2V nominal
Table 2-46. ZWT Supply for Core Logic: 1.2V nominal
Terminal
Signal Name
337
ZWT
VCC
F9
VCC
F10
VCC
H10
VCC
J14
VCC
K6
VCC
-
VCC
K8
VCC
K12
VCC
K14
L6
VCC
M10
VCC
P10
Default
Pull State
Pull Type
-
-
-
Description
Core supply
PRODUCT PREVIEW
VCC
Signal
Type
Copyright © 2011, Texas Instruments Incorporated
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
41
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.22 Supply for I/O Cells: 3.3V nominal
Table 2-47. ZWT Supply for I/O Cells: 3.3V nominal
Terminal
Signal Name
337
ZWT
VCCIO
F6
VCCIO
F7
VCCIO
F11
VCCIO
F12
VCCIO
F13
VCCIO
F14
VCCIO
G6
VCCIO
G14
VCCIO
H6
VCCIO
H14
PRODUCT PREVIEW
VCCIO
J6
VCCIO
L14
VCCIO
M6
VCCIO
M14
VCCIO
N6
VCCIO
N14
VCCIO
P6
VCCIO
P7
VCCIO
P8
VCCIO
P9
VCCIO
P12
VCCIO
P13
VCCIO
P14
42
Signal
Type
Default
Pull State
Pull Type
Input
-
-
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Description
Operating supply for I/Os
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
2.4.2.23 Ground Reference for All Supplies Except VCCAD
Table 2-48. ZWT Ground Reference for All Supplies Except VCCAD
337
ZWT
VSS
A1
VSS
A2
VSS
A18
VSS
A19
VSS
B1
VSS
B19
VSS
H8
VSS
H9
VSS
H11
VSS
H12
VSS
J8
VSS
J9
VSS
J10
VSS
J11
VSS
J12
VSS
K9
VSS
K10
VSS
K11
VSS
L8
VSS
L9
VSS
L10
VSS
L11
VSS
L12
VSS
M8
VSS
M9
VSS
M11
VSS
M12
VSS
V1
VSS
W1
VSS
W2
Copyright © 2011, Texas Instruments Incorporated
Signal
Type
Default
Pull State
Pull Type
Input
-
-
Description
Ground reference
Device Package and Terminal Functions
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
PRODUCT PREVIEW
Terminal
Signal Name
43
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
3 Device Operating Conditions
3.1
Absolute Maximum Ratings Over Operating Free-Air Temperature Range,
(1)
VCC (2)
Supply voltage range:
VCCIO, VCCP
Input voltage range:
Input clamp current:
-0.3 V to 1.43 V
(2)
-0.3 V to 4.1 V
VCCAD
-0.3 V to 5.5 V
All input pins
-0.3 V to 4.1 V
IIK (VI < 0 or VI > VCCIO)
All pins, except AD1IN[23:0] and AD2IN[15:0]
±20 mA
IIK (VI < 0 or VI > VCCAD)
AD1IN[23:0] and AD2IN[15:0]
±10 mA
±40 mA
Total
Operating free-air temperature range, TA:
-40°C to 105°C
Operating junction temperature range, TJ:
-40°C to 125°C
Storage temperature range, Tstg
-65°C to 150°C
(1)
(2)
PRODUCT PREVIEW
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to their associated
grounds.
Device Recommended Operating Conditions (1)
3.2
MIN
NOM
MAX
UNIT
VCC
Digital logic supply voltage (Core)
1.14
1.2
1.32
V
VCCPLL
PLL Supply Voltage
1.14
1.2
1.32
V
VCCIO
Digital logic supply voltage (I/O)
3
3.3
3.6
V
VCCAD
MibADC supply voltage
V
VCCP
Flash pump supply voltage
VSS
Digital logic supply ground
VSSAD
MibADC supply ground
VADREFHI
3
3.3
3.6
4.5
5.0
5.25
3
3.3
3.6
0
V
V
-0.1
0.1
V
A-to-D high-voltage reference source
VSSAD
VCCAD
V
VADREFLO
A-to-D low-voltage reference source
VSSAD
VCCAD
V
TA
Operating free-air temperature
-40
105
°C
TJ
Operating junction temperature
-40
150
°C
(1)
44
All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD
Device Operating Conditions
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
3.3
Switching Characteristics over Recommended Operating Conditions for Clock Domains
Parameter
fHCLK
Description
Conditions
HCLK - System clock frequency
Min
Max
Unit
Pipeline mode
enabled
200
MHz
Pipeline mode
disabled
50
MHz
fGCLK
GCLK - CPU clock frequency
fHCLK
MHz
fVCLK
VCLK - Primary peripheral clock
frequency
100
MHz
fVCLK2
VCLK2 - Secondary peripheral clock
frequency
100
MHz
fVCLK3
VCLK3 - Secondary peripheral clock
frequency
100
MHz
fVCLKA1
VCLKA1 - Primary asynchronous
peripheral clock frequency
100
MHz
fVCLKA3
VCLKA3 - Primary asynchronous
peripheral clock frequency
48
fVCLKA4
VCLKA4 - Secondary asynchronous
peripheral clock frequency
50
MHz
fRTICLK
RTICLK - clock frequency
fVCLK
MHz
3.4
Wait States Required
RAM
0
Address Waitstates
200MHz
0MHz
Data Waitstates
0
200MHz
0MHz
Flash
Address Waitstates
1
0
Data Waitstates
0
0MHz
200MHz
120MHz
0MHz
1
50MHz
3
2
100MHz
150MHz
200MHz
Figure 3-1. Wait States Scheme
As shown in the figure above, the TCM RAM can support program and data fetches at full CPU speed without
any address or data wait states required.
The TCM flash can support zero address and data wait states up to a CPU speed of 50MHz in non-pipelined
mode. The flash supports a maximum CPU clock speed of 200MHz in pipelined mode with one address wait
state and three data wait states.
The flash wrapper defaults to non-pipelined mode with zero address wait state and one random-read data wait
state.
Device Operating Conditions
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
45
PRODUCT PREVIEW
Table 3-1. Clock Domain Timing Specifications
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
3.5
www.ti.com
Power Consumption Over Recommended Operating Conditions
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
fHCLK = 200MHz
VCC digital supply current (operating mode)
ICC
VCC Digital supply current (LBIST mode)
VCC Digital supply current
(PBIST mode)
Peak
RMS
mA
fVCLK = 100MHz,
Flash in pipelined
mode, VCCmax
LBIST clock rate =
100MHz
mA
PBIST ROM clock
frequency = 100MHz
TBD
mA
ICCPLL
VCCPLL digital supply current (operating mode)
VCCPLL = VCCPLLmax
10
mA
ICCIO
VCCIO Digital supply current (operating mode.
No DC load, VCCmax
15
mA
Single ADC
operational,
VCCADmax
15
Both ADCs
operational,
VCCADmax
30
Single ADC
operational,
ADREFHImax
5
Both ADCs
operational,
ADREFHImax
10
read operation
VCCPmax
34
program, VCCPmax
37
read from 1 bank
and program
another bank,
VCCPmax
55
erase, VCCPmax
27
ICCAD
VCCAD supply current (operating mode)
PRODUCT PREVIEW
ICCREFHI
ICCP
46
ADREFHI supply current (operating mode)
VCCP pump supply current
Device Operating Conditions
mA
mA
mA
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Input/Output Electrical Characteristics Over Recommended Operating Conditions (1)
PARAMETER
Vhys
TEST CONDITIONS
Input hysteresis
MIN
All inputs
TYP
(2)
VIL
Low-level input voltage
All inputs
VIH
High-level input voltage
All inputs (2)
-0.3
0.8
V
2
VCCIO + 0.3
V
0.2 VCCIO
IOL = 50 µA,
standard output
mode
Low-level output voltage
0.2
V
IOL = 50 µA, low-EMI
output mode (see
Section 3.10)
VOH
IIC
II
High-level output voltage
Input current (I/O pins)
0.2 VCCIO
IOH = IOHmax
0.8 VCCIO
IOH = 50 µA,
standard output
mode
VCCIO -0.2
IOH = 50 µA,
low-EMI output
mode (see
Section 3.10)
0.8 VCCIO
V
VI < VSSIO - 0.3 or VI
> VCCIO + 0.3
Input clamp current (I/O pins)
UNIT
mV
IOL = IOLmax
VOL
MAX
180
-2
2
IIH Pulldown 20µA
VI = VCCIO
5
40
IIH Pulldown 100µA
VI = VCCIO
40
195
IIL Pullup 20µA
VI = VSS
-40
-5
IIL Pullup 100µA
VI = VSS
-195
-40
All other pins
No pullup or
pulldown
-1
1
mA
µA
CI
Input capacitance
2
pF
CO
Output capacitance
3
pF
(1)
(2)
3.7
Source currents (out of the device) are negative while sink currents (into the device) are positive.
This does not apply to the nPORRST pin.
Output Buffer Drive Strengths
Table 3-2. Output Buffer Drive Strengths
Low-level Output Current,
IOL for VI=VOLmax
or
High-level Output Current,
IOH for VI=VOHmin
Signals
MIBSPI5CLK, MIBSPI5SOMI[0], MIBSPI5SOMI[1], MIBSPI5SOMI[2], MIBSPI5SOMI[3],
MIBSPI5SIMO[0], MIBSPI5SIMO[1], MIBSPI5SIMO[2], MIBSPI5SIMO[3],
TMS, TDI, TDO, RTCK,
8mA
SPI4CLK, SPI4SIMO, SPI4SOMI, nERROR,
N2HET2[1], N2HET2[3],
All EMIF Outputs and I/Os, All ETM Outputs
TEST,
4mA
MIBSPI3SOMI, MIBSPI3SIMO, MIBSPI3CLK, MIBSPI1SIMO, MIBSPI1SOMI, MIBSPI1CLK,
nRST
Device Operating Conditions
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
47
PRODUCT PREVIEW
3.6
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 3-2. Output Buffer Drive Strengths (continued)
Low-level Output Current,
IOL for VI=VOLmax
or
High-level Output Current,
IOH for VI=VOHmin
Signals
AD1EVT,
CAN1RX, CAN1TX, CAN2RX, CAN2TX, CAN3RX, CAN3TX,
DMM_CLK, DMM_DATA[0], DMM_DATA[1], DMM_nENA, DMM_SYNC,
GIOA[0-7], GIOB[0-7],
LINRX, LINTX,
2mA zero-dominant
MIBSPI1NCS[0], MIBSPI1NCS[1-3], MIBSPI1NENA, MIBSPI3NCS[0-3], MIBSPI3NENA,
MIBSPI5NCS[0-3], MIBSPI5NENA,
N2HET1[0-31], N2HET2[0], N2HET2[2], N2HET2[4], N2HET2[5], N2HET2[6], N2HET2[7],
N2HET2[8], N2HET2[9], N2HET2[10], N2HET2[11], N2HET2[12], N2HET2[13], N2HET2[14],
N2HET2[15], N2HET2[16], N2HET2[18],
SPI2NCS[0], SPI2NENA, SPI4NCS[0], SPI4NENA
ECLK,
PRODUCT PREVIEW
selectable 8mA / 2mA
SPI2CLK, SPI2SIMO, SPI2SOMI
The default output buffer drive strength is 8mA for these signals.
3.8
Input Timings
t pw
Input
V IH
VCCIO
VIH
VIL
V IL
0
Figure 3-2. TTL-Level Inputs
Table 3-3. Timing Requirements for Inputs (1)
Parameter
tpw
(1)
(2)
3.9
MIN
MAX
Unit
tc(VCLK) + 10 (2)
Input minimum pulse width
ns
tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK)
The timing shown above is only valid for pin used in GIO mode.
Output Timings
Table 3-4. Switching Characteristics for Output Timings versus Load Capacitance (CL)
Parameter
Rise time, tr
8mA low EMI pins
(see Table 3-2)
Fall time, tf
48
MIN
CL = 15 pF
MAX
Unit
2.5
ns
CL = 50 pF
4
CL = 100 pF
7.2
CL = 150 pF
12.5
CL = 15 pF
2.5
CL = 50 pF
4
CL = 100 pF
7.2
CL = 150 pF
12.5
Device Operating Conditions
ns
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 3-4. Switching Characteristics for Output Timings versus Load Capacitance (CL) (continued)
MIN
4mA low EMI pins
(see Table 3-2)
Fall time, tf
Rise time, tr
2mA-z low EMI pins
(see Table 3-2)
Fall time, tf
Rise time, tr
Selectable 8mA / 2mA-z
pins
(see Table 3-2)
8mA mode
Fall time, tf
Rise time, tr
2mA-z mode
Fall time, tf
MAX
Unit
CL = 15 pF
5.6
ns
CL = 50 pF
10.4
CL = 100 pF
16.8
CL = 150 pF
23.2
CL = 15 pF
5.6
CL= 50 pF
10.4
CL = 100 pF
16.8
CL = 150 pF
23.2
CL = 15 pF
8
CL = 50 pF
15
CL = 100 pF
23
CL = 150 pF
33
CL = 15 pF
8
CL = 50 pF
15
CL = 100 pF
23
CL = 150 pF
33
CL = 15 pF
2
CL = 50 pF
4
CL = 100 pF
8
CL = 150 pF
11
CL = 15 pF
2
CL = 50 pF
4
CL = 100 pF
8
CL = 150 pF
11
CL = 15 pF
8
CL = 50 pF
15
CL = 100 pF
23
CL = 150 pF
33
CL = 15 pF
8
CL = 50 pF
15
CL = 100 pF
23
CL = 150 pF
33
tr
VOL
ns
ns
ns
ns
ns
ns
tf
V OH
Output
ns
PRODUCT PREVIEW
Parameter
Rise time, tr
VCCIO
VOH
VOL
0
Figure 3-3. CMOS-Level Outputs
Table 3-5. Timing Requirements for Outputs (1)
Parameter
td(parallel_out)
(1)
MIN
Delay between low to high, or high to low transition of general-purpose output signals
that can be configured by an application in parallel, e.g. all signals in a GIOA port, or
all N2HET1 signals, etc.
MAX
UNIT
5
ns
This specification does not account for any output buffer drive strength differences or any external capacitive loading differences. Check
Table 3-2 for output buffer drive strength information on each signal.
Device Operating Conditions
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
49
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
3.10 Low-EMI Output Buffers
The low-EMI output buffer has been designed explicitly to address the issue of decoupling sources of
emissions from the pins which they drive. This is accomplished by adaptively controlling the impedance of
the output buffer, and is particularly effective with capacitive loads.
This is not the default mode of operation of the low-EMI output buffers and must be enabled by setting the
system module GPCR1 register for the desired module or signal, as shown in Table 3-6. The adaptive
impedance control circuit monitors the DC bias point of the output signal. The buffer internally generates
two reference levels, VREFLOW and VREFHIGH, which are set to approximately 10% and 90% of
VCCIO, respectively.
Once the output buffer has driven the output to a low level, if the output voltage is below VREFLOW, then
the output buffer’s impedance will increase to hi-Z. A high degree of decoupling between the internal
ground bus and the output pin will occur with capacitive loads, or any load in which no current is flowing,
e.g. the buffer is driving low on a resistive path to ground. Current loads on the buffer which attempt to pull
the output voltage above VREFLOW will be opposed by the buffer’s output impedance so as to maintain
the output voltage at or below VREFLOW.
PRODUCT PREVIEW
Conversely, once the output buffer has driven the output to a high level, if the output voltage is above
VREFHIGH then the output buffer’s impedance will again increase to hi-Z. A high degree of decoupling
between internal power bus ad output pin will occur with capacitive loads or any loads in which no current
is flowing, e.g. buffer is driving high on a resistive path to VCCIO. Current loads on the buffer which
attempt to pull the output voltage below VREFHIGH will be opposed by the buffer’s output impedance so
as to maintain the output voltage at or above VREFHIGH.
The bandwidth of the control circuitry is relatively low, so that the output buffer in adaptive impedance
control mode cannot respond to high-frequency noise coupling into the buffer’s power buses. In this
manner, internal bus noise approaching 20% peak-to-peak of VCCIO can be rejected.
Unlike standard output buffers which clamp to the rails, an output buffer in impedance control mode will
allow a positive current load to pull the output voltage up to VCCIO + 0.6V without opposition. Also, a
negative current load will pull the output voltage down to VSSIO – 0.6V without opposition. This is not an
issue since the actual clamp current capability is always greater than the IOH / IOL specifications.
The low-EMI output buffers are automatically configured to be in the standard buffer mode when the
device enters a low-power mode.
Table 3-6. Low-EMI Output Buffer Hookup
Module or Signal Name
Control Register to Enable Low-EMI Mode
Module: MibSPI1
GPREG1.0
Module: SPI2
GPREG1.1
Module: MibSPI3
GPREG1.2
Reserved
GPREG1.3
Signal: TMS
GPREG1.8
Signal: TDI
GPREG1.9
Signal: TDO
GPREG1.10
Signal: RTCK
GPREG1.11
Signal: TEST
GPREG1.12
Signal: nERROR
GPREG1.13
Reserved
GPREG1.14
50
Device Operating Conditions
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4 System Information and Electrical Specifications
4.1
Device Power Domains
The device core logic is split up into multiple power domains in order to optimize the power for a given
application use case. There are 8 core power domains in total: PD1, PD2, PD3, PD4, PD5, RAM_PD1,
RAM_PD2 and RAM_PD3.
The actual contents of these power domains are indicated in .
PD1 is an "always-ON" power domain, which cannot be turned off. Each of the other core power domains
can be turned ON/OFF one time during device initialization as per the application requirement. Refer to
the Power Management Module (PMM) chapter of the device technical reference manual for more details.
NOTE
The clocks to a module must be turned off before powering down the core domain that
contains the module.
NOTE
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
PRODUCT PREVIEW
The logic in the modules that are powered down loses its power completely. Any access to
modules that are powered down results in an abort being generated. When power is
restored, the modules power-up to their default states (after normal power-up). No register or
memory contents are preserved in the core domains that are turned off.
51
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
4.2
www.ti.com
Voltage Monitor Characteristics
A voltage monitor is implemented on this device. The purpose of this voltage monitor is to eliminate the
requirement for a specific sequence when powering up the core and I/O voltage supplies.
4.2.1
Important Considerations
•
•
4.2.2
The voltage monitor does not eliminate the need of a voltage supervisor circuit to guarantee that the
device is held in reset when the voltage supplies are out of range.
The voltage monitor only monitors the core supply (VCC) and the I/O supply (VCCIO). The other
supplies are not monitored by the VMON. For example, if the VCCAD or VCCP are supplied from a
source different from that for VCCIO, then there is no internal voltage monitor for the VCCAD and
VCCP supplies.
Voltage Monitor Operation
The voltage monitor generates the Power Good MCU signal (PGMCU) as well as the I/Os Power Good IO
signal (PGIO) on the device. During power-up or power-down, the PGMCU and PGIO are driven low when
the core or I/O supplies are lower than the specified minimum monitoring thresholds. The PGIO and
PGMCU being low isolates the core logic as well as the I/O controls during the power-up or power-down
of the supplies. This allows the core and I/O supplies to be powered up or down in any order.
PRODUCT PREVIEW
When the voltage monitor detects a low voltage on the I/O supply, it will assert a power-on reset. When
the voltage monitor detects an out-of-range voltage on the core supply, it asynchronously makes all output
pins high impedance, and asserts a power-on reset. The voltage monitor is disabled when the device
enters a low power mode.
The VMON also incorporates a glitch filter for the nPORRST input. Refer to Section 4.3.3.1 for the timing
information on this glitch filter.
Table 4-1. Voltage Monitoring Specifications
PARAMETER
VMON
4.2.3
Voltage monitoring
thresholds
MIN
TYP
MAX
UNIT
VCC low - VCC level below this
threshold is detected as too low.
0.8
0.9
1.0
V
VCC high - VCC level above this
threshold is detected as too high.
1.40
1.7
2.1
VCCIO low - VCCIO level below this
threshold is detected as too low.
1.9
2.4
2.9
Supply Filtering
The VMON has the capability to filter glitches on the VCC and VCCIO supplies.
The following table shows the characteristics of the supply filtering. Glitches in the supply larger than the
maximum specification cannot be filtered.
Table 4-2. VMON Supply Glitch Filtering Capability
Parameter
MIN
MAX
Width of glitch on VCC that can be filtered
250ns
1us
Width of glitch on VCCIO that can be filtered
250ns
1us
52
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.3
4.3.1
Power Sequencing and Power On Reset
Power-Up Sequence
There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage. The
power-up sequence starts with the I/O voltage rising above the minimum I/O supply threshold, (see
Table 4-4 for more details), core voltage rising above the minimum core supply threshold and the release
of power-on reset. The high frequency oscillator will start up first and its amplitude will grow to an
acceptable level. The oscillator start up time is dependent on the type of oscillator and is provided by the
oscillator vendor. The different supplies to the device can be powered up in any order.
The device goes through the following sequential phases during power up.
Oscillator start-up and validity check
1032 oscillator cycles
eFuse autoload
1180 oscillator cycles
Flash pump power-up
688 oscillator cycles
Flash bank power-up
617 oscillator cycles
Total
3517 oscillator cycles
The CPU reset is released at the end of the above sequence and fetches the first instruction from address
0x00000000.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
53
PRODUCT PREVIEW
Table 4-3. Power-Up Phases
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
4.3.2
www.ti.com
Power-Down Sequence
The different supplies to the device can be powered down in any order.
4.3.3
Power-On Reset: nPORRST
This is the power-on reset. This reset must be asserted by an external circuitry whenever the I/O or core
supplies are outside the specified recommended range. This signal has a glitch filter on it. It also has an
internal pulldown.
4.3.3.1
nPORRST Electrical and Timing Requirements
Table 4-4. Electrical Requirements for nPORRST
NO Parameter
MIN
MAX
Unit
0.5
V
PRODUCT PREVIEW
VCCPORL
VCC low supply level when nPORRST must be active during
power-up
VCCPORH
VCC high supply level when nPORRST must remain active during
power-up and become active during power down
VCCIOPORL
VCCIO / VCCP low supply level when nPORRST must be active during
power-up
VCCIOPORH
VCCIO / VCCP high supply level when nPORRST must remain active
during power-up and become active during power down
VIL(PORRST)
Low-level input voltage of nPORRST VCCIO > 2.5V
0.2 * VCCIO
V
Low-level input voltage of nPORRST VCCIO < 2.5V
0.5
V
1.14
V
1.1
V
3.0
V
3
tsu(PORRST)
Setup time, nPORRST active before VCCIO and VCCP > VCCIOPORL
during power-up
0
ms
6
th(PORRST)
Hold time, nPORRST active after VCC > VCCPORH
1
ms
7
tsu(PORRST)
Setup time, nPORRST active before VCC < VCCPORH during power
down
2
µs
8
th(PORRST)
Hold time, nPORRST active after VCCIO and VCCP > VCCIOPORH
1
ms
9
th(PORRST)
Hold time, nPORRST active after VCC < VCCPORL
0
ms
tf(nPORRST)
500
Filter time nPORRST pin;
2000
ns
pulses less than MIN will be filtered out, pulses greater than MAX
will generate a reset.
3.3 V
1.2 V
VCCIOPORH
VCCPORH
6
VCCIOPORL
VCC (1.2 V)
VCCIO / VCCP(3.3 V)
nPORRST
VCCIOPORH
VCCIO / VCCP
8
VCCPORH
VCC
7
6
7
VCCPORL
VCCPORL
3
VIL(PORRST)
VCCIOPORL
9
VIL
VIL
VIL
VIL(PORRST)
NOTE: There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage; this is just an exemplary drawing.
Figure 4-1. nPORRST Timing Diagram
54
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.4
Warm Reset (nRST)
This is a bidirectional reset signal. The internal circuitry drives the signal low on detecting any device reset
condition. An external circuit can assert a device reset by forcing the signal low. On this terminal, the
output buffer is implemented as an open drain (drives low only). To ensure an external reset is not
arbitrarily generated, TI recommends that an external pullup resistor is connected to this terminal.
This terminal has a glitch filter. It also has an internal pullup
4.4.1
Causes of Warm Reset
Table 4-5. Causes of Warm Reset
DEVICE EVENT
SYSTEM STATUS FLAG
Power-Up Reset
Exception Status Register, bit 15
Oscillator fail
Global Status Register, bit 0
Global Status Register, bits 8 and 9
Watchdog exception / Debugger reset
Exception Status Register, bit 13
CPU Reset (driven by the CPU STC)
Exception Status Register, bit 5
Software Reset
Exception Status Register, bit 4
External Reset
Exception Status Register, bit 3
4.4.2
nRST Timing Requirements
Table 4-6. nRST Timing Requirements (1)
PARAMETER
tv(RST)
MIN
Valid time, nRST active after
nPORRST inactive
Valid time, nRST active (all other
System reset conditions)
tf(nRST)
UNIT
ns
8tc(VCLK)
500
Filter time nRST pin;
MAX
1180 tc(OSC) + 1048tc(OSC)
2000
ns
pulses less than MIN will be
filtered out, pulses greater than
MAX will generate a reset
(1)
Specified values do NOT include rise/fall times. For rise and fall timings, see the switching characteristics for output timings versus load
capacitance table.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
55
PRODUCT PREVIEW
PLL slip
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
4.5
4.5.1
www.ti.com
ARM© Cortex-R4F™ CPU Information
Summary of ARM Cortex-R4F™ CPU Features
For more information on the ARM Cortex-R4F™ CPU please see www.arm.com.
