Rev.2.1_00 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series The S-818 Series is a positive voltage regulator developed by CMOS technology and featured by low dropout voltage, high output voltage accuracy and low current consumption. Built-in low on-resistance transistor provides low dropout voltage and large output current. A ceramic capacitor of 2 µF or more can be used as an output capacitor. A shutdown circuit ensures long battery life. The SOT-23-5 miniaturized package and the SOT-89-5 package are recommended for configuring portable devices and large output current applications, respectively. Features • Low current consumption: • • • • • • • • At operation mode: Typ. 30 µA, Max. 40 µA At shutdown mode: Typ. 100 nA, Max. 500 nA Output voltage: 2.0 to 6.0 V, selectable in 0.1 V steps. High accuracy output voltage: ±2.0% Peak output current: 200 mA capable (3.0 V output product, VIN=4 V)*1 300 mA capable (5.0 V output product, VIN=6 V)*1 Low dropout voltage: Typ. 170 mV (5.0 V output product, IOUT=60 mA) A ceramic capacitor (2 µF or more) can be used as an output capacitor. Built-in shutdown circuit Small package: SOT-23-5, SOT-89-5 Lead-free products *1. Attention should be paid to the power dissipation of the package when the output current is large. Applications • Power source for battery-powered devices, personal communication devices and home electric/electronic appliances Packages Package Name SOT-23-5 SOT-89-5 Package MP005-A UP005-A Drawing Code Tape MP005-A UP005-A Seiko Instruments Inc. Reel MP005-A UP005-A 1 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Block Diagram *1 VIN ON/OFF VOUT + − ON/OFF circuit Reference voltage VSS *1. Parasitic diode Figure 1 2 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Product Code Structure 1. Product name S-818 x xx A xx - xxx T2 G IC direction in tape specifications*1 Product name (abbreviation)*2 Package name (abbreviation) MC: SOT-23-5 UC: SOT-89-5 Output voltage 20 to 60 (e.g., When the output voltage is 2.0 V, it is expressed as 20.) Product type*3 A: ON/OFF pin positive logic, high active B: ON/OFF pin negative logic, low active *1. Refer to the taping specifications at the end of this book. *2. Refer to the “Table 1” under the “2. Product name list”. *3. Refer to “3. ON/OFF pin (Shutdown pin)” in the “ Operation”. Seiko Instruments Inc. 3 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series 2. Product name list Table 1 Output Voltage SOT-23-5 SOT-89-5 2.0 V±2.0% S-818A20AMC-BGAT2G S-818A20AUC-BGAT2G 2.1 V±2.0% S-818A21AMC-BGBT2G S-818A21AUC-BGBT2G 2.2 V±2.0% S-818A22AMC-BGCT2G S-818A22AUC-BGCT2G 2.3 V±2.0% S-818A23AMC-BGDT2G S-818A23AUC-BGDT2G 2.4 V±2.0% S-818A24AMC-BGET2G S-818A24AUC-BGET2G 2.5 V±2.0% S-818A25AMC-BGFT2G S-818A25AUC-BGFT2G 2.6 V±2.0% S-818A26AMC-BGGT2G S-818A26AUC-BGGT2G 2.7 V±2.0% S-818A27AMC-BGHT2G S-818A27AUC-BGHT2G 2.8 V±2.0% S-818A28AMC-BGIT2G S-818A28AUC-BGIT2G 2.9 V±2.0% S-818A29AMC-BGJT2G S-818A29AUC-BGJT2G 3.0 V±2.0% S-818A30AMC-BGKT2G S-818A30AUC-BGKT2G 3.1 V±2.0% S-818A31AMC-BGLT2G S-818A31AUC-BGLT2G 3.2 V±2.0% S-818A32AMC-BGMT2G S-818A32AUC-BGMT2G 3.3 V±2.0% S-818A33AMC-BGNT2G S-818A33AUC-BGNT2G 3.4 V±2.0% S-818A34AMC-BGOT2G S-818A34AUC-BGOT2G 3.5 V±2.0% S-818A35AMC-BGPT2G S-818A35AUC-BGPT2G 3.6 V±2.0% S-818A36AMC-BGQT2G S-818A36AUC-BGQT2G 3.7 V±2.0% S-818A37AMC-BGRT2G S-818A37AUC-BGRT2G 3.8 V±2.0% S-818A38AMC-BGST2G