SII S-818A43AMC

Rev.2.1_00
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
The S-818 Series is a positive voltage regulator
developed by CMOS technology and featured by low
dropout voltage, high output voltage accuracy and low
current consumption.
Built-in low on-resistance transistor provides low
dropout voltage and large output current. A ceramic
capacitor of 2 µF or more can be used as an output
capacitor. A shutdown circuit ensures long battery life.
The SOT-23-5 miniaturized package and the SOT-89-5
package are recommended for configuring portable
devices and large output current applications,
respectively.
„ Features
• Low current consumption:
•
•
•
•
•
•
•
•
At operation mode: Typ. 30 µA, Max. 40 µA
At shutdown mode: Typ. 100 nA, Max. 500 nA
Output voltage:
2.0 to 6.0 V, selectable in 0.1 V steps.
High accuracy output voltage: ±2.0%
Peak output current:
200 mA capable (3.0 V output product, VIN=4 V)*1
300 mA capable (5.0 V output product, VIN=6 V)*1
Low dropout voltage:
Typ. 170 mV (5.0 V output product, IOUT=60 mA)
A ceramic capacitor (2 µF or more) can be used as an output capacitor.
Built-in shutdown circuit
Small package:
SOT-23-5, SOT-89-5
Lead-free products
*1. Attention should be paid to the power dissipation of the package when the output current is large.
„ Applications
• Power source for battery-powered devices, personal communication devices and home electric/electronic
appliances
„ Packages
Package Name
SOT-23-5
SOT-89-5
Package
MP005-A
UP005-A
Drawing Code
Tape
MP005-A
UP005-A
Seiko Instruments Inc.
Reel
MP005-A
UP005-A
1
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
„ Block Diagram
*1
VIN
ON/OFF
VOUT
+
−
ON/OFF
circuit
Reference
voltage
VSS
*1. Parasitic diode
Figure 1
2
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
„ Product Code Structure
1. Product name
S-818
x
xx
A
xx
-
xxx
T2
G
IC direction in tape specifications*1
Product name (abbreviation)*2
Package name (abbreviation)
MC: SOT-23-5
UC: SOT-89-5
Output voltage
20 to 60
(e.g., When the output voltage is 2.0 V,
it is expressed as 20.)
Product type*3
A: ON/OFF pin positive logic, high active
B: ON/OFF pin negative logic, low active
*1. Refer to the taping specifications at the end of this book.
*2. Refer to the “Table 1” under the “2. Product name list”.
*3. Refer to “3. ON/OFF pin (Shutdown pin)” in the “„ Operation”.
Seiko Instruments Inc.
3
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
2. Product name list
Table 1
Output Voltage
SOT-23-5
SOT-89-5
2.0 V±2.0%
S-818A20AMC-BGAT2G
S-818A20AUC-BGAT2G
2.1 V±2.0%
S-818A21AMC-BGBT2G
S-818A21AUC-BGBT2G
2.2 V±2.0%
S-818A22AMC-BGCT2G
S-818A22AUC-BGCT2G
2.3 V±2.0%
S-818A23AMC-BGDT2G
S-818A23AUC-BGDT2G
2.4 V±2.0%
S-818A24AMC-BGET2G
S-818A24AUC-BGET2G
2.5 V±2.0%
S-818A25AMC-BGFT2G
S-818A25AUC-BGFT2G
2.6 V±2.0%
S-818A26AMC-BGGT2G
S-818A26AUC-BGGT2G
2.7 V±2.0%
S-818A27AMC-BGHT2G
S-818A27AUC-BGHT2G
2.8 V±2.0%
S-818A28AMC-BGIT2G
S-818A28AUC-BGIT2G
2.9 V±2.0%
S-818A29AMC-BGJT2G
S-818A29AUC-BGJT2G
3.0 V±2.0%
S-818A30AMC-BGKT2G
S-818A30AUC-BGKT2G
3.1 V±2.0%
S-818A31AMC-BGLT2G
S-818A31AUC-BGLT2G
3.2 V±2.0%
S-818A32AMC-BGMT2G
S-818A32AUC-BGMT2G
3.3 V±2.0%
S-818A33AMC-BGNT2G
S-818A33AUC-BGNT2G
3.4 V±2.0%
S-818A34AMC-BGOT2G
S-818A34AUC-BGOT2G
3.5 V±2.0%
S-818A35AMC-BGPT2G
S-818A35AUC-BGPT2G
3.6 V±2.0%
S-818A36AMC-BGQT2G
S-818A36AUC-BGQT2G
3.7 V±2.0%
S-818A37AMC-BGRT2G
S-818A37AUC-BGRT2G
3.8 V±2.0%
S-818A38AMC-BGST2G
S-818A38AUC-BGST2G
3.9 V±2.0%
S-818A39AMC-BGTT2G