4.5.2
ARM Cortex-R4F™ CPU Features Enabled by Software
The following CPU features are disabled on reset and must be enabled by the application if required.
• ECC On Tightly-Coupled Memory (TCM) Accesses
• Harware Vectored Interrupt (VIC) Port
• Floating Point Coprocessor
• Memory Protection Unit (MPU)
4.5.3
Dual Core Implementation
The device has two Cortex-R4F cores, where the output signals of both CPUs are compared in the
CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed by 2
clock cycles as shown in Figure 4-3.
The CPUs have a diverse CPU placement given by following requirements:
• different orientation; e.g. CPU1 = "north" orientation, CPU2 = "flip west" orientation
• dedicated guard ring for each CPU
North
F
Flip West
F
PRODUCT PREVIEW
The features of the ARM Cortex-R4F™ CPU include:
• An integer unit with integral EmbeddedICE-RT logic.
• High-speed Advanced Microprocessor Bus Architecture (AMBA) Advanced eXtensible Interfaces (AXI)
for Level two (L2) master and slave interfaces.
• Floating Point Coprocessor
• Dynamic branch prediction with a global history buffer, and a 4-entry return stack
• Low interrupt latency.
• Non-maskable interrupt.
• A Harvard Level one (L1) memory system with:
– Tightly-Coupled Memory (TCM) interfaces with support for error correction or parity checking
memories
– ARMv7-R architecture Memory Protection Unit (MPU) with 12 regions
• Dual core logic for fault detection in safety-critical applications.
• An L2 memory interface:
– Single 64-bit master AXI interface
– 64-bit slave AXI interface to TCM RAM blocks
• A debug interface to a CoreSight Debug Access Port (DAP).
• A trace interface to a CoreSight ETM-R4.
• A Performance Monitoring Unit (PMU).
• A Vectored Interrupt Controller (VIC) port.
Figure 4-2. Dual - CPU Orientation
56
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.5.4
Duplicate clock tree after GCLK
The CPU clock domain is split into two clock trees, one for each CPU, with the clock of the 2nd CPU
running at the same frequency and in phase to the clock of CPU1. See Figure 4-3.
4.5.5
ARM Cortex-R4F™ CPU Compare Module (CCM) for Safety
This device has two ARM Cortex-R4F™ CPU cores, where the output signals of both CPUs are compared
in the CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed
in a different way as shown in the figure below.
Output + Control
CCM-R4
2 cycle delay
CPU 1
compare
error
PRODUCT PREVIEW
CCM-R4
compare
CPU1CLK
CPU 2
2 cycle delay
CPU2CLK
Input + Control
Figure 4-3. Dual Core Implementation
To avoid an erroneous CCM-R4 compare error, the application software must initialize the registers of
both CPUs before the registers are used, including function calls where the register values are pushed
onto the stack.
4.5.6
CPU Self-Test
The CPU STC (Self-Test Controller) is used to test the two Cortex-R4F CPU Cores using the
Deterministic Logic BIST Controller as the test engine.
The main features of the self-test controller are:
• Ability to divide the complete test run into independent test intervals
• Capable of running the complete test as well as running few intervals at a time
• Ability to continue from the last executed interval (test set) as well as ability to restart from the
beginning (First test set)
• Complete isolation of the self-tested CPU core from rest of the system during the self-test run
• Ability to capture the Failure interval number
• Timeout counter for the CPU self-test run as a fail-safe feature
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
57
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
4.5.6.1
1.
2.
3.
4.
5.
6.
7.
www.ti.com
Application Sequence for CPU Self-Test
Configure clock domain frequencies.
Select number of test intervals to be run.
Configure the timeout period for the self-test run.
Enable self-test.
Wait for CPU reset.
In the reset handler, read CPU self-test status to identify any failures.
Retrieve CPU state if required.
For more information see the RM48x Technical Reference Manual (SPNU481).
4.5.6.2
CPU Self-Test Clock Configuration
The maximum clock rate for the self-test is 100MHz. The STCCLK is divided down from the CPU clock.
This divider is configured by the STCCLKDIV register at address 0xFFFFE108.
For more information see the RM48x Technical Reference Manual (SPNU481).
4.5.6.3
CPU Self-Test Coverage
PRODUCT PREVIEW
Table 4-7 shows CPU test coverage achieved for each self-test interval. It also lists the cumulative test
cycles. The test time can be calculated by multiplying the number of test cycles with the STC clock period.
Table 4-7. CPU Self-Test Coverage
INTERVALS
58
TEST COVERAGE, %
TEST CYCLES
0
0
0
1
62.13
1365
2
70.09
2730
3
74.49
4095
4
77.28
5460
5
79.28
6825
6
80.90
8190
7
82.02
9555
8
83.10
10920
9
84.08
12285
10
84.87
13650
11
85.59
15015
12
86.11
16380
13
86.67
17745
14
87.16
19110
15
87.61
20475
16
87.98
21840
17
88.38
23205
18
88.69
24570
19
88.98
25935
20
89.28
27300
21
89.50
28665
22
89.76
30030
23
90.01
31395
24
90.21
32760
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.6
Clocks
4.6.1
Clock Sources
The table below lists the available clock sources on the device. Each of the clock sources can be enabled
or disabled using the CSDISx registers in the system module. The clock source number in the table
corresponds to the control bit in the CSDISx register for that clock source.
The table also shows the default state of each clock source.
Table 4-8. Available Clock Sources
Clock
Source #
Name
0
OSCIN
Main Oscillator
Enabled
1
PLL1
Output From PLL1
Disabled
Default State
2
Reserved
Reserved
Disabled
3
EXTCLKIN1
External Clock Input #1
Disabled
4
CLK80K
Low Frequency Output of Internal Reference Oscillator
Enabled
CLK10M
High Frequency Output of Internal Reference
Oscillator
Enabled
5
6
PLL2
Output From PLL2
Disabled
7
EXTCLKIN2
External Clock Input #2
Disabled
4.6.1.1
Main Oscillator
The oscillator is enabled by connecting the appropriate fundamental resonator/crystal and load capacitors
across the external OSCIN and OSCOUT pins as shown in Figure 4-4. The oscillator is a single stage
inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test
measurement and low power modes.
TI strongly encourages each customer to submit samples of the device to the resonator/crystal
vendors for validation. The vendors are equipped to determine what load capacitors will best tune
their resonator/crystal to the microcontroller device for optimum start-up and operation over
temperature/voltage extremes.
An external oscillator source can be used by connecting a 3.3V clock signal to the OSCIN pin and leaving
the OSCOUT pin unconnected (open) as shown in the figure below.
OSCIN
(see Note B)
Kelvin_GND
C1
OSCOUT
OSCIN
OSCOUT
C2
(see Note A)
External
Clock Signal
(toggling 0-3.3V)
Crystal
(a)
(b)
Note A: The values of C1 and C2 should be provided by the resonator/crystal vendor.
Note B: Kelvin_GND should not be connected to any other GND.
Figure 4-4. Recommended Crystal/Clock Connection
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
59
PRODUCT PREVIEW
Description
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.6.1.1.1 Timing Requirements for Main Oscillator
Table 4-9. Timing Requirements for Main Oscillator
MAX
Unit
tc(OSC)
Cycle time, OSCIN (when using a sine-wave input)
Parameter
MIN
50
Type
200
ns
tc(OSC_SQR)
Cycle time, OSCIN, (when input to the OSCIN is a
square wave )
12.5
200
ns
tw(OSCIL)
Pulse duration, OSCIN low (when input to the OSCIN
is a square wave)
6
ns
tw(OSCIH)
Pulse duration, OSCIN high (when input to the OSCIN
is a square wave)
6
ns
PRODUCT PREVIEW
60
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.6.1.2
Low Power Oscillator
The Low Power Oscillator (LPO) is comprised of two oscillators — HF LPO and LF LPO, in a single
macro.
4.6.1.2.1 Features
The main features of the LPO are:
• Supplies a clock at extremely low power for power-saving modes. This is connected as clock source #
4 of the Global Clock Module.
• Supplies a high-frequency clock for non-timing-critical systems. This is connected as clock source # 5
of the Global Clock Module.
• Provides a comparison clock for the crystal oscillator failure detection circuit.
BIAS_EN
LF_TRIM
Low
Power
Oscillator
HFEN
CLK10M
HF_TRIM
CLK10M_VALID
nPORRST
Figure 4-5. LPO Block Diagram
Figure 4-5 shows a block diagram of the internal reference oscillator. This is a low power oscillator (LPO)
and provides two clock sources: one nominally 80KHz and one nominally 10MHz.
4.6.1.2.2 LPO Electrical and Timing Specifications
Table 4-10. LPO Specifications
Parameter
LPO - HF oscillator
LPO - LF oscillator
untrimmed frequency
MIN
Type
MAX
Unit
5.5
9.6
19.5
MHz
startup time from STANDBY (LPO BIAS_EN High for
at least 900µs)
10
µs
cold startup time
900
µs
untrimmed frequency
180
kHz
startup time from STANDBY (LPO BIAS_EN High for
at least 900µs)
100
µs
cold startup time
2000
µs
Copyright © 2011, Texas Instruments Incorporated
36
85
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
61
PRODUCT PREVIEW
CLK80K
LFEN
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
4.6.1.3
www.ti.com
Phase Locked Loop (PLL) Clock Modules
The PLL is used to multiply the input frequency to some higher frequency.
The main features of the PLL are:
• Frequency modulation can be optionally superimposed on the synthesized frequency of PLL1. The
frequency modulation capability of PLL2 is permanently disabled.
• Configurable frequency multipliers and dividers.
• Built-in PLL Slip monitoring circuit.
• Option to reset the device on a PLL slip detection.
4.6.1.3.1 Block Diagram
Figure 4-6 shows a high-level block diagram of the two PLL macros on this microcontroller. PLLCTL1 and
PLLCTL2 are used to configure the multiplier and dividers for the PLL1. PLLCTL3 is used to configure the
multiplier and dividers for PLL2.
OSCIN
/NR
INTCLK
VCOCLK
PLL
/1 to /64
/OD
post_ODCLK
/1 to /8
/R
PLLCLK
/1 to /32
PRODUCT PREVIEW
fPLLCLK = (fOSCIN / NR) * NF / (OD * R)
/NF
/1 to /256
OSCIN
/NR2
VCOCLK2
INTCLK2
/1 to /64
PLL#2
/OD2
post_ODCLK2
/1 to /8
/R2
PLL2CLK
/1 to /32
f PLL2CLK = (fOSCIN / NR2) * NF2 / (OD2 * R2)
/NF2
/1 to /256
Figure 4-6. ZWT PLLx Block Diagram
4.6.1.3.2 PLL Timing Specifications
Table 4-11. PLL Timing Specifications
PARAMETER
fINTCLK
MHz
400
MHz
fVCOCLK
VCOCLK – PLL1 Output Divider (OD) input
clock frequency
550
MHz
fINTCLK2
PLL2 Reference Clock frequency
fVCOCLK2
62
UNIT
f(OSC_SQR)
fpost_ODCLK2
1
MAX
Post-ODCLK – PLL1 Post-divider input
clock frequency
fpost_ODCLK
PLL1 Reference Clock frequency
MIN
f(OSC_SQR)
MHz
Post-ODCLK – PLL2 Post-divider input
clock frequency
1
400
MHz
VCOCLK – PLL2 Output Divider (OD) input
clock frequency
550
MHz
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.6.1.4
External Clock Inputs
The device supports up to two external clock inputs. This clock input must be a square wave input. The
electrical and timing requirements for these clock inputs are specified below.
Table 4-12. External Clock Timing and Electrical Specifications
Parameter
Description
Min
Max
Unit
80
MHz
fEXTCLKx
External clock input frequency
tw(EXTCLKIN)H
EXTCLK high-pulse duration
6
ns
tw(EXTCLKIN)L
EXTCLK low-pulse duration
6
ns
viL(EXTCLKIN)
Low-level input voltage
-0.3
0.8
V
viH(EXTCLKIN)
High-level input voltage
2
VCCIO + 0.3
V
4.6.2
Clock Domains
4.6.2.1
Clock Domain Descriptions
Table 4-13. Clock Domain Descriptions
Clock Domain Name
Default Clock
Source
Clock Source
Selection Register
HCLK
OSCIN
GHVSRC
•
•
Is disabled via the CDDISx registers bit 1
Used for all system modules including DMA, ESM
GCLK
OSCIN
GHVSRC
•
•
•
•
Always the same frequency as HCLK
In phase with HCLK
Is disabled separately from HCLK via the CDDISx registers bit 0
Can be divided by 1up to 8 when running CPU self-test (LBIST)
using the CLKDIV field of the STCCLKDIV register at address
0xFFFFE108
GCLK2
OSCIN
GHVSRC
•
•
•
•
Always the same frequency as GCLK
2 cycles delayed from GCLK
Is disabled along with GCLK
Gets divided by the same divider setting as that for GCLK when
running CPU self-test (LBIST)
VCLK
OSCIN
GHVSRC
•
•
•
Divided down from HCLK
Can be HCLK/1, HCLK/2, ... or HCLK/16
Is disabled separately from HCLK via the CDDISx registers bit 2
VCLK2
OSCIN
GHVSRC
•
•
•
•
Divided down from HCLK
Can be HCLK/1, HCLK/2, ... or HCLK/16
Frequency must be an integer multiple of VCLK frequency
Is disabled separately from HCLK via the CDDISx registers bit 3
VCLK3
OSCIN
GHVSRC
•
•
•
Divided down from HCLK
Can be HCLK/1, HCLK/2, ... or HCLK/16
Is disabled separately from HCLK via the CDDISx registers bit 8
VCLKA1
VCLK
VCLKASRC
•
•
Defaults to VCLK as the source
Is disabled via the CDDISx registers bit 4
VCLKA2
VCLK
VCLKASRC
•
•
Defaults to VCLK as the source
Is disabled via the CDDISx registers bit 5
VCLKA3_S
VCLK
VCLKACON
•
•
•
Defaults to VCLK as the source
Frequency can be as fast as HCLK frequency.
Is disabled via the CDDISx registers bit 10
Copyright © 2011, Texas Instruments Incorporated
Description
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
63
PRODUCT PREVIEW
The table below lists the device clock domains and their default clock sources. The table also shows the
system module control register that is used to select an available clock source for each clock domain.
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-13. Clock Domain Descriptions (continued)
Clock Domain Name
Default Clock
Source
Clock Source
Selection Register
VCLKA3_DIVR
VCLK
VCLKACON1
Description
•
•
•
•
Divided down from the AVCLK3_S using the VCLKA3R field of
the VCLKACON1 register at address 0xFFFFE140
Frequency can be VCLKA3_S/1, VCLKA3_S/2, ..., or
VCLKA3_S/8
Default frequency is VCLKA3_S/2
Is disabled separately via the VCLKACON1 register
VCLKA3_DIV_CDDIS bit only if the VCLKA3_S clock is not
disabled
VCLKA4
VCLK
VCLKACON1
•
•
Defaults to VCLK as the source
Is disabled via the CDDISx registers bit 11
RTICLK
VCLK
RCLKSRC
•
•
Defaults to VCLK as the source
If a clock source other than VCLK is selected for RTICLK, then
the RTICLK frequency must be less than or equal to VCLK/3
– Application can ensure this by programming the RTI1DIV
field of the RCLKSRC register, if necessary
Is disabled via the CDDISx registers bit 6
•
PRODUCT PREVIEW
64
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.6.2.2
Mapping of Clock Domains to Device Modules
Each clock domain has a dedicated functionality as shown in the figures below.
GCM
0
OSCIN
PLL #1
X1..256
/1..64
/1..32
/1..8
Low Power
Oscillator
GCLK, GCLK2 (to CPU)
(FMzPLL)
1
*
80kHz
4
10MHz
5
/1..16
HCLK (to SYSTEM)
VCLK _peri (VCLK to peripherals on PCR1)
VCLK_sys (VCLK to system modules)
/1..16
VCLK2 (to NHETx and HTUx)
/1..16
VCLK3 (to Ethernet, USB)
PLL # 2 (FMzPLL)
X1..256
/1..32
/1..8
* the frequency at this node must not
exceed the maximum HCLK specifiation.
6
*
EXTCLKIN 1
7
EXTCLKIN2
0
1
3
4
5
6
7
VCLK
VCLKA3_DIVR
VCLK3
VCLKA3_S
VCLKA4
Ethernet
0
1
3
4
5
6
7
VCLK
3
VCLKA3 (to USB)
/DIVR
USB Host
0
1
3
4
5
6
7
VCLK
VCLKA3_S
0
1
3
4
5
6
7
EMIF
USB Device
VCLKA1
VCLKA1 (to
to DCANx)
PRODUCT PREVIEW
/1..64
VCLKA3_DIVR
(to USB Host / 12 MHz)
VCLKA4 (to Ethernet, as alternate
for MIITXCLK and/or MIIRXCLK)
/1, 2, 4, or 8
RTICLK (to RTI, DWWD)
VCLK
VCLK
VCLK2
VCLK2
/1,2,..1024
Prop_seg
/1,2,..256
/2,3..224
/1,2..32
/1,2..65536
NHETx
TU
Phase_seg2
SPI
Baud Rate
LIN / SCI
Baud Rate
ADCLK
ECLK
I2C baud
rate
LIN, SCI
MibADCx
External Clock
I2C
Phase_seg1
SPIx,MibSPIx
EXTCLKIN1
CAN Baud Rate
DCANx
HRP
/1..64
/1,2..256
PLL#2 output
Reserved
Reserved
NTU[3]
NTU[2]
NTU[1]
RTI
LRP
/20 ..2 5
Loop
High
Resolution Clock
NHETx
NTU[0]
Figure 4-7. Device Clock Domains
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
65
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
4.6.3
www.ti.com
Clock Test Mode
The RM4x platform architecture defines a special mode that allows various clock signals to be brought out
on to the ECLK pin and N2HET1[12] device outputs. This mode is called the Clock Test mode. It is very
useful for debugging purposes and can be configured via the CLKTEST register in the system module.
Table 4-14. Clock Test Mode Options
SEL_ECP_PIN
=
CLKTEST[3-0]
PRODUCT PREVIEW
66
SIGNAL ON ECLK
SEL_GIO_PIN
=
CLKTEST[11-8]
SIGNAL ON N2HET1[12]
0000
Oscillator
0000
Oscillator Valid Status
0001
Main PLL free-running clock output
0001
Main PLL Valid status
0010
Reserved
0010
Reserved
0011
EXTCLKIN1
0011
Reserved
0100
CLK80K
0100
Reserved
0101
CLK10M
0101
CLK10M Valid status
0110
Secondary PLL free-running clock output
0110
Secondary PLL Valid Status
0111
EXTCLKIN2
0111
Reserved
1000
GCLK
1000
CLK80K
1001
RTI Base
1001
Reserved
1010
Reserved
1010
Reserved
1011
VCLKA1
1011
Reserved
1100
Reserved
1100
Reserved
1101
VCLKA3
1101
Reserved
1110
VCLKA4
1110
Reserved
1111
Reserved
1111
Reserved
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.7
Clock Monitoring
The LPO Clock Detect (LPOCLKDET) module consists of a clock monitor (CLKDET) and an internal low
power oscillator (LPO).
The LPO provides two different clock sources – a low frequency (CLK80K) and a high frequency
(CLK10M).
The CLKDET is a supervisor circuit for an externally supplied clock signal (OSCIN). In case the OSCIN
frequency falls out of a frequency window, the CLKDET flags this condition in the global status register
(GLBSTAT bit 0: OSC FAIL) and switches all clock domains sourced by OSCIN to the CLK10M clock (limp
mode clock).
The valid OSCIN frequency range is defined as: fCLK10M / 4 < fOSCIN < fCLK10M * 4.
4.7.1
Clock Monitor Timings
Parameter
Clock Detection
LPO - HF oscillator
MIN
Type
MAX
Unit
oscillator fail frequency - lower threshold, using
untrimmed LPO output
1.375
2.4
4.875
MHz
oscillator fail frequency - higher threshold, using
untrimmed LPO output
22
38.4
78
MHz
untrimmed frequency
5.5
9.6
19.5
MHz
startup time from STANDBY (LPO BIAS_EN High for
at least 900ms)
10
µs
cold startup time
900
µs
150
µA
180
kHz
startup time from STANDBY (LPO BIAS_EN High for
at least 900ms)
100
µs
cold startup time
ICC, CLK10M and CLK80K active
LPO - LF oscillator
LPO
untrimmed frequency
36
85
2000
µs
ICC, only CLK80K active
27
µA
total ICC STANDBY current
20
µA
guaranteed fail
lower
threshold
1.375
upper
guaranteed fail
threshold
guaranteed pass
4.875
PRODUCT PREVIEW
Table 4-15. LPO and Clock Detection
22
78
f[MHz]
Figure 4-8. LPO and Clock Detection, Untrimmed CLK10M
4.7.2
External Clock (ECLK) Output Functionality
The ECLK pin can be configured to output a pre-scaled clock signal indicative of an internal device clock.
This output can be externally monitored as a safety diagnostic.
4.7.3
Dual Clock Comparators
The Dual Clock Comparator (DCC) module determines the accuracy of selectable clock sources by
counting the pulses of two independent clock sources (counter 0 and counter 1). If one clock is out of
spec, an error signal is generated. For example, the DCC1 can be configured to use CLK10M as the
reference clock (for counter 0) and VCLK as the "clock under test" (for counter 1). This configuration
allows the DCC1 to monitor the PLL output clock when VCLK is using the PLL output as its source.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
67
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
An additional use of this module is to measure the frequency of a selectable clock source, using the input
clock as a reference, by counting the pulses of two independent clock sources. Counter 0 generates a
fixed-width counting window after a preprogrammed number of pulses. Counter 1 generates a fixed-width
pulse (1 cycle) after a pre-programmed number of pulses. This pulse sets as an error signal if counter 1
does not reach 0 within the counting window generated by counter 0.
4.7.3.1
•
•
•
•
4.7.3.2
Features
Takes two different clock sources as input to two independent counter blocks.
One of the clock sources is the known-good, or reference clock; the second clock source is the "clock
under test."
Each counter block is programmable with initial, or seed values.
The counter blocks start counting down from their seed values at the same time; a mismatch from the
expected frequency for the clock under test generates an error signal which is used to interrupt the
CPU.
Mapping of DCC Clock Source Inputs
Table 4-16. DCC1 Counter 0 Clock Sources
CLOCK SOURCE [3:0]
CLOCK NAME
PRODUCT PREVIEW
others
oscillator (OSCIN)
0x5
high frequency LPO
0xA
test clock (TCK)
Table 4-17. DCC1 Counter 1 Clock Sources
KEY [3:0]
CLOCK SOURCE [3:0]
CLOCK NAME
others
-
N2HET1[31]
0x0
Main PLL free-running clock output
0xA
0x1
reserved
0x2
low frequency LPO
0x3
high frequency LPO
0x4
flash HD pump oscillator
0x5
EXTCLKIN1
0x6
EXTCLKIN2
0x7
ring oscillator
0x8 - 0xF
VCLK
Table 4-18. DCC2 Counter 0 Clock Sources
CLOCK SOURCE [3:0]
CLOCK NAME
others
oscillator (OSCIN)
0xA
test clock (TCK)
Table 4-19. DCC2 Counter 1 Clock Sources
KEY [3:0]
68
CLOCK SOURCE [3:0]
CLOCK NAME
others
-
N2HET2[0]
0xA
00x0 - 0x7
Reserved
0x8 - 0xF
VCLK
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.8
Glitch Filters
A glitch filter is present on the following signals.
Table 4-20. Glitch Filter Timing Specifications
Pin
nPORRST
Parameter
tf(nPORRST)
Filter time nPORRST pin;
MIN
MAX
Unit
500
2000
ns
500
2000
ns
500
2000
ns
pulses less than MIN will be filtered out, pulses greater than
MAX will generate a reset (1)
nRST
tf(nRST)
Filter time nRST pin;
pulses less than MIN will be filtered out, pulses greater than
MAX will generate a reset
TEST
tf(TEST)
Filter time TEST pin;
pulses less than MIN will be filtered out, pulses greater than
MAX will pass through
The glitch filter design on the nPORRST signal is designed such that no size pulse will reset any part of the microcontroller (flash pump,
I/O pins, etc.) without also generating a valid reset signal to the CPU.