S-818A38AUC-BGST2G 3.9 V±2.0% S-818A39AMC-BGTT2G S-818A39AUC-BGTT2G 4.0 V±2.0% S-818A40AMC-BGUT2G S-818A40AUC-BGUT2G 4.1 V±2.0% S-818A41AMC-BGVT2G S-818A41AUC-BGVT2G 4.2 V±2.0% S-818A42AMC-BGWT2G S-818A42AUC-BGWT2G 4.3 V±2.0% S-818A43AMC-BGXT2G S-818A43AUC-BGXT2G 4.4 V±2.0% S-818A44AMC-BGYT2G S-818A44AUC-BGYT2G 4.5 V±2.0% S-818A45AMC-BGZT2G S-818A45AUC-BGZT2G 4.6 V±2.0% S-818A46AMC-BHAT2G S-818A46AUC-BHAT2G 4.7 V±2.0% S-818A47AMC-BHBT2G S-818A47AUC-BHBT2G 4.8 V±2.0% S-818A48AMC-BHCT2G S-818A48AUC-BHCT2G 4.9 V±2.0% S-818A49AMC-BHDT2G S-818A49AUC-BHDT2G 5.0 V±2.0% S-818A50AMC-BHET2G S-818A50AUC-BHET2G 5.1 V±2.0% S-818A51AMC-BHFT2G S-818A51AUC-BHFT2G 5.2 V±2.0% S-818A52AMC-BHGT2G S-818A52AUC-BHGT2G 5.3 V±2.0% S-818A53AMC-BHHT2G S-818A53AUC-BHHT2G 5.4 V±2.0% S-818A54AMC-BHIT2G S-818A54AUC-BHIT2G 5.5 V±2.0% S-818A55AMC-BHJT2G S-818A55AUC-BHJT2G 5.6 V±2.0% S-818A56AMC-BHKT2G S-818A56AUC-BHKT2G 5.7 V±2.0% S-818A57AMC-BHLT2G S-818A57AUC-BHLT2G 5.8 V±2.0% S-818A58AMC-BHMT2G S-818A58AUC-BHMT2G 5.9 V±2.0% S-818A59AMC-BHNT2G S-818A59AUC-BHNT2G 6.0 V±2.0% S-818A60AMC-BHOT2G S-818A60AUC-BHOT2G Remark Please contact our sales office for type B products. 4 Seiko Instruments Inc. Rev.2.1_00 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Pin Configurations SOT-23-5 Top view 5 1 4 2 3 Table 2 Pin No. Symbol Pin description 1 VIN Input voltage pin 2 VSS GND pin 3 ON/OFF Shutdown pin NC*1 No connection 4 5 VOUT Output voltage pin *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS. Figure 2 SOT-89-5 Top view 5 1 4 2 Table 3 Pin No. Symbol Pin description 1 VOUT Output voltage pin 2 VSS GND pin 3 NC*1 No connection ON/OFF Shutdown pin 4 VIN Input voltage pin 5 *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS. 3 Figure 3 Seiko Instruments Inc. 5 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Absolute Maximum Ratings Table 4 (Ta=25°C unless otherwise specified) Item Input voltage Symbol Absolute Maximum Rating Unit VIN VSS−0.3 to VSS+12 VSS−0.3 to VSS+12 VSS−0.3 to VIN+0.3 250 (When not mounted on board) 600*1 500 (When not mounted on board) 1000*1 −40 to +85 −40 to +125 V V V mW mW mW mW °C °C VON/OFF VOUT Output voltage SOT-23-5 Power dissipation PD SOT-89-5 Operating ambient temperature Topr Storage temperature Tstg *1. When mounted on board [Mounted on board] (1) Board size : 114.3 mm × 76.2 mm × t1.6 mm (2) Board name : JEDEC STANDARD51-7 Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. Power Dissipation (PD) [mW] 1000 800 SOT-89-5 600 SOT-23-5 400 200 0 0 100 150 50 Ambient Temperature (Ta) [°C] Figure 4 Power Dissipation of Package (When Mounted on Board) 6 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Electrical Characteristics Table 5 Parameter Output voltage*1 *2 Symbol VOUT(E) Output current IOUT Dropout voltage*3 Vdrop Line regulation 1 Line regulation 2 Load regulation Output voltage temperature coefficient*4 Current consumption at operation Current consumption at shutdown Input voltage Shutdown pin input voltage "H" Shutdown pin input voltage "L" Shutdown pin input current "H" Shutdown pin input current "L" Ripple rejection ∆VOUT1 ∆VIN • VOUT ∆VOUT 2 ∆VIN • VOUT ∆VOUT3 ∆VOUT ∆Ta • VOUT ISS1 ISS2 VIN VSH VSL (Ta=25°C unless otherwise specified) Test Conditions Min. Typ. Max. Unit circuit VOUT(S) VOUT(S) VOUT(S) V 1 VIN=VOUT(S)+1 V, IOUT=30 mA ×1.02 ×0.98 *5 mA 3 VOUT(S)+1 V≤ 2.0 V≤VOUT(S)≤2.4 