S-818A39AUC-BGTT2G
4.0 V±2.0%
S-818A40AMC-BGUT2G
S-818A40AUC-BGUT2G
4.1 V±2.0%
S-818A41AMC-BGVT2G
S-818A41AUC-BGVT2G
4.2 V±2.0%
S-818A42AMC-BGWT2G
S-818A42AUC-BGWT2G
4.3 V±2.0%
S-818A43AMC-BGXT2G
S-818A43AUC-BGXT2G
4.4 V±2.0%
S-818A44AMC-BGYT2G
S-818A44AUC-BGYT2G
4.5 V±2.0%
S-818A45AMC-BGZT2G
S-818A45AUC-BGZT2G
4.6 V±2.0%
S-818A46AMC-BHAT2G
S-818A46AUC-BHAT2G
4.7 V±2.0%
S-818A47AMC-BHBT2G
S-818A47AUC-BHBT2G
4.8 V±2.0%
S-818A48AMC-BHCT2G
S-818A48AUC-BHCT2G
4.9 V±2.0%
S-818A49AMC-BHDT2G
S-818A49AUC-BHDT2G
5.0 V±2.0%
S-818A50AMC-BHET2G
S-818A50AUC-BHET2G
5.1 V±2.0%
S-818A51AMC-BHFT2G
S-818A51AUC-BHFT2G
5.2 V±2.0%
S-818A52AMC-BHGT2G
S-818A52AUC-BHGT2G
5.3 V±2.0%
S-818A53AMC-BHHT2G
S-818A53AUC-BHHT2G
5.4 V±2.0%
S-818A54AMC-BHIT2G
S-818A54AUC-BHIT2G
5.5 V±2.0%
S-818A55AMC-BHJT2G
S-818A55AUC-BHJT2G
5.6 V±2.0%
S-818A56AMC-BHKT2G
S-818A56AUC-BHKT2G
5.7 V±2.0%
S-818A57AMC-BHLT2G
S-818A57AUC-BHLT2G
5.8 V±2.0%
S-818A58AMC-BHMT2G
S-818A58AUC-BHMT2G
5.9 V±2.0%
S-818A59AMC-BHNT2G
S-818A59AUC-BHNT2G
6.0 V±2.0%
S-818A60AMC-BHOT2G
S-818A60AUC-BHOT2G
Remark Please contact our sales office for type B products.
4
Seiko Instruments Inc.
Rev.2.1_00
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
„ Pin Configurations
SOT-23-5
Top view
5
1
4
2
3
Table 2
Pin No.
Symbol
Pin description
1
VIN
Input voltage pin
2
VSS
GND pin
3
ON/OFF
Shutdown pin
NC*1
No connection
4
5
VOUT
Output voltage pin
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Figure 2
SOT-89-5
Top view
5
1
4
2
Table 3
Pin No.
Symbol
Pin description
1
VOUT
Output voltage pin
2
VSS
GND pin
3
NC*1
No connection
ON/OFF
Shutdown pin
4
VIN
Input voltage pin
5
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
3
Figure 3
Seiko Instruments Inc.
5
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
„ Absolute Maximum Ratings
Table 4
(Ta=25°C unless otherwise specified)
Item
Input voltage
Symbol
Absolute Maximum Rating
Unit
VIN
VSS−0.3 to VSS+12
VSS−0.3 to VSS+12
VSS−0.3 to VIN+0.3
250 (When not mounted on board)
600*1
500 (When not mounted on board)
1000*1
−40 to +85
−40 to +125
V
V
V
mW
mW
mW
mW
°C
°C
VON/OFF
VOUT
Output voltage
SOT-23-5
Power dissipation
PD
SOT-89-5
Operating ambient temperature
Topr
Storage temperature
Tstg
*1. When mounted on board
[Mounted on board]
(1) Board size :
114.3 mm × 76.2 mm × t1.6 mm
(2) Board name : JEDEC STANDARD51-7
Caution The absolute maximum ratings are rated values exceeding which the product could suffer
physical damage. These values must therefore not be exceeded under any conditions.
Power Dissipation (PD) [mW]
1000
800
SOT-89-5
600
SOT-23-5
400
200
0
0
100
150
50
Ambient Temperature (Ta) [°C]
Figure 4 Power Dissipation of Package (When Mounted on Board)
6
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
„ Electrical Characteristics
Table 5
Parameter
Output voltage*1
*2
Symbol
VOUT(E)
Output current
IOUT
Dropout voltage*3
Vdrop
Line regulation 1
Line regulation 2
Load regulation
Output voltage
temperature coefficient*4
Current consumption
at operation
Current consumption
at shutdown
Input voltage
Shutdown pin
input voltage "H"
Shutdown pin
input voltage "L"
Shutdown pin
input current "H"
Shutdown pin
input current "L"
Ripple rejection
∆VOUT1
∆VIN • VOUT
∆VOUT 2
∆VIN • VOUT
∆VOUT3
∆VOUT
∆Ta • VOUT
ISS1
ISS2
VIN
VSH
VSL
(Ta=25°C unless otherwise specified)
Test
Conditions
Min.
Typ. Max. Unit
circuit
VOUT(S) VOUT(S) VOUT(S)
V
1
VIN=VOUT(S)+1 V, IOUT=30 mA
×1.02
×0.98
*5
mA 3
VOUT(S)+1 V≤ 2.0 V≤VOUT(S)≤2.4 V 100