PRODUCT PREVIEW
(1)
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
69
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
4.9
4.9.1
www.ti.com
Device Memory Map
Memory Map Diagram
The figure below shows the device memory map.
0xFFFFFFFF
SYSTEM Modules
0xFFF80000
Peripherals - Frame 1
0xFF000000
0xFE000000
CRC
RESERVED
0xFCFFFFFF
0xFC000000
Peripherals - Frame 2
RESERVED
0xF07FFFFF
Flash Module Bus2 Interface
(Flash ECC, OTP and EEPROM accesses)
PRODUCT PREVIEW
0xF0000000
RESERVED
0x87FFFFFF
0x80000000
0x6FFFFFFF
0x60000000
EMIF (128MB)
SDRAM
RESERVED
CS0
reserved0x6C000000
CS4 0x68000000
CS3 0x64000000
CS2
EMIF (16MB * 3)
Async RAM
POM (8MB)
0x607FFFFF
0x60000000
RESERVED
0x202FFFFF
0x20000000
Flash (3MB) (Mirrored Image)
RESERVED
0x0843FFFF
0x08400000
RAM - ECC
RESERVED
0x0803FFFF
0x08000000
0x002FFFFF
0x00000000
RAM (256KB)
RESERVED
Flash (3MB)
Figure 4-9. Memory Map
The Flash memory is mirrored to support ECC logic testing. The base address of the mirrored Flash
image is 0x2000 0000.
70
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.9.2
Memory Map Table
Please refer to and for a block diagrams showing the devices interconnect.
Table 4-21. Device Memory Map
MODULE NAME
FRAME ADDRESS RANGE
FRAME CHIP
SELECT
START
END
FRAME ACTUA
SIZE
L SIZE
RESPNSE FOR ACCESS TO
UNIMPLEMENTED LOCATIONS IN
FRAME
Memories tightly coupled to the ARM Cortex-R4F CPU
TCM Flash
CS0
0x0000_0000
0x00FF_FFFF
16MB
2MB/
3MB
TCM RAM + RAM
ECC
CSRAM0
0x0800_0000
0x0BFF_FFFF
64MB
256KB
Mirrored Flash
Flash mirror
frame
0x2000_0000
0x20FF_FFFF
16MB
3MB
Abort
External Memory Accesses
EMIF select 2
0x6000_0000
0x63FF_FFFF
64MB
16MB
EMIF Chip Select
3 (asynchronous)
EMIF select 3
0x6400_0000
0x67FF_FFFF
64MB
16MB
EMIF Chip Select
4 (asynchronous)
EMIF select 4
0x6800_0000
0x6BFF_FFFF
64MB
16MB
EMIF Chip Select
0 (synchronous)
EMIF select 0
0x8000_0000
0x87FF_FFFF
128MB
128MB
Access to "Reserved" space will
generate Abort
PRODUCT PREVIEW
EMIF Chip Select
2 (asynchronous)
Flash Module Bus2 Interface
Customer OTP,
TCM Flash Banks
0xF000_0000
0xF000_FFFF
64KB
16KB
Customer OTP,
EEPROM Bank
0xF000_E000
0xF000_FFFF
8KB
4KB
Customer
OTP–ECC, TCM
Flash Banks
0xF004_0000
0xF004_1FFF
8KB
2KB
Customer
OTP–ECC,
EEPROM Bank
0xF004_1C00
0xF004_1FFF
1KB
1KB
TI OTP, TCM
Flash Banks
0xF008_0000
0xF008_FFFF
64KB
16KB
TI OTP, EEPROM
Bank
0xF008_E000
0xF008_FFFF
8KB
4KB
TI OTP–ECC,
TCM Flash Banks
0xF00C_0000
0xF00C_1FFF
8KB
2KB
TI OTP–ECC,
EEPROM Bank
0xF00C_1C00
0xF00C_1FFF
1KB
1KB
EEPROM
Bank–ECC
0xF010_0000
0xF013_FFFF
256KB
8KB
EEPROM Bank
0xF020_0000
0xF03F_FFFF
2MB
64KB
Flash Data Space
ECC
0xF040_0000
0xF04F_FFFF
1MB
384KB
Abort
Ethernet and EMIF slave interfaces
CPPI Memory
Slave (Ethernet
RAM)
0xFC52_0000
0xFC52_1FFF
8KB
8KB
Abort
CPGMAC Slave
(Ethernet Slave)
0xFCF7_8000
0xFCF7_87FF
2KB
2KB
No error
CPGMACSS
Wrapper
(Ethernet
Wrapper)
0xFCF7_8800
0xFCF7_88FF
256B
256B
No error
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
71
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-21. Device Memory Map (continued)
MODULE NAME
FRAME CHIP
SELECT
FRAME ADDRESS RANGE
FRAME ACTUA
SIZE
L SIZE
RESPNSE FOR ACCESS TO
UNIMPLEMENTED LOCATIONS IN
FRAME
START
END
W2FC (USB
device controller
registers)
0xFCF7_8A00
0xFCF7_8A7F
128B
128B
Abort
OHCI (USB Host
controller
registers)
0xFCF7_8B00
0xFCF7_8BFF
256B
256B
Abort
0xFCFF_E800
0xFCFF_E8FF
256B
256B
Abort
EMIF Registers
Cyclic Redundancy Checker (CRC) Module Registers
CRC
CRC frame
0xFE00_0000
0xFEFF_FFFF
16MB
512B
Accesses above 0x200 generate abort.
Peripheral Memories
PRODUCT PREVIEW
MIBSPI5 RAM
PCS[5]
0xFF0A_0000
0xFF0B_FFFF
128KB
2KB
Abort for accesses above 2KB
MIBSPI3 RAM
PCS[6]
0xFF0C_0000
0xFF0D_FFFF
128KB
2KB
Abort for accesses above 2KB
MIBSPI1 RAM
PCS[7]
0xFF0E_0000
0xFF0F_FFFF
128KB
2KB
Abort for accesses above 2KB
DCAN3 RAM
PCS[13]
0xFF1A_0000
0xFF1B_FFFF
128KB
2KB
Wrap around for accesses to
unimplemented address offsets lower
than 0x7FF. Abort generated for
accesses beyond offset 0x800.
DCAN2 RAM
PCS[14]
0xFF1C_0000
0xFF1D_FFFF
128KB
2KB
Wrap around for accesses to
unimplemented address offsets lower
than 0x7FF. Abort generated for
accesses beyond offset 0x800.
DCAN1 RAM
PCS[15]
0xFF1E_0000
0xFF1F_FFFF
128KB
2KB
Wrap around for accesses to
unimplemented address offsets lower
than 0x7FF. Abort generated for
accesses beyond offset 0x800.
MIBADC2 RAM
PCS[29]
0xFF3A_0000
0xFF3B_FFFF
128KB
8KB
Wrap around for accesses to
unimplemented address offsets lower
than 0x1FFF. Abort generated for
accesses beyond 0x1FFF.
MIBADC1 RAM
PCS[31]
0xFF3E_0000
0xFF3F_FFFF
128KB
8KB
Wrap around for accesses to
unimplemented address offsets lower
than 0x1FFF. Abort generated for
accesses beyond 0x1FFF.
N2HET2 RAM
PCS[34]
0xFF44_0000
0xFF45_FFFF
128KB
16KB
Wrap around for accesses to
unimplemented address offsets lower
than 0x3FFF. Abort generated for
accesses beyond 0x3FFF.
N2HET1 RAM
PCS[35]
0xFF46_0000
0xFF47_FFFF
128KB
16KB
Wrap around for accesses to
unimplemented address offsets lower
than 0x3FFF. Abort generated for
accesses beyond 0x3FFF.
N2HET2 TU2
RAM
PCS[38]
0xFF4C_0000
0xFF4D_FFFF
128KB
1KB
Abort
N2HET1 TU1
RAM
PCS[39]
0xFF4E_0000
0xFF4F_FFFF
128KB
1KB
Abort
Debug Components
CoreSight Debug
ROM
CSCS0
0xFFA0_0000
0xFFA0_0FFF
4KB
4KB
Reads return zeros, writes have no
effect
Cortex-R4F
Debug
CSCS1
0xFFA0_1000
0xFFA0_1FFF
4KB
4KB
Reads return zeros, writes have no
effect
ETM-R4
CSCS2
0xFFA0_2000
0xFFA0_2FFF
4KB
4KB
Reads return zeros, writes have no
effect
CoreSight TPIU
CSCS3
0xFFA0_3000
0xFFA0_3FFF
4KB
4KB
Reads return zeros, writes have no
effect
POM
CSCS4
0xFFA0_4000
0xFFA0_4FFF
4KB
4KB
Abort
Peripheral Control Registers
72
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-21. Device Memory Map (continued)
FRAME CHIP
SELECT
HTU1
FRAME ADDRESS RANGE
FRAME ACTUA
SIZE
L SIZE
RESPNSE FOR ACCESS TO
UNIMPLEMENTED LOCATIONS IN
FRAME
START
END
PS[22]
0xFFF7_A400
0xFFF7_A4FF
256B
256B
Reads return zeros, writes have no
effect
HTU2
PS[22]
0xFFF7_A500
0xFFF7_A5FF
256B
256B
Reads return zeros, writes have no
effect
N2HET1
PS[17]
0xFFF7_B800
0xFFF7_B8FF
256B
256B
Reads return zeros, writes have no
effect
N2HET2
PS[17]
0xFFF7_B900
0xFFF7_B9FF
256B
256B
Reads return zeros, writes have no
effect
GIO
PS[16]
0xFFF7_BC00
0xFFF7_BCFF
256B
256B
Reads return zeros, writes have no
effect
MIBADC1
PS[15]
0xFFF7_C000
0xFFF7_C1FF
512B
512B
Reads return zeros, writes have no
effect
MIBADC2
PS[15]
0xFFF7_C200
0xFFF7_C3FF
512B
512B
Reads return zeros, writes have no
effect
I2C
PS[10]
0xFFF7_D400
0xFFF7_D4FF
256B
256B
Reads return zeros, writes have no
effect
DCAN1
PS[8]
0xFFF7_DC00
0xFFF7_DDFF
512B
512B
Reads return zeros, writes have no
effect
DCAN2
PS[8]
0xFFF7_DE00
0xFFF7_DFFF
512B
512B
Reads return zeros, writes have no
effect
DCAN3
PS[7]
0xFFF7_E000
0xFFF7_E1FF
512B
512B
Reads return zeros, writes have no
effect
LIN
PS[6]
0xFFF7_E400
0xFFF7_E4FF
256B
256B
Reads return zeros, writes have no
effect
SCI
PS[6]
0xFFF7_E500
0xFFF7_E5FF
256B
256B
Reads return zeros, writes have no
effect
MibSPI1
PS[2]
0xFFF7_F400
0xFFF7_F5FF
512B
512B
Reads return zeros, writes have no
effect
SPI2
PS[2]
0xFFF7_F600
0xFFF7_F7FF
512B
512B
Reads return zeros, writes have no
effect
MibSPI3
PS[1]
0xFFF7_F800
0xFFF7_F9FF
512B
512B
Reads return zeros, writes have no
effect
SPI4
PS[1]
0xFFF7_FA00
0xFFF7_FBFF
512B
512B
Reads return zeros, writes have no
effect
MibSPI5
PS[0]
0xFFF7_FC00
0xFFF7_FDFF
512B
512B
Reads return zeros, writes have no
effect
DMA RAM
PPCS0
0xFFF8_0000
PRODUCT PREVIEW
MODULE NAME
System Modules Control Registers and Memories
0xFFF8_0FFF
4KB
4KB
Abort
VIM RAM
PPCS2
0xFFF8_2000
0xFFF8_2FFF
4KB
1KB
Wrap around for accesses to
unimplemented address offsets lower
than 0x3FF. Abort generated for
accesses beyond 0x3FF.
RTP RAM
PPCS3
0xFFF8_3000
0xFFF8_3FFF
4KB
4KB
Abort
Flash Module
PPCS7
0xFFF8_7000
0xFFF8_7FFF
4KB
4KB
Abort
eFuse Controller
PPCS12
0xFFF8_C000
0xFFF8_CFFF
4KB
4KB
Abort
Power
Management
Module (PMM)
PPSE0
0xFFFF_0000
0xFFFF_01FF
512B
512B
Abort
Test Controller
(FMTM)
PPSE1
0xFFFF_0400
0xFFFF_07FF
1KB
1KB
Reads return zeros, writes have no
effect
PCR registers
PPS0
0xFFFF_E000
0xFFFF_E0FF
256B
256B
Reads return zeros, writes have no
effect
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
73
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-21. Device Memory Map (continued)
MODULE NAME
FRAME CHIP
SELECT
System Module Frame 2 (see
device TRM)
FRAME ADDRESS RANGE
FRAME ACTUA
SIZE
L SIZE
RESPNSE FOR ACCESS TO
UNIMPLEMENTED LOCATIONS IN
FRAME
PRODUCT PREVIEW
START
END
PPS0
0xFFFF_E100
0xFFFF_E1FF
256B
256B
Reads return zeros, writes have no
effect
PBIST
PPS1
0xFFFF_E400
0xFFFF_E5FF
512B
512B
Reads return zeros, writes have no
effect
STC
PPS1
0xFFFF_E600
0xFFFF_E6FF
256B
256B
Generates address error interrupt, if
enabled
IOMM
Multiplexing
Control Module
PPS2
0xFFFF_EA00
0xFFFF_EBFF
512B
512B
Reads return zeros, writes have no
effect
DCC1
PPS3
0xFFFF_EC00
0xFFFF_ECFF
256B
256B
Reads return zeros, writes have no
effect
DMA
PPS4
0xFFFF_F000
0xFFFF_F3FF
1KB
1KB
Reads return zeros, writes have no
effect
DCC2
PPS5
0xFFFF_F400
0xFFFF_F4FF
256B
256B
Reads return zeros, writes have no
effect
ESM
PPS5
0xFFFF_F500
0xFFFF_F5FF
256B
256B
Reads return zeros, writes have no
effect
CCMR4
PPS5
0xFFFF_F600
0xFFFF_F6FF
256B
256B
Reads return zeros, writes have no
effect
DMM
PPS5
0xFFFF_F700
0xFFFF_F7FF
256B
256B
Reads return zeros, writes have no
effect
RAM ECC even
PPS6
0xFFFF_F800
0xFFFF_F8FF
256B
256B
Reads return zeros, writes have no
effect
RAM ECC odd
PPS6
0xFFFF_F900
0xFFFF_F9FF
256B
256B
Reads return zeros, writes have no
effect
RTP
PPS6
0xFFFF_FA00
0xFFFF_FAFF
256B
256B
Reads return zeros, writes have no
effect
RTI + DWWD
PPS7
0xFFFF_FC00
0xFFFF_FCFF
256B
256B
Reads return zeros, writes have no
effect
VIM Parity
PPS7
0xFFFF_FD00
0xFFFF_FDFF
256B
256B
Reads return zeros, writes have no
effect
VIM
PPS7
0xFFFF_FE00
0xFFFF_FEFF
256B
256B
Reads return zeros, writes have no
effect
System Module Frame 1 (see
device TRM)
PPS7
0xFFFF_FF00
0xFFFF_FFFF
256B
256B
Reads return zeros, writes have no
effect
74
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.9.3
Master/Slave Access Privileges
The table below lists the access permissions for each bus master on the device. A bus master is a module
that can initiate a read or a write transaction on the device.
Each slave module on the main interconnect is listed in the table. A "Yes" indicates that the module listed
in the "MASTERS" column can access that slave module.
Table 4-22. Master / Slave Access Matrix
ACCESS MODE
SLAVES ON MAIN SCR
Flash Module
Bus2 Interface:
OTP, ECC,
EEPROM Bank
Non-CPU
Accesses to
Program Flash
and CPU Data
RAM
CRC
EMIF, Ethernet,
USB Slave
Interfaces
Peripheral
Control
Registers, All
Peripheral
Memories, And
All System
Module Control
Registers And
Memories
CPU READ
User/Privilege
Yes
Yes
Yes
Yes
Yes
CPU WRITE
User/Privilege
No
Yes
Yes
Yes
Yes
DMA
User
Yes
Yes
Yes
Yes
Yes
POM
User
Yes
Yes
Yes
Yes
Yes
DMM
User
Yes
Yes
Yes
Yes
Yes
DAP
Privilege
Yes
Yes
Yes
Yes
Yes
HTU1
Privilege
No
Yes
Yes
Yes
Yes
HTU2
Privilege
No
Yes
Yes
Yes
Yes
EMAC
User
No
Yes
No
Yes
No
OHCI
User
No
Yes
No
Yes
No
4.9.3.1
Special Notes on Accesses to Certain Slaves
Write accesses to the Power Domain Management Module (PMM) control registers are limited to the CPU
(master id = 1). The other masters can only read from these registers.
A debugger can also write to the PMM registers. The master-id check is disabled in debug mode.
The device contains dedicated logic to generate a bus error response on any access to a module that is in
a power domain that has been turned OFF.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
75
PRODUCT PREVIEW
MASTERS
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
4.9.4
POM Overlay Considerations
•
•
•
•
PRODUCT PREVIEW
76
www.ti.com
The POM overlay can map onto up to 8MB of the internal or external memory space. The starting
address and the size of the memory overlay are configurable via the POM module control registers.
Care must be taken to ensure that the overlay is mapped on to available memory.
ECC must be disabled by software via CP15 in case POM overlay is enabled; otherwise ECC errors
will be generated.
POM overlay must not be enabled when the flash and internal RAM memories are swapped via the
MEM SWAP field of the Bus Matrix Module Control Register 1 (BMMCR1).
When POM is used to overlay the flash on to internal or external RAM, there is a bus contention
possibility when another master accesses the TCM flash. This results in a system hang.
– The POM module implements a timeout feature to detect this exact scenario. The timeout needs to
be enabled whenever POM overlay is enabled.
– The timeout can be enabled by writing 1010 to the Enable TimeOut (ETO) field of the POM Global
Control register (POMGLBCTRL, address = 0xFFA04000).
– In case a read request by the POM cannot be completed within 32 HCLK cycles, the timeout (TO)
flag is set in the POM Flag register (POMFLG, address = 0xFFA0400C). Also, an abort is
generated to the CPU. This can be a prefetch abort for an instruction fetch or a data abort for a
data fetch.
– The prefetch- and data-abort handlers must be modified to check if the TO flag in the POM module
is set. If so, then the application can assume that the timeout is caused by a bus contention
between the POM transaction and another master accessing the same memory region. The abort
handlers need to clear the TO flag, so that any further aborts are not misinterpreted as having been
caused due to a timeout from the POM.
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.10 Flash Memory
4.10.1 Flash Memory Configuration
Flash Bank: A separate block of logic consisting of 1 to 16 sectors. Each flash bank normally has a
customer-OTP and a TI-OTP area. These flash sectors share input/output buffers, data paths, sense
amplifiers, and control logic.
Flash Sector: A contiguous region of flash memory which must be erased simultaneously due to physical
construction constraints.
Flash Pump: A charge pump which generates all the voltages required for reading, programming, or
erasing the flash banks.
Flash Module: Interface circuitry required between the host CPU and the flash banks and pump module.
Table 4-23. Flash Memory Banks and Sectors
BANK0 (1.5MBytes)
BANK1 (1.5MBytes)
BANK7 (64kBytes) for EEPROM emulation
(1)
(2)
(3)
(2) (3)
Sector
No.
Segment
Low Address
High Address
0
32K Bytes
0x0000_0000
0x0000_7FFF
1
32K Bytes
0x0000_8000
0x0000_FFFF
2
32K Bytes
0x0001_0000
0x0001_7FFF
3
32K Bytes
0x0001_8000
0x0001_FFFF
4
128K Bytes
0x0002_0000
0x0003_FFFF
5
128K Bytes
0x0004_0000
0x0005_FFFF
6
128K Bytes
0x0006_0000
0x0007_FFFF
7
128K Bytes
0x0008_0000
0x0009_FFFF
8
128K Bytes
0x000A_0000
0x000B_FFFF
9
128K Bytes
0x000C_0000
0x000D_FFFF
10
128K Bytes
0x000E_0000
0x000F_FFFF
11
128K Bytes
0x0010_0000
0x0011_FFFF
12
128K Bytes
0x0012_0000
0x0013_FFFF
13
128K Bytes
0x0014_0000
0x0015_FFFF
14
128K Bytes
0x0016_0000
0x0017_FFFF
0
128K Bytes
0x0018_0000
0x0019_FFFF
1
128K Bytes
0x001A_0000
0x001B_FFFF
2
128K Bytes
0x001C_0000
0x001D_FFFF
3
128K Bytes
0x001E_0000
0x001F_FFFF
4
128K Bytes
0x0020_0000
0x0021_FFFF
5
128K Bytes
0x0022_0000
0x0023_FFFF
6
128K Bytes
0x0024_0000
0x0025_FFFF
7
128K Bytes
0x0026_0000
0x0027_FFFF
8
128K Bytes
0x0028_0000
0x0029_FFFF
9
128K Bytes
0x002A_0000
0x002B_FFFF
10
128K Bytes
0x002C_0000
0x002D_FFFF
11
128K Bytes
0x002E_0000
0x002F_FFFF
0
16K Bytes
0xF020_0000
0xF020_3FFF
1
16K Bytes
0xF020_4000
0xF020_7FFF
2
16K Bytes
0xF020_8000
0xF020_BFFF
3
16K Bytes
0xF020_C000
0xF020_FFFF
PRODUCT PREVIEW
Memory Arrays (or Banks)
(1)
The Flash banks are 144-bit wide bank with ECC support.
The flash bank7 can be programmed while executing code from flash bank0 or bank1.
Code execution is not allowed from flash bank7.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
77
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.10.2 Main Features of Flash Module
•
•
•
•
•
•
•
Support for multiple flash banks for program and/or data storage
Simultaneous read access on a bank while performing program or erase operation on any other bank
Integrated state machines to automate flash erase and program operations
Software interface for flash program and erase operations
Pipelined mode operation to improve instruction access interface bandwidth
Support for Single Error Correction Double Error Detection (SECDED) block inside Cortex-R4F CPU
– Error address is captured for host system debugging
Support for a rich set of diagnostic features
4.10.3 ECC Protection for Flash Accesses
PRODUCT PREVIEW
All accesses to the program flash memory are protected by Single Error Correction Double Error Detection
(SECDED) logic embedded inside the CPU. The flash module provides 8 bits of ECC code for 64 bits of
instructions or data fetched from the flash memory. The CPU calculates the expected ECC code based on
the 64 bits received and compares it with the ECC code returned by the flash module. A signle-bit error is
corrected and flagged by the CPU, while a multi-bit error is only flagged. The CPU signals an ECC error
via its Event bus. This signaling mechanism is not enabled by default and must be enabled by setting the
"X" bit of the Performance Monitor Control Register, c9.
MRC
ORR
MCR
MRC
p15,#0,r1,c9,c12,#0
r1, r1, #0x00000010
p15,#0,r1,c9,c12,#0
p15,#0,r1,c9,c12,#0
;Enabling Event monitor states
;Set 4th bit (‘X’) of PMNC register
The application must also explicitly enable the CPU's ECC checking for accesses on the CPU's ATCM
and BTCM interfaces. These are connected to the program flash and data RAM respectively. ECC
checking for these interfaces can be done by setting the B1TCMPCEN, B0TCMPCEN and ATCMPCEN
bits of the System Control coprocessor's Auxiliary Control Register, c1.
MRC p15, #0, r1, c1, c0, #1
ORR r1, r1, #0x0e000000
DMB
MCR p15, #0, r1, c1, c0, #1
;Enable ECC checking for ATCM and BTCMs
4.10.4 Flash Access Speeds
For information on flash memory access speeds and the relevant wait states required, refer to Section 3.4.
78
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.10.5 Flash Program and Erase Timings
Parameter
tprog (144bit)
Wide Word (144bit) programming time
tprog (Total)
3MByte programming time (1)
MIN
terase (sector)
MAX
Unit
40
tbd
µs
tbd
s
tbd
s
tbd
ms
tbd
ms
-40°C to 125°C
0°C to 60°C, for first
25 cycles
tprog (Total)
NOM
EEPROM Emulation 64kByte programming
time (1)
-40°C to 12°5C
Sector erase time
-40°C to 125°C
0°C to 60°C, for first
25 cycles
8
165
tbd
ms
0°C to 60°C, for first
25 cycles
30
tbd
ms
terase (bank)
Bank erase time (2)
Flash Bank 0
300
tbd
ms
terase (bank)
Bank erase time
(2)
Flash Bank 1
240
tbd
ms
terase (bank)
EEPROM Emulation Bank erase time (2)
Flash Bank 7
80
tbd
ms
twec
Write/erase cycles
Flash Bank 0
Flash Bank 1
1000
cycles
twec
Write/erase cycles
Flash Bank 7
100000
cycles
(1)
(2)
This programming time includes overhead of state machine, but does not include data transfer time.