V 100 *5 VIN≤10 V mA 3 2.5 V≤VOUT(S)≤2.9 V 150 *5 mA 3 3.0 V≤VOUT(S)≤3.9 V 200 *5 mA 3 4.0 V≤VOUT(S)≤4.9 V 250 *5 mA 3 5.0 V≤VOUT(S)≤6.0 V 300 0.51 0.87 V 1 IOUT=60 mA 2.0 V≤VOUT(S)≤2.4 V 0.38 0.61 V 1 2.5 V≤VOUT(S)≤2.9 V 0.30 0.44 V 1 3.0 V≤VOUT(S)≤3.4 V 0.24 0.33 V 1 3.5 V≤VOUT(S)≤3.9 V 0.20 0.26 V 1 4.0 V≤VOUT(S)≤4.4 V 0.18 0.22 V 1 4.5 V≤VOUT(S)≤4.9 V 0.17 0.21 V 1 5.0 V≤VOUT(S)≤5.4 V 0.17 0.20 V 1 5.5 V≤VOUT(S)≤6.0 V VOUT(S)+0.5 V≤VIN≤10 V, 0.05 0.2 %/V 1 IOUT=30 mA VOUT(S)+0.5 V≤VIN≤10 V, IOUT=10 µA VIN=VOUT(S)+1 V, 10 µA≤IOUT≤80 mA VIN=VOUT(S)+1 V, IOUT=30 mA, −40°C≤Ta≤85°C VIN=VOUT(S)+1 V, ON/OFF pin=ON, no load VIN=VOUT(S)+1 V, ON/OFF pin=OFF, no load VIN=VOUT(S)+1 V, RL=1 kΩ, Judged by VOUT output level. VIN=VOUT(S)+1 V, RL=1 kΩ, Judged by VOUT output level. 0.05 0.2 %/V 1 30 50 mV 1 ±100 ppm /°C 1 30 40 µA 2 0.1 0.5 µA 2 10 V 1 1.5 V 4 0.3 V 4 ISH VIN=VOUT(S)+1 V, VON/OFF=7 V −0.1 0.1 µA 4 ISL VIN=VOUT(S)+1 V, VON/OFF=0 V −0.1 0.1 µA 4 RR VIN=VOUT(S)+1 V, f=100 Hz, ∆Vrip=0.5 V p-p, IOUT=30 mA 45 dB 5 Seiko Instruments Inc. 7 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 *1. VOUT(S)=Specified output voltage VOUT(E)=Effective output voltage i.e., The output voltage when fixing IOUT (=30 mA) and inputting VOUT(S)+1.0 V. *2. Output current at which output voltage becomes 95 % of VOUT(E) after gradually increasing output current. *3. Vdrop=VIN1*1−(VOUT(E)×0.98) *1. The Input voltage at which output voltage becomes 98 % of VOUT(E) after gradually decreasing input voltage. *4. Output voltage shift by temperature [mV/°C] is calculated using the following equation. ∆VOUT [mV/ °C]*1 = VOUT(S) [V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000 ∆Ta ∆Ta • VOUT *1. Temperature change ratio for output voltage *2. Specified output voltage *3. Output voltage temperature coefficient *5. These figures mean that every part can supply output current at least to these values 8 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Test Circuits 1. VIN + VOUT ON/OFF V VSS A + Set to power ON Figure 5 2. VIN A ON/OFF VOUT VSS Set to VIN or GND Figure 6 3. VIN VOUT ON/OFF + A V VSS + Set to power ON Figure 7 4. VIN VOUT + + A ON/OFF VSS V RL Figure 8 5. VIN VOUT ON/OFF VSS V + RL Set to power ON Figure 9 Seiko Instruments Inc. 9 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Application Conditions 0.47 µF or more 2 µF or more 10 Ω or less 10 Ω or less Input capacitor (CIN): Output capacitor (CL): Equivalent series resistor (ESR): Input series resistor (RIN) Caution A general series regulator may oscillate, depending on the external components selected. Check that no oscillation occurs with the application using the above capacitor. Standard Circuit INPUT VIN OUTPUT VOUT *1 CIN *2 CL VSS Single GND GND *1. CIN is a capacitor used to stabilize input. Use a capacitor of 0.47 µF or more *2. In addition to a tantalum capacitor, a ceramic capacitor of 2.0 µF or more can be used for CL. Figure 10 Caution The above connection diagram and constant will not guarantee successful operation. Perform through evaluation using the actual application to set the constant. Technical Terms 1. Low dropout voltage regulator The low dropout voltage regulator is a voltage regulator having a low dropout voltage characteristic due to the internal low on-resistance transistor. 