*5
VIN≤10 V
mA 3
2.5 V≤VOUT(S)≤2.9 V 150


*5
mA 3
3.0 V≤VOUT(S)≤3.9 V 200


*5
mA 3
4.0 V≤VOUT(S)≤4.9 V 250


*5
mA 3
5.0 V≤VOUT(S)≤6.0 V 300


0.51
0.87
V
1
IOUT=60 mA 2.0 V≤VOUT(S)≤2.4 V

0.38
0.61
V
1
2.5 V≤VOUT(S)≤2.9 V

0.30
0.44
V
1
3.0 V≤VOUT(S)≤3.4 V

0.24
0.33
V
1
3.5 V≤VOUT(S)≤3.9 V

0.20
0.26
V
1
4.0 V≤VOUT(S)≤4.4 V

0.18
0.22
V
1
4.5 V≤VOUT(S)≤4.9 V

0.17
0.21
V
1
5.0 V≤VOUT(S)≤5.4 V

0.17
0.20
V
1
5.5 V≤VOUT(S)≤6.0 V

VOUT(S)+0.5 V≤VIN≤10 V,
0.05
0.2 %/V 1

IOUT=30 mA
VOUT(S)+0.5 V≤VIN≤10 V,
IOUT=10 µA
VIN=VOUT(S)+1 V,
10 µA≤IOUT≤80 mA
VIN=VOUT(S)+1 V, IOUT=30 mA,
−40°C≤Ta≤85°C
VIN=VOUT(S)+1 V,
ON/OFF pin=ON, no load
VIN=VOUT(S)+1 V,
ON/OFF pin=OFF, no load

VIN=VOUT(S)+1 V, RL=1 kΩ,
Judged by VOUT output level.
VIN=VOUT(S)+1 V, RL=1 kΩ,
Judged by VOUT output level.

0.05
0.2
%/V
1

30
50
mV
1

±100

ppm
/°C
1

30
40
µA
2

0.1
0.5
µA
2


10
V
1
1.5


V
4


0.3
V
4
ISH
VIN=VOUT(S)+1 V, VON/OFF=7 V
−0.1

0.1
µA
4
ISL
VIN=VOUT(S)+1 V, VON/OFF=0 V
−0.1

0.1
µA
4
RR
VIN=VOUT(S)+1 V, f=100 Hz,
∆Vrip=0.5 V p-p, IOUT=30 mA

45

dB
5
Seiko Instruments Inc.
7
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
*1. VOUT(S)=Specified output voltage
VOUT(E)=Effective output voltage
i.e., The output voltage when fixing IOUT (=30 mA) and inputting VOUT(S)+1.0 V.
*2. Output current at which output voltage becomes 95 % of VOUT(E) after gradually increasing output current.
*3. Vdrop=VIN1*1−(VOUT(E)×0.98)
*1. The Input voltage at which output voltage becomes 98 % of VOUT(E) after gradually decreasing input
voltage.
*4. Output voltage shift by temperature [mV/°C] is calculated using the following equation.
∆VOUT
[mV/ °C]*1 = VOUT(S) [V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000
∆Ta
∆Ta • VOUT
*1. Temperature change ratio for output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
*5. These figures mean that every part can supply output current at least to these values
8
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
„ Test Circuits
1.
VIN
+
VOUT
ON/OFF
V
VSS
A
+
Set to
power ON
Figure 5
2.
VIN
A
ON/OFF
VOUT
VSS
Set to
VIN or GND
Figure 6
3.
VIN
VOUT
ON/OFF
+
A
V
VSS
+
Set to
power ON
Figure 7
4.
VIN
VOUT
+
+
A
ON/OFF
VSS
V
RL
Figure 8
5.
VIN
VOUT
ON/OFF
VSS
V
+
RL
Set to
power ON
Figure 9
Seiko Instruments Inc.
9
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
„ Application Conditions
0.47 µF or more
2 µF or more
10 Ω or less
10 Ω or less
Input capacitor (CIN):
Output capacitor (CL):
Equivalent series resistor (ESR):
Input series resistor (RIN)
Caution A general series regulator may oscillate, depending on the external components selected.
Check that no oscillation occurs with the application using the above capacitor.
„ Standard Circuit
INPUT
VIN
OUTPUT
VOUT
*1
CIN
*2
CL
VSS
Single GND
GND
*1. CIN is a capacitor used to stabilize input. Use a capacitor of 0.47 µF or more
*2. In addition to a tantalum capacitor, a ceramic capacitor of 2.0 µF or more can be used for CL.
Figure 10
Caution The above connection diagram and constant will not guarantee successful operation.
Perform through evaluation using the actual application to set the constant.
„ Technical Terms
1. Low dropout voltage regulator
The low dropout voltage regulator is a voltage regulator having a low dropout voltage characteristic due to
the internal low on-resistance transistor.
2. Output voltage (VOUT)
The accuracy of the output voltage is ensured at ±2.0 % under the specified conditions of input voltage,
output current, and temperature, which differ product by product.
Caution When the above conditions are changed, the output voltage may vary and go out of the
accuracy range of the output voltage. Refer to the “„ Electrical Characteristics” and
“„ Characteristics” for details.
3. Line regulation 1 (∆VOUT1) and Line regulation 2 (∆VOUT2)
Line regulation indicates the input voltage dependence of the output voltage. The value shows how much
the output voltage changes due to the change of the input voltage when the output current is kept
constant.
10
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
4. Load regulation (∆VOUT3)
Load regulation indicates the output current dependence of output voltage. The value shows how much
the output voltage changes due to the change of the output current when the input voltage is kept
constant.
5. Dropout voltage (Vdrop)
Let VIN1 be an input voltage where the output voltage falls to the 98 % of the actual output voltage
(VOUT(E)) when gradually decreasing input voltage. The dropout voltage is the difference between the VIN1
and the resultant output voltage defined as following equation.
Vdrop=VIN1−(VOUT(E)×0.98)
 ∆VOUT 
6. Temperature coefficient of output voltage 