Nominal conditions for the above specifications mean the first 25 program / erase cycles at an ambient temperature between 0c to 60c
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
79
PRODUCT PREVIEW
Table 4-24. Timing Specifications for Flash
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.11 Tightly-Coupled RAM Interface Module
Figure 4-10 illustrates the connection of the Tightly Coupled RAM (TCRAM) to the Cortex-R4F™ CPU.
VBUSP I/F
PMT I/F
Upper 32 bits data &
4 ECC bits
Cortex R4F™
B0
TCM
EVEN Address
TCM BUS
TCRAM
Interface 1
64 Bit data bus
Lower 32 bits data &
4 ECC bits
A
TCM
B1
TCM
Upper 32 bits data &
4 ECC bits
ODD Address
TCM BUS
64 Bit data bus
TCRAM
Interface 2
Lower 32 bits data &
4 ECC bits
PRODUCT PREVIEW
VBUSP I/F
36 Bit
Bit
3636
Bit
wide
wide
wideRAM
RAM
RAM
36 Bit
Bit
3636
Bit
wide
wide
wide
RAM
RAM
RAM
36 Bit
Bit
wide
3636
Bit
wide
wideRAM
RAM
RAM
36 Bit
Bit
3636
Bit
wide
wide
wideRAM
RAM
RAM
PMT I/F
Figure 4-10. TCRAM Block Diagram
4.11.1 Features
The features of the Tightly Coupled RAM (TCRAM) Module are:
• Acts as slave to the Cortex-R4F CPU's BTCM interface
• Supports CPU's internal ECC scheme by providing 64-bit data and 8-bit ECC code
• Monitors CPU Event Bus and generates single or multi-bit error interrupts
• Stores addresses for single and multi-bit errors
• Supports RAM trace module
• Provides CPU address bus integrity checking by supporting parity checking on the address bus
• Performs redundant address decoding for the RAM bank chip select and ECC select generation logic
• Provides enhanced safety for the RAM addressing by implementing two 36-bit wide byte-interleaved
RAM banks and generating independent RAM access control signals to the two banks
• Supports auto-initialization of the RAM banks along with the ECC bits
4.11.2 TCRAMW ECC Support
The TCRAMW passes on the ECC code for each data read by the Cortex-R4F CPU from the RAM. It also
stores the CPU's ECC port contents in the ECC RAM when the CPU does a write to the RAM. The
TCRAMW monitors the CPU's event bus and provides registers for indicating single/multi-bit errors and
also for identifying the address that caused the single or multi-bit error. The event signaling and the ECC
checking for the RAM accesses must be enabled inside the CPU.
For more information see the RM48x Technical Reference Manual (SPNU481).
4.12
Parity Protection for Accesses to peripheral RAMs
Accesses to all peripheral RAMs are protected by odd/even parity checking. During a read access the
parity is calculated based on the data read from the peripheral RAM and compared with the good parity
value stored in the parity RAM for that peripheral. If any word fails the parity check, the module generates
a parity error signal that is mapped to the Error Signaling Module. The module also captures the
peripheral RAM address that caused the parity error.
80
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
The parity protection for peripheral RAMs is not enabled by default and must be enabled by the
application. Each individual peripheral contains control registers to enable the parity protection for
accesses to its RAM.
NOTE
PRODUCT PREVIEW
The CPU read access gets the actual data from the peripheral. The application can choose
to generate an interrupt whenever a peripheral RAM parity error is detected.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
81
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.13 On-Chip SRAM Initialization and Testing
4.13.1 On-Chip SRAM Self-Test Using PBIST
4.13.1.1 Features
•
•
•
Extensive instruction set to support various memory test algorithms
ROM-based algorithms allow application to run TI production-level memory tests
Independent testing of all on-chip SRAM
4.13.1.2 PBIST RAM Groups
Table 4-25. PBIST RAM Grouping
Test Pattern (Algorithm)
Memory
RAM Group
Test Clock
MEM Type
triple read
slow read
triple read
fast read
March 13N (1)
two port
(cycles)
March 13N (1)
single port
(cycles)
ALGO MASK
0x1
ALGO MASK
0x2
ALGO MASK
0x4
ALGO MASK
0x8
1
ROM CLK
ROM
X
X
STC_ROM
2
ROM CLK
ROM
X
X
DCAN1
3
VCLK
Dual Port
25200
DCAN2
4
VCLK
Dual Port
25200
DCAN3
5
VCLK
Dual Port
25200
ESRAM1
6
HCLK
Single Port
MIBSPI1
7
VCLK
Dual Port
33440
MIBSPI3
8
VCLK
Dual Port
33440
MIBSPI5
9
VCLK
Dual Port
33440
VIM
10
VCLK
Dual Port
12560
MIBADC1
11
VCLK
Dual Port
4200
DMA
12
HCLK
Dual Port
18960
N2HET1
13
VCLK
Dual Port
31680
HET TU1
14
VCLK
Dual Port
6480
RTP
15
HCLK
Dual Port
37800
MIBADC2
18
VCLK
Dual Port
4200
PRODUCT PREVIEW
PBIST_ROM
N2HET2
19
VCLK
Dual Port
31680
HET TU2
20
VCLK
Dual Port
6480
ESRAM5
21
HCLK
Single Port
266280
ESRAM6
22
HCLK
Single Port
266280
23
ETHERNET
24
VCLK3
25
USB
ESRAM8
(1)
266280
26
27
28
Dual Port
8700
6360
Single Port
VCLK3
HCLK
Dual Port
133160
4240
Single Port
66600
Single Port
266280
There are several memory testing algorithms stored in the PBIST ROM. However, TI recommends the March13N algorithm for
application testing.
The PBIST ROM clock frequency is limited to 100MHz, if 100MHz < HCLK <= HCLKmax, or HCLK, if
HCLK <= 100MHz.
The PBIST ROM clock is divided down from HCLK. The divider is selected by programming the ROM_DIV
field of the Memory Self-Test Global Control Register (MSTGCR) at address 0xFFFFFF58.
82
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.13.2 On-Chip SRAM Auto Initialization
This microcontroller allows some of the on-chip memories to be initialized via the Memory Hardware
Initialization mechanism in the System module. This hardware mechanism allows an application to
program the memory arrays with error detection capability to a known state based on their error detection
scheme (odd/even parity or ECC).
The MINITGCR register enables the memory initialization sequence, and the MSINENA register selects
the memories that are to be initialized.
For more information on these registers see the RM48x Technical Reference Manual (SPNU481).
The mapping of the different on-chip memories to the specific bits of the MSINENA registers is shown in
Table 4-26.
Table 4-26. Memory Initialization
ADDRESS RANGE
ENDING ADDRESS
RAM (PD#1)
0x08000000
0x0800FFFF
0 (1)
RAM (RAM_PD#1)
0x08010000
0x0801FFFF
0 (1)
RAM (RAM_PD#2)
0x08020000
0x0802FFFF
0 (1)
RAM (RAM_PD#3)
0x08030000
0x0803FFFF
0 (1)
MIBSPI5 RAM
0xFF0A0000
0xFF0BFFFF
12 (2)
MIBSPI3 RAM
0xFF0C0000
0xFF0DFFFF
11 (2)
MIBSPI1 RAM
0xFF0E0000
0xFF0FFFFF
7 (2)
DCAN3 RAM
0xFF1A0000
0xFF1BFFFF
10
DCAN2 RAM
0xFF1C0000
0xFF1DFFFF
6
DCAN1 RAM
0xFF1E0000
0xFF1FFFFF
5
MIBADC2 RAM
0xFF3A0000
0xFF3BFFFF
14
MIBADC1 RAM
0xFF3E0000
0xFF3FFFFF
8
N2HET2 RAM
0xFF440000
0xFF57FFFF
15
N2HET1 RAM
0xFF460000
0xFF47FFFF
3
HET TU2 RAM
0xFF4C0000
0xFF4DFFFF
16
HET TU1 RAM
0xFF4E0000
0xFF4FFFFF
4
DMA RAM
0xFFF80000
0xFFF80FFF
1
VIM RAM
0xFFF82000
0xFFF82FFF
USB Device RAM
Ethernet RAM (CPPI Memory
Slave)
(1)
(2)
MSINENA REGISTER BIT #
BASE ADDRESS
RAM is not CPU-Addressable
0xFC520000
0xFC521FFF
PRODUCT PREVIEW
CONNECTING MODULE
2
n/a
n/a
The TCM RAM wrapper has separate control bits to select the RAM power domain that is to be auto-initialized.
The MibSPIx modules perform an initialization of the transmit and receive RAMs as soon as the multi-buffered mode is enabled. This is
independent of whether the application chooses to initialize the MibSPIx RAMs using the system module auto-initialization method.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
83
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.14 External Memory Interface (EMIF)
4.14.1 Features
The EMIF includes many features to enhance the ease and flexibility of connecting to external
asynchronous memories or SDRAM devices. The EMIF features includes support for:
• 3 addressable chip select for asynchronous memories of up to 16MB each
• 1 addressable chip select space for SDRAMs up to 128MB
• 8 or 16-bit data bus width
• Programmable cycle timings such as setup, strobe, and hold times as well as turnaround time
• Select strobe mode
• Extended Wait mode
• Data bus parking
4.14.2 Electrical and Timing Specifications
4.14.2.1 Read Timing (Asynchronous RAM)
3
PRODUCT PREVIEW
1
EMIF_nCS[3:2]
EMIF_BA[1:0]
EMIF_ADDR[21:0]
EMIF_nDQM[1:0]
4
8
5
9
6
29
7
30
10
EMIF_nOE
13
12
EMIF_DATA[15:0]
EMIF_nWE
Figure 4-11. Asynchronous Memory Read Timing
84
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
EMIF_nCS[3:2]
SETUP
Extended Due to EMIF_WAIT
STROBE
STROBE HOLD
EMIF_BA[1:0]
EMIF_ADDR[21:0]
EMIF_DATA[15:0]
14
11
EMIF_nOE
2
EMIF_WAIT
2
Asserted
Deasserted
Figure 4-12. EMIFnWAIT Read Timing Requirements
PRODUCT PREVIEW
4.14.2.2 Write Timing (Asynchronous RAM)
15
1
EMIF_nCS[3:2]
EMIF_BA[1:0]
EMIF_ADDR[21:0]
EMIF_nDQM[1:0]
16
17
18
19
20
22
24
21
23
EMIF_nWE
27
26
EMIF_DATA[15:0]
EMIF_nOE
Figure 4-13. Asynchronous Memory Write Timing
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
85
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
SETUP
Extended Due to EMIF_WAIT
STROBE
STROBE HOLD
EMIF_nCS[3:2]
EMIF_BA[1:0]
EMIF_ADDR[21:0]
EMIF_DATA[15:0]
28
25
EMIF_nWE
2
EMIF_WAIT
Asserted
2
Deasserted
Figure 4-14. EMIFnWAIT Write Timing Requirements
PRODUCT PREVIEW
4.14.2.3 Read Timing (Synchronous RAM)
BASIC SDRAM
READ OPERATION
1
2
2
EMIF_CLK
4
3
EMIF_nCS[0]
6
5
EMIF_nDQM[1:0]
7
8
7
8
EMIF_BA[1:0]
EMIF_ADDR[21:0]
19
2 EM_CLK Delay
17
20
18
EMIF_DATA[15:0]
11
12
EMIF_nRAS
13
14
EMIF_nCAS
EMIF_nWE
Figure 4-15. Basic SDRAM Read Operation
86
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.14.2.4 Write Timing (Synchronous RAM)
1
BASIC SDRAM
WRITE OPERATION
2
2
EMIF_CLK
4
3
EMIF_CS[0]
6
5
EMIF_DQM[1:0]
7
8
7
8
EMIF_BA[1:0]
EMIF_ADDR[21:0]
9
10
11
PRODUCT PREVIEW
EMIF_DATA[15:0]
12
EMIF_nRAS
13
EMIF_nCAS
15
16
EMIF_nWE
Figure 4-16. Basic SDRAM Write Operation
4.14.2.5 EMIF Asynchronous Memory Timing
Table 4-27. EMIF Asynchronous Memory Timing Requirements
NO.
Value
MIN
NOM
Unit
MAX
Reads and Writes
2
tw(EM_WAIT)
Pulse duration, EMIFnWAIT
assertion and deassertion
2E
ns
12
tsu(EMDV-EMOEH)
Setup time, EMIFDATA[15:0]
valid before EMIFnOE high
3
ns
13
th(EMOEH-EMDIV)
Hold time, EMIFDATA[15:0]
valid after EMIFnOE high
0.5
ns
14
tsu(EMOEL-EMWAIT)
Setup Time, EMIFnWAIT
asserted before end of Strobe
Phase (1)
4E+3
ns
28
tsu(EMWEL-EMWAIT)
Setup Time, EMIFnWAIT
asserted before end of Strobe
Phase (1)
4E+3
ns
Reads
Writes
(1)
Setup before end of STROBE phase (if no extended wait states are inserted) by which EMIFnWAIT must be asserted to add extended
wait states. Figure Figure 4-12 and Figure Figure 4-14 describe EMIF transactions that include extended wait states inserted during the
STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start
of where the HOLD phase would begin if there were no extended wait cycles.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
87
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-28. EMIF Asynchronous Memory Switching Characteristics (1) (2) (3)
NO
Parameter
Value
MIN
Unit
NOM
MAX
(TA)*E
(TA)*E + 3
Reads and Writes
1
td(TURNAROUND)
Turn around time
(TA)*E -3
ns
3
tc(EMRCYCLE)
EMIF read cycle time (EW = 0)
(RS+RST+RH)* (RS+RST+RH)* (RS+RST+RH)*
E -3
E
E+3
ns
EMIF read cycle time (EW = 1)
(RS+RST+RH+( (RS+RST+RH+( (RS+RST+RH+(
EWC*16))*E -3
EWC*16))*E
EWC*16))*E +
3
ns
Reads
4
tsu(EMCEL-EMOEL)
5
th(EMOEH-EMCEH)
PRODUCT PREVIEW
Output setup time,
EMIFnCS[4:2] low to EMIFnOE
low (SS = 0)
(RS)*E-3
(RS)*E
(RS)*E+3
ns
Output setup time,
EMIFnCS[4:2] low to EMIFnOE
low (SS = 1)
-3
0
+3
ns
Output hold time, EMIFnOE high
to EMIFnCS[4:2] high (SS = 0)
(RH)*E -3
(RH)*E
(RH)*E + 3
ns
Output hold time, EMIFnOE high
to EMIFnCS[4:2] high (SS = 1)
-3
0
+3
ns
6
tsu(EMBAV-EMOEL)
Output setup time, EMIFBA[1:0]
valid to EMIFnOE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
7
th(EMOEH-EMBAIV)
Output hold time, EMIFnOE high
to EMIFBA[1:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
8
tsu(EMBAV-EMOEL)
Output setup time,
EMIFADDR[21:0] valid to
EMIFnOE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
9
th(EMOEH-EMAIV)
Output hold time, EMIFnOE high
to EMIFADDR[21:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
10
tw(EMOEL)
EMIFnOE active low width (EW
= 0)
(RST)*E-3
(RST)*E
(RST)*E+3
ns
EMIFnOE active low width (EW
= 1)
11
td(EMWAITH-EMOEH)
Delay time from EMIFnWAIT
deasserted to EMIFnOE high
15
tc(EMWCYCLE)
(RST+(EWC*16 (RST+(EWC*16 (RST+(EWC*16
)) *E-3
))*E
)) *E+3
ns
3E-3
4E
4E+3
ns
EMIF write cycle time (EW = 0)
(WS+WST+WH
)* E-3
(WS+WST+WH
)*E
(WS+WST+WH
)* E+3
ns
EMIF write cycle time (EW = 1)
(WS+WST+WH
+( EWC*16))*E
-3
(WS+WST+WH
+(E WC*16))*E
(WS+WST+WH
+( EWC*16))*E
+3
ns
Output setup time,
EMIFnCS[4:2] low to EMIFnWE
low (SS = 0)
(WS)*E -3
(WS)*E
(WS)*E + 3
ns
Output setup time,
EMIFnCS[4:2] low to EMIFnWE
low (SS = 1)
-3
0
+3
ns
Output hold time, EMIFnWE
high to EMIFnCS[4:2] high (SS =
0)
(WH)*E-3
(WH)*E
(WH)*E+3
ns
Writes
16
17
(1)
(2)
(3)
88
tsu(EMCEL-EMWEL)
th(EMWEH-EMCEH)
TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,
MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle
Configuration Registers. These support the following ranges of values: TA[4–1], RS[16–1], RST[64–1], RH[8–1], WS[16–1], WST[64–1],
WH[8–1], and MEWC[1–256]. See the EMIF User’s guide for more information.
E = EMIF_CLK period in ns.
EWC = external wait cycles determined by EMIFnWAIT input signal. EWC supports the following range of values. EWC[256–1]. Note
that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See
the EMIF User’s Guide for more information.
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-28. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued)
Parameter
Value
Unit
MIN
NOM
MAX
Output hold time, EMIFnWE
high to EMIFCS[4:2] high (SS =
1)
-3
0
+3
ns
18
tsu(EMDQMV-EMWEL)
Output setup time, EMIFBA[1:0]
valid to EMIFnWE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
19
th(EMWEH-EMDQMIV)
Output hold time, EMIFnWE
high to EMIFBA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
20
tsu(EMBAV-EMWEL)
Output setup time, EMIFBA[1:0]
valid to EMIFnWE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
21
th(EMWEH-EMBAIV)
Output hold time, EMIFnWE
high to EMIFBA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
22
tsu(EMAV-EMWEL)
Output setup time,
EMIFADDR[21:0] valid to
EMIFnWE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
23
th(EMWEH-EMAIV)
Output hold time, EMIFnWE
high to EMIFADDR[21:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
24
tw(EMWEL)
EMIFnWE active low width (EW
= 0)
(WST)*E-3
(WST)*E
(WST)*E+3
ns
EMIFnWE active low width (EW
= 1)
(WST+(EWC*1
6)) *E-3
(WST+(EWC*1
6))*E
(WST+(EWC*1
6)) *E+3
ns
3E-3
4E
4E+3
ns
25
td(EMWAITH-EMWEH)
Delay time from EMIFnWAIT
deasserted to EMIFnWE high
26
tsu(EMDV-EMWEL)
Output setup time,
EMIFDATA[15:0] valid to
EMIFnWE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
27
th(EMWEH-EMDIV)
Output hold time, EMIFnWE
high to EMIFDATA[15:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
PRODUCT PREVIEW
NO
Table 4-29. EMIF Synchronous Memory Timing Requirements
NO.
Parameter
MIN
19
tsu(EMIFDV-EM_CLKH)
Input setup time, read data valid on
EMIFDATA[15:0] before EMIF_CLK
rising
20
th(CLKH-DIV)
Input hold time, read data valid on
EMIFDATA[15:0] after EMIF_CLK
rising
MAX
Unit
1
ns
1.5
ns
Table 4-30. EMIF Synchronous Memory Switching Characteristics
NO.
Parameter
MIN
MAX
Unit
1
tc(CLK)
Cycle time, EMIF clock EMIF_CLK
15
ns
2
tw(CLK)
Pulse width, EMIF clock EMIF_CLK
high or low
5
ns
3
td(CLKH-CSV)
Delay time, EMIF_CLK rising to
EMIFnCS[0] valid
4
toh(CLKH-CSIV)
Output hold time, EMIF_CLK rising to
EMIFnCS[0] invalid
5
td(CLKH-DQMV)
Delay time, EMIF_CLK rising to
EMIFnDQM[1:0] valid
6
toh(CLKH-DQMIV)
Output hold time, EMIF_CLK rising to
EMIFnDQM[1:0] invalid
7
td(CLKH-AV)
Delay time, EMIF_CLK rising to
EMIFADDR[21:0] and EMIFBA[1:0]
valid
Copyright © 2011, Texas Instruments Incorporated
7
1
ns
ns
7
1
ns
ns
7
ns
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
89
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-30. EMIF Synchronous Memory Switching Characteristics (continued)
PRODUCT PREVIEW
90
NO.
Parameter
8
toh(CLKH-AIV)
Output hold time, EMIF_CLK rising to
EMIFADDR[21:0] and EMIFBA[1:0]
invalid
MIN
9
td(CLKH-DV)
Delay time, EMIF_CLK rising to
EMIFDATA[15:0] valid
10
toh(CLKH-DIV)
Output hold time, EMIF_CLK rising to
EMIFDATA[15:0] invalid
11
td(CLKH-RASV)
Delay time, EMIF_CLK rising to
EMIFnRAS valid
12
toh(CLKH-RASIV)
Output hold time, EMIF_CLK rising to
EMIFnRAS invalid
13
td(CLKH-CASV)
Delay time, EMIF_CLK rising to
EMIFnCAS valid
14
toh(CLKH-CASIV)
Output hold time, EMIF_CLK rising to
EMIFnCAS invalid
15
td(CLKH-WEV)
Delay time, EMIF_CLK rising to
EMIFnWE valid
16
toh(CLKH-WEIV)
Output hold time, EMIF_CLK rising to
EMIFnWE invalid
17
tdis(CLKH-DHZ)
Delay time, EMIF_CLK rising to
EMIFDATA[15:0] tri-stated
18
tena(CLKH-DLZ)
Output hold time, EMIF_CLK rising to
EMIFDATA[15:0] driving
MAX
1
ns
7
1
1
ns
ns
7
1
ns
ns
7
1
ns
ns
7
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
ns
ns
7
1
Unit
ns
ns
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.15 Vectored Interrupt Manager
The vectored interrupt manager (VIM) provides hardware assistance for prioritizing and controlling the
many interrupt sources present on this device. Interrupts are caused by events outside of the normal flow
of program execution. Normally, these events require a timely response from the central processing unit
(CPU); therefore, when an interrupt occurs, the CPU switches execution from the normal program flow to
an interrupt service routine (ISR).
4.15.1 VIM Features
The VIM module has the following features:
• Supports 96 interrupt channels.
– Provides programmable priority and enable for interrupt request lines.
• Provides a direct hardware dispatch mechanism for fastest IRQ dispatch.
• Provides two software dispatch mechanisms when the CPU VIC port is not used.
– Index interrupt
– Register vectored interrupt
• Parity protected vector interrupt table against soft errors.