2. Output voltage (VOUT) The accuracy of the output voltage is ensured at ±2.0 % under the specified conditions of input voltage, output current, and temperature, which differ product by product. Caution When the above conditions are changed, the output voltage may vary and go out of the accuracy range of the output voltage. Refer to the “ Electrical Characteristics” and “ Characteristics” for details. 3. Line regulation 1 (∆VOUT1) and Line regulation 2 (∆VOUT2) Line regulation indicates the input voltage dependence of the output voltage. The value shows how much the output voltage changes due to the change of the input voltage when the output current is kept constant. 10 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 4. Load regulation (∆VOUT3) Load regulation indicates the output current dependence of output voltage. The value shows how much the output voltage changes due to the change of the output current when the input voltage is kept constant. 5. Dropout voltage (Vdrop) Let VIN1 be an input voltage where the output voltage falls to the 98 % of the actual output voltage (VOUT(E)) when gradually decreasing input voltage. The dropout voltage is the difference between the VIN1 and the resultant output voltage defined as following equation. Vdrop=VIN1−(VOUT(E)×0.98) ∆VOUT 6. Temperature coefficient of output voltage ∆Ta • VOUT The output voltage lies in the shaded area in the whole operating temperature shown in Figure 11 when the temperature coefficient of the output voltage is ±100 ppm/°C. VOUT [V] +0.28mV/°C VOUT(E)*1 −0.28mV/°C −40 25 85 Ta [°C] *1. The value of the output voltage measured at 25°C. Figure 11 Temperature coefficient of output voltage (Ex. Typ. product for S-818A28A) Temperature change ratio for output voltage [mV/°C] is calculated by using the following equation. ∆VOUT [mV/ °C]*1 = VOUT(S) [V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000 ∆Ta ∆Ta • VOUT *1. Temperature change ratio for output voltage *2. Specified output voltage *3. Output voltage temperature coefficient Seiko Instruments Inc. 11 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Operation 1. Basic Operation Figure 12 shows the block diagram of the S-818 Series. The error amplifier compares a reference voltage (Vref) with the part of the output voltage divided by the feedback resistors Rs and Rf. It supplies the output transistor with the gate voltage, necessary to ensure certain output voltage free of any fluctuations of input voltage and temperature. VIN *1 Current source Error amplifier Vref − + Reference voltage circuit VOUT Rf RS VSS *1. Parasitic diode Figure 12 Block diagram 2. Output Transistor The S-818 Series uses a Pch MOS FET as the output transistor. Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being damaged due to inverse current flowing from VOUT pin through a parasitic diode to VIN pin. 12 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 3. ON/OFF pin (Shutdown pin) This pin activates and inactivates the regulator. When the ON/OFF pin is switched to the shutdown level, the operation of all internal circuit stops, the built-in Pch MOS FET output transistor between VIN and VOUT pin is switched off, suppressing current consumption. The VOUT pin goes to the Vss level due to internal divided resistance of several MΩ between VOUT pin and VSS pin. The structure of the ON/OFF pin is shown in Figure 13. Since the ON/OFF pin is neither pulled down nor pulled up