 ∆Ta • VOUT 
The output voltage lies in the shaded area in the whole operating temperature shown in Figure 11 when
the temperature coefficient of the output voltage is ±100 ppm/°C.
VOUT [V]
+0.28mV/°C
VOUT(E)*1
−0.28mV/°C
−40
25
85
Ta [°C]
*1. The value of the output voltage measured at 25°C.
Figure 11 Temperature coefficient of output voltage (Ex. Typ. product for S-818A28A)
Temperature change ratio for output voltage [mV/°C] is calculated by using the following equation.
∆VOUT
[mV/ °C]*1 = VOUT(S) [V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000
∆Ta
∆Ta • VOUT
*1. Temperature change ratio for output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
Seiko Instruments Inc.
11
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
„ Operation
1. Basic Operation
Figure 12 shows the block diagram of the S-818 Series.
The error amplifier compares a reference voltage (Vref) with the part of the output voltage divided by the
feedback resistors Rs and Rf. It supplies the output transistor with the gate voltage, necessary to ensure
certain output voltage free of any fluctuations of input voltage and temperature.
VIN
*1
Current source
Error amplifier
Vref
−
+
Reference
voltage circuit
VOUT
Rf
RS
VSS
*1. Parasitic diode
Figure 12 Block diagram
2. Output Transistor
The S-818 Series uses a Pch MOS FET as the output transistor.
Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being damaged due to
inverse current flowing from VOUT pin through a parasitic diode to VIN pin.
12
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
3. ON/OFF pin (Shutdown pin)
This pin activates and inactivates the regulator.
When the ON/OFF pin is switched to the shutdown level, the operation of all internal circuit stops, the
built-in Pch MOS FET output transistor between VIN and VOUT pin is switched off, suppressing current
consumption. The VOUT pin goes to the Vss level due to internal divided resistance of several MΩ
between VOUT pin and VSS pin.
The structure of the ON/OFF pin is shown in Figure 13. Since the ON/OFF pin is neither pulled down nor
pulled up internally, do not keep it in the floating state. Current consumption increases if a voltage of
0.3 V to VIN−0.3 V is applied to the ON/OFF pin. When the shutdown pin is not used, connect it to the VIN
pin for product type "A" and to the VSS pin for product type "B".
Table 6 ON/OFF pin function by product type
Product type
A
A
B
B
ON/OFF pin
“H”: Power on
“L”: Shutdown
“H”: Shutdown
“L”: Power on
Internal circuit
Operating
Stop
Stop
Operating
VOUT pin voltage
Set value
VSS level
VSS level
Set value
Current consumption
Iss1
Iss2
Iss2
Iss1
VIN
ON/OFF
VSS
Figure 13 The structure of the ON/OFF Pin
„ Selection of Output Capacitor (CL)
The S-818 Series needs an output capacitor between VOUT pin and VSS pin for phase compensation. A
small ceramic or an OS electrolyte capacitor of 2 µF or more can be used. When a tantalum or an
aluminum electrolyte capacitor is used, the capacitance must be 2 µF or more and the ESR must be 10 Ω
or less.
Attention should be paid not to cause an oscillation due to increase of ESR at low temperatures when an
aluminum electrolyte capacitor is used.
Evaluate the performance including temperature characteristics before prototyping the circuit.
Overshoot and undershoot characteristics differ depending upon the type of the output capacitor. Refer
to the “CL dependence” data in “„ Transient Response Characteristics”.
Seiko Instruments Inc.
13
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
„ Precautions
• Wiring patterns for the VIN pin, VOUT pin and GND pin should be designed so that the impedance is low.
When mounting an output capacitor (CL) or an input capacitor (CIN), the distance from the capacitor to the
VOUT pin and to the VSS pin should be as short as possible.
• Note that output voltage may increase when a voltage regulator is used at low load current (Less than
10 µA).
• To prevent oscillation, the external components should be used under the following conditions:
Input capacitor (CIN):
0.47µF or more
Output capacitor (CL):
2 µF or more
Equivalent series resistance (ESR): 10 Ω or less
10 Ω or less
Input series resistance (RIN):
• The voltage regulator may oscillate when the impedance of the power supply is high and the input
capacitor is small or not connected.
• The application condition for input voltage and load current should not exceed the package power
dissipation.
• In determining output current, attention should be paid to the output current value specified and footnote *5
in Table 5 in the “„ Electrical Characteristics”.
• Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in
electrostatic protection circuit.
• SII claims no responsibility for any and all disputes arising out of or in connection with any infringement by
products including this IC of patents owned by a third party.
14
Seiko Instruments Inc.
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
„ Characteristics (Typical data)
1. Output Voltage (VOUT) vs. Output Current (IOUT) (When load current increases)
S-818A20A
S-818A30A
(Ta=25 °C)
(Ta=25 °C)
3V
1.0
VOUT [V]
2.0
VOUT [V]
10 V
3.0
10 V
2.5 V
4V
5V
1.0
VIN=3.3 V
0.0
0
0.2
0.4
0.6
IOUT [A]
5V
3.5 V
VIN=2.3 V
0.0
6V
4V
2.0
0.4
0.2
0
0.8
0.6
0.8
IOUT [A]
S-818A50A
Remark In determining necessary output current,
consider the following parameters:
(Ta=25 °C)
6.0
8 V 10 V
VOUT [V]
5.0
1. Output current value in the “„ Electrical
Characteristics” and footnote *5.
2. Power dissipation of the package
4.0
7V
6V
3.0
2.0
5.5 V
1.0
VIN=5.3 V
0.0
0
0.4
0.2
0.6
0.8
IOUT [A]
2. Output voltage (VOUT) vs. Input voltage (VIN)
S-818A30A (Ta=25°C)
3.5
S-818A20A (Ta=25°C)
2.5
IOUT =10µA
100µA
1m A
3.0
2.0
VOUT(V)
VOUT(V)
IOUT =10µA
100µA
60m A
1.5
2.5
60m A
2.0
30m A
1m A
30m A
1.5
1.0
1
2
V IN(V)
3
4
6
7
2
3
V IN(V)
4
5
VOUT(V)
S-818A50A (Ta=25°C)
5.5
IO UT =10µA
100µA
1m A
5.0
60m A
4.5
30m A
4.0
4
5
V IN(V)
Seiko Instruments Inc.
15
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
3. Maximum output current (IOUTmax) vs. Input voltage (VIN)
S-818A20A
S-818A30A
0.8
0.8
Ta=−40 °C
25 °C
0.6
IOUTmax [A]
IOUTmax [A]
Ta=−40 °C
0.4
85 °C
0.2
0.6
85 °C
0.4
25 °C
0.2
0.0
0.0
0
2
4
VIN [V]
6
10
8
0
2
4
6
8
10
VIN [V]
S-818A50A
Remark In determining necessary output current,
consider the following parameters:
0.8
IOUTmax [A]
25 °C
0.6
Ta=−40 °C
1. Output current value in the “„ Electrical
Characteristics” and footnote *5.
2. Power dissipation of the package
85 °C
0.4
0.2
0.0
0
2
4
6
8
10
VIN [V]
4. Dropout voltage (Vdrop) vs. Output current (IOUT)
S-818A20A
S-818A30A
2000
Vdrop [mV]
Vdrop [mV]
2000
85 °C
1500
Ta=−40 °C
1000
25 °C
500
1500
85 °C
1000
Ta=−40 °C
500
0
50
100
150
200
250
300
IOUT [mA]
Vdrop [mV]
2000
1500
85 °C
1000
Ta=−40 °C
500
25 °C
0
0
100
200
300
0
100
200
IOUT [mA]
S-818A50A
400
500
600
IOUT [mA]
16
25 °C
0
0
Seiko Instruments Inc.
300
400
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
5. Output voltage (VOUT) vs. Ambient temperature (Ta)
S-818A20A
S-818A30A
VIN=3 V, IOUT=30 mA
2.04
VOUT [V]
VOUT [V]
2.02
2.00
VIN=4 V, IOUT=30 mA
3.06
1.98
3.03
3.00
2.97
1.96
2.94
−50
0
50
100
Ta [°C]
−50
0
50
100
Ta [°C]
S-818A50A
VIN=6 V, IOUT=30 mA
VOUT [V]
5.10
5.05
5.00
4.95
4.90
−50
0
50
100
Ta [°C]
6. Line regulation (∆VOUT1) vs. Ambient temperature (Ta)
S-818A20A/S-818A30A/S-818A50A
VIN=VOUT(S)+0.5 ↔10 V, IOUT=30 mA
35
∆VOUT1 [mV]
30
25
3V
5V
20
15
10
VOUT=2 V
5
0
−50
0
Ta [°C]
50
100
7. Load regulation (∆VOUT3) vs. Ambient temperature (Ta)
S-818A20A/S-818A30A/S-818A50A
VIN=VOUT(S)+1 V, IOUT=10 µA↔80 mA
∆VOUT3 [mV]
50
3V
40
30
20
5V
10
VOUT=2 V
0
−50
0
50
100
Ta [°C]
Seiko Instruments Inc.
17
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
8. Current consumption (ISS1) vs. Input voltage (VIN)
S-818A30A
S-818A20A
40
40
25°C
25°C
30
I 1(uA)
Iss1(µA)
I ss11(uA)
Iss1
I (µA)
(µA)
30
85°C
20
85°C
20
Ta=-40°C
10
10
Ta=-40°C
0
0
0
2
4
V[V]
I N(V)
VIN
6
8
10
6
8
10
0
2
4
V[V]
I N(V)
VIN
6
8
10
S-818A50A
40
Iss1(µA)
I 1(uA)
30
85°C
20
25°C
Ta=-40°C
10
0
0
2
4
N(V)
VV
INI[V]
9. Threshold voltage of ON/OFF pin (VSH/VSL) vs. Input voltage (VIN)
S-818A20A
S-818A30A
2.5
2.0
VSH/VSL [V]
VSH/VSL [V]
2.5
VSH
1.5
1.0
0.5
2.0
1.0
0.5
VSL
0.0
4
6
VIN [V]
8
10
VSH/VSL [V]
2.5
2.0
VSH
1.5
1.0
0.5
VSL
0.0
6
8
3
5
7
VIN [V]
S-818A50A
9
10
VIN [V]
18
VSL
0.0
2
5
VSH
1.5
Seiko Instruments Inc.
8
10
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
10. Ripple rejection
S-818A20A
Ripple Rejection [dB]
0
VIN=3 V, IOUT=30 mA, CIN=None, COUT=2 µF, 0.5 V p-p, Ta=25 °C
−20
−40
−60
−80
−100
0.1
1
f [kHz]
10
100
S-818A30A
VIN=4 V, IOUT=30 mA, CIN=None, COUT=2 µF, 0.5 V p-p, Ta=25 °C
Ripple Rejection [dB]
0
−20
−40
−60
−80
−100
0.1
1
f [kHz]
10
100
S-818A50A
VIN=6 V, IOUT=30 mA, CIN=None, COUT=2 µF, 0.5 V p-p, Ta=25 °C
Ripple Rejection [dB]
0
−20
−40
−60
−80
−100
0.1
1
f [kHz]
Seiko Instruments Inc.
10
100
19
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
„ Transient Response Characteristics (S-818A30A, Typical data, Ta=25°C)
In p u t v o lta g e
or
L o a d c u rre n t
O v e rs h o o t
O u tp u t v o lta g e
U n d e rs h o o t
1. Power on
VIN =0→10V IOUT=30mA
10V
VOUT(0.5V/div)
0V
CL=4.7µF
VIN
CL=2µF
VOUT
0V
TIME(50usec/div)
Load dependence of overshoot
1.0
VIN=0 V→VOUT(S)+1 V, IOUT =30 mA
1.0
5V
0.8
0.6
Over Shoot [V]
Over Shoot [V]
CL dependence of overshoot
VIN=0 V→VOUT(S)+1 V, CL=2 µF
3V
0.4
VOUT=2 V
0.2
0.8
VOUT=2 V
0.6
0.4
0.0
1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00
1
10
IOUT [V]
Temperature dependence of overshoot
VIN=0 V→VDD, IOUT=30 mA, CL=2 µF
VIN=0 V→VOUT(S)+1 V, IOUT=30 mA, CL=2 µF
1.0
5V
0.8
3V
Over Shoot [V]
Over Shoot [V]
100
CL [µF]
VDD dependence of overshoot
0.6
VOUT=2 V
0.4
0.2
0.0
3V
0.8
5V
VOUT=2 V
0.6
0.4
0.2
0.0
0
2
4
6
8
10
VDD [V]
20
5V
0.2
0.0
1.0
3V
Seiko Instruments Inc.
−50
0
50
Ta [°C]
100
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
2. Shutdown control
VIN =10V ON/OFF=0→10V IOUT=30mA
10V
CL=4.7µF
0V
VOUT(0.5V/div)
ON/OFF
VIN
CL=2µF
VOUT
0V
TIME(50usec/div)
Load dependencies of overshoot
CL dependence of overshoot
VIN=VOUT(S)+1 V, CL=2 µF, ON/OFF=0 V→VOUT(S)+1 V
VIN=VOUT(S)+1 V, CL=2 µF, ON/OFF=0 V→VOUT(S)+1 V
1.0
5V
0.8
Over Shoot [V]
Over Shoot [V]
1.0
0.6
3V
0.4
VOUT=2 V
0.2
VOUT=2 V
0.8
3V
0.6
0.4
0.2
0.0
0.0
1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00
1
10
IOUT [A]
Temperature dependence of overshoot
VIN=VDD, IOUT=30 mA, CL=2 µF, ON/OFF=0 V→VDD
1.0
VIN=VOUT(S)+1 V, IOUT=30 mA, CL=2 µF, ON/OFF=0 V→VOUT(S)+1 V
1.0
0.8
VOUT=2 V
0.8
Over Shoot [V]
5V
0.6
3V
0.4
0.2
VOUT=2 V
2
5V
3V
0.6
0.4
0.2
0.0
0.0
0
100
CL [µF]
VDD dependencies of overshoot
Over Shoot [V]
5V
4
6
8
10
VDD [V]
Seiko Instruments Inc.
−50
0
Ta [°C]
50
100
21
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
3. Power fluctuation
VIN =10→4V IOUT=30mA
VIN =4→10V IOUT=30mA
10V
VIN
4V
CL=2µF
VOUT
VOUT(0.2V/div)
VOUT(0.2V/div)
10V
CL=4.7µF
3V
VIN
4V
CL=4.7µF
VOUT
3V
CL=2µF
TIME(50usec/div)
TIME(50usec/div)
Load dependencies of overshoot
VOUT=2 V
0.2
3V
0.04
VOUT=2 V
0.03
3V
0.02
0.01
5V
0
5V
0
1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00
IOUT [A]
VDD dependencies of overshoot
1
10
CL [µF]
VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=30 mA, CL=2 µF
0.06
Over Shoot [V]
3V
0.4
VOUT=2 V
5V
0.2
0.05
VOUT=2 V
3V
0.04
0.03
0.02
0.01
0
5V
0
0
2
4
6
VDD [V]
22
100
Temperature dependence
VIN=VOUT(S)+1 V→VDD, IOUT=30 mA, CL=2 µF
0.6
Over Shoot [V]
VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=30 mA
0.05
Over Shoot [V]
0.6
0.4
Over Shoot [V]
CL dependence of overshoot
VIN=VOUT(S)+1 V→VOUT(S)+2 V, CL=2 µF
8
10
−50
0
50
Ta [°C]
Seiko Instruments Inc.
100
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
Load dependencies of undershoot
0.3
5V
0.2
VOUT=2 V
3V
0.1
VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=30 mA
0.05
Under Shoot [V]
Under Shoot [V]
CL dependence of undershoot
VIN=VOUT(S)+2 V→VOUT(S)+1 V, CL=2 µF
0.04
3V
0.03
VOUT=2 V
0.02
0.01
0
5V
0
1.E−05 1.E−04 1.E−03 1.E−02 1.E−01 1.E+00
1
CL [µF]
VDD dependencies of undershoot
Temperature dependence of undershoot
VIN=VDD→VOUT(S)+1 V, IOUT=30 mA, CL=2 µF
VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=30 mA, CL=2 µF
0.2
0.06
5V
0.15
Under Shoot [V]
Under Shoot [V]
100
10
IOUT [A]
3V
0.1
VOUT=2 V
0.05
0.05
3V
VOUT=2 V
0.04
0.03
0.02
5V
0.01
0
0
2
4
6
8
0
10
−50
0
50
100
Ta [°C]
VDD [V]
Seiko Instruments Inc.
23
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
4. Load fluctuation
IOUT=10µA→30mA VIN =4V
30mA
30mA
10 µA
10 µA
IOUT
VOUT(0.1V/div)
VOUT(0.2V/div)
IOUT=30mA→10µA VIN =4V
CL=2µF
VOUT
3V
IOUT
CL=2µF
CL=4.7µF
3V
CL=4.7µF
VOUT
TIME(50µsec/div)
TIME(20msec/div)
Load current dependence of load fluctuation overshoot CL dependence of overshoot
VIN=VOUT(S)+1 V, CL=2 µF
VIN=VOUT(S),+1 V, IOUT=30 mA→10 µA
0.2
5V
0.8
0.6
Over Shoot [V]
Over Shoot [V]
1.0
3V
0.4
0.2
VOUT=2 V
0.0
1.E−03
1.E−02
1.E−01
VOUT=2 V
0.15
3V
0.1
5V
0.05
0
1.E+00
1
∆IOUT [A]
10
CL [µF]
100
Remark ∆IOUT shows larger load current at load current
fluctuation while smaller current is fixed to
10 µA. For example ∆IOUT=1.E−02 (A) means
load current fluctuation from 10 mA to 10 µA.
VDD dependencies of overshoot
Temperature dependence of overshoot
VIN=VOUT(S)+1 V, IOUT=30 mA→10 µA, CL=2 µF
VIN=VDD, IOUT=30 mA→10 µA, CL=2 µF
0.3
3V
0.2
Over Shoot [V]
Over Shoot [V]
0.3
0.1
VOUT=2 V
3V
0.2
0.15
0.1
VOUT=2 V
0.05
5V
0
5V
0
0
2
4
6
VDD [V]
24
0.25
8
10
−50
Seiko Instruments Inc.
0
50
Ta [°C]
100
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.2.1_00
Load current dependence of load fluctuation undershoot CL dependence of undershoot
VIN=IOUT(S)+1 V, CL=2 µF
0.8
3V
0.6
5V
0.4
0.2
VIN=VOUT(S)+1 V, IOUT=10 µA→30 mA
0.4
Under Shoot [V]
Under Shoot [V]
1.0
0.3
3V
0.2
0.1
5V
VOUT=2 V
0.0
0
1.E−03
1.E−02
1.E00
1.E−01
VOUT=2 V
10
CL [µF]
1
∆IOUT [A]
100
Remark ∆IOUT shows larger load current at load current
fluctuation while smaller current is fixed to
10 µA. For example ∆IOUT=1.E−02 (A) means
load current fluctuation from 10 µA to 10 mA.
VDD dependence of undershoot
Temperature dependence of undershoot
VIN=VDD, IOUT=10 µA→30 mA, CL=2 µF
VIN=VOUT(S)+1 V, IOUT=10 µA→30 mA, CL=2 µF
0.5
3V
Under Shoot [V]
Under Shoot [V]
0.4
0.3
0.2
VOUT=2 V
0.1
5V
VOUT=2 V
0.4
3V
0.3
0.2
5V
0.1
0
0
0
2
6
4
VDD [V]
8
10
−50
Seiko Instruments Inc.
0
Ta [°C]
50
100
25
2.9±0.2
1.9±0.2
4
5
1
2
+0.1
0.16 -0.06
3
0.95±0.1
0.4±0.1
No. MP005-A-P-SD-1.2
TITLE
No.
SOT235-A-PKG Dimensions
MP005-A-P-SD-1.2
SCALE
UNIT
mm
Seiko Instruments Inc.
4.0±0.1(10 pitches:40.0±0.2)
+0.1
ø1.5 -0
2.0±0.05
+0.2
ø1.0 -0
0.25±0.1
4.0±0.1
1.4±0.2
3.2±0.2
3 2 1
4
5
Feed direction
No. MP005-A-C-SD-2.1
TITLE
SOT235-A-Carrier Tape
No.
MP005-A-C-SD-2.1
SCALE
UNIT
mm
Seiko Instruments Inc.
12.5max.
9.0±0.3
Enlarged drawing in the central part
ø13±0.2
(60°)
(60°)
No. MP005-A-R-SD-1.1
SOT235-A-Reel
TITLE
No.
MP005-A-R-SD-1.1
SCALE
QTY.
UNIT
mm
Seiko Instruments Inc.
3,000
4.5±0.1
1.5±0.1
1.6±0.2
5
1
4
2
3
1.5±0.1 1.5±0.1
0.4±0.05
0.3
0.4±0.1
0.4±0.1
45°
0.45±0.1
No. UP005-A-P-SD-1.1
TITLE
SOT895-A-PKG Dimensions
UP005-A-P-SD-1.1
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
4.0±0.1(10 pitches : 40.0±0.2)
ø1.5 +0.1
-0
2.0±0.05
5° max.
ø1.5 +0.1
-0
0.3±0.05
8.0±0.1
2.0±0.1
4.75±0.1
3 2 1
4
5
Feed direction
No. UP005-A-C-SD-1.1
TITLE
SOT895-A-Carrier Tape
UP005-A-C-SD-1.1
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
16.5max.
13.0±0.3
Enlarged drawing in the central part
(60°)
(60°)
No. UP005-A-R-SD-1.1
TITLE
SOT895-A-Reel
No.
UP005-A-R-SD-1.1
SCALE
QTY.
UNIT
mm
Seiko Instruments Inc.
1,000
•
•
•
•
•
•
The information described herein is subject to change without notice.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
whose related industrial properties, patents, or other rights belong to third parties. The application circuit
examples explain typical applications of the products, and do not guarantee the success of any specific
mass-production design.
When the products described herein are regulated products subject to the Wassenaar Arrangement or other
agreements, they may not be exported without authorization from the appropriate governmental authority.
Use of the information described herein for other purposes and/or reproduction or copying without the
express permission of Seiko Instruments Inc. is strictly prohibited.
The products described herein cannot be used as part of any device or equipment affecting the human
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
failure or malfunction of semiconductor products may occur. The user of these products should therefore
give thorough consideration to safety design, including redundancy, fire-prevention measures, and
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.