PRODUCT PREVIEW
4.15.2 Interrupt Request Assignments
Table 4-31. Interrupt Request Assignments
Modules
Interrupt Sources
Default VIM Interrupt
Channel
ESM
ESM High level interrupt (NMI)
0
Reserved
Reserved
1
RTI
RTI compare interrupt 0
2
RTI
RTI compare interrupt 1
3
RTI
RTI compare interrupt 2
4
RTI
RTI compare interrupt 3
5
RTI
RTI overflow interrupt 0
6
RTI
RTI overflow interrupt 1
7
RTI
RTI timebase interrupt
8
GIO
GIO interrupt A
9
N2HET1
N2HET1 level 0 interrupt
10
HET TU1
HET TU1 level 0 interrupt
11
MIBSPI1
MIBSPI1 level 0 interrupt
12
LIN
LIN level 0 interrupt
13
MIBADC1
MIBADC1 event group interrupt
14
MIBADC1
MIBADC1 sw group 1 interrupt
15
DCAN1
DCAN1 level 0 interrupt
16
SPI2
SPI2 level 0 interrupt
17
Reserved
Reserved
18
CRC
CRC Interrupt
19
ESM
ESM Low level interrupt
20
SYSTEM
Software interrupt (SSI)
21
CPU
PMU Interrupt
22
GIO
GIO interrupt B
23
N2HET1
N2HET1 level 1 interrupt
24
HET TU
HET TU level 1 interrupt
25
MIBSPI
MIBSPI level 1 interrupt
26
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
91
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-31. Interrupt Request Assignments (continued)
Modules
PRODUCT PREVIEW
92
Interrupt Sources
Default VIM Interrupt
Channel
LIN
LIN level 1 interrupt
27
MIBADC
MIBADC sw group 2 interrupt
28
DCAN1
DCAN1 level 1 interrupt
29
SPI2
SPI2 level 1 interrupt
30
MIBADC1
MIBADC1 magnitude compare interrupt
31
Reserved
Reserved
32
DMA
FTCA interrupt
33
DMA
LFSA interrupt
34
DCAN2
DCAN2 level 0 interrupt
35
DMM
DMM level 0 interrupt
36
MIBSPI3
MIBSPI3 level 0 interrupt
37
MIBSPI3
MIBSPI3 level 1 interrupt
38
DMA
HBCA interrupt
39
DMA
BTCA interrupt
40
EMIF
AEMIFINT3
41
DCAN2
DCAN2 level 1 interrupt
42
DMM
DMM level 1 interrupt
43
DCAN1
DCAN1 IF3 interrupt
44
DCAN3
DCAN3 level 0 interrupt
45
DCAN2
DCAN2 IF3 interrupt
46
FPU
FPU interrupt
47
Reserved
Reserved
48
SPI4
SPI4 level 0 interrupt
49
MIBADC2
MibADC2 event group interrupt
50
MIBADC2
MibADC2 sw group1 interrupt
51
Reserved
Reserved
52
MIBSPI5
MIBSPI5 level 0 interrupt
53
SPI4
SPI4 level 1 interrupt
54
DCAN3
DCAN3 level 1 interrupt
55
MIBSPI5
MIBSPI5 level 1 interrupt
56
MIBADC2
MibADC2 sw group2 interrupt
57
Reserved
Reserved
58
MIBADC2
MibADC2 magnitude compare interrupt
59
DCAN3
DCAN3 IF3 interrupt
60
FMC
FSM_DONE interrupt
61
Reserved
Reserved
62
N2HET2
N2HET2 level 0 interrupt
63
SCI
SCI level 0 interrupt
64
HET TU2
HET TU2 level 0 interrupt
65
I2C
I2C level 0 interrupt
66
USB Host
OHCI_INT
67
USB Device
USB_FUNC.IRQISOON
68
USB Device
USB_FUNC.IRQGENION
69
USB Device
USB_FUNC.IRQNONISOON
70
USB Device
not (USB_FUNC.DSWAKEREQON)
71
USB Device
USB_FUNC.USBRESETO
72
N2HET2
N2HET2 level 1 interrupt
73
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Modules
Interrupt Sources
Default VIM Interrupt
Channel
SCI
SCI level 1 interrupt
74
HET TU2
HET TU2 level 1 interrupt
75
Ethernet
C0_MISC_PULSE
76
Ethernet
C0_TX_PULSE
77
Ethernet
C0_THRESH_PULSE
78
Ethernet
C0_RX_PULSE
79
HWAG1
HWA_INT_REQ_H
80
HWAG2
HWA_INT_REQ_H
81
DCC1
DCC done interrupt
82
DCC2
DCC2 done interrupt
83
Reserved
Reserved
84-87
HWAG1
HWA_INT_REQ_L
88
HWAG2
HWA_INT_REQ_L
89
Reserved
Reserved
90-95
PRODUCT PREVIEW
Table 4-31. Interrupt Request Assignments (continued)
NOTE
Address location 0x00000000 in the VIM RAM is reserved for the phantom interrupt ISR
entry; therefore only request channels 0..94 can be used and are offset by 1 address in the
VIM RAM.
NOTE
The lower-order interrupt channels are higher priority channels than the higher-order interrupt
channels.
NOTE
The application can change the mapping of interrupt sources to the interrupt channels via the
interrupt channel control registers (CHANCTRLx) inside the VIM module.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
93
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.16 DMA Controller
The DMA controller is used to transfer data between two locations in the memory map in the background
of CPU operations. Typically, the DMA is used to:
• Transfer blocks of data between external and internal data memories
• Restructure portions of internal data memory
• Continually service a peripheral
4.16.1 DMA Features
PRODUCT PREVIEW
•
•
•
•
•
•
•
•
•
•
•
•
•
94
CPU independent data transfer
One master port - PortB (64 bits wide) that interfaces to the RM4x Memory System.
FIFO buffer(4 entries deep and each 64bit wide)
Channel control information is stored in RAM protected by parity
16 channels with individual enable
Channel chaining capability
32 peripheral DMA requests
Hardware and Software DMA requests
8, 16, 32 or 64-bit transactions supported
Multiple addressing modes for source/destination (fixed, increment, offset)
Auto-initiation
Power-management mode
Memory Protection with four configurable memory regions
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.16.2 Default DMA Request Map
The DMA module on this microcontroller has 16 channels and up to 32 hardware DMA requests. The
module contains DREQASIx registers which are used to map the DMA requests to the DMA channels. By
default, channel 0 is mapped to request 0, channel 1 to request 1, and so on.
Some DMA requests have multiple sources, as shown in Table 4-32. The application must ensure that
only one of these DMA request sources is enabled at any time.
Table 4-32. DMA Request Line Connection
(1)
(2)
DMA Request Sources
DMA Request
MIBSPI1
MIBSPI1[1]
(1)
DMAREQ[0]
MIBSPI1
MIBSPI1[0] (2)
DMAREQ[1]
SPI2
SPI2 receive
DMAREQ[2]
SPI2
SPI2 transmit
DMAREQ[3]
MIBSPI1 / MIBSPI3 / DCAN2
MIBSPI1[2] / MIBSPI3[2] / DCAN2 IF3
DMAREQ[4]
MIBSPI1 / MIBSPI3 / DCAN2
MIBSPI1[3] / MIBSPI3[3] / DCAN2 IF2
DMAREQ[5]
DCAN1 / MIBSPI5
DCAN1 IF2 / MIBSPI5[2]
DMAREQ[6]
MIBADC1 / MIBSPI5
MIBADC1 event / MIBSPI5[3]
DMAREQ[7]
MIBSPI1 / MIBSPI3 / DCAN1
MIBSPI1[4] / MIBSPI3[4] / DCAN1 IF1
DMAREQ[8]
MIBSPI1 / MIBSPI3 / DCAN2
MIBSPI1[5] / MIBSPI3[5] / DCAN2 IF1
DMAREQ[9]
MIBADC1 / I2C / MIBSPI5
MIBADC1 G1 / I2C receive / MIBSPI5[4]
DMAREQ[10]
MIBADC1 / I2C / MIBSPI5
MIBADC1 G2 / I2C transmit / MIBSPI5[5]
DMAREQ[11]
RTI / MIBSPI1 / MIBSPI3
RTI DMAREQ0 / MIBSPI1[6] / MIBSPI3[6]
DMAREQ[12]
RTI / MIBSPI1 / MIBSPI3
RTI DMAREQ1 / MIBSPI1[7] / MIBSPI3[7]
DMAREQ[13]
(1)
MIBSPI3 / USB Device / MibADC2 / MIBSPI5
MIBSPI3[1] / USB_FUNC.DMATXREQ_ON[0] /
MibADC2 event / MIBSPI5[6]
DMAREQ[14]
MIBSPI3 / USB Device / MIBSPI5
MIBSPI3[0] (2) / USB_FUNC.DMARXREQ_ON[0] /
MIBSPI5[7]
DMAREQ[15]
MIBSPI1 / MIBSPI3 / DCAN1 / MibADC2
MIBSPI1[8] / MIBSPI3[8] / DCAN1 IF3 / MibADC2 G1
DMAREQ[16]
MIBSPI1 / MIBSPI3 / DCAN3 / MibADC2
MIBSPI1[9] / MIBSPI3[9] / DCAN3 IF1 / MibADC2 G2
DMAREQ[17]
RTI / USB Device / MIBSPI5
RTI DMAREQ2 / USB_FUNC.DMATXREQ_ON[1] /
MIBSPI5[8]
DMAREQ[18]
RTI / USB Device / MIBSPI5
RTI DMAREQ3 / USB_FUNC.DMARXREQ_ON[1] /
MIBSPI5[9]
DMAREQ[19]
N2HET1 / N2HET2 / DCAN3
N2HET1 DMAREQ[4] / N2HET2 DMAREQ[4] / DCAN3
IF2
DMAREQ[20]
N2HET1 / N2HET2 / DCAN3
N2HET1 DMAREQ[5] / N2HET2 DMAREQ[5] / DCAN3
IF3
DMAREQ[21]
MIBSPI1 / MIBSPI3 / MIBSPI5
MIBSPI1[10] / MIBSPI3[10] / MIBSPI5[10]
DMAREQ[22]
MIBSPI1 / MIBSPI3 / MIBSPI5
MIBSPI1[11] / MIBSPI3[11] / MIBSPI5[11]
DMAREQ[23]
N2HET1 / N2HET2 / SPI4 / MIBSPI5
N2HET1 DMAREQ[6] / N2HET2 DMAREQ[6] / SPI4
receive / MIBSPI5[12]
DMAREQ[24]
N2HET1 / N2HET2 / SPI4 / MIBSPI5
N2HET1 DMAREQ[7] / N2HET2 DMAREQ[7] / SPI4
transmit / MIBSPI5[13]
DMAREQ[25]
CRC / MIBSPI1 / MIBSPI3
CRC DMAREQ[0] / MIBSPI1[12] / MIBSPI3[12]
DMAREQ[26]
CRC / MIBSPI1 / MIBSPI3
CRC DMAREQ[1] / MIBSPI1[13] / MIBSPI3[13]
DMAREQ[27]
LIN / USB Device / MIBSPI5
LIN receive / USB_FUNC.DMATXREQ_ON[2] /
MIBSPI5[14]
DMAREQ[28]
LIN / USB Device / MIBSPI5
LIN transmit / USB_FUNC.DMARXREQ_ON[2] /
MIBSPI5[15]
DMAREQ[29]
MIBSPI1 / MIBSPI3 / SCI / MIBSPI5
MIBSPI1[14] / MIBSPI3[14] / SCI receive /
MIBSPI5[1] (1)
DMAREQ[30]
PRODUCT PREVIEW
Modules
SPI1, SPI3, SPI5 receive in compatibility mode
SPI1, SPI3, SPI5 transmit in compatibility mode
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
95
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-32. DMA Request Line Connection (continued)
Modules
DMA Request Sources
DMA Request
MIBSPI1 / MIBSPI3 / SCI / MIBSPI5
MIBSPI1[15] / MIBSPI3[15] / SCI transmit /
MIBSPI5[0] (2)
DMAREQ[31]
PRODUCT PREVIEW
96
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.17 Real Time Interrupt Module
The real-time interrupt (RTI) module provides timer functionality for operating systems and for
benchmarking code. The RTI module can incorporate several counters that define the timebases needed
for scheduling an operating system.
The timers also allow you to benchmark certain areas of code by reading the values of the counters at the
beginning and the end of the desired code range and calculating the difference between the values.
4.17.1 Features
The RTI module has the following features:
• Two independent 64 bit counter blocks
• Four configurable compares for generating operating system ticks or DMA requests. Each event can
be driven by either counter block 0 or counter block 1.
• Fast enabling/disabling of events
• Two time-stamp (capture) functions for system or peripheral interrupts, one for each counter block
Figure 4-17 shows a high-level block diagram for one of the two 64-bit counter blocks inside the RTI
module. Both the counter blocks are identical except the Network Time Unit (NTUx) inputs are only
available as time base inputs for the counter block 0.
31
0
Compare
up counter
RTICLK
NTU0
NTU1
NTU2
NTU3
0
Up counter
RTIUCx
RTICPUCx
OVLINTx
=
31
31
0
Free running counter
RTIFRCx
31
0
31
0
Capture
up counter
Capture
free running counter
RTICAUCx
RTICAFRCx
CAP event source 0
CAP event source 1
To Compare
Unit
External
control
Figure 4-17. Counter Block Diagram
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
97
PRODUCT PREVIEW
4.17.2 Block Diagrams
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
31
0
Update
compare
RTIUDCPy
+
31
0
Compare
DMAREQy
RTICOMPy
From counter
block 0
=
INTy
From counter
block 1
Compare
control
Figure 4-18. Compare Block Diagram
4.17.3 Clock Source Options
The RTI module uses the RTI1CLK clock domain for generating the RTI time bases.
PRODUCT PREVIEW
The application can select the clock source for the RTI1CLK by configuring the RCLKSRC register in the
System module at address 0xFFFFFF50. The default source for RTI1CLK is VCLK.
For more information on clock sources refer to Table 4-8 and Table 4-13.
4.17.4 Network Time Synchronization Inputs
The RTI module supports 4 Network Time Unit (NTU) inputs that signal internal system events, and which
can be used to synchronize the time base used by the RTI module. On this device, these NTU inputs are
connected as shown below.
Table 4-33. Network Time Synchronization Inputs
98
NTU Input
Source
0
Reserved
1
Reserved
2
PLL2 Clock output
3
EXTCLKIN1 clock input
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.18 Error Signaling Module
The Error Signaling Module (ESM) manages the various error conditions on the RM4x microcontroller. The
error condition is handled based on a fixed severity level assigned to it. Any severe error condition can be
configured to drive a low level on a dedicated device terminal called nERROR. This can be used as an
indicator to an external monitor circuit to put the system into a safe state.
4.18.1 Features
The features of the Error Signaling Module are:
• 128 interrupt/error channels are supported, divided into 3 different groups
– 64 channels with maskable interrupt and configurable error pin behavior
– 32 error channels with non-maskable interrupt and predefined error pin behavior
– 32 channels with predefined error pin behavior only
• Error pin to signal severe device failure
• Configurable timebase for error signal
• Error forcing capability
The Error Signaling Module (ESM) integrates all the device error conditions and groups them in the order
of severity. Group1 is used for errors of the lowest severity while Group3 is used for errors of the highest
severity. The device response to each error is determined by the severity group it is connected to.
Table 4-35 shows the channel assignment for each group.
Table 4-34. ESM Groups
ERROR GROUP
INTERRUPT CHARACTERISTICS
INFLUENCE ON ERROR PIN
Group1
maskable, low or high priority
configurable
Group2
non-maskable, high priority
fixed
Group3
no interrupt generated
fixed
Table 4-35. ESM Channel Assignments
ERROR SOURCES
GROUP
CHANNELS
Reserved
Group1
0
MibADC2 - parity
Group1
1
DMA - MPU
Group1
2
DMA - parity
Group1
3
Reserved
Group1
4
DMA/DMM - imprecise read error
Group1
5
FMC - correctable error: bus1 and bus2 interfaces
(does not include accesses to EEPROM bank)
Group1
6
N2HET1/N2HET2 - parity
Group1
7
HET TU1/HET TU2 - parity
Group1
8
HET TU1/HET TU2 - MPU
Group1
9
PLL - Slip
Group1
10
Clock Monitor - interrupt
Group1
11
Reserved
Group1
12
DMA/DMM - imprecise write error
Group1
13
Reserved
Group1
14
VIM RAM - parity
Group1
15
Reserved
Group1
16
MibSPI1 - parity
Group1
17
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
99
PRODUCT PREVIEW
4.18.2 ESM Channel Assignments
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-35. ESM Channel Assignments (continued)
ERROR SOURCES
GROUP
CHANNELS
MibSPI3 - parity
Group1
18
MibADC1 - parity
Group1
19
Reserved
Group1
20
DCAN1 - parity
Group1
21
DCAN3 - parity
Group1
22
DCAN2 - parity
Group1
23
MibSPI5 - parity
Group1
24
Reserved
Group1
25
RAM even bank (B0TCM) - correctable error
Group1
26
CPU - selftest
Group1
27
RAM odd bank (B1TCM) - correctable error
Group1
28
PRODUCT PREVIEW
Reserved
Group1
29
DCC1 - error
Group1
30
CCM-R4 - selftest
Group1
31
Reserved
Group1
32
Reserved
Group1
33
Reserved
Group1
34
FMC - correctable error (EEPROM bank access)
Group1
35
FMC - uncorrectable error (EEPROM bank access)
Group1
36
IOMM - Mux configuration error
Group1
37
Power domain controller compare error
Group1
38
Power domain controller self-test error
Group1
39
eFuse Controller Error – this error signal is generated when any bit in the eFuse
controller error status register is set. The application can choose to generate an
interrupt whenever this bit is set to service any eFuse controller error conditions.
Group1
40
eFuse Controller - Self Test Error. This error signal is generated only when a self
test on the eFuse controller generates an error condition. When this error signal is
set, group 1 channel 40 error signal will also be set.
Group1
41
100
PLL2 - Slip
Group1
42
Ethernet Controller master interface
Group1
43
USB Host Controller master interface
Group1
44
Reserved
Group1
45
Reserved
Group1
46
Reserved
Group1
47
Reserved
Group1
48
Reserved
Group1
49
Reserved
Group1
50
Reserved
Group1
51
Reserved
Group1
52
Reserved
Group1
53
Reserved
Group1
54
Reserved
Group1
55
Reserved
Group1
56
Reserved
Group1
57
Reserved
Group1
58
Reserved
Group1
59
Reserved
Group1
60
Reserved
Group1
61
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
ERROR SOURCES
GROUP
CHANNELS
DCC2 - error
Group1
62
Reserved
Group1
63
Reserved
Group2
0
Reserved
Group2
1
CCMR4 - compare
Group2
2
Reserved
Group2
3
FMC - uncorrectable error (address parity on bus1 accesses)
Group2
4
Reserved
Group2
5
RAM even bank (B0TCM) - uncorrectable error
Group2
6
Reserved
Group2
7
RAM odd bank (B1TCM) - uncorrectable error
Group2
8
Reserved
Group2
9
RAM even bank (B0TCM) - address bus parity error
Group2
10
Reserved
Group2
11
RAM odd bank (B1TCM) - address bus parity error
Group2
12
Reserved
Group2
13
Reserved
Group2
14
Reserved
Group2
15
Flash (ATCM) - ECC live lock detect
Group2
16
Reserved
Group2
17
Reserved
Group2
18
Reserved
Group2
19
Reserved
Group2
20
Reserved
Group2
21
Reserved
Group2
22
Reserved
Group2
23
RTI_WWD_NMI
Group2
24
Reserved
Group2
25
Reserved
Group2
26
Reserved
Group2
27
Reserved
Group2
28
Reserved
Group2
29
Reserved
Group2
30
Reserved
Group2
31
Reserved
Group3
0
eFuse Controller - autoload error
Group3
1
Reserved
Group3
2
RAM even bank (B0TCM) - ECC uncorrectable error
Group3
3
Reserved
Group3
4
RAM odd bank (B1TCM) - ECC uncorrectable error
Group3
5
Reserved
Group3
6
FMC - uncorrectable error: bus1 and bus2 interfaces
(does not include address parity error and errors on accesses to EEPROM bank)
Group3
7
Reserved
Group3
8
Reserved
Group3
9
Reserved
Group3
10
Reserved
Group3
11
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
PRODUCT PREVIEW
Table 4-35. ESM Channel Assignments (continued)
101
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-35. ESM Channel Assignments (continued)
PRODUCT PREVIEW
102
ERROR SOURCES
GROUP
CHANNELS
Reserved
Group3
12
Reserved
Group3
13
Reserved
Group3
14
Reserved
Group3
15
Reserved
Group3
16
Reserved
Group3
17
Reserved
Group3
18
Reserved
Group3
19
Reserved
Group3
20
Reserved
Group3
21
Reserved
Group3
22
Reserved
Group3
23
Reserved
Group3
24
Reserved
Group3
25
Reserved
Group3
26
Reserved
Group3
27
Reserved
Group3
28
Reserved
Group3
29
Reserved
Group3
30
Reserved
Group3
31
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.19 Reset / Abort / Error Sources
Table 4-36. Reset/Abort/Error Sources
ERROR SOURCE
SYSTEM MODE
ERROR RESPONSE
ESM HOOKUP
group.channel
CPU TRANSACTIONS
Precise write error (NCNB/Strongly Ordered)
User/Privilege
Precise Abort (CPU)
n/a
Precise read error (NCB/Device or Normal)
User/Privilege
Precise Abort (CPU)
n/a
Imprecise write error (NCB/Device or Normal)
User/Privilege
Imprecise Abort (CPU)
n/a
User/Privilege
Undefined Instruction Trap
(CPU) (1)
n/a
User/Privilege
Abort (CPU)
n/a
User/Privilege
ESM
1.26
B0 TCM (even) ECC double error (non-correctable)
User/Privilege
Abort (CPU), ESM =>
nERROR
3.3
B0 TCM (even) uncorrectable error (i.e. redundant address
decode)
User/Privilege
ESM => NMI
2.6
B0 TCM (even) address bus parity error
User/Privilege
ESM => NMI
2.10
B1 TCM (odd) ECC single error (correctable)
User/Privilege
ESM
1.28
B1 TCM (odd) ECC double error (non-correctable)
User/Privilege
Abort (CPU), ESM =>
nERROR
3.5
B1 TCM (odd) uncorrectable error (i.e. redundant address
decode)
User/Privilege
ESM => NMI
2.8
B1 TCM (odd) address bus parity error
User/Privilege
ESM => NMI
2.12
Illegal instruction
MPU access violation
B0 TCM (even) ECC single error (correctable)
PRODUCT PREVIEW
SRAM
FLASH
FMC correctable error - Bus1 and Bus2 interfaces (does not
include accesses to EEPROM bank)
User/Privilege
ESM
1.6
FMC uncorrectable error - Bus1 accesses
(does not include address parity error)
User/Privilege
Abort (CPU), ESM =>
nERROR
3.7
FMC uncorrectable error - Bus2 accesses
(does not include address parity error and EEPROM bank
accesses)
User/Privilege
ESM => nERROR
3.7
FMC uncorrectable error - address parity error on Bus1
accesses
User/Privilege
ESM => NMI
2.4
FMC correctable error - Accesses to EEPROM bank
User/Privilege
ESM
1.35
User/Privilege
ESM
1.36
FMC uncorrectable error - Accesses to EEPROM bank
DMA TRANSACTIONS
External imprecise error on read (Illegal transaction with ok
response)
User/Privilege
ESM
1.5
External imprecise error on write (Illegal transaction with ok
response)
User/Privilege
ESM
1.13
Memory access permission violation
User/Privilege
ESM
1.2
User/Privilege
ESM
1.3
Memory parity error
DMM TRANSACTIONS
External imprecise error on read (Illegal transaction with ok
response)
User/Privilege
ESM
1.5
External imprecise error on write (Illegal transaction with ok
response)
User/Privilege
ESM
1.13
HET TU1 (HTU1)
NCNB (Strongly Ordered) transaction with slave error response
User/Privilege
Interrupt => VIM
n/a
External imprecise error (Illegal transaction with ok response)
User/Privilege
Interrupt => VIM
n/a
Memory access permission violation
User/Privilege
ESM
1.9
(1)
The Undefined Instruction TRAP is NOT detectable outside the CPU. The trap is taken only if the instruction reaches the execute stage
of the CPU.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
103
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-36. Reset/Abort/Error Sources (continued)
ERROR SOURCE
Memory parity error
SYSTEM MODE
ERROR RESPONSE
ESM HOOKUP
group.channel
User/Privilege
ESM
1.8
HET TU2 (HTU2)
NCNB (Strongly Ordered) transaction with slave error response
User/Privilege
Interrupt => VIM
n/a
External imprecise error (Illegal transaction with ok response)
User/Privilege
Interrupt => VIM
n/a
Memory access permission violation
User/Privilege
ESM
1.9
Memory parity error
User/Privilege
ESM
1.8
ESM
1.7
ESM
1.7
ESM
1.43
ESM
1.44
N2HET1
Memory parity error
User/Privilege
N2HET2
Memory parity error
User/Privilege
ETHERNET MASTER INTERFACE
Any error reported by slave being accessed
User/Privilege
USB HOST CONTROLLER (OHCI) MASTER INTERFACE
Any error reported by slave being accessed
User/Privilege
MIBSPI
PRODUCT PREVIEW
MibSPI1 memory parity error
User/Privilege
ESM
1.17
MibSPI3 memory parity error
User/Privilege
ESM
1.18
MibSPI5 memory parity error
User/Privilege
ESM
1.24
User/Privilege
ESM
1.19
User/Privilege
ESM
1.1
MIBADC
MibADC1 Memory parity error
MibADC2 Memory parity error
DCAN
DCAN1 memory parity error
User/Privilege
ESM
1.21
DCAN2 memory parity error
User/Privilege
ESM
1.23
DCAN3 memory parity error
User/Privilege
ESM
1.22
PLL
PLL slip error
User/Privilege
ESM
1.10
PLL #2 slip error
User/Privilege
ESM
1.42
ESM
1.11
CLOCK MONITOR
Clock monitor interrupt
User/Privilege
DCC
DCC1 error
User/Privilege
ESM
1.30
DCC2 error
User/Privilege
ESM
1.62
CCM-R4
Self test failure
User/Privilege
ESM
1.31
Compare failure
User/Privilege
ESM => NMI
2.2
ESM
1.15
Reset
n/a
ESM
1.27
ESM
1.37
VIM
Memory parity error
User/Privilege
VOLTAGE MONITOR
VMON out of voltage range
n/a
CPU SELFTEST (LBIST)
CPU Selftest (LBIST) error
User/Privilege
PIN MULTIPLEXING CONTROL
Mux configuration error
User/Privilege
POWER DOMAIN CONTROL
PSCON compare error
User/Privilege
ESM
1.38
PSCON self-test error
User/Privilege
ESM
1.39
104
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-36. Reset/Abort/Error Sources (continued)
ERROR SOURCE
SYSTEM MODE
ERROR RESPONSE
ESM HOOKUP
group.channel
eFuse Controller
eFuse Controller error
User/Privilege
ESM
3.1
eFuse Controller - Any bit set in the error status register
User/Privilege
ESM
1.40
User/Privilege
ESM
1.41
ESM
2.24
eFuse Controller self-test error
WINDOWED WATCHDOG
WWD Non-Maskable Interrupt exception
n/a
ERRORS REFLECTED IN THE SYSESR REGISTER
Power-Up Reset
n/a
Reset
n/a
Oscillator fail / PLL slip (2)
n/a
Reset
n/a
Watchdog exception
n/a
Reset
n/a
CPU Reset (driven by the CPU STC)
n/a
Reset
n/a
Software Reset
n/a
Reset
n/a
External Reset
n/a
Reset
n/a
Oscillator fail/PLL slip can be configured in the system register (SYS.PLLCTL1) to generate a reset.