internally, do not keep it in the floating state. Current consumption increases if a voltage of 0.3 V to VIN−0.3 V is applied to the ON/OFF pin. When the shutdown pin is not used, connect it to the VIN pin for product type "A" and to the VSS pin for product type "B". Table 6 ON/OFF pin function by product type Product type A A B B ON/OFF pin “H”: Power on “L”: Shutdown “H”: Shutdown “L”: Power on Internal circuit Operating Stop Stop Operating VOUT pin voltage Set value VSS level VSS level Set value Current consumption Iss1 Iss2 Iss2 Iss1 VIN ON/OFF VSS Figure 13 The structure of the ON/OFF Pin Selection of Output Capacitor (CL) The S-818 Series needs an output capacitor between VOUT pin and VSS pin for phase compensation. A small ceramic or an OS electrolyte capacitor of 2 µF or more can be used. When a tantalum or an aluminum electrolyte capacitor is used, the capacitance must be 2 µF or more and the ESR must be 10 Ω or less. Attention should be paid not to cause an oscillation due to increase of ESR at low temperatures when an aluminum electrolyte capacitor is used. Evaluate the performance including temperature characteristics before prototyping the circuit. Overshoot and undershoot characteristics differ depending upon the type of the output capacitor. Refer to the “CL dependence” data in “ Transient Response Characteristics”. Seiko Instruments Inc. 13 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Precautions • Wiring patterns for the VIN pin, VOUT pin and GND pin should be designed so that the impedance is low. When mounting an output capacitor (CL) or an input capacitor (CIN), the distance from the capacitor to the VOUT pin and to the VSS pin should be as short as possible. • Note that output voltage may increase when a voltage regulator is used at low load current (Less than 10 µA). • To prevent oscillation, the external components should be used under the following conditions: Input capacitor (CIN): 0.47µF or more Output capacitor (CL): 2 µF or more Equivalent series resistance (ESR): 10 Ω or less 10 Ω or less Input series resistance (RIN): • The voltage regulator may oscillate when the impedance of the power supply is high and the input capacitor is small or not connected. • The application condition for input voltage and load current should not exceed the package power dissipation. • In determining output current, attention should be paid to the output current value specified and footnote *5 in Table 5 in the “ Electrical Characteristics”. • Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit. • SII claims no responsibility for any and all disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party. 14 Seiko Instruments Inc. LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Characteristics (Typical data) 1. Output Voltage (VOUT) vs. Output Current (IOUT) (When load current increases) S-818A20A S-818A30A (Ta=25 °C) (Ta=25 °C) 3V 1.0 VOUT [V] 2.0 VOUT [V] 10 V 3.0 10 V 2.5 V 4V 5V 1.0 VIN=3.3 V 0.0 0 0.2 0.4 0.6 IOUT [A] 5V 3.5 V VIN=2.3 V 0.0 6V 4V 2.0 0.4 0.2 0 0.8 0.6 0.8 IOUT [A] S-818A50A Remark In determining necessary output current, consider the following parameters: (Ta=25 °C) 6.0 8 V 10 V VOUT [V] 5.0 1. Output current value in the “ Electrical Characteristics” and footnote *5. 2. Power dissipation of the package 4.0 7V 6V 3.0 2.0 5.5 V 1.0 VIN=5.3 V 0.0 0 0.4 0.2 0.6 0.8 IOUT [A] 2. Output voltage (VOUT) vs. Input voltage (VIN) S-818A30A (Ta=25°C) 3.5 S-818A20A (Ta=25°C) 2.5 IOUT =10µA 100µA 1m A 3.0 2.0 VOUT(V) VOUT(V) IOUT =10µA 100µA 60m A 1.5 2.5 60m A 2.0 30m A 1m A 30m A 1.5 1.0 1 2 V IN(V) 3 4 6 7 2 3 V IN(V) 4 5 VOUT(V) S-818A50A (Ta=25°C) 5.5 IO UT =10µA 100µA 1m A 5.0 60m A 4.5 30m A 4.0 4 5 V IN(V) Seiko Instruments Inc. 15 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 3. Maximum output current (IOUTmax) vs. Input voltage (VIN) S-818A20A S-818A30A 0.8 0.8 Ta=−40 °C 25 °C 0.6 IOUTmax [A] IOUTmax [A] Ta=−40 °C 0.4 85 °C 0.2 0.6 85 °C 0.4 25 °C 0.2 0.0 0.0 0 2 4 VIN [V] 6 10 8 0 2 4 6 8 10 VIN [V] S-818A50A Remark In determining necessary output current, consider the following parameters: 0.8 IOUTmax [A] 25 °C 0.6 Ta=−40 °C 1. Output current value in the “ Electrical Characteristics” and footnote *5. 2. Power dissipation of the package 85 °C 0.4 0.2 0.0 0 2 4 6 8 10 VIN [V] 4. Dropout voltage (Vdrop) vs. Output current (IOUT) S-818A20A S-818A30A 2000 Vdrop [mV] Vdrop [mV] 2000 85 °C 1500 Ta=−40 °C 1000 25 °C 500 1500 85 °C 1000 Ta=−40 °C 500 0 50 100 150 200 250 300 IOUT [mA] Vdrop [mV] 2000 1500 85 °C 1000 Ta=−40 °C 500 25 °C 0 0 100 200 300 0 100 200 IOUT [mA] S-818A50A 400 500 600 IOUT [mA] 16 25 °C 0 0 Seiko Instruments Inc. 300 400 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 5. Output voltage (VOUT) vs. Ambient temperature (Ta) S-818A20A S-818A30A VIN=3 V, IOUT=30 mA 2.04 VOUT [V] VOUT [V] 2.02 2.00 VIN=4 V, IOUT=30 mA 3.06 1.98 3.03 3.00 2.97 1.96 2.94 −50 0 50 100 Ta [°C] −50 0 50 100 Ta [°C] S-818A50A VIN=6 V, IOUT=30 mA VOUT [V] 5.10 5.05 5.00 4.95 4.90 −50 0 50 100 Ta [°C] 6. Line regulation (∆VOUT1) vs. Ambient temperature (Ta) S-818A20A/S-818A30A/S-818A50A VIN=VOUT(S)+0.5 ↔10 V, IOUT=30 mA 35 ∆VOUT1 [mV] 30 25 3V 5V 20 15 10 VOUT=2 V 5 0 −50 0 Ta [°C] 50 100 7. Load regulation (∆VOUT3) vs. Ambient temperature (Ta) S-818A20A/S-818A30A/S-818A50A VIN=VOUT(S)+1 V, IOUT=10 µA↔80 mA ∆VOUT3 [mV] 50 3V 40 30 20 5V 10 VOUT=2 V 0 −50 0 50 100 Ta [°C] Seiko Instruments Inc. 17 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 8. Current consumption (ISS1) vs. Input voltage (VIN) S-818A30A S-818A20A 40 40 25°C 25°C 30 I 1(uA) Iss1(µA) I ss11(uA) Iss1 I (µA) (µA) 30 85°C 20 85°C 20 Ta=-40°C 10 10 Ta=-40°C 0 0 0 2 4 V[V] I N(V) VIN 6 8 10 6 8 10 0 2 4 V[V] I N(V) VIN 6 8 10 S-818A50A 40 Iss1(µA) I 1(uA) 30 85°C 20 25°C Ta=-40°C 10 0 0 2 4 N(V) VV INI[V] 9. Threshold voltage of ON/OFF pin (VSH/VSL) vs. Input voltage (VIN) S-818A20A S-818A30A 2.5 2.0 VSH/VSL [V] VSH/VSL [V] 2.5 VSH 1.5 1.0 0.5 2.0 1.0 0.5 VSL 0.0 4 6 VIN [V] 8 10 VSH/VSL [V] 2.5 2.0 VSH 1.5 1.0 0.5 VSL 0.0 6 8 3 5 7 VIN [V] S-818A50A 9 10 VIN [V] 18 VSL 0.0 2 5 VSH 1.5 Seiko Instruments Inc. 8 10 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 10. Ripple rejection S-818A20A Ripple Rejection [dB] 0 VIN=3 V, IOUT=30 mA, CIN=None, COUT=2 µF, 0.5 V p-p, Ta=25 °C −20 −40 −60 −80 −100 0.1 1 f [kHz] 10 100 S-818A30A VIN=4 V, IOUT=30 mA, CIN=None, COUT=2 µF, 0.5 V p-p, Ta=25 °C Ripple Rejection [dB] 0 −20 −40 −60 −80 −100 0.1 1 f [kHz] 10 100 S-818A50A VIN=6 V, IOUT=30 mA, CIN=None, COUT=2 µF, 0.5 V p-p, Ta=25 °C Ripple Rejection [dB] 0 −20 −40 −60 −80 −100 0.1 1 f [kHz] Seiko Instruments Inc. 10 100 19 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Transient Response Characteristics (S-818A30A, Typical data, Ta=25°C) In p u t v o lta g e or L o a d c u rre n t O v e rs h o o t O u tp u t v o lta g e U n d e rs h o o t 1. Power on VIN =0→10V IOUT=30mA 10V VOUT(0.5V/div) 0V CL=4.7µF VIN CL=2µF VOUT 0V TIME(50usec/div) Load dependence of overshoot 1.0 VIN=0 V→VOUT(S)+1 V, IOUT =30 mA 1.0 5V 0.8 0.6 Over Shoot [V] Over Shoot [V] CL dependence of overshoot VIN=0 V→VOUT(S)+1 V, CL=2 µF 3V 0.4 VOUT=2 V 0.2 0.8 VOUT=2 V 0.6 0.4 0.0 1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00 1 10 IOUT [V] Temperature dependence of overshoot VIN=0 V→VDD, IOUT=30 mA, CL=2 µF VIN=0 V→VOUT(S)+1 V, IOUT=30 mA, CL=2 µF 1.0 5V 0.8 3V Over Shoot [V] Over Shoot [V] 100 CL [µF] VDD dependence of overshoot 0.6 VOUT=2 V 0.4 0.2 0.0 3V 0.8 5V VOUT=2 V 0.6 0.4 0.2 0.0 0 2 4 6 8 10 VDD [V] 20 5V 0.2 0.0 1.0 3V Seiko Instruments Inc. −50 0 50 Ta [°C] 100 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 2. Shutdown control VIN =10V ON/OFF=0→10V IOUT=30mA 10V CL=4.7µF 0V VOUT(0.5V/div) ON/OFF VIN CL=2µF VOUT 0V TIME(50usec/div) Load dependencies of overshoot CL dependence of overshoot VIN=VOUT(S)+1 V, CL=2 µF, ON/OFF=0 V→VOUT(S)+1 V VIN=VOUT(S)+1 V, CL=2 µF, ON/OFF=0 V→VOUT(S)+1 V 1.0 5V 0.8 Over Shoot [V] Over Shoot [V] 1.0 0.6 3V 0.4 VOUT=2 V 0.2 VOUT=2 V 0.8 3V 0.6 0.4 0.2 0.0 0.0 1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00 1 10 IOUT [A] Temperature dependence of overshoot VIN=VDD, IOUT=30 mA, CL=2 µF, ON/OFF=0 V→VDD 1.0 VIN=VOUT(S)+1 V, IOUT=30 mA, CL=2 µF, ON/OFF=0 V→VOUT(S)+1 V 1.0 0.8 VOUT=2 V 0.8 Over Shoot [V] 5V 0.6 3V 0.4 0.2 VOUT=2 V 2 5V 3V 0.6 0.4 0.2 0.0 0.0 0 100 CL [µF] VDD dependencies of overshoot Over Shoot [V] 5V 4 6 8 10 VDD [V] Seiko Instruments Inc. −50 0 Ta [°C] 50 100 21 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 3. Power fluctuation VIN =10→4V IOUT=30mA VIN =4→10V IOUT=30mA 10V VIN 4V CL=2µF VOUT VOUT(0.2V/div) VOUT(0.2V/div) 10V CL=4.7µF 3V VIN 4V CL=4.7µF VOUT 3V CL=2µF TIME(50usec/div) TIME(50usec/div) Load dependencies of overshoot VOUT=2 V 0.2 3V 0.04 VOUT=2 V 0.03 3V 0.02 0.01 5V 0 5V 0 1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00 IOUT [A] VDD dependencies of overshoot 1 10 CL [µF] VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=30 mA, CL=2 µF 0.06 Over Shoot [V] 3V 0.4 VOUT=2 V 5V 0.2 0.05 VOUT=2 V 3V 0.04 0.03 0.02 0.01 0 5V 0 0 2 4 6 VDD [V] 22 100 Temperature dependence VIN=VOUT(S)+1 V→VDD, IOUT=30 mA, CL=2 µF 0.6 Over Shoot [V] VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=30 mA 0.05 Over Shoot [V] 0.6 0.4 Over Shoot [V] CL dependence of overshoot VIN=VOUT(S)+1 V→VOUT(S)+2 V, CL=2 µF 8 10 −50 0 50 Ta [°C] Seiko Instruments Inc. 100 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Load dependencies of undershoot 0.3 5V 0.2 VOUT=2 V 3V 0.1 VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=30 mA 0.05 Under Shoot [V] Under Shoot [V] CL dependence of undershoot VIN=VOUT(S)+2 V→VOUT(S)+1 V, CL=2 µF 0.04 3V 0.03 VOUT=2 V 0.02 0.01 0 5V 0 1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00 1 CL [µF] VDD dependencies of undershoot Temperature dependence of undershoot VIN=VDD→VOUT(S)+1 V, IOUT=30 mA, CL=2 µF VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=30 mA, CL=2 µF 0.2 0.06 5V 0.15 Under Shoot [V] Under Shoot [V] 100 10 IOUT [A] 3V 0.1 VOUT=2 V 0.05 0.05 3V VOUT=2 V 0.04 0.03 0.02 5V 0.01 0 0 2 4 6 8 0 10 −50 0 50 100 Ta [°C] VDD [V] Seiko Instruments Inc. 23 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 4. Load fluctuation IOUT=10µA→30mA VIN =4V 30mA 30mA 10 µA 10 µA IOUT VOUT(0.1V/div) VOUT(0.2V/div) IOUT=30mA→10µA VIN =4V CL=2µF VOUT 3V IOUT CL=2µF CL=4.7µF 3V CL=4.7µF VOUT TIME(50µsec/div) TIME(20msec/div) Load current dependence of load fluctuation overshoot CL dependence of overshoot VIN=VOUT(S)+1 V, CL=2 µF VIN=VOUT(S),+1 V, IOUT=30 mA→10 µA 0.2 5V 0.8 0.6 Over Shoot [V] Over Shoot [V] 1.0 3V 0.4 0.2 VOUT=2 V 0.0 1.E−03 1.E−02 1.E−01 VOUT=2 V 0.15 3V 0.1 5V 0.05 0 1.E+00 1 ∆IOUT [A] 10 CL [µF] 100 Remark ∆IOUT shows larger load current at load current fluctuation while smaller current is fixed to 10 µA. For example ∆IOUT=1.E−02 (A) means load current fluctuation from 10 mA to 10 µA. VDD dependencies of overshoot Temperature dependence of overshoot VIN=VOUT(S)+1 V, IOUT=30 mA→10 µA, CL=2 µF VIN=VDD, IOUT=30 mA→10 µA, CL=2 µF 0.3 3V 0.2 Over Shoot [V] Over Shoot [V] 0.3 0.1 VOUT=2 V 3V 0.2 0.15 0.1 VOUT=2 V 0.05 5V 0 5V 0 0 2 4 6 VDD [V] 24 0.25 8 10 −50 Seiko Instruments Inc. 0 50 Ta [°C] 100 LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series Rev.2.1_00 Load current dependence of load fluctuation undershoot CL dependence of undershoot VIN=IOUT(S)+1 V, CL=2 µF 0.8 3V 0.6 5V 0.4 0.2 VIN=VOUT(S)+1 V, IOUT=10 µA→30 mA 0.4 Under Shoot [V] Under Shoot [V] 1.0 0.3 3V 0.2 0.1 5V VOUT=2 V 0.0 0 1.E−03 1.E−02 1.E00 1.E−01 VOUT=2 V 10 CL [µF] 1 ∆IOUT [A] 100 Remark ∆IOUT shows larger load current at load current fluctuation while smaller current is fixed to 10 µA. For example ∆IOUT=1.E−02 (A) means load current fluctuation from 10 µA to 10 mA. VDD dependence of undershoot Temperature dependence of undershoot VIN=VDD, IOUT=10 µA→30 mA, CL=2 µF VIN=VOUT(S)+1 V, IOUT=10 µA→30 mA, CL=2 µF 0.5 3V Under Shoot [V] Under Shoot [V] 0.4 0.3 0.2 VOUT=2 V 0.1 5V VOUT=2 V 0.4 3V 0.3 0.2 5V 0.1 0 0 0 2 6 4 VDD [V] 8 10 −50 Seiko Instruments Inc. 0 Ta [°C] 50 100 25 2.9±0.2 1.9±0.2 4 5 1 2 +0.1 0.16 -0.06 3 0.95±0.1 0.4±0.1 No. MP005-A-P-SD-1.2 TITLE No. SOT235-A-PKG Dimensions MP005-A-P-SD-1.2 SCALE UNIT mm Seiko Instruments Inc. 4.0±0.1(10 pitches:40.0±0.2) +0.1 ø1.5 -0 2.0±0.05 +0.2 ø1.0 -0 0.25±0.1 4.0±0.1 1.4±0.2 3.2±0.2 3 2 1 4 5 Feed direction No. MP005-A-C-SD-2.1 TITLE SOT235-A-Carrier Tape No. MP005-A-C-SD-2.1 SCALE UNIT mm Seiko Instruments Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. MP005-A-R-SD-1.1 SOT235-A-Reel TITLE No. MP005-A-R-SD-1.1 SCALE QTY. UNIT mm Seiko Instruments Inc. 3,000 4.5±0.1 1.5±0.1 1.6±0.2 5 1 4 2 3 1.5±0.1 1.5±0.1 0.4±0.05 0.3 0.4±0.1 0.4±0.1 45° 0.45±0.1 No. UP005-A-P-SD-1.1 TITLE SOT895-A-PKG Dimensions UP005-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 4.0±0.1(10 pitches : 40.0±0.2) ø1.5 +0.1 -0 2.0±0.05 5° max. ø1.5 +0.1 -0 0.3±0.05 8.0±0.1 2.0±0.1 4.75±0.1 3 2 1 4 5 Feed direction No. UP005-A-C-SD-1.1 TITLE SOT895-A-Carrier Tape UP005-A-C-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 16.5max. 13.0±0.3 Enlarged drawing in the central part (60°) (60°) No. UP005-A-R-SD-1.1 TITLE SOT895-A-Reel No. UP005-A-R-SD-1.1 SCALE QTY. UNIT mm Seiko Instruments Inc. 1,000 • • • • • • The information described herein is subject to change without notice. Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited. The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc. Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.