4.20 Digital Windowed Watchdog
This device includes a digital windowed watchdog (DWWD) module that protects against runaway code
execution.
The DWWD module allows the application to configure the time window within which the DWWD module
expects the application to service the watchdog. A watchdog violation occurs if the application services the
watchdog outside of this window, or fails to service the watchdog at all. The application can choose to
generate a system reset or a non-maskable interrupt to the CPU in case of a watchdog violation.
The watchdog is disabled by default and must be enabled by the application. Once enabled, the watchdog
can only be disabled upon a system reset.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
105
PRODUCT PREVIEW
(2)
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.21 Debug Subsystem
4.21.1 Block Diagram
The device contains an ICEPICK module to allow JTAG access to the scan chains.
Boundary Scan I/F
TRST
TMS
TCK
RTCK
TDI
TDO
Boundary Scan
BSR/BSDL
Debug
ROM1
Debug APB
Secondary Tap 0
DAP
APB Mux
AHB-AP
APB slave
POM
PRODUCT PREVIEW
ICEPICK_C
to SCR1 via A2A
Cortex
R4F
from
PCR1/Bridge
ETM
TPIU
RTP
TAP 0
Secondary Tap 1
DMM
TAP 1
Secondary Tap 2
AJSM
Figure 4-19. ZWT Debug Subsystem Block Diagram
4.21.2 Debug Components Memory Map
Table 4-37. Debug Components Memory Map
MODULE NAME
FRAME CHIP
SELECT
CoreSight Debug
ROM
FRAME ADDRESS RANGE
FRAME ACTUA
SIZE
L SIZE
RESPNSE FOR ACCESS TO
UNIMPLEMENTED LOCATIONS IN
FRAME
START
END
CSCS0
0xFFA0_0000
0xFFA0_0FFF
4KB
4KB
Reads return zeros, writes have no
effect
Cortex-R4F
Debug
CSCS1
0xFFA0_1000
0xFFA0_1FFF
4KB
4KB
Reads return zeros, writes have no
effect
ETM-R4
CSCS2
0xFFA0_2000
0xFFA0_2FFF
4KB
4KB
Reads return zeros, writes have no
effect
CoreSight TPIU
CSCS3
0xFFA0_3000
0xFFA0_3FFF
4KB
4KB
Reads return zeros, writes have no
effect
106
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.21.3 JTAG Identification Code
The JTAG ID code for this device is 0x0D8A002F. This is the same as the device ICEPick Identification
Code.
4.21.4 Debug ROM
The Debug ROM stores the location of the components on the Debug APB bus:
Table 4-38. Debug ROM table
DESCRIPTION
VALUE
0x000
pointer to Cortex-R4F
0x0000 1003
0x001
ETM-R4
0x0000 2003
0x002
TPIU
0x0000 3003
0x003
POM
0x0000 4003
0x004
end of table
0x0000 0000
PRODUCT PREVIEW
ADDRESS
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
107
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.21.5 JTAG Scan Interface Timings
Table 4-39. JTAG Scan Interface Timing (1)
No.
Parameter
fTCK
fRTCK
1
td(TCK -RTCK)
2
tsu(TDI/TMS - RTCKr)
3
th(RTCKr -TDI/TMS)
4
th(RTCKr -TDO)
5
td(TCKf -TDO)
(1)
Min
TCK frequency (at HCLKmax)
RTCK frequency (at TCKmax and HCLKmax)
MAX
Unit
12
MHz
10
Delay time, TCK to RTCK
MHz
24
ns
Setup time, TDI, TMS before RTCK rise (RTCKr)
15
ns
Hold time, TDI, TMS after RTCKr
0
ns
Hold time, TDO after RTCKf
0
Delay time, TDO valid after RTCK fall (RTCKf)
ns
10
ns
Timings for TDO are specified for a maximum of 50pF load on TDO
TCK
RTCK
PRODUCT PREVIEW
1
1
TMS
TDI
2
3
TDO
4
5
Figure 4-20. JTAG Timing
108
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.21.6 Advanced JTAG Security Module
This device includes a an Advanced JTAG Security Module (AJSM). which provides maximum security to
the device’s memory content by allowing users to secure the device after programming.
Flash Module Output
H
L
H
...
...
L
Unlock By Scan
Register
Internal Tie-Offs
(example only)
L
L
H
H
L
H
H
L
H
H
L
L
UNLOCK
128-bit comparator
Internal Tie-Offs
(example only)
H
L
L
H
H
L
L
H
Figure 4-21. AJSM Unlock
The device is unsecure by default by virtue of a 128-bit visible unlock code programmed in the OTP
address 0xF0000000.The OTP contents are XOR-ed with the "Unlock By Scan" register contents. The
outputs of these XOR gates are again combined with a set of secret internal tie-offs. The output of this
combinational logic is compared against a secret hard-wired 128-bit value. A match results in the
UNLOCK signal being asserted, so that the device is now unsecure.
A user can secure the device by changing at least one bit in the visible unlock code from 1 to 0. Changing
a 0 to 1 is not possible since the visible unlock code is stored in the One Time Programmable (OTP) flash
region. Also, changing all the 128 bits to zeros is not a valid condition and will permanently secure the
device.
Once secured, a user can unsecure the device by scanning an appropriate value into the "Unlock By
Scan" register of the AJSM module. The value to be scanned is such that the XOR of the OTP contents
and the Unlock-By-Scan register contents results in the original visible unlock code.
The Unlock-By-Scan register is reset only upon asserting power-on reset (nPORRST).
A secure device only permits JTAG accesses to the AJSM scan chain via the Secondary Tap # 2 of the
ICEPick module. All other secondary taps, test taps and the boundary scan interface are not accessible in
this state.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
109
PRODUCT PREVIEW
OTP Contents
(example)
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.21.7 Embedded Trace Macrocell (ETM-R4)
The device contains a ETM-R4 module with a 32-bit internal data port. The ETM-R4 module is connected
to a TPIU with a 32-bit data bus; the TPIU provides a 35-bit (32-bit data, 3-bit control) external interface
for trace. The ETM-R4 is CoreSight compliant and follows the ETM v3 specification; for more details see
ARM CoreSight ETM-R4 TRM specification.
4.21.7.1 ETM TRACECLKIN Selection
The ETM clock source can be selected as either VCLK or the external ETMTRACECLKIN pin. The
selection is done by the EXTCTRLOUT[1:0] control bits of the TPIU; the default is '00'. The address of this
register is TPIU base address + 0x404.
Before you begin accessing TPIU registers, TPIU should be unlocked via coresight key and 1 or 2 should
be written to this register.
Table 4-40. TPIU / TRACECLKIN Selection
EXTCTRLOUT[1:0]
TPIU/TRACECLKIN
00
tied-zero
PRODUCT PREVIEW
01
VCLK
10
ETMTRACECLKIN
11
tied-zero
4.21.7.2 Timing Specifications
tl(ETM)
tr(ETM)
th(ETM)
tf(ETM)
tcyc(ETM)
Figure 4-22. ETMTRACECLKOUT Timing
Table 4-41. ETMTRACECLK Timing
Parameter
tcyc(ETM)
MIN
t(HCLK) * 4
Description
Clock period
tl(ETM)
20ns
Low pulse width
th(ETM)
20ns
High pulse width
tr(ETM)
3ns
Clock and data rise time
tf(ETM)
3ns
Clock and data fall time
110
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
ETMTRACECLK
ETMDATA
tsu(ETM)
th(ETM)
tsu(ETM)
th(ETM)
Figure 4-23. ETMDATA Timing
Table 4-42. ETMDATA Timing
Parameter
MIN
Description
tsu(ETM)
2.5ns
Data setup time
th(ETM)
1.5ns
Data hold time
NOTE
PRODUCT PREVIEW
The ETMTRACECLK and ETMDATA timing is based on a 15pF load and for ambient
temperature lower than 85°C.
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
111
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.21.8 RAM Trace Port (RTP)
The RTP provides the ability to datalog the RAM contents of the RM4x devices or accesses to peripherals
without program intrusion. It can trace all data write or read accesses to internal RAM. In addition, it
provides the capability to directly transfer data to a FIFO to support a CPU-controlled transmission of the
data. The trace data is transmitted over a dedicated external interface.
4.21.8.1 Features
PRODUCT PREVIEW
The RTP offers the following features:
• Two modes of operation - Trace Mode and Direct Data Mode
– Trace Mode
• Non-intrusive data trace on write or read operation
• Visibility of RAM content at any time on external capture hardware
• Trace of peripheral accesses
• 2 configurable trace regions for each RAM module to limit amount of data to be traced
• FIFO to store data and address of data of multiple read/write operations
• Trace of CPU and/or DMA accesses with indication of the master in the transmitted data packet
– Direct Data Mode
• Directly write data with the CPU or trace read operations to a FIFO, without transmitting header
and address information
• Dedicated synchronous interface to transmit data to external devices
• Free-running clock generation or clock stop mode between transmissions
• Up to 100 Mbit per sec/pin transfer rate for transmitting data
• Pins not used in functional mode can be used as GIOs
4.21.8.2 Timing Specifications
tl(RTP)
tr
th(RTP)
tf
tcyc(RTP)
Figure 4-24. RTPCLK Timing
Table 4-43. RTPCLK Timing
Parameter
tcyc(RTP)
MIN
Description
tc(HCLK) * 2
Clock period, prescaled from HCLK; must not be faster
than HCLK / 2
th(RTP)
((tcyc(RTP))/2) - ((tr+tf)/2)
High pulse width
tl(RTP)
((tcyc(RTP))/2) - ((tr+tf)/2)
Low pulse width
112
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
tssu(RTP)
tsh(RTP)
RTPSYNC
RTPCLK
RTPDATA
tdsu(RTP)
tdh(RTP)
Figure 4-25. RTPDATA Timing
Table 4-44. RTPDATA Timing
MIN
Description
3ns
Data setup time
tdh(RTP)
2ns
Data hold time
tssu(RTP)
3ns
SYNC setup time
tsh(RTP)
2ns
SYNC hold time
tena(RTP)
tdis(RTP)
1
2
3
4
d1
d2
d3
PRODUCT PREVIEW
Parameter
tdsu(RTP)
5
6
7
8
9
10
11
12
13
14
15
16
HCLK
HCLK
RTPCLK
RTPCLK
RTPnENA
RTPENA
RTPSYNC
RTPSYNC
RTPDATA
RTPDATA
d4
d5
d6
d7
d8
Divide by 1
Figure 4-26. RTPnENA timing
Table 4-45. RTPnENA timing
Parameter
MIN
tdis(RTP)
3tc(HCLK) +
tr(RTPSYNC) +
12ns
tena(RTP)
4tc(HCLK) +
tr(RTPSYNC)
Copyright © 2011, Texas Instruments Incorporated
MAX
Description
time RTPnENA must go high before what would be the next RTPSYNC,
to guarantee delaying the next packet
5tc(HCLK) +
tr(RTPSYNC) +
12ns
time after RTPnENA goes low before a packet that has been halted,
resumes
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
113
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.21.9 Data Modification Module (DMM)
The Data Modification Module (DMM) provides the capability to modify data in the entire 4 GB address
space of the RM4x devices from an external peripheral, with minimal interruption of the application.
4.21.9.1 Features
The DMM module has the following features:
• Acts as a bus master, thus enabling direct writes to the 4GB address space without CPU intervention
• Writes to memory locations specified in the received packet (leverages packets defined by trace mode
of the RAM trace port (RTP) module
• Writes received data to consecutive addresses, which are specified by the DMM module (leverages
packets defined by direct data mode of RTP module)
• Configurable port width (1, 2, 4, 8, 16 pins)
• Up to 100 Mbit/s pin data rate
• Unused pins configurable as GIO pins
4.21.9.2 Timing Specifications
PRODUCT PREVIEW
tl(DMM)
tr
th(DMM)
tf
tcyc(DMM)
Figure 4-27. DMMCLK Timing
Table 4-46. DMMCLK Timing
Parameter
tcyc(DMM)
MIN
Description
tc(HCLK) * 2
Clock period
th(DMM)
((tcyc(DMM))/2) - ((tr+tf)/2)
High pulse width
tl(DMM)
((tcyc(DMM))/2) - ((tr+tf)/2)
Low pulse width
tssu(DMM)
tsh(DMM)
DMMSYNC
DMMCLK
DMMDATA
tdsu(DMM)
tdh(DMM)
Figure 4-28. DMMDATA Timing
114
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 4-47. DMMDATA Timing
Parameter
MIN
Description
tssu(DMM)
2ns
SYNC active to clk falling edge setup time
tsh(DMM)
3ns
clk falling edge to SYNC deactive hold time
tdsu(DMM)
2ns
DATA to clk falling edge setup time
tdh(DMM)
3ns
clk falling edge to DATA hold time
HCLK
DMMCLK
DMMSYNC
DMMDATA
D00
D01
D10
D11
D20
D21
D30
D31
D40
D41
D50
DMMnENA
Figure 4-29 shows a case with 1 DMM packet per 2 DMMCLK cycles (Mode = Direct Data Mode, data
width = 8, portwidth = 4) where none of the packets received by the DMM are sent out, leading to filling up
of the internal buffers. The DMMnENA signal is shown asserted, after the first two packets have been
received and synchronised to the HCLK domain. Here, the DMM has the capacity to accept packets D4x,
D5x, D6x, D7x. Packet D8 would result in an overflow. Once DMMnENA is asserted, the DMM expects to
stop receiving packets after 4 HCLK cycles; once DMMnENA is de-asserted, the DMM can handle
packets immediately (after 0 HCLK cycles).
Copyright © 2011, Texas Instruments Incorporated
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
115
PRODUCT PREVIEW
Figure 4-29. DMMnENA Timing
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
4.21.10 Boundary Scan Chain
The device supports BSDL-compliant boundary scan for testing pin-to-pin compatibility. The boundary
scan chain is connected to the Boundary Scan Interface of the ICEPICK module.
Device Pins (conceptual)
RTCK
TDI
TDO
IC E P ICK
TRST
TMS
TCK
Boundary Scan Interface
Boundary
Scan
TDI
TDO
BSDL
Figure 4-30. Boundary Scan Implementation (Conceptual Diagram)
PRODUCT PREVIEW
Data is serially shifted into all boundary-scan buffers via TDI, and out via TDO.
116
System Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5 Peripheral Information and Electrical Specifications
5.1
Peripheral Legend
5.2
Abbreviation
Full Name
MibADC
Analog To Digital Converter
CCM-R4F
CPU Compare Module - CortexR4F
CRC
Cyclic Redundancy Check
DCAN
Controller Area Network
DCC
Dual Clock Comparator
DMA
Direct Memory Access
DMM
Data Modification Module
EMIF
External Memory Interface
ESM
Error Signaling Module
ETM-R4F
Embedded Trace Macrocell - CortexR4F
GIO
General-Purpose Input/Output
HTU
High End Timer Transfer Unit
I2C
Inter-Integrated Circuit
LIN
Local Interconnect Network
MIBSPI
Multibuffer Serial Peripheral Interface
N2HET
Platform High-End Timer
POM
Parameter Overlay Module
RTI
Real-Time Interrupt Module
RTP
RAM Trace Port
SCI
Serial Communications Interface
SPI
Serial Peripheral Interface
USB
Universal Serial Bus
VIM
Vectored Interrupt Manager
PRODUCT PREVIEW
Table 5-1. Peripheral Legend
Multi-Buffered 12bit Analog-to-Digital Converter
The multibuffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that
enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could
be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are given
with respect to ADREFLO unless otherwise noted.
Table 5-2. MibADC Overview
5.2.1
Description
Value
Resolution
12 bits
Monotonic
Assured
Output conversion code
00h to FFFh [00 for VAI ≤ ADREFLO; FFF for VAI ≥ ADREFHI]
Features
•
•
•
•
•
•
10-/12-bit resolution
ADREFHI and ADREFLO pins (high and low reference voltages)
Total Sample/Hold/Convert time: 600ns Typical Minimum at 30MHz ADCLK
One memory region per conversion group is available (event, group 1, group 2)
Allocation of channels to conversion groups is completely programmable
Memory regions are serviced either by interrupt or by DMA
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
117
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
•
•
•
•
•
•
•
•
5.2.2
www.ti.com
Programmable interrupt threshold counter is available for each group
Programmable magnitude threshold interrupt for each group for any one channel
Option to read either 8-bit, 10-bit or 12-bit values from memory regions
Single or continuous conversion modes
Embedded self-test
Embedded calibration logic
Enhanced power-down mode
– Optional feature to automatically power down ADC core when no conversion is in progress
External event pin (ADEVT) programmable as general-purpose I/O
Event Trigger Options
The ADC module supports 3 conversion groups: Event Group, Group1 and Group2. Each of these 3
groups can be configured to be hardware event-triggered. In that case, the application can select from
among 8 event sources to be the trigger for a group's conversions.
5.2.2.1
Default MIBADC Event Trigger Hookup
Table 5-3. MIBADC Event Trigger Hookup
PRODUCT PREVIEW
Event #
Source Select Bits For G1, G2 Or Event
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])
Trigger
1
000
ADEVT
2
001
HET[8]
3
010
HET[10]
4
011
RTI compare 0 interrupt
5
100
HET[12]
6
101
HET[14]
7
110
GIOB[0]
8
111
GIOB[1]
NOTE
For ADEVT, HET and GIOB trigger sources, the connection to the MibADC1 module trigger
input is made from the output side of the input buffer. This way, a trigger condition can be
generated either by configuring the function as output onto the pad, or by driving the function
from an external trigger source as input.
NOTE
For the RTI compare 0 interrupt source, the connection is made directly from the output of
the RTI module. That is, the interrupt condition can be used as a trigger source even if the
actual interrupt is not signaled to the CPU.
5.2.2.2
Alternate MIBADC2 Event Trigger Hookup
Table 5-4. Alternate MIBADC2 Event Trigger Hookup
118
Event #
Source Select Bits for G1, G2 or Event
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])
1
000
AD2EVT
2
001
N2HET2[5]
3
010
N2HET1[27]
4
011
RTI compare 0
5
100
N2HET1[17]
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Trigger
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 5-4. Alternate MIBADC2 Event Trigger Hookup (continued)
Event #
Source Select Bits for G1, G2 or Event
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])
Trigger
6
101
N2HET1[19]
7
110
N2HET1[11]
8
111
N2HET2[13]
The selection between the default MIBADC2 event trigger hook-up versus the alternate event trigger
hook-up is done by multiplexing control module register 30 bits 0 and 1.
If 30[0] = 1, then the default MibADC2 event trigger hook-up is used.
If 30[0] = 0 and 30[1] = 1, then the alternate MibADC2 event trigger hook-up is used.
NOTE
PRODUCT PREVIEW
For AD2EVT trigger source, the connection to the MibADC2 module trigger input is made
from the output side of the input buffer. This way, a trigger condition can be generated either
by configuring AD2EVT as an output function on to the pad (via the mux control), or by
driving the AD2EVT signal from an external trigger source as input. If the mux control module
is used to select different functionality instead of the AD2EVT signal, then care must be
taken to disable AD2EVT from triggering conversions; there is no multiplexing on the input
connections.
NOTE
For N2HETx trigger sources, the connection to the MibADC2 module trigger input is made
from the input side of the output buffer (at the N2HETx module boundary). This way, a
trigger condition can be generated even if the N2HETx signal is not selected to be output on
the pad.
NOTE
For the RTI compare 0 interrupt source, the connection is made directly from the output of
the RTI module. That is, the interrupt condition can be used as a trigger source even if the
actual interrupt is not signaled to the CPU.
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
119
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
5.2.3
www.ti.com
ADC Electrical and Timing Specifications
Table 5-5. MibADC Recommended Operating Conditions
Parameter
MIN
MAX
Unit
ADREFHI
A-to-D high-voltage reference source
ADREFLO
VCCAD
V
ADREFLO
A-to-D low-voltage reference source
VSSAD
ADREFHI
V
VAI
Analog input voltage
ADREFLO
ADREFHI
V
IAIC
Analog input clamp current
(VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3)
-2
2
mA
Table 5-6. MibADC Electrical Characteristics Over Full Ranges of Recommended Operating Conditions (1)
Parameter
PRODUCT PREVIEW
MAX
Unit
Rmux
Analog input mux
on-resistance
See Figure 5-1
250
Ω
Rsamp
ADC sample switch
on-resistance
See Figure 5-1
250
Ω
Cmux
Input mux capacitance
See Figure 5-1
16
pF
Csamp
ADC sample capacitance
See Figure 5-1
13
pF
IAIL
Analog off-state input
leakage current, for VCCAD =
3.6V maximum
Off-state input leakage per
ADC input pin
VSSAD < VIN < VSSAD +
100mV
300
nA
VSSAD + 100mV < VIN <
VCCAD - 200mV
200
nA
VCCAD - 200mV < VIN <
VCCAD
500
nA
VIN > VSSAD,
VIN < VSSAD + 300mV
1
µA
VIN > VSSAD + 300mV,
VIN < VCCAD - 300mV
250
nA
VIN > VCCAD - 300mV,
VIN < VCCAD
1
µA
IAIL
Description/Conditions
Analog off-state input
leakage current, for VCCAD =
5.5V maximum
Off-state input leakage per
ADC input pin
MIN
Type
IADREFHI
ADREFHI input current
ADREFHI = VCCAD, ADREFLO = VSSAD
3
mA
ICCAD
Static supply current
Normal operating mode
15
mA
ADC core in power down mode
5
µA
(1)
120
1 LSB = (ADREFHI – ADREFLO)/ 212 for the MibADC
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Rext
Pin
VS1
Smux
Rmux
Smux
Rmux
39*IAIL
Cext
On-State
Leakage
Rext
Pin
VS2
IAIL
Cext
IAIL
IAIL
Off-State
Leakages
Rext
Pin
Smux
Rmux
Ssamp
Rsamp
VS24
IAIL
Csamp
Cmux
Cext
IAIL
IAIL
PRODUCT PREVIEW
Figure 5-1. MibADC Input Equivalent Circuit
Table 5-7. MibADC Timing Specifications
Parameter
MIN
NOM
MAX
Unit
tc(ADCLK) (1)
Cycle time, MibADC clock
td(SH) (2)
Delay time, sample and hold
time
td©)
Delay time, conversion time
0.4
µs
td(SHC) (3)
Delay time, total sample/hold
and conversion time
0.6
µs
td©)
Delay time, conversion time
0.33
µs
td(SHC) (4)
Delay time, total sample/hold
and conversion time
0.53
µs
0.033
µs
0.2
µs
12-bit mode
10-bit mode
(1)
(2)
(3)
(4)
The MibADC clock is the ADCLK, generated by dividing down the VCLK by a prescale factor defined by the ADCLOCKCR register bits
4:0.
The sample and hold time for the ADC conversions is defined by the ADCLK frequency and the AD<GP>SAMP register for each
conversion group. The sample time needs to be determined by accounting for the external impedance connected to the input channel as
well as the ADC’s internal impedance.
This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the
prescale settings.
This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the
prescale settings.
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
121
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 5-8. MibADC Operating Characteristics Over Full Ranges of Recommended Operating Conditions
Parameter
Description/Conditions
CR
Conversion range over ADREFHI - ADREFLO
which specified
accuracy is
maintained
ZSET
Zero Scale Offset
FSET
EDNL
EINL
PRODUCT PREVIEW
ETOT
122
Full Scale Offset
Differential
nonlinearity error
Integral nonlinearity
error
Total unadjusted error
(after calibration)
MIN
3
Type
MAX
Unit
5.5
V
Difference between the first ideal transition
(from code 000h to 001h) and the actual
transition
10-bit
mode
1
LSB
12-bit
mode
2
LSB
Difference between the range of the
measured code transitions (from first to last)
and the range of the ideal code transitions
10-bit
mode
2
LSB
12-bit
mode
3
LSB
Difference between the actual step width and
the ideal value. (See Figure 76)
10-bit
mode
± 1.5
LSB
12-bit
mode
±2
LSB
Maximum deviation from the best straight line 10-bit
through the MibADC. MibADC transfer
mode
characteristics, excluding the quantization
12-bit
error.
mode
±2
LSB
±2
LSB
Maximum value of the difference between an
analog value and the ideal midstep value.
10-bit
mode
±2
LSB
12-bit
mode
±4
LSB
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5.2.4
Performance (Accuracy) Specifications
5.2.4.1
MibADC Nonlinearity Errors
The differential nonlinearity error shown in Figure Figure 5-2 (sometimes referred to as differential
linearity) is the difference between an actual step width and the ideal value of 1 LSB.
0 ... 110
0 ... 100
0 ... 011
PRODUCT PREVIEW
Digital Output Code
0 ... 101
Differential Linearity
Error (–½ LSB)
1 LSB
0 ... 010
Differential Linearity
Error (–½ LSB)
0 ... 001
1 LSB
0 ... 000
0
1
3
4
2
Analog Input Value (LSB)
5
12
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2
Figure 5-2. Differential Nonlinearity (DNL) Error
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
123
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
The integral nonlinearity error shown in Figure Figure 5-3 (sometimes referred to as linearity error) is the
deviation of the values on the actual transfer function from a straight line.
0 ... 111
0 ... 110
Ideal
Transition
Digital Output Code
0 ... 101
Actual
Transition
0 ... 100
At Transition
011/100
(–½ LSB)
0 ... 011
PRODUCT PREVIEW
0 ... 010
End-Point Lin. Error
0 ... 001
At Transition
001/010 (–1/4 LSB)
0 ... 000
0
1
2
3
4
5
6
7
Analog Input Value (LSB)
12
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2
Figure 5-3. Integral Nonlinearity (INL) Error
124
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5.2.4.2
MibADC Total Error
The absolute accuracy or total error of an MibADC as shown in Figure Figure 5-4 is the maximum value of
the difference between an analog value and the ideal midstep value.
0 ... 111
0 ... 110
0 ... 100
Total Error
At Step 0 ... 101
(–1 1/4 LSB)
0 ... 011
PRODUCT PREVIEW
Digital Output Code
0 ... 101
0 ... 010
Total Error
At Step
0 ... 001 (1/2 LSB)
0 ... 001
0 ... 000
0
1
2
3
4
5
6
7
Analog Input Value (LSB)
12
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2
Figure 5-4. Absolute Accuracy (Total) Error
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
125
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
5.3
www.ti.com
General-Purpose Input/Output
The GPIO module on this device supports two ports, GIOA and GIOB. The I/O pins are bidirectional and
bit-programmable. Both GIOA and GIOB support external interrupt capability.
5.3.1
Features
PRODUCT PREVIEW
The GPIO module has the following features:
• Each IO pin can be configured as:
– Input
– Output
– Open Drain
• The interrupts have the following characteristics:
– Programmable interrupt detection either on both edges or on a single edge (set in GIOINTDET)
– Programmable edge-detection polarity, either rising or falling edge (set in GIOPOL register)
– Individual interrupt flags (set in GIOFLG register)
– Individual interrupt enables, set and cleared through GIOENASET and GIOENACLR registers
respectively
– Programmable interrupt priority, set through GIOLVLSET and GIOLVLCLR registers
• Internal pullup/pulldown allows unused I/O pins to be left unconnected
For information on input and output timings see Section 3.8 and Section 3.9
126
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5.4
Enhanced High-End Timer (N2HET)
The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer
micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs,
capture or compare inputs, or general-purpose I/O.. It is especially well suited for applications requiring
multiple sensor information and drive actuators with complex and accurate time pulses.
Features
The N2HET module has the following features:
• Programmable timer for input and output timing functions
• Reduced instruction set (30 instructions) for dedicated time and angle functions
• 160 words of instruction RAM protected by parity
• User defined number of 25-bit virtual counters for timer, event counters and angle counters
• 7-bit hardware counters for each pin allow up to 32-bit resolution in conjunction with the 25-bit virtual
counters
• Up to 32 pins usable for input signal measurements or output signal generation
• Programmable suppression filter for each input pin with adjustable limiting frequency
• Low CPU overhead and interrupt load
• Efficient data transfer to or from the CPU memory with dedicated High-End-Timer Transfer Unit (HTU)
or DMA
• Diagnostic capabilities with different loopback mechanisms and pin status readback functionality
5.4.2
N2HET RAM Organization
The timer RAM uses 4 RAM banks, where each bank has two port access capability. This means that one
RAM address may be written while another address is read. The RAM words are 96-bits wide, which are
split into three 32-bit fields (program, control, and data).
5.4.3
Input Timing Specifications
The N2HET instructions PCNT and WCAP impose some timing constraints on the input signals.
1
NHETx
3
4
2
Figure 5-5. N2HET Input Capture Timings
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
127
PRODUCT PREVIEW
5.4.1
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 5-9. Dynamic Characteristics for the N2HET Input Capture Functionality
MIN (1)
PARAMETER
(2)
MAX (1)
25
(2)
UNIT
1
Input signal period, PCNT or WCAP for rising edge
to rising edge
2 (hr) (lr) tc(VCLK2) + 2
2
(hr) (lr) tc(VCLK2) - 2
ns
2
Input signal period, PCNT or WCAP for falling edge
to falling edge
2 (hr) (lr) tc(VCLK2) + 2
225 (hr) (lr) tc(VCLK2) - 2
ns
3
Input signal high phase, PCNT or WCAP for rising
edge to falling edge
(hr) (lr) tc(VCLK2) + 2
225 (hr) (lr) tc(VCLK2) - 2
ns
4
Input signal low phase, PCNT or WCAP for falling
edge to rising edge
(hr) (lr) tc(VCLK2) + 2
225 (hr) (lr) tc(VCLK2) - 2
ns
(1)
(2)
hr = High-resolution prescaler, configured using the HRPFC field of the Prescale Factor Register (HETPFR).
lr = Loop-resolution prescaler, configured using the LFPRC field of the Prescale Factor Register (HETPFR)
Both N2HET1 and N2HET2 have three channels each that are enhanced to be able to capture inputs with
smaller pulse widths than that specified in Table 5-9. These are N2HET1 channels 15, 20 and 31, and
N2HET2 channels 12, 14 and 16.
The input capture capability for these channels is specified in the following table.
Table 5-10. Input Capture Capability for N2HET Channels with Enhancements
PRODUCT PREVIEW
PARAMETER
MIN
MAX
UNIT
1
Input signal period, PCNT or WCAP for rising edge
to rising edge
(hr) (lr) tc(VCLK2) + 2
225 (hr) (lr) tc(VCLK2) - 2
ns
2
Input signal period, PCNT or WCAP for falling edge
to falling edge
(hr) (lr) tc(VCLK2) + 2
225 (hr) (lr) tc(VCLK2) - 2
ns
3
Input signal high phase, PCNT or WCAP for rising
edge to falling edge
2 (hr) tc(VCLK2) + 2
225 (hr) (lr) tc(VCLK2) - 2
ns
4
Input signal low phase, PCNT or WCAP for falling
edge to rising edge
2 (hr) tc(VCLK2) + 2
225 (hr) (lr) tc(VCLK2) - 2
ns
5.4.4
N2HET1-N2HET2 Interconnections
In some applications the N2HET resolutions must be synchronized. Some other applications require a
single time base to be used for all PWM outputs and input timing captures.
The N2HET provides such a synchronization mechanism. The Clk_master/slave (HETGCR.16) configures
the N2HET in master or slave mode (default is slave mode). A N2HET in master mode provides a signal
to synchronize the prescalers of the slave N2HET. The slave N2HET synchronizes its loop resolution to
the loop resolution signal sent by the master. The slave does not require this signal after it receives the
first synchronization signal. However, anytime the slave receives the re-synchronization signal from the
master, the slave must synchronize itself again..
NHET1
EXT_LOOP_SYNC
NHET_LOOP_SYNC
NHET2
NHET_LOOP_SYNC
EXT_LOOP_SYNC
Figure 5-6. N2HET1 – N2HET2 Synchronization Hookup
5.4.5
N2HET Checking
5.4.5.1
Internal Monitoring
To assure correctness of the high-end timer operation and output signals, the two N2HET modules can be
used to monitor each other’s signals as shown in Figure 5-7. The direction of the monitoring is controlled
by the I/O multiplexing control module.
128
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
NHET1[1,3,5,7,9,11]
IOMM mux control signal x
NHET1[1,3,5,7,9,11] / NHET2[8,10,12,14,16,18]
NHET1
NHET2[8,10,12,14,16,18]
NHET2
Figure 5-7. N2HET Monitoring
5.4.5.2
Output Monitoring using Dual Clock Comparator (DCC)
N2HET1[31] is connected as a clock source for counter 1 in DCC1. This allows the application to measure
the frequency of the pulse-width modulated (PWM) signal on N2HET1[31].
Both N2HET1[31] and N2HET2[0] can be configured to be internal-only channels. That is, the connection
to the DCC module is made directly from the output of the N2HETx module (from the input of the output
buffer).
For more information on DCC see Section 4.7.3.
5.4.6
Disabling N2HET Outputs
Some applications require the N2HET outputs to be disabled under some fault condition. The N2HET
module provides this capability via the "Pin Disable" input signal. This signal, when driven low, causes the
N2HET outputs identified by a programmable register (HETPINDIS) to be tri-stated. Please refer to the
RM48x Technical Reference Manual (SPNU481) for more details on the "N2HET Pin Disable" feature.
GIOA[5] is connected to the "Pin Disable" input for N2HET1, and GIOB[2] is connected to the "Pin
Disable" input for N2HET2.
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
129
PRODUCT PREVIEW
Similarly, N2HET2[0] is connected as a clock source for counter 1 in DCC2. This allows the application to
measure the frequency of the pulse-width modulated (PWM) signal on N2HET2[0].
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
5.4.7
www.ti.com
High-End Timer Transfer Unit (HET-TU)
A High End Timer Transfer Unit (HET-TU) can perform DMA type transactions to transfer N2HET data to
or from main memory. A Memory Protection Unit (MPU) is built into the HET-TU.
5.4.7.1
•
•
•
•
•
•
•
•
•
5.4.7.2
Features
CPU and DMA independent
Master Port to access system memory
8 control packets supporting dual buffer configuration
Control packet information is stored in RAM protected by parity
Event synchronization (HET transfer requests)
Supports 32 or 64 bit transactions
Addressing modes for HET address (8 byte or 16 byte) and system memory address (fixed, 32 bit or
64bit)
One shot, circular and auto switch buffer transfer modes
Request lost detection
Trigger Connections
PRODUCT PREVIEW
Table 5-11. HET TU1 Request Line Connection
Modules
Request Source
HET TU1 Request
N2HET1
HTUREQ[0]
HET TU1 DCP[0]
N2HET1
HTUREQ[1]
HET TU1 DCP[1]
N2HET1
HTUREQ[2]
HET TU1 DCP[2]
N2HET1
HTUREQ[3]
HET TU1 DCP[3]
N2HET1
HTUREQ[4]
HET TU1 DCP[4]
N2HET1
HTUREQ[5]
HET TU1 DCP[5]
N2HET1
HTUREQ[6]
HET TU1 DCP[6]
N2HET1
HTUREQ[7]
HET TU1 DCP[7]
Table 5-12. HET TU2 Request Line Connection
130
Modules
Request Source
HET TU2 Request
N2HET2
HTUREQ[0]
HET TU2 DCP[0]
N2HET2
HTUREQ[1]
HET TU2 DCP[1]
N2HET2
HTUREQ[2]
HET TU2 DCP[2]
N2HET2
HTUREQ[3]
HET TU2 DCP[3]
N2HET2
HTUREQ[4]
HET TU2 DCP[4]
N2HET2
HTUREQ[5]
HET TU2 DCP[5]
N2HET2
HTUREQ[6]
HET TU2 DCP[6]
N2HET2
HTUREQ[7]
HET TU2 DCP[7]
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5.5
Controller Area Network (DCAN)
The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication
protocol that efficiently supports distributed real-time control with robust communication rates of up to 1
megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh
environments (e.g., automotive and industrial fields) that require reliable serial communication or
multiplexed wiring.
5.5.1
Features
PRODUCT PREVIEW
Features of the DCAN module include:
• Supports CAN protocol version 2.0 part A, B
• Bit rates up to 1 MBit/s
• The CAN kernel can be clocked by the oscillator for baud-rate generation.
• 64 mailboxes on each DCAN
• Individual identifier mask for each message object
• Programmable FIFO mode for message objects
• Programmable loop-back modes for self-test operation
• Automatic bus on after Bus-Off state by a programmable 32-bit timer
• Message RAM protected by parity
• Direct access to Message RAM during test mode
• CAN Rx / Tx pins configurable as general purpose IO pins
• Message RAM Auto Initialization
• DMA support
For more information on the DCAN see the RM48x Technical Reference Manual (SPNU481).
5.5.2
Electrical and Timing Specifications
Table 5-13. Dynamic Characteristics for the DCANx TX and RX pins
MAX
Unit
td(CANnTX)
Delay time, transmit shift register to CANnTX pin (1)
Parameter
15
ns
td(CANnRX)
Delay time, CANnRX pin to receive shift register
5
ns
(1)
MIN
These values do not include rise/fall times of the output buffer.
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
131
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
5.6
www.ti.com
Local Interconnect Network Interface (LIN)
The SCI/LIN module can be programmed to work either as an SCI or as a LIN. The core of the module is
an SCI. The SCI’s hardware features are augmented to achieve LIN compatibility.
The SCI module is a universal asynchronous receiver-transmitter that implements the standard nonreturn
to zero format. The SCI can be used to communicate, for example, through an RS-232 port or over a
K-line.
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is
single-master/multiple-slave with a message identification for multi-cast transmission between any network
nodes.
5.6.1
LIN Features
PRODUCT PREVIEW
The following are features of the LIN module:
• Compatible to LIN 1.3, 2.0 and 2.1 protocols
• Multi-buffered receive and transmit units DMA capability for minimal CPU intervention
• Identification masks for message filtering
• Automatic Master Header Generation
– Programmable Synch Break Field
– Synch Field
– Identifier Field
• Slave Automatic Synchronization
– Synch break detection
– Optional baudrate update
– Synchronization Validation
• 231 programmable transmission rates with 7 fractional bits
• Error detection
• 2 Interrupt lines with priority encoding
132
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Serial Communication Interface (SCI)
5.7.1
Features
•
•
•
•
•
•
•
•
•
•
•
Standard universal asynchronous receiver-transmitter (UART) communication
Supports full- or half-duplex operation
Standard nonreturn to zero (NRZ) format
Double-buffered receive and transmit functions
Configurable frame format of 3 to 13 bits per character based on the following:
– Data word length programmable from one to eight bits
– Additional address bit in address-bit mode
– Parity programmable for zero or one parity bit, odd or even parity
– Stop programmable for one or two stop bits
Asynchronous or isosynchronous communication modes
Two multiprocessor communication formats allow communication between more than two devices.
Sleep mode is available to free CPU resources during multiprocessor communication.
The 24-bit programmable baud rate supports 224 different baud rates provide high accuracy baud rate
selection.
Four error flags and Five status flags provide detailed information regarding SCI events.
Capability to use DMA for transmit and receive data.
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
133
PRODUCT PREVIEW
5.7
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
5.8
www.ti.com
Inter-Integrated Circuit (I2C)
The inter-integrated circuit (I2C) module is a multi-master communication module providing an interface
between the RM4x microcontroller and devices compliant with Philips Semiconductor I2C-bus specification
version 2.1 and connected by an I2C-bus. This module will support any slave or master I2C compatible
device.
5.8.1
Features
PRODUCT PREVIEW
The I2C has the following features:
• Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number
9398 393 40011)
– Bit/Byte format transfer
– 7-bit and 10-bit device addressing modes
– General call
– START byte
– Multi-master transmitter/ slave receiver mode
– Multi-master receiver/ slave transmitter mode
– Combined master transmit/receive and receive/transmit mode
– Transfer rates of 10 kbps up to 400 kbps (Phillips fast-mode rate)
• Free data format
• Two DMA events (transmit and receive)
• DMA event enable/disable capability
• Seven interrupts that can be used by the CPU
• Module enable/disable capability
• The SDA and SCL are optionally configurable as general purpose I/O
• Slew rate control of the outputs
• Open drain control of the outputs
• Programmable pullup/pulldown capability on the inputs
• Supports Ignore NACK mode
NOTE
This I2C module does not support:
• High-speed (HS) mode
• C-bus compatibility mode
• The combined format in 10-bit address mode (the I2C sends the slave address second
byte every time it sends the slave address first byte)
134
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5.8.2
I2C I/O Timing Specifications
Table 5-14. I2C Signals (SDA and SCL) Switching Characteristics (1)
Standard Mode
Fast Mode
Unit
MIN
MAX
MIN
MAX
75.2
149
75.2
149
tc(I2CCLK)
Cycle time, Internal Module clock for I2C,
prescaled from VCLK
tc(SCL)
Cycle time, SCL
10
2.5
ms
tsu(SCLH-SDAL)
Setup time, SCL high before SDA low (for a
repeated START condition)
4.7
0.6
ms
th(SCLL-SDAL)
Hold time, SCL low after SDA low (for a repeated
START condition)
4
0.6
ms
tw(SCLL)
Pulse duration, SCL low
4.7
1.3
ms
tw(SCLH)
Pulse duration, SCL high
4
0.6
ms
tsu(SDA-SCLH)
Setup time, SDA valid before SCL high
250
100
ns
th(SDA-SCLL)
Hold time, SDA valid after SCL low (for I2C bus
devices)
tw(SDAH)
Pulse duration, SDA high between STOP and
START conditions
4.7
1.3
ms
tsu(SCLH-SDAH)
Setup time, SCL high before SDA high (for STOP
condition)
4.0
0.6
ms
tw(SP)
Pulse duration, spike (must be suppressed)
Cb
(1)
(2)
(3)
(3)
0
3.45
(2)
0
ns
0.9
0
Capacitive load for each bus line
400
ms
50
ns
400
pF
The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered
down.
The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL
signal.
Cb = The total capacitance of one bus line in pF.
SDA
tw(SDAH)
tsu(SDA-SCLH)
tw(SCLL)
tw(SP)
tsu(SCLH-SDAH)
tw(SCLH)
tr(SCL)
SCL
tc(SCL)
tf(SCL)
th(SCLL-SDAL)
th(SDA-SCLL)
tsu(SCLH-SDAL)
th(SCLL-SDAL)
Stop
Start
Repeated Start
Stop
Figure 5-8. I2C Timings
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
135
PRODUCT PREVIEW
Parameter
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
NOTE
•
•
•
•
A device must internally provide a hold time of at least 300 ns for the SDA signal
(referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling
edge of SCL.
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW
period (tw(SCLL)) of the SCL signal.
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the
requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if
the device does not stretch the LOW period of the SCL signal. If such a device does
stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line
tr max + tsu(SDA-SCLH).
Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster
fall-times are allowed.
PRODUCT PREVIEW
136
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5.9
Multi-Buffered / Standard Serial Peripheral Interface
The MibSPI is a high-speed synchronous serial input/output port that allows a serial bit stream of
programmed length (2 to 16 bits) to be shifted in and out of the device at a programmed bit-transfer rate.
Typical applications for the SPI include interfacing to external peripherals, such as I/Os, memories, display
drivers, and analog-to-digital converters.
5.9.1
Features
Both Standard and MibSPI modules have the following features:
• 16-bit shift register
• Receive buffer register
• 8-bit baud clock generator, supports max up to 20Mhz baud rate
• SPICLK can be internally-generated (master mode) or received from an external clock source (slave
mode)
• Each word transferred can have a unique format
• SPI I/Os not used in the communication can be used as digital input/output signals
MibSPIx/SPIx
I/Os
MibSPI1
MIBSPI1SIMO[1:0], MIBSPI1SOMI[1:0], MIBSPI1CLK, MIBSPI1nCS[5:0], MIBSPI1nENA
MibSPI3
MIBSPI3SIMO, MIBSPI3SOMI, MIBSPI3CLK, MIBSPI3nCS[5:0], MIBSPI3nENA
MibSPI5
MIBSPI5SIMO[3:0], MIBSPI5SOMI[3:0], MIBSPI5CLK, MIBSPI5nCS[3:0], MIBSPI5nENA
SPI2
SPI2SIMO, ZSPI2SOMI, SPI2CLK, SPI2nCS[1:0], SPI2nENA
SPI4
SPI4SIMO, SPI4SOMI, SPI4CLK, SPI4nCS[0], SPI4nENA
5.9.2
MibSPI Transmit and Receive RAM Organization
The Multibuffer RAM is comprised of 128 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a
16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer
RAM can be partitioned into multiple transfer group with variable number of buffers each.
5.9.3
MibSPI Transmit Trigger Events
Each of the transfer groups can be configured individually. For each of the transfer groups a trigger event
and a trigger source can be chosen. A trigger event can be for example a rising edge or a permanent low
level at a selectable trigger source. For example, up to 15 trigger sources are available which can be
utilized by each transfer group. These trigger options are listed in Table 5-16 and Section 5.9.3.2 for
MibSPI1 and MibSPi3 respectively.
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
137
PRODUCT PREVIEW
Table 5-15. MibSPI/SPI Configurations
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
5.9.3.1
www.ti.com
MIBSPI1 Event Trigger Hookup
Table 5-16. MIBSPI1 Event Trigger Hookup
PRODUCT PREVIEW
Event #
TGxCTRL TRIGSRC[3:0]
Trigger
Disabled
0000
No trigger source
EVENT0
0001
GIOA[0]
EVENT1
0010
GIOA[1]
EVENT2
0011
GIOA[2]
EVENT3
0100
GIOA[3]
EVENT4
0101
GIOA[4]
EVENT5
0110
GIOA[5]
EVENT6
0111
GIOA[6]
EVENT7
1000
GIOA[7]
EVENT8
1001
N2HET1[8]
EVENT9
1010
N2HET1[10]
EVENT10
1011
N2HET1[12]
EVENT11
1100
N2HET1[14]
EVENT12
1101
N2HET1[16]
EVENT13
1110
N2HET1[18]
EVENT14
1111
Intern Tick counter
NOTE
For N2HET1 trigger sources, the connection to the MibSPI1 module trigger input is made
from the input side of the output buffer (at the N2HET1 module boundary). This way, a
trigger condition can be generated even if the N2HET1 signal is not selected to be output on
the pad.
NOTE
For GIOx trigger sources, the connection to the MibSPI1 module trigger input is made from
the output side of the input buffer. This way, a trigger condition can be generated either by
selecting the GIOx pin as an output pin, or by driving the GIOx pin from an external trigger
source.
5.9.3.2
MIBSPI3 Event Trigger Hookup
Table 5-17. MIBSPI3 Event Trigger Hookup
138
Event #
TGxCTRL TRIGSRC[3:0]
Trigger
Disabled
0000
No trigger source
EVENT0
0001
GIOA[0]
EVENT1
0010
GIOA[1]
EVENT2
0011
GIOA[2]
EVENT3
0100
GIOA[3]
EVENT4
0101
GIOA[4]
EVENT5
0110
GIOA[5]
EVENT6
0111
GIOA[6]
EVENT7
1000
GIOA[7]
EVENT8
1001
HET[8]
EVENT9
1010
N2HET1[10]
EVENT10
1011
N2HET1[12]
EVENT11
1100
N2HET1[14]
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 5-17. MIBSPI3 Event Trigger Hookup (continued)
Event #
TGxCTRL TRIGSRC[3:0]
Trigger
EVENT12
1101
N2HET1[16]
EVENT13
1110
N2HET1[18]
EVENT14
1111
Intern Tick counter
NOTE
For N2HET1 trigger sources, the connection to the MibSPI3 module trigger input is made
from the input side of the output buffer (at the N2HET1 module boundary). This way, a
trigger condition can be generated even if the N2HET1 signal is not selected to be output on
the pad.
NOTE
For GIOx trigger sources, the connection to the MibSPI3 module trigger input is made from
the output side of the input buffer. This way, a trigger condition can be generated either by
selecting the GIOx pin as an output pin, or by driving the GIOx pin from an external trigger
source.
MIBSPI5 Event Trigger Hookup
PRODUCT PREVIEW
5.9.3.3
Table 5-18. MIBSPI5 Event Trigger Hookup
Event #
TGxCTRL TRIGSRC[3:0]
Trigger
Disabled
0000
No trigger source
EVENT0
0001
GIOA[0]
EVENT1
0010
GIOA[1]
EVENT2
0011
GIOA[2]
EVENT3
0100
GIOA[3]
EVENT4
0101
GIOA[4]
EVENT5
0110
GIOA[5]
EVENT6
0111
GIOA[6]
EVENT7
1000
GIOA[7]
EVENT8
1001
N2HET1[8]
EVENT9
1010
N2HET1[10]
EVENT10
1011
N2HET1[12]
EVENT11
1100
N2HET1[14]
EVENT12
1101
N2HET1[16]
EVENT13
1110
N2HET1[18]
EVENT14
1111
Intern Tick counter
NOTE
For N2HET1 trigger sources, the connection to the MibSPI5 module trigger input is made
from the input side of the output buffer (at the N2HET1 module boundary). This way, a
trigger condition can be generated even if the N2HET1 signal is not selected to be output on
the pad.
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
139
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
NOTE
For GIOx trigger sources, the connection to the MibSPI5 module trigger input is made from
the output side of the input buffer. This way, a trigger condition can be generated either by
selecting the GIOx pin as an output pin + selecting the pin to be a GIOx pin, or by driving the
GIOx pin from an external trigger source. If the mux control module is used to select different
functionality instead of the GIOx signal, then care must be taken to disable GIOx from
triggering MibSPI5 transfers; there is no multiplexing on the input connections.
PRODUCT PREVIEW
140
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5.9.4
MibSPI/SPI Master Mode I/O Timing Specifications
Table 5-19. SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO
= output, and SPISOMI = input) (1) (2) (3)
1
2 (5)
3 (5)
4 (5)
5 (5)
6 (5)
7 (5)
8 (6)
9 (6)
(1)
(2)
(3)
(4)
(5)
(6)
Parameter
MIN
MAX
Unit
40
256tc(VCLK)
ns
Pulse duration, SPICLK high (clock
polarity = 0)
0.5tc(SPC)M – tr(SPC)M – 3
0.5tc(SPC)M + 3
ns
tw(SPCL)M
Pulse duration, SPICLK low (clock
polarity = 1)
0.5tc(SPC)M – tf(SPC)M – 3
0.5tc(SPC)M + 3
tw(SPCL)M
Pulse duration, SPICLK low (clock
polarity = 0)
0.5tc(SPC)M – tf(SPC)M – 3
0.5tc(SPC)M + 3
tw(SPCH)M
Pulse duration, SPICLK high (clock
polarity = 1)
0.5tc(SPC)M – tr(SPC)M – 3
0.5tc(SPC)M + 3
td(SPCH-SIMO)M
Delay time, SPISIMO valid before
SPICLK low (clock polarity = 0)
0.5tc(SPC)M – 5
td(SPCL-SIMO)M
Delay time, SPISIMO valid before
SPICLK high (clock polarity = 1)
0.5tc(SPC)M – 5
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after
SPICLK low (clock polarity = 0)
0.5tc(SPC)M – tf(SPC) – 3
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after
SPICLK high (clock polarity = 1)
0.5tc(SPC)M – tr(SPC) – 3
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK
low (clock polarity = 0)
0.5tf(SPC) + 2
tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK
high (clock polarity = 1)
0.5tf(SPC) + 2
tc(SPC)M
Cycle time, SPICLK (4)
tw(SPCH)M
ns
ns
ns
ns
th(SPCL-SOMI)M
Hold time, SPISOMI data valid after
SPICLK low (clock polarity = 0)
5
th(SPCH-SOMI)M
Hold time, SPISOMI data valid after
SPICLK high (clock polarity = 1)
5
tC2TDELAY
Setup time CS active
until SPICLK high
(clock polarity = 0)
CSHOLD = 0
C2TDELAY*tc(VCLK) + 2*tc(VCLK)
- tf(SPICS) + tr(SPC) – 15
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) + 3
CSHOLD = 1
C2TDELAY*tc(VCLK) + 3*tc(VCLK)
- tf(SPICS) + tr(SPC) – 15
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) + 3
Setup time CS active
until SPICLK low
(clock polarity = 1)
CSHOLD = 0
C2TDELAY*tc(VCLK) + 2*tc(VCLK)
- tf(SPICS) + tf(SPC) – 15
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) + 3
CSHOLD = 1
C2TDELAY*tc(VCLK) + 3*tc(VCLK)
- tf(SPICS) + tf(SPC) – 15
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) + 3
Hold time SPICLK low CS until inactive
(clock polarity = 0)
0.5*tc(SPC)M +
T2CDELAY*tc(VCLK) + tc(VCLK) tf(SPC) + tr(SPICS) - 5
0.5*tc(SPC)M +
T2CDELAY*tc(VCLK) + tc(VCLK) tf(SPC) + tr(SPICS) + 8
ns
Hold time SPICLK high until CS
inactive (clock polarity = 1)
0.5*tc(SPC)M +
T2CDELAY*tc(VCLK) + tc(VCLK) tr(SPC) + tr(SPICS) - 5
0.5*tc(SPC)M +
T2CDELAY*tc(VCLK) + tc(VCLK) tr(SPC) + tr(SPICS) + 8
ns
(C2TDELAY+1) * tc(VCLK) tf(SPICS) – 25
(C2TDELAY+1)*tc(VCLK)
ns
(C2TDELAY+2)*tc(VCLK)
ns
tT2CDELAY
10
tSPIENA
SPIENAn Sample point
11
tSPIENAW
SPIENAn Sample point from write to
buffer
ns
ns
ns
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
tc(VCLK) = interface clock cycle time = 1 / f(VCLK)
For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.
When the SPI is in Master mode, the following must be true:
For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)M = 2tc(VCLK) ≥ 40ns.
The external load on the SPICLK pin must be less than 60pF.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
C2TDELAY and T2CDELAY is programmed in the SPIDELAY register
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
141
PRODUCT PREVIEW
NO.
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
SPISIMO
5
Master Out Data Is Valid
6
7
Master In Data
Must Be Valid
SPISOMI
PRODUCT PREVIEW
Figure 5-9. SPI Master Mode External Timing (CLOCK PHASE = 0)
Write to buffer
SPICLK
(clock polarity=0)
SPICLK
(clock polarity=1)
SPISIMO
Master Out Data Is Valid
8
9
SPICSn
10
11
SPIENAn
Figure 5-10. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)
142
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 5-20. SPI Master Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO
= output, and SPISOMI = input) (1) (2) (3)
Parameter
MIN
MAX
Unit
40
256tc(VCLK)
ns
Pulse duration, SPICLK high (clock
polarity = 0)
0.5tc(SPC)M – tr(SPC)M – 3
0.5tc(SPC)M + 3
ns
tw(SPCL)M
Pulse duration, SPICLK low (clock
polarity = 1)
0.5tc(SPC)M – tf(SPC)M – 3
0.5tc(SPC)M + 3
tw(SPCL)M
Pulse duration, SPICLK low (clock
polarity = 0)
0.5tc(SPC)M – tf(SPC)M – 3
0.5tc(SPC)M + 3
tw(SPCH)M
Pulse duration, SPICLK high (clock
polarity = 1)
0.5tc(SPC)M – tr(SPC)M – 3
0.5tc(SPC)M + 3
tv(SIMO-SPCH)M
Valid time, SPICLK high after
SPISIMO data valid (clock polarity =
0)
0.5tc(SPC)M – 5
tv(SIMO-SPCL)M
Valid time, SPICLK low after
SPISIMO data valid (clock polarity =
1)
0.5tc(SPC)M – 5
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after
SPICLK high (clock polarity = 0)
0.5tc(SPC)M – tr(SPC) – 3
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after
SPICLK low (clock polarity = 1)
0.5tc(SPC)M – tf(SPC) – 3
tsu(SOMI-SPCH)M
Setup time, SPISOMI before
SPICLK high (clock polarity = 0)
tr(SPC)
tsu(SOMI-SPCL)M
Setup time, SPISOMI before
SPICLK low (clock polarity = 1)
tf(SPC)
tv(SPCH-SOMI)M
Valid time, SPISOMI data valid after
SPICLK high (clock polarity = 0)
5
tv(SPCL-SOMI)M
Valid time, SPISOMI data valid after
SPICLK low (clock polarity = 1)
5
tC2TDELAY
Setup time CS
CSHOLD = 0
active until SPICLK
high (clock polarity =
0)
CSHOLD = 1
0.5*tc(SPC)M +
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) – 15
0.5*tc(SPC)M +
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) + 3
0.5*tc(SPC)M +
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) – 15
0.5*tc(SPC)M +
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) + 3
Setup time CS
active until SPICLK
low (clock polarity =
1)
CSHOLD = 0
0.5*tc(SPC)M +
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) – 15
0.5*tc(SPC)M +
(C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) + 3
CSHOLD = 1
0.5*tc(SPC)M +
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) – 15
0.5*tc(SPC)M +
(C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) + 3
Hold time SPICLK low CS until
inactive (clock polarity = 0)
T2CDELAY*tc(VCLK) +
tc(VCLK) - tf(SPC) + tr(SPICS) 4
T2CDELAY*tc(VCLK) +
tc(VCLK) - tf(SPC) + tr(SPICS) +
8
ns
Hold time SPICLK high until CS
inactive (clock polarity = 1)
T2CDELAY*tc(VCLK) +
tc(VCLK) - tr(SPC) + tr(SPICS) 4
T2CDELAY*tc(VCLK) +
tc(VCLK) - tr(SPC) + tr(SPICS) +
8
ns
(C2TDELAY+1)* tc(VCLK) tf(SPICS) – 25
(C2TDELAY+1)*tc(VCLK)
ns
(C2TDELAY+2)*tc(VCLK)
ns
1
tc(SPC)M
Cycle time, SPICLK
(5)
tw(SPCH)M
2
3 (5)
4 (5)
5 (5)
6 (5)
7 (5)
8 (6)
9 (6)
tT2CDELAY
(4)
10
tSPIENA
SPIENAn Sample Point
11
tSPIENAW
SPIENAn Sample point from write to
buffer
(1)
(2)
(3)
(4)
(5)
(6)
ns
ns
ns
ns
ns
ns
ns
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
tc(VCLK) = interface clock cycle time = 1 / f(VCLK)
For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.
When the SPI is in Master mode, the following must be true:
For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)M = 2tc(VCLK) ≥ 40ns.
The external load on the SPICLK pin must be less than 60pF.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
C2TDELAY and T2CDELAY is programmed in the SPIDELAY register
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
143
PRODUCT PREVIEW
NO.
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
5
4
Master Out Data Is Valid
SPISIMO
6
Data Valid
7
Master In Data
Must Be Valid
SPISOMI
PRODUCT PREVIEW
Figure 5-11. SPI Master Mode External Timing (CLOCK PHASE = 1)
Write to buffer
SPICLK
(clock polarity=0)
SPICLK
(clock polarity=1)
SPISIMO
Master Out Data Is Valid
8
9
SPICSn
10
11
SPIENAn
Figure 5-12. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)
144
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5.9.5
SPI Slave Mode I/O Timings
Table 5-21. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = input, SPISIMO =
input, and SPISOMI = output) (1) (2) (3) (4)
1
2 (6)
3 (6)
4 (6)
5 (6)
6 (6)
7 (6)
8
9
(1)
(2)
(3)
(4)
(5)
(6)
Parameter
MIN
MAX
Unit
tc(SPC)S
Cycle time, SPICLK (5)
40
256tc(VCLK)
ns
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 0)
14
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 1)
14
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 0)
14
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 1)
14
td(SPCH-SOMI)S
Delay time, SPISOMI valid after SPICLK high (clock
polarity = 0)
trf(SOMI) + 18
td(SPCL-SOMI)S
Delay time, SPISOMI valid after SPICLK low (clock polarity
= 1)
trf(SOMI) + 18
th(SPCH-SOMI)S
Hold time, SPISOMI data valid after SPICLK high (clock
polarity =0)
2
th(SPCL-SOMI)S
Hold time, SPISOMI data valid after SPICLK low (clock
polarity =1)
2
tsu(SIMO-SPCL)S
Setup time, SPISIMO before SPICLK low (clock polarity =
0)
2
tsu(SIMO-SPCH)S
Setup time, SPISIMO before SPICLK high (clock polarity =
1)
2
th(SPCL-SIMO)S
Hold time, SPISIMO data valid after SPICLK low (clock
polarity = 0)
2
th(SPCH-SIMO)S
Hold time, SPISIMO data valid after S PICLK high (clock
polarity = 1)
2
td(SPCL-SENAH)S
Delay time, SPIENAn high after last SPICLK low (clock
polarity = 0)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
td(SPCH-SENAH)S
Delay time, SPIENAn high after last SPICLK high (clock
polarity = 1)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
td(SCSL-SENAL)S
Delay time, SPIENAn low after SPICSn low (if new data
has been written to the SPI buffer)
tf(ENAn)
tc(VCLK)+tf(ENAn)+1
4
ns
ns
ns
ns
ns
ns
ns
ns
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].
For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.
tc(VCLK) = interface clock cycle time = 1 /f(VCLK)
When the SPI is in Slave mode, the following must be true:
For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)S = 2tc(VCLK) ≥ 40ns.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
145
PRODUCT PREVIEW
NO.
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
5
4
SPISOMI Data Is Valid
SPISOMI
6
7
SPISIMO Data
Must Be Valid
SPISIMO
PRODUCT PREVIEW
Figure 5-13. SPI Slave Mode External Timing (CLOCK PHASE = 0)
SPICLK
(clock polarity=0)
SPICLK
(clock polarity=1)
8
SPIENAn
9
SPICSn
Figure 5-14. SPI Slave Mode Enable Timing (CLOCK PHASE = 0)
146
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
Table 5-22. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = input, SPISIMO =
input, and SPISOMI = output) (1) (2) (3) (4)
MIN
MAX
Unit
1
tc(SPC)S
Cycle time, SPICLK (5)
40
256tc(VCLK)
ns
(6)
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 0)
14
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 1)
14
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 0)
14
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 1)
14
td(SOMI-SPCL)S
Dealy time, SPISOMI data valid after SPICLK low
(clock polarity = 0)
trf(SOMI) + 18
td(SOMI-SPCH)S
Delay time, SPISOMI data valid after SPICLK high
(clock polarity = 1)
trf(SOMI) + 18
th(SPCL-SOMI)S
Hold time, SPISOMI data valid after SPICLK high
(clock polarity =0)
2
th(SPCH-SOMI)S
Hold time, SPISOMI data valid after SPICLK low (clock
polarity =1)
2
tsu(SIMO-SPCH)S
Setup time, SPISIMO before SPICLK high (clock
polarity = 0)
2
tsu(SIMO-SPCL)S
Setup time, SPISIMO before SPICLK low (clock polarity
= 1)
2
tv(SPCH-SIMO)S
High time, SPISIMO data valid after SPICLK high
(clock polarity = 0)
2
tv(SPCL-SIMO)S
High time, SPISIMO data valid after SPICLK low (clock
polarity = 1)
2
2
3 (6)
4 (6)
5 (6)
6 (6)
7 (6)
8
(1)
(2)
(3)
(4)
(5)
(6)
Parameter
ns
ns
ns
ns
ns
ns
td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK high
(clock polarity = 0)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
ns
td(SPCL-SENAH)S
Delay time, SPIENAn high after last SPICLK low (clock
polarity = 1)
1.5tc(VCLK)
2.5tc(VCLK)+tr(ENAn)
9
td(SCSL-SENAL)S
Delay time, SPIENAn low after SPICSn low (if new data
has been written to the SPI buffer)
tf(ENAn)
tc(VCLK)+tf(ENAn)+14
ns
10
td(SCSL-SOMI)S
Delay time, SOMI valid after SPICSn low (if new data
has been written to the SPI buffer)
tc(VCLK)
2tc(VCLK)+trf(SOMI)+8
ns
The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.
If the SPI is in slave mode, the following must be true: tc(SPC)S ≤ (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].
For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.
tc(VCLK) = interface clock cycle time = 1 /f(VCLK)
When the SPI is in Slave mode, the following must be true:
For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.
For PS values of 0: tc(SPC)S = 2tc(VCLK) ≥ 40ns.
The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).
Copyright © 2011, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
147
PRODUCT PREVIEW
NO.
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
5
4
SPISOMI
SPISOMI Data Is Valid
6
7
SPISIMO Data
Must Be Valid
SPISIMO
PRODUCT PREVIEW
Figure 5-15. SPI Slave Mode External Timing (CLOCK PHASE = 1)
SPICLK
(clock polarity=0)
SPICLK
(clock polarity=1)
8
SPIENAn
9
SPICSn
10
SPISOMI
Slave Out Data Is Valid
Figure 5-16. SPI Slave Mode Enable Timing (CLOCK PHASE = 1)
148
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5.10 Ethernet Media Access Controller
The Ethernet Media Access Controller (EMAC) provides an efficient interface between RM4x and the
network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps
in either half- or full-duplex mode, with hardware flow control and quality of service (QoS) support.
The EMAC controls the flow of packet data from the RM4x device to the PHY. The MDIO module controls
PHY configuration and status monitoring.
Both the EMAC and the MDIO modules interface to the RM4x device through a custom interface that
allows efficient data transmission and reception. This custom interface is referred to as the EMAC control
module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to
multiplex and control interrupts.
5.10.1 Ethernet MII Electrical and Timing Specifications
1
2
MII_MRXD
MII_MRXDV
MII_MRXER
PRODUCT PREVIEW
MII_MRCLK
VALID
Figure 5-17. MII Receive Timing
Table 5-23. MII Receive Timing
Description
MIN
tsu(GMIIMRXD)
Parameter
Setup time, GMIIMRXD to GMIIMRCLK rising edge
8ns
tsu(GMIIMRXDV)
Setup time, GMIIMRXDV to GMIIMRCLK rising edge
8ns
tsu(GMIIMRXER)
Setup time, GMIIMRXER to GMIIMRCLK rising edge
8ns
th(GMIIMRXD)
Hold time, GMIIMRXD valid after GMIIRCLK rising
edge
8ns
th(GMIIMRXDV)
Hold time, GMIIMRXDV valid after GMIIRCLK rising
edge
8ns
th(GMIIMRXER)
Hold time, GMIIMRXDV valid after GMIIRCLK rising
edge
8ns
Copyright © 2011, Texas Instruments Incorporated
MAX
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
149
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
1
MII_MTCLK
MII_MTXD
MII_MTXEN
VALID
Figure 5-18. MII Transmit Timing
Table 5-24. MII Transmit Timing
Parameter
Description
MIN
MAX
td(GMIIMTXD)
Delay time, GMIIMTCLK rising edge to GMIIMTXD
5ns
25ns
td(GMIIMTXEN)
Delay time, GMIIMTCLK rising edge to GMIIMTXEN
5ns
25ns
PRODUCT PREVIEW
150
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5.10.2 Management Data Input/Output (MDIO)
1
3
3
MDCLK
4
5
MDIO
(input)
Figure 5-19. MDIO Input Timing
Table 5-25. MDIO Input Timing Requirements
Parameter
Value
Unit
MIN
MAX
1
tc(MDCLK)
Cycle time, MDCLK
400
-
ns
2
tw(MDCLK)
Pulse duration, MDCLK high/low
180
-
ns
3
tt(MDCLK)
Transition time, MDCLK
-
5
ns
4
tsu(MDIO-MDCLKH)
Setup time, MDIO data input valid before MDCLK
High
10
-
ns
5
th(MDCLKH-MDIO)
Hold time, MDIO data input valid after MDCLK
High
10
-
ns
PRODUCT PREVIEW
NO.
1
MDCLK
7
MDIO
(output)
Figure 5-20. MDIO Output Timing
Table 5-26. MDIO Output Timing Requirements
NO.
Parameter
Value
MIN
1
tc(MDCLK)
Cycle time, MDCLK
7
td(MDCLKL-MDIO)
Delay time, MDCLK low to MDIO data output
valid
Copyright © 2011, Texas Instruments Incorporated
Unit
MAX
400
-
ns
0
100
ns
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
151
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
5.11 Universal Serial Bus Controller
5.11.1 Features
This device provides several varities of USB functionality, including:
• One full-speed USB device port compatible with the USB Specification Revision 2.0 and USB
Specification Revision 1.1
• Two USB host ports compatible with USB Specification Revision 2.0, which is based on the OHCI
Specification For USB Release 1.0.
5.11.2 Electrical and Timing Specifications
Table 5-27. Full-Speed USB Interface Timing Requirements (1)
NO.
PRODUCT PREVIEW
(1)
Parameter
MIN
MAX
Unit
FSU20
td(VPL, VML)
Time duration, RCVDPLS and
RCVDMNS low together during
transition
14
ns
FSU21
td(VPH,
Time duration, RCVDPLS and
RCVDMNS high together during
transition
8
ns
VMH)
The capacitive loading is equivalent tp 15 pF
Table 5-28. Full-Speed USB Interface Switching Characteristics (1)
NO.
(1)
MIN
MAX
Unit
FSU15
td(TXENL–DATV)
Parameter
Delay time TXENL active to
TXDPLS valid
0
1.5
ns
FSU16
td(TXENL–SE0V)
Delay time TXENL active to TXSE0
valid
0
1.5
ns
FSU17
ts(DAT–SE0)
Skew between TXDPLS and TXSE0
transition
1.5
ns
FSU18
td(TXENH–DATI)
Delay time TXENL inactive to
TXDPLS invalid
0
1.5
ns
FSU19
td(TXENH–SE0I)
Delay time TXENL inactive to
TXSE0 invalid
0
1.5
ns
The capacitive loading is equivalent tp 15 pF
Transmit
TXENL
FSU15
Receive
FSU18
TXDPLS
FSU16
FSU17
FSU19
TXSE0
FSU20
FSU21
FSU20
FSU21
RCVDPLS
RCVDMNS
RCVDATA
Figure 5-21. Full-Speed USB Interface – Transmit and Receive Modes
152
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
Copyright © 2011, Texas Instruments Incorporated
RM48L950
RM48L750
RM48L550
SPNS174 – SEPTEMBER 2011
www.ti.com
6 Mechanical Data
6.1
Thermal Data
Table 6-1 shows the thermal resistance characteristics for the QFP - PGE mechanical package.
Table 6-2 shows the thermal resistance characteristics for the BGA - ZWT mechanical package.
Table 6-1. Thermal Resistance Characteristics
(PGE Package)
PARAMETER
°C / W
RΘJA
45
RΘJC
5
6.2
PARAMETER
°C / W
RΘJA
18.8
RΘJC
7.1
Packaging Information
The following packaging information reflects the most current released data available for the designated
device(s). This data is subject to change without notice and without revision of this document.
Mechanical Data
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: RM48L950 RM48L750 RM48L550
153
PRODUCT PREVIEW
Table 6-2. Thermal Resistance Characteristics
(ZWT Package)
PACKAGE OPTION ADDENDUM
www.ti.com
2-Sep-2011
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
Samples
(Requires Login)
RM48L550PGET
PREVIEW
LQFP
PGE
144
1000
TBD
Call TI
Call TI
RM48L550ZWTT
PREVIEW
NFBGA
ZWT
337
1000
TBD
Call TI
Call TI
RM48L750PGET
PREVIEW
LQFP
PGE
144
1000
TBD
Call TI
Call TI
RM48L750ZWTT
PREVIEW
NFBGA
ZWT
337
1000
TBD
Call TI
Call TI
XRM48L950PGET
ACTIVE
LQFP
PGE
144
1
TBD
Call TI
Call TI
XRM48L950ZWTT
ACTIVE
NFBGA
ZWT
337
1
TBD
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MTQF017A – OCTOBER 1994 – REVISED DECEMBER 1996
PGE (S-PQFP-G144)
PLASTIC QUAD FLATPACK
108
73
109
72
0,27
0,17
0,08 M
0,50
144
0,13 NOM
37
1
36
Gage Plane
17,50 TYP
20,20 SQ
19,80
22,20
SQ
21,80
0,25
0,05 MIN
0°– 7°
0,75
0,45
1,45
1,35
Seating Plane
0,08
1,60 MAX
4040147 / C 10/96
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Communications and Telecom www.ti.com/communications
Amplifiers
amplifier.ti.com
Computers and Peripherals
www.ti.com/computers
Data Converters
dataconverter.ti.com
Consumer Electronics
www.ti.com/consumer-apps
DLP® Products
www.dlp.com
Energy and Lighting
www.ti.com/energy
DSP
dsp.ti.com
Industrial
www.ti.com/industrial
Clocks and Timers
www.ti.com/clocks
Medical
www.ti.com/medical
Interface
interface.ti.com
Security
www.ti.com/security
Logic
logic.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Power Mgmt
power.ti.com
Transportation and Automotive www.ti.com/automotive
Microcontrollers
microcontroller.ti.com
Video and Imaging
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
Wireless Connctivity
www.ti.com/wirelessconnectivity
TI E2E Community Home Page
www.ti.com/video
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated