Rev.3.0_00 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series The S-817 Series is a 3-terminal positive voltage regulator, developed using CMOS technology. Small ceramic capacitors can be used as the output capacitor, and the S-817 series provides stable operation with low loads down to 1 µA. Compared with the conventional voltage regulator, it is of low current consumption, and with a lineup of the super small package (SNT-4A:1.2 x 1.6mm). It is optimal as a power supply of small portable device. Features • Ultra-low current consumption: • Output voltage: • Output voltage accuracy: • Output current: Operating current: Typ. 1.2 µA, Max. 2.5 µA 1.1 to 6.0 V, selectable in 0.1 V steps. ±2.0% 50 mA capable (3.0 V output product, VIN=5 V) *1 75 mA capable (5.0 V output product, VIN=7 V) *1 • Dropout voltage: Typ. 160 mV (VOUT = 5.0 V, IOUT = 10 mA) • Low ESR capacitor (e.g. A ceramic capacitor of 0.1 µF or more) can be used as an output capacitor. • Short circuit protection for: Series A • Excellent Line Regulation: Stable operation at light load of 1 µA *1. Attention should be paid to the power dissipation of the package when the load is large. Applications • Power source for battery-powered devices • Power source for personal communication devices • Power source for home electric/electronic appliances Packages Package name SNT-4A SC-82AB SOT-23-5 SOT-89-3 TO-92 (Bulk) TO-92 (Tape and reel) TO-92 (Tape and ammo) Drawing code Package PF004-A NP004-A MP005-A UP003-A YS003-B YF003-A YF003-A Tape PF004-A NP004-A MP005-A UP003-A YF003-A YZ003-C Seiko Instruments Inc. Reel PF004-A NP004-A MP005-A UP003-A YF003-A Zigzag YZ003-C 1 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 Block Diagrams 1. S-817A Series *1 VIN VOUT + − Reference voltage circuit Short circuit protection VSS *1. Parasitic diode Figure 1 2. S-817B Series *1 VIN VOUT + − Reference voltage circuit VSS *1. Parasitic diode Figure 2 2 Seiko Instruments Inc. SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 Product Name Structure • The product types and output voltage for the S-817 Series can be selected at the user’s request. Refer to the “Product name” for the meanings of the characters in the product name and “Product name list” for the full product names 1. Product name 1. 1 S-817A series 1. 1. 1 SNT-4A package S-817 A xx A PF - xxx TF G Fixed IC direction in tape specifications*1 Product name (abbreviation) Package name (abbreviation) PF : SNT-4A *2 Output voltage 11 to 60 (e.g. When the output voltage is 1.5 V, it is expressed 15) Short circuit protection A: Yes *1. Refer to the specifications at the end of this book. *2. Refer to the “2. Product name list”. 1. 1. 2 SC-82AB and SOT-23-5 package S-817 A xx A xx - xxx T2 IC direction in tape specifications*1 Product name (abbreviation) Package name (abbreviation) NB : SC-82AB MC : SOT-23-5 *2 Output voltage 11 to 60 (e.g. When the output voltage is 1.5 V, it is expressed 15) Short circuit protection A: Yes *1. Refer to the specifications at the end of this book. *2. Refer to the “2. Product name list”. Seiko Instruments Inc. 3 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 1. 2 S-817B series 1. 2. 1 SOT-23-5 and SOT-89-3 package S-817 B xx A xx - xxx T2 IC direction in tape specifications*1 Product name (abbreviation) Package name (abbreviation) MC : SOT-23-5 UA : SOT-89-3 *2 Output voltage 11 to 60 (e.g. When the output voltage is 1.5 V, it is expressed 15) Short circuit protection B: No *1. Refer to the specifications at the end of this book. *2. Refer to the “2. Product name list”. 1. 2. 2 TO-92 package S-817 B xx A Y - x Packing form B: Bulk T: Tape and reel Z: Tape and ammo Package name (abbreviation) Y: TO-92 *1 Output voltage 11 to 60 (e.g. When the output voltage is 1.5 V, it is expressed 15) Short circuit protection B: No *1. Refer to the “2. Product name list”. 4 Seiko Instruments Inc. Rev.3.0_00 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series 2. Product name list 2. 1 S-817A series Table 1 Output voltage 1.1 V ± 2.0 % 1.2 V ± 2.0 % 1.3 V ± 2.0 % 1.4 V ± 2.0 % 1.5 V ± 2.0 % 1.6 V ± 2.0 % 1.7 V ± 2.0 % 1.8 V ± 2.0 % 1.9 V ± 2.0 % 2.0 V ± 2.0 % 2.1 V ± 2.0 % 2.2 V ± 2.0 % 2.3 V ± 2.0 % 2.4 V ± 2.0 % 2.5 V ± 2.0 % 2.6 V ± 2.0 % 2.7 V ± 2.0 % 2.8 V ± 2.0 % 2.9 V ± 2.0 % 3.0 V ± 2.0 % 3.1 V ± 2.0 % 3.2 V ± 2.0 % 3.3 V ± 2.0 % 3.4 V ± 2.0 % 3.5 V ± 2.0 % 3.6 V ± 2.0 % 3.7 V ± 2.0 % 3.8 V ± 2.0 % 3.9 V ± 2.0 % 4.0 V ± 2.0 % 4.1 V ± 2.0 % 4.2 V ± 2.0 % 4.3 V ± 2.0 % 4.4 V ± 2.0 % 4.5 V ± 2.0 % 4.6 V ± 2.0 % 4.7 V ± 2.0 % 4.8 V ± 2.0 % 4.9 V ± 2.0 % 5.0 V ± 2.0 % 5.1 V ± 2.0 % 5.2 V ± 2.0 % 5.3 V ± 2.0 % 5.4 V ± 2.0 % 5.5 V ± 2.0 % 5.6 V ± 2.0 % 5.7 V ± 2.0 % 5.8 V ± 2.0 % 5.9 V ± 2.0 % 6.0 V ± 2.0 % SNT-4A S-817A11APF-CUATFG S-817A12APF-CUBTFG S-817A13APF-CUCTFG S-817A14APF-CUDTFG S-817A15APF-CUETFG S-817A16APF-CUFTFG S-817A17APF-CUGTFG S-817A18APF-CUHTFG S-817A19APF-CUITFG S-817A20APF-CUJTFG S-817A21APF-CUKTFG S-817A22APF-CULTFG S-817A23APF-CUMTFG S-817A24APF-CUNTFG S-817A25APF-CUOTFG S-817A26APF-CUPTFG S-817A27APF-CUQTFG S-817A28APF-CURTFG S-817A29APF-CUSTFG S-817A30APF-CUTTFG S-817A31APF-CUUTFG S-817A32APF-CUVTFG S-817A33APF-CUWTFG S-817A34APF-CUXTFG S-817A35APF-CUYTFG S-817A36APF-CUZTFG S-817A37APF-CVATFG S-817A38APF-CVBTFG S-817A39APF-CVCTFG S-817A40APF-CVDTFG S-817A41APF-CVETFG S-817A42APF-CVFTFG S-817A43APF-CVGTFG S-817A44APF-CVHTFG S-817A45APF-CVITFG S-817A46APF-CVJTFG S-817A47APF-CVKTFG S-817A48APF-CVLTFG S-817A49APF-CVMTFG S-817A50APF-CVNTFG S-817A51APF-CVOTFG S-817A52APF-CVPTFG S-817A53APF-CVQTFG S-817A54APF-CVRTFG S-817A55APF-CVSTFG S-817A56APF-CVTTFG S-817A57APF-CVUTFG S-817A58APF-CVVTFG S-817A59APF-CVWTFG S-817A60APF-CVXTFG SC-82AB S-817A11ANB-CUA-T2 S-817A12ANB-CUB-T2 S-817A13ANB-CUC-T2 S-817A14ANB-CUD-T2 S-817A15ANB-CUE-T2 S-817A16ANB-CUF-T2 S-817A17ANB-CUG-T2 S-817A18ANB-CUH-T2 S-817A19ANB-CUI-T2 S-817A20ANB-CUJ-T2 S-817A21ANB-CUK-T2 S-817A22ANB-CUL-T2 S-817A23ANB-CUM-T2 S-817A24ANB-CUN-T2 S-817A25ANB-CUO-T2 S-817A26ANB-CUP-T2 S-817A27ANB-CUQ-T2 S-817A28ANB-CUR-T2 S-817A29ANB-CUS-T2 S-817A30ANB-CUT-T2 S-817A31ANB-CUU-T2 S-817A32ANB-CUV-T2 S-817A33ANB-CUW-T2 S-817A34ANB-CUX-T2 S-817A35ANB-CUY-T2 S-817A36ANB-CUZ-T2 S-817A37ANB-CVA-T2 S-817A38ANB-CVB-T2 S-817A39ANB-CVC-T2 S-817A40ANB-CVD-T2 S-817A41ANB-CVE-T2 S-817A42ANB-CVF-T2 S-817A43ANB-CVG-T2 S-817A44ANB-CVH-T2 S-817A45ANB-CVI-T2 S-817A46ANB-CVJ-T2 S-817A47ANB-CVK-T2 S-817A48ANB-CVL-T2 S-817A49ANB-CVM-T2 S-817A50ANB-CVN-T2 S-817A51ANB-CVO-T2 S-817A52ANB-CVP-T2 S-817A53ANB-CVQ-T2 S-817A54ANB-CVR-T2 S-817A55ANB-CVS-T2 S-817A56ANB-CVT-T2 S-817A57ANB-CVU-T2 S-817A58ANB-CVV-T2 S-817A59ANB-CVW-T2 S-817A60ANB-CVX-T2 SOT-23-5 S-817A14AMC-T2 S-817A16AMC-T2 Remark Please contact the SII marketing department for products with an output voltage over than those specified above. Seiko Instruments Inc. 5 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 2. 2 S-817B series Table 2 Output voltage 1.1 V ± 2.0 % 1.2 V ± 2.0 % 1.3 V ± 2.0 % 1.4 V ± 2.0 % 1.5 V ± 2.0 % 1.6 V ± 2.0 % 1.7 V ± 2.0 % 1.8 V ± 2.0 % 1.9 V ± 2.0 % 2.0 V ± 2.0 % 2.1 V ± 2.0 % 2.2 V ± 2.0 % 2.3 V ± 2.0 % 2.4 V ± 2.0 % 2.5 V ± 2.0 % 2.6 V ± 2.0 % 2.7 V ± 2.0 % 2.8 V ± 2.0 % 2.9 V ± 2.0 % 3.0 V ± 2.0 % 3.1 V ± 2.0 % 3.2 V ± 2.0 % 3.3 V ± 2.0 % 3.4 V ± 2.0 % 3.5 V ± 2.0 % 3.6 V ± 2.0 % 3.7 V ± 2.0 % 3.8 V ± 2.0 % 3.9 V ± 2.0 % 4.0 V ± 2.0 % 4.1 V ± 2.0 % 4.2 V ± 2.0 % 4.3 V ± 2.0 % 4.4 V ± 2.0 % 4.5 V ± 2.0 % 4.6 V ± 2.0 % 4.7 V ± 2.0 % 4.8 V ± 2.0 % 4.9 V ± 2.0 % 5.0 V ± 2.0 % 5.1 V ± 2.0 % 5.2 V ± 2.0 % 5.3 V ± 2.0 % 5.4 V ± 2.0 % 5.5 V ± 2.0 % 5.6 V ± 2.0 % 5.7 V ± 2.0 % 5.8 V ± 2.0 % 5.9 V ± 2.0 % 6.0 V ± 2.0 % SOT-23-5 S-817B11AMC-CWA-T2 S-817B12AMC-CWB-T2 S-817B13AMC-CWC-T2 S-817B14AMC-CWD-T2 S-817B15AMC-CWE-T2 S-817B16AMC-CWF-T2 S-817B17AMC-CWG-T2 S-817B18AMC-CWH-T2 S-817B19AMC-CWI-T2 S-817B20AMC-CWJ-T2 S-817B21AMC-CWK-T2 S-817B22AMC-CWL-T2 S-817B23AMC-CWM-T2 S-817B24AMC-CWN-T2 S-817B25AMC-CWO-T2 S-817B26AMC-CWP-T2 S-817B27AMC-CWQ-T2 S-817B28AMC-CWR-T2 S-817B29AMC-CWS-T2 S-817B30AMC-CWT-T2 S-817B31AMC-CWU-T2 S-817B32AMC-CWV-T2 S-817B33AMC-CWW-T2 S-817B34AMC-CWX-T2 S-817B35AMC-CWY-T2 S-817B36AMC-CWZ-T2 S-817B37AMC-CXA-T2 S-817B38AMC-CXB-T2 S-817B39AMC-CXC-T2 S-817B40AMC-CXD-T2 S-817B41AMC-CXE-T2 S-817B42AMC-CXF-T2 S-817B43AMC-CXG-T2 S-817B44AMC-CXH-T2 S-817B45AMC-CXI-T2 S-817B46AMC-CXJ-T2 S-817B47AMC-CXK-T2 S-817B48AMC-CXL-T2 S-817B49AMC-CXM-T2 S-817B50AMC-CXN-T2 S-817B51AMC-CXO-T2 S-817B52AMC-CXP-T2 S-817B53AMC-CXQ-T2 S-817B54AMC-CXR-T2 S-817B55AMC-CXS-T2 S-817B56AMC-CXT-T2 S-817B57AMC-CXU-T2 S-817B58AMC-CXV-T2 S-817B59AMC-CXW-T2 S-817B60AMC-CXX-T2 SOT-89-3 S-817B11AUA-CWA-T2 S-817B12AUA-CWB-T2 S-817B13AUA-CWC-T2 S-817B14AUA-CWD-T2 S-817B15AUA-CWE-T2 S-817B16AUA-CWF-T2 S-817B17AUA-CWG-T2 S-817B18AUA-CWH-T2 S-817B19AUA-CWI-T2 S-817B20AUA-CWJ-T2 S-817B21AUA-CWK-T2 S-817B22AUA-CWL-T2 S-817B23AUA-CWM-T2 S-817B24AUA-CWN-T2 S-817B25AUA-CWO-T2 S-817B26AUA-CWP-T2 S-817B27AUA-CWQ-T2 S-817B28AUA-CWR-T2 S-817B29AUA-CWS-T2 S-817B30AUA-CWT-T2 S-817B31AUA-CWU-T2 S-817B32AUA-CWV-T2 S-817B33AUA-CWW-T2 S-817B34AUA-CWX-T2 S-817B35AUA-CWY-T2 S-817B36AUA-CWZ-T2 S-817B37AUA-CXA-T2 S-817B38AUA-CXB-T2 S-817B39AUA-CXC-T2 S-817B40AUA-CXD-T2 S-817B41AUA-CXE-T2 S-817B42AUA-CXF-T2 S-817B43AUA-CXG-T2 S-817B44AUA-CXH-T2 S-817B45AUA-CXI-T2 S-817B46AUA-CXJ-T2 S-817B47AUA-CXK-T2 S-817B48AUA-CXL-T2 S-817B49AUA-CXM-T2 S-817B50AUA-CXN-T2 S-817B51AUA-CXO-T2 S-817B52AUA-CXP-T2 S-817B53AUA-CXQ-T2 S-817B54AUA-CXR-T2 S-817B55AUA-CXS-T2 S-817B56AUA-CXT-T2 S-817B57AUA-CXU-T2 S-817B58AUA-CXV-T2 S-817B59AUA-CXW-T2 S-817B60AUA-CXX-T2 *1. X changes according to the packing form in TO-92. B: Bulk, T: Tape and Reel, Z: Tape and ammo. 6 Seiko Instruments Inc. TO-92*1 S-817B11AY-X S-817B12AY-X S-817B13AY-X S-817B14AY-X S-817B15AY-X S-817B16AY-X S-817B17AY-X S-817B18AY-X S-817B19AY-X S-817B20AY-X S-817B21AY-X S-817B22AY-X S-817B23AY-X S-817B24AY-X S-817B25AY-X S-817B26AY-X S-817B27AY-X S-817B28AY-X S-817B29AY-X S-817B30AY-X S-817B31AY-X S-817B32AY-X S-817B33AY-X S-817B34AY-X S-817B35AY-X S-817B36AY-X S-817B37AY-X S-817B38AY-X S-817B39AY-X S-817B40AY-X S-817B41AY-X S-817B42AY-X S-817B43AY-X S-817B44AY-X S-817B45AY-X S-817B46AY-X S-817B47AY-X S-817B48AY-X S-817B49AY-X S-817B50AY-X S-817B51AY-X S-817B52AY-X S-817B53AY-X S-817B54AY-X S-817B55AY-X S-817B56AY-X S-817B57AY-X S-817B58AY-X S-817B59AY-X S-817B60AY-X SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 Pin Configurations Table 3 SNT-4A Top view 1 4 2 3 Pin No. Symbol Description 1 VOUT Output voltage pin 2 VIN Input voltage pin 3 VSS GND pin NC*1 No connection 4 *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS. Figure 3 SC-82AB Top view 4 3 1 Table 4 Pin No. Symbol Description 1 VSS GND pin 2 VIN Input voltage pin 3 VOUT Output voltage pin NC*1 No connection 4 *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS. 2 Figure 4 SOT-23-5 Top view 5 1 4 2 3 Table 5 Pin No. Symbol Description 1 VSS GND pin 2 VIN Input voltage pin 3 VOUT Output voltage pin 4 NC*1 No connection *1 5 NC No connection *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS. Figure 5 SOT-89-3 Top view 1 2 Table 6 Pin No. 1 2 3 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin 3 Figure 6 Seiko Instruments Inc. 7 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 Table 7 TO-92 Bottom view Pin No. 1 2 3 1 2 3 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin Figure 7 Absolute Maximum Ratings Table 8 (Ta=25°C unless otherwise specified) Item Symbol Input voltage Output voltage VIN VOUT Power dissipation PD Operating temperature range Storage temperature Topr Tstg Absolute Maximum Rating SNT-4A SC-82AB SOT-23-5 SOT-89-3 TO-92 VSS−0.3 to VSS+12 VSS−0.3 to VIN+0.3 300*1 150 250 500 400 −40 to +85 −40 to +125 Units V V mW °C °C *1. At mounted on JEDEC high heat dissipation printed circuit board Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. 8 Seiko Instruments Inc. SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 Electrical Characteristics 1. S-817A series Table 9 Item Symbol Output voltage *1 Output current *2 VOUT(E) IOUT Dropout voltage *3 Vdrop Line regulation 1 ∆ VOUT1 Line regulation 2 ∆ VOUT2 Load regulation ∆ VOUT3 Conditions VIN=VOUT(S)+2 V, IOUT=10 mA VOUT(S)+2 V 1.1 V ≤ VOUT(S) ≤ 1.9 V ≤ VIN≤10 V 2.0 V ≤ VOUT(S) ≤ 2.9 V 3.0 V ≤ VOUT(S) ≤ 3.9 V 4.0 V ≤ VOUT(S) ≤ 4.9 V 5.0 V ≤ VOUT(S) ≤ 6.0 V IOUT = 10 mA 1.1 V ≤ VOUT(S) ≤ 1.4 V 1.5 V ≤ VOUT(S) ≤ 1.9 V 2.0 V ≤ VOUT(S) ≤ 2.4 V 2.5 V ≤ VOUT(S) ≤ 2.9 V 3.0 V ≤ VOUT(S) ≤ 3.4 V 3.5 V ≤ VOUT(S) ≤ 3.9 V 4.0 V ≤ VOUT(S) ≤ 4.4 V 4.5 V ≤ VOUT(S) ≤ 4.9 V 5.0 V ≤ VOUT(S) ≤ 5.4 V 5.5 V ≤ VOUT(S) ≤ 6.0 V VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 mA VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 µA VIN=VOUT(S)+ 1.1 V ≤ VOUT(S) ≤ 1.9 V, 2V 1 µA ≤ IOUT ≤ 10 mA 2.0 V ≤ VOUT(S) ≤ 2.9 V, 1 µA ≤ IOUT ≤ 20 mA 3.0 V ≤ VOUT(S) ≤ 3.9 V, 1 µA ≤ IOUT ≤ 30 mA 4.0 V ≤ VOUT(S) ≤ 4.9 V, 1 µA ≤ IOUT ≤ 40 mA 5.0 V ≤ VOUT(S) ≤ 6.0 V, 1 µA ≤ IOUT ≤ 50 mA VIN = VOUT(S) + 1 V, IOUT = 10 mA, −40°C ≤ Ta ≤ 85°C VIN = VOUT(S) + 2 V, no load − VIN = VOUT(S) + 2 V, VOUT pin = 0 V (Ta=25°C unless otherwise specified) MeasurMin. Typ. Max. Units ement circuits VOUT(S) VOUT(S) V V 1 × 0.98 OUT(S) × 1.02 20 − − mA 3 35 − − 50 − − 65 − − 75 − − 0.92 1.58 V 1 − 0.58 0.99 − 0.40 0.67 − 0.31 0.51 − 0.25 0.41 − 0.22 0.35 − 0.19 0.30 − 0.18 0.27 − 0.16 0.25 − 0.15 0.23 − − 5 20 − 5 20 − 5 20 − 10 30 − 20 45 − 25 65 − 35 80 mV ∆VOUT ppm Output voltage − ±100 − /°C temperature coefficient *4 ∆Ta • VOUT Current consumption ISS − 1.2 2.5 µA 2 Input voltage VIN − − 10 V 1 Short current limit IOS − 40 − mA 3 *1. VOUT(S): Specified output voltage VOUT(E): Effective output voltage i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V. *2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current. *3. Vdrop = VIN1−(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after gradually decreasing input voltage. *4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation. ∆VOUT [mV/ °C]*1 = VOUT(S)[V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000 ∆Ta ∆Ta • VOUT *1. Temperature change ratio of the output voltage *2. Specified output voltage *3. Output voltage temperature coefficient Seiko Instruments Inc. 9 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 2. S-817B series Table 10 Item Symbol Output voltage *1 Output current *2 Dropout voltage *3 VOUT(E) IOUT Vdrop Line regulation 1 ∆ VOUT1 Line regulation 2 ∆ VOUT2 Load regulation ∆ VOUT3 Conditions VIN=VOUT(S)+2 V, IOUT=10 mA VOUT(S)+2 V 1.1 V ≤ VOUT(S) ≤ 1.9 V ≤ VIN≤10 V 2.0 V ≤ VOUT(S) ≤ 2.9 V 3.0 V ≤ VOUT(S) ≤ 3.9 V 4.0 V ≤ VOUT(S) ≤ 4.9 V 5.0 V ≤ VOUT(S) ≤ 6.0 V IOUT = 10 1.1 V ≤ VOUT(S) ≤ 1.4 V mA 1.5 V ≤ VOUT(S) ≤ 1.9 V 2.0 V ≤ VOUT(S) ≤ 2.4 V 2.5 V ≤ VOUT(S) ≤ 2.9 V 3.0 V ≤ VOUT(S) ≤ 3.4 V 3.5 V ≤ VOUT(S) ≤ 3.9 V 4.0 V ≤ VOUT(S) ≤ 4.4 V 4.5 V ≤ VOUT(S) ≤ 4.9 V 5.0 V ≤ VOUT(S) ≤ 5.4 V 5.5 V ≤ VOUT(S) ≤ 6.0 V VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 mA VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 µA VIN=VOUT(S)+ 1.1 V ≤ VOUT(S) ≤ 1.9 V, 1 µA ≤ IOUT ≤ 10 mA 2V 2.0 V ≤ VOUT(S) ≤ 2.9 V, 1 µA ≤ IOUT ≤ 20 mA 3.0 V ≤ VOUT(S) ≤ 3.9 V, 1 µA ≤ IOUT ≤ 30 mA 4.0 V ≤ VOUT(S) ≤ 4.9 V, 1 µA ≤ IOUT ≤ 40 mA 5.0 V ≤ VOUT(S) ≤ 6.0 V, 1 µA ≤ IOUT ≤ 50 mA VIN = VOUT(S) + 1 V, IOUT = 10 mA, −40°C ≤ Ta ≤ 85°C VIN = VOUT(S) + 2 V, no load − (Ta=25°C unless otherwise specified) MeasurMin. Typ. Max. Units ement circuits VOUT(S) VOUT(S) V V 1 × 0.98 OUT(S) × 1.02 20 − − mA 3 35 − − 50 − − 65 − − 75 − − − 0.92 1.58 − − − − − − − − − 0.58 0.40 0.31 0.25 0.22 0.19 0.18 0.16 0.15 0.99 0.67 0.51 0.41 0.35 0.30 0.27 0.25 0.23 − 5 20 − 5 20 − 5 20 − 10 30 − 20 45 − 25 65 − 35 80 V 1 mV ∆VOUT Output voltage ppm − ±100 − /°C temperature coefficient *4 ∆Ta • VOUT Current consumption ISS − 1.2 2.5 µA 2 Input voltage VIN − − 10 V 1 *1. VOUT(S): Specified output voltage VOUT(E): Effective output voltage i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V. *2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current. *3. Vdrop = VIN1−(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after gradually decreasing input voltage. *4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation. ∆VOUT [mV/ °C]*1 = VOUT(S)[V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000 ∆Ta ∆Ta • VOUT *1. Temperature change ratio of the output voltage *2. Specified output voltage *3. Output voltage temperature coefficient 10 Seiko Instruments Inc. SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 Measurement Circuits 1. VIN + VOUT V VSS A + Figure 8 2. A VIN VOUT VSS Figure 9 3. + VOUT VIN A V VSS + Figure 10 Standard Circuit INPUT OUTPUT VIN CIN VOUT *1 *2 VSS Single GND CL GND *1. CIN is a capacitor used to stabilize input. *2. A ceramic capacitor of 0.1 µF or more can be used for CL. Figure 11 Caution The above connection diagram and constant will not guarantee successful operation. Perform through evaluation using the actual application to set the constant. Seiko Instruments Inc. 11 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 Explanation of Terms 1. Low ESR ESR is the abbreviation for Equivalent Series Resistance. Low ESR output capacitors (CL) can be used in the S-817 Series. 2. Output voltage (VOUT) The accuracy of the output voltage is ±2.0% guaranteed under the specified conditions for input voltage, which differs depending upon the product items, output current, and temperature. Caution If the above conditions change, the output voltage value may vary and go out of the accuracy range of the output voltage. See the electrical characteristics and characteristics data for details. 3. Line regulations 1 and 2 (∆VOUT1, ∆VOUT2) Indicate the input voltage dependencies of output voltage. That is, the values show how much the output voltage changes due to a change in the input voltage with the output current remained unchanged. 4. Load regulation (∆VOUT3) Indicates the output current dependencies of output voltage. That is, the values show how much the output voltage changes due to a change in the output current with the input voltage remained unchanged. 5. Dropout voltage (Vdrop) Indicates a difference between input voltage (VIN1) and output voltage when output voltage falls by 98% of VOUT(E) by gradually decreasing the input voltage (VIN). Vdrop = VIN1−[VOUT(E) × 0.98] 12 Seiko Instruments Inc. SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 ∆VOUT 6. Temperature coefficient of output voltage ∆Ta • VOUT The shadowed area in Figure 12 is the range where VOUT varies in the operating temperature range when the temperature coefficient of the output voltage is ±100 ppm/°C. Ex. S-817A15 Typ. VOUT [V] +0.15 mV / °C VOUT(E)*1 −0.15 mV / °C −40 *1. 25 85 Ta [°C] VOUT(E) is the value of the output voltage measured at 25°C. Figure 12 A change in the temperature of the output voltage [mV/°C] is calculated using the following equation. ∆VOUT [mV/ °C]*1 = VOUT(S)[V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000 ∆Ta ∆Ta • VOUT *1. Change in temperature of output voltage *2. Specified output voltage *3. Output voltage temperature coefficient Seiko Instruments Inc. 13 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 Operation 1. Basic Operation Figure 13 shows the block diagram of the S-817 Series. The error amplifier compares the reference voltage (Vref) with Vfb, which is the output voltage resistancedivided by feedback resistors Rs and Rf. It supplies the output transistor with the gate voltage necessary to ensure a certain output voltage free of any fluctuations of input voltage and temperature. VIN *1 Current supply Error amplifier VOUT Vref − Rf + Vfb Reference voltage circuit Rs VSS *1. Parasitic diode Figure 13 2. Output Transistor The S-817 series uses a P-channel MOS FET as the output transistor. Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being damaged due to inverse current flowing from VOUT pin through a parastic diode to VIN pin. 3. Short Circuit Protection The S-817A series incorporates a short circuit protection to protect the output transistor against short circuit between VOUT pin and VSS pin. Installation of the short-circuit protection which protects the output transistor against short-circuit between VOUT and VSS can be selected in the S-817A series. The short-circuit protection controls output current as shown in the “Typical Characteristics 1.”. Output Voltage versus Output Current, and suppresses output current at about 40 mA even if VOUT and VSS pins are short-circuited. The short-circuit protection can not be a thermal protection at the same time. Attention should be paid to the Input voltage and the load current under the actual condition so as not to exceed the power dissipation of the package including the case for short-circuit. When the output current is large and the difference between input and output voltage is large even if not shorted, the short-circuit protection may work and the output current is suppressed to the specified value. In addition, S-817B series is removing a short-circuit protection, and is the product which enabled it to pass large current. 14 Seiko Instruments Inc. Rev.3.0_00 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Selection of Output Capacitor (CL) To stabilize operation against variation in output load, a capacitor (CL) must be mounted between VOUT and VSS in the S-817 series because the phase is compensated with the help of the internal phase compensation circuit and the ESR of the output capacitor. When selecting a ceramic or an OS capacitor, capacitance should be 0.1 µF or more, and when selecting a tantalum or an aluminum electrolytic capacitor, capacitance should be 0.1 µF or more and ESR 30 Ω or less. When an aluminum electrolytic capacitor is used attention should be especially paid to since the ESR of the aluminum electrolytic capacitor increases at low temperature and possibility of oscillation becomes large. Sufficient evaluation including temperature characteristics is indispensable. Overshoot and undershoot characteristics differ depending upon the type of the output capacitor. Refer to CL dependencies in “ Reference Data 1. Transient Response Characteristics”. Application Circuits 1. Output Current Boosting Circuit Tr1 VIN R1 CIN VIN S-817 series VSS VOUT VOUT R2 CL GND Figure 14 As shown in Figure 14, the output current can be boosted by externally attaching a PNP transistor. The base current of the PNP transistor is controlled so that output voltage (VOUT) goes the voltage specified in the S-817 Series when base-emitter voltage (VBE) necessary to turn on the PNP transistor is obtained between input voltage (VIN) and S-817 Series power source pin (VIN). The following are tips and hints for selecting and ensuring optimum use of external parts • PNP transistor (Tr1): 1. Set hFE to approx. 100 to 400. 2. Confirm that no problem occurs due to power dissipation under normal operation conditions. • Resistor (R1): Generally set R1 to 1 kΩ ÷ VOUT (S) (the voltage specified in the S-817 Series) or more. • Output capacitor (CL): Output capacitor (CL) is effective in minimizing output fluctuation at powering on or due to power or load fluctuation, but oscillation might occur. Always connect resistor R2 in series to output capacitor CL. • Resistor (R2): Set R2 to 2 Ω × VOUT(S) or more. • DO NOT attach a capacitor between the S-817 Series power source (VIN) and GND pins or between base and emitter of the PNP transistor to avoid oscillation. • To improve transient response characteristics of the output current boosting circuit shown in Figure 14, check that no problem occurs due to output fluctuation at powering on or due to power or load fluctuation under normal operating conditions. • Pay attention to the short current limit circuit incorporated into the S-817 Series because it does not function as a shortcircuiting protection circuit for this boosting circuit. Seiko Instruments Inc. 15 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 The following graphs show the examples of input-output voltage characteristics (Ta=25°C, typ.) in the output current boosting circuit: 1. 1 S-817A11ANB/S-817B11AMC 1. 2 S-817A50ANB/S-817B50AMC Tr1 : 2SA1213Y, R1 : 1 kΩ, CL : 10 µF, R2 : 2 Ω Tr1 : 2SA1213Y, R1 : 200 Ω, CL : 10 µF, R2 : 10 Ω 1.20 5.20 100 mA 1.10 5.10 50 mA 0.90 5.00 10 mA 1 mA VOUT (V) VOUT (V) 1.00 800 mA 600 mA 0.80 4.90 10 mA 4.80 800 mA 5 mA 600 mA 400 mA 0.70 1.5 1.6 1.7 1.8 1.9 2 2.1 400 mA 4.70 200 mA 0.60 1.4 100 mA 50 mA 200 mA 2.2 2.3 4.60 2.4 5.2 5.3 5.4 VIN (V) 5.5 5.6 VIN (V) 2. Constant Current Circuit 2. 1 Constant Current Circuit VIN VIN VOUT S-817 Series RL VSS V0 IO CIN Device VO GND Figure 15 2. 2 Constant Current Boosting Circuit Tr1 VIN S-817 R1 VOUT Series VSS V0 IO CIN VO GND Figure 16 16 RL Seiko Instruments Inc. Device 5.7 5.8 5.9 Rev.3.0_00 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series The S-817 Series can be configured as a constant current circuit. Refer to Figure 15 and 16. Constant amperage (IO) is calculated using the following equation (VOUT(E): Effective output voltage): IO = (VOUT(E) ÷ RL) +ISS. Please note that it is impossible to set constant amperage IO in case of circuit (1) of Figure 15 to the value exceeding the drive ability of the S-817. However, circuit (2) of Figure 16 is an example to set constant amperage to the value exceeding the drive ability of the S-817. Circuit (2) incorporates a current boosting circuit. The maximum input voltage of the constant current circuit is the value obtained by adding 10 V to voltage of the device (VO). It is not recommended to attach a capacitor between the S-817 power source VIN and VSS pin or between output VOUT and VSS pin because rush current flows at powering on. An example of input voltage between VIN and VO in circuit (2) vs. IO current characteristics VIN, VO pins, Input voltage - IO current S-817A11ANB, S-817B11AMC, Tr : 2SK1213Y, R1 : 1 kΩ, VO=2 V 0.60 RL=1.83 Ω 0.50 2.2 Ω IO(A) 0.40 2.75 Ω 3.67 Ω 0.30 0.20 5.5 Ω 11 Ω 0.10 0.00 1.4 1.6 1.8 2 2.2 2.4 VIN−VO(V) Seiko Instruments Inc. 17 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 3. Output Voltage Adjustment Circuit (Only for S817B Series (Product without short circuit protection)) V IN VIN S-817 V0 VOUT Series R1 VSS CL C IN C1 R2 GND Figure 17 The output voltage can be boosted by using the configuration shown in Figure 17. The output Voltage (VO) can be calculated using the following equation (VOUT(E):Effective output voltage): VO = VOUT(E) × (R1 + R2) ÷ R1 + R2 × ISS Set R1 and R2 to high values of resistance so as not to be affected by current consumption (ISS). Capacitor C1 is effective in minimizing output fluctuation at powering on or due to power or load fluctuation. Determine the optimum value on your actual device. But it is not also recommended to attach a capacitor between the S-817 Series power source VIN and VSS pin or between output VOUT and VSS pin because output fluctuation or oscillation at powering on might occur. As shown in Figure 17, a capacitor must be mounted between VIN and GND, and between VOUT and GND. Precautions • Wiring patterns for the VIN, VOUT and GND pins should be designed so that the impedance is low. When mounting an output capacitor between the VOUT and VSS pins (CL) and a capacitor for stabilizing the input between VIN and VSS pins (CIN), the distance from the capacitors to these pins should be as short as possible. • Note that the output voltage may increase when a series regulator is used at low load current (1.0 µA or less). • Generally a series regulator may cause oscillation, depending on the selection of external parts. The following conditions are recommended for this IC. However, be sure to perform sufficient evaluation under the actual usage conditions for selection, including evaluation of temperature characteristics. Output capacitor (CL) : Equivalent Series Resistance (ESR) : Input series resistance (RIN) : 0.1 µF or more 30 Ω or less 10 Ω or less • The voltage regulator may oscillate when the impedance of the power supply is high and the input capacitor is small or an input capacitor is not connected. • The application conditions for the input voltage, output voltage, and load current should not exceed the package power dissipation. • Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit. • SII claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party. 18 Seiko Instruments Inc. SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 Typical Characteristics 1. Output Voltage vs. Output Current (when load current increases) (a) S-817A Series S-817A11A (Ta=25°C) S-817A20A (Ta=25°C) 1.2 2.5 8V 0.9 VIN= 1.5V 0.6 V OUT (V) 0.3 10V 2.0 3.1V 3V 1.5 4.1V 2.1V V OUT (V) 1.0 4V 0.5 VIN= 2.4V 0.0 0.0 0 20 40 60 IOUT (mA) 0 80 S-817A30A (Ta=25 °C) 2.5 4V 1.0 0.0 0 90 120 10V 4.0 6V 6V 8V V OUT 3.0 (V) 2.0 10V VIN= 3.4V 0.5 60 IOUT (mA) 5.0 5V 2.0 30 S-817A50A (Ta=25 °C) 3.0 V OUT 1.5 (V) 5V VIN=5.4V 7V 1.0 30 60 90 IOUT (mA) 120 0.0 150 0 40 80 120 IOUT (mA) 160 200 (b) S-817B series S-817B11A (Ta=25°C) S-817B20A (Ta=25°C) 2.5 1.2 8V 0.9 4.1V VOUT (V) 0.6 1.5 3.1V VOUT (V) 2.1V 0.3 VIN= 1.5V 0.0 5V 1.0 3V 4V 0.5 0.0 0 50 100 150 IOUT (mA) 200 250 S-817B30A (Ta=25°C) 0 50 100 150 200 250 IOUT (mA) 5.0 3.0 10V 2.0 1.5 5V 1.0 VIN= 3.4V 0.5 10V 4.0 4V 2.5 300 S-817B50A (Ta=25°C) 3.5 VOUT (V) 10V VIN=2.4V 2.0 7V 3.0 VOUT (V) 2.0 6V 6V VIN=5.4V 1.0 0.0 8V 0.0 0 50 100 150 200 IOUT (mA) 250 300 Seiko Instruments Inc. 0 50 100 150 200 IOUT (mA) 250 300 19 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 2. Output Voltage vs. Input Voltage S-817A11A/S-817B11A (Ta=25°C) S-817A20A/S-817B20A (Ta=25°C) 1.5 2.5 IOUT =1µA 1.0 50mA 1.5 V OUT (V) 0.5 V OUT (V) 1.0 1mA 10mA 20mA 10mA 0.5 20mA 1mA 0.0 0.0 0 2 4 6 VIN (V) 8 4.0 50mA 10mA 2.0 V OUT (V) 1.5 0 2 8 10 4 8 10 20mA 1mA 1.0 IOUT =1µA 0.0 6 VIN (V) IOUT =1µA 0.0 6 VIN (V) 8 10 Seiko Instruments Inc. 50mA 10mA V OUT 3.0 (V) 2.0 1mA 1.0 0.5 4 5.0 20mA 2.5 2 S-817A50A/S-817B50A (Ta=25°C) 3.5 3.0 0 10 S-817A30A/S-817B30A (Ta=25°C) 20 IOUT =1µA 2.0 0 2 4 6 VIN (V) SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 3. Maximum Output Current vs. Input Voltage (a) S-817A Series S-817A11A S-817A20A 100 120 25°C Ta=-40°C 80 Ta=-40°C 100 80 60 I OUT max.(mA) 40 I OUT max.(mA) 60 85°C 25°C 40 20 85°C 20 0 0 0 2 4 6 8 VIN (V) 1 10 3 5 7 VIN (V) 9 S-817A50A S-817A30A 250 180 25°C 150 120 25°C 200 Ta=-40°C I OUT 90 max.(mA) 85°C 60 Ta=-40°C I OUT 150 max.(mA)100 85°C 50 30 0 0 2 4 6 8 VIN (V) 4 10 6 8 VIN (V) 10 (b) S-817B Series S-817B20A S-817B11A 300 300 250 IOUT 250 Ta=-40°C 200 200 25°C 150 Ta=-40°C 25°C IOUT 150 max.(mA) max.(mA) 100 100 85°C 50 85°C 50 0 0 0 2 4 6 8 VIN (V) 0 10 S-817B30A 2 4 6 8 VIN (V) 10 S-817B50A 300 300 250 250 Ta=-40°C 200 IOUT 25°C IOUT 150 max.(mA) Ta=-40°C 25°C 200 150 max.(mA) 100 85°C 50 85°C 100 50 0 0 2 4 6 VIN (V) 8 10 Seiko Instruments Inc. 4 6 VIN (V) 8 10 21 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 4. Dropout Voltage vs. Output Current S-817A11A/S-817B11A S-817A20A/S-817B20A 2000 25°C 1500 85°C Vdrop (mV) Vdrop (mV) 2000 1000 500 85°C 1000 500 Ta=-40°C Ta=-40°C 0 0 5 10 IOUT (mA) 25°C 1500 15 0 20 S-817A30A/S-817B30A 0 10 20 IOUT (mA) 30 40 S-817A50A/S-817B50A 1000 85°C 1200 85°C 800 25°C Vdrop (mV) Vdrop (mV) 1600 800 400 25°C 600 400 200 Ta=-40°C 0 Ta=-40°C 0 0 10 20 30 IOUT (mA) 40 50 0 10 20 30 IOUT (mA) 40 50 5. Output Voltage vs. Ambient Temperature S-817A11A/S-817B11A VIN=3.1V, IOUT=10mA 1.12 S-817A20A/S-817B20A 2.02 VOUT (V) VOUT (V) 1.11 1.10 1.98 1.08 1.96 0 S-817A30A/S-817B30A Ta (°C) 50 -50 100 VIN=5V, IOUT=10mA 3.06 0 S-817A50A/S-817B50A Ta (°C) 50 100 VIN=7V, IOUT=10mA 5.10 3.03 5.05 VOUT (V) VOUT (V) 2.00 1.09 -50 3.00 5.00 4.95 2.97 4.90 2.94 -50 22 VIN=4V, IOUT=10mA 2.04 0 Ta (°C) 50 100 Seiko Instruments Inc. -50 0 Ta (°C) 50 100 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 6. Line Regulation 1 vs. Ambient Temperature S-817A11/20/30/50A S-817B11/20/30/50A 30 7. Line Regulation 2 vs. Ambient Temperature VIN=VOUT(S)+1V↔10V, IOUT=1mA ∆VOUT2 (mV) ∆VOUT1 (mV) 25 20 15 10 2V VOUT=1.1V 3V S-817A11/20/30/50A S-817B11/20/30/50A 30 5V VIN=VOUT(S)+1V↔10V, IOUT=1µA 25 20 15 VOUT=1.1V 10 5 2V 3V 5V 5 0 0 -50 -25 0 25 50 75 100 -50 -25 0 25 50 75 100 Ta (°C) Ta (°C) 8. Load Regulation vs. Ambient Temperature ∆VOUT3 (mV) S-817A11/20/30/50A VIN=VOUT(S)+2V, IOUT=1µA↔IOUT S-817B11/20/30/50A 80 VOUT=1.1V(IOUT=10mA) 70 2V(IOUT=20mA) 60 3V(IOUT=30mA) 50 5V(IOUT=50mA) 40 30 20 10 0 -50 -25 0 25 50 75 100 Ta (°C) Seiko Instruments Inc. 23 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 9. Current Consumption vs. Input Voltage S-817A11A/S-817B11A S-817A20A/S-817B20A 1.6 1.6 85°C ISS1 (µA) ISS1 (µA) 1.2 25°C 0.8 Ta=-40°C 25°C 0.8 0 0 0 2 4 6 VIN (V) 8 0 10 2 4 6 8 10 VIN (V) S-817A30A/S-817B30A S-817A50A/S-817B50A 1.6 1.6 85°C 85°C 1.2 ISS1 (uA) 1.2 ISS1 (µA) Ta=-40°C 0.4 0.4 25°C 0.8 Ta=-40°C 0.4 25°C 0.8 Ta=-40°C 0.4 0 0 0 2 4 6 8 10 0 2 4 6 VIN (V) VIN (V) 24 85°C 1.2 Seiko Instruments Inc. 8 10 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 Reference Data 1. Transient Response Characteristics (Typical data: Ta=25 °C) In p u t v o lta g e or L o a d c u rre n t O v e rs h o o t O u tp u t v o lta g e U n d e rs h o o t 1. 1 At powering on S-817A30A (when using a ceramic capacitor, CL=1 µF) VIN=0 V→10 V, IOUT=10 mA, CL=1 µF 10 V 0V 3V VOUT (0.5 V/div) TIME(100 µs/div) Load dependencies of overshoot at powering on VOUT=0 V→VOUT(S)+2 V, CL=1 µF 0.05 VIN=0 V→VOUT(S)+2 V, IOUT=10 mA 0.05 0.04 0.04 5V 0.03 Over Shoot(V) Over Shoot(V) CL dependencies of overshoot at powering on 3V 2V 0.02 0.01 2V 0.03 3V 0.02 5V 0.01 0 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.01 0.1 VDD dependencies of overshoot at powering on 10 “Ta” dependencies of overshoot at powering on VIN=0 V→VDD, IOUT=10 mA, CL=1 µF 0.05 VIN=0 V→VOUT(S)+2 V, IOUT=10 mA, CL=1 µF 0.05 0.04 5V 0.03 Over Shoot(V) Over Shoot(V) 1 CL(µF) IOUT(A) 3V 0.02 2V 0.01 0.04 0.03 5V 3V 0.02 2V 0.01 0 0 0 2 4 6 8 10 -50 0 50 100 Ta(°C) VDD(V) Seiko Instruments Inc. 25 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 1. 2 At powering on S-817B30A (when using a ceramic capacitor, CL=1 µF) VIN=0 V→10 V, IOUT=10 mA, CL=1 µF 10 V 0V 3V VOUT (0.5 V/div) TIME(100 µs/div) Load dependencies of overshoot at powering on VIN=0 V→VOUT(S)+2 V, CL=1 µF 0.05 0.04 0.04 5V 0.03 0.02 2V 3V 0.01 VIN=0 V→VOUT(S)+2 V, IOUT=10 mA 0.05 Over Shoot(V) Over Shoot(V) CL dependencies of overshoot at powering on 0.03 3V 0.02 5V 0.01 0 0 0.01 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.1 VDD dependencies of overshoot at powering on “Ta” dependencies of overshoot at powering on VIN=0 V→VDD, IOUT=10 mA, CL=1 µF 0.05 Over Shoot(V) 0.04 Over Shoot(V) VIN=0 V→VOUT(S)+2 V, IOUT=10 mA, CL=1 µF 0.05 0.03 5V 0.02 3V 2V 0.01 10 1 CL(µF) IOUT(A) 0.04 0.03 2V 0.02 3V 5V 0.01 0 0 0 2 4 6 8 10 -50 0 50 Ta(°C) VDD(V) 26 2V Seiko Instruments Inc. 100 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 1. 3 Power fluctuation S-817A30A / S-817B30A (when using a ceramic capacitor, CL=1 µF) VIN=4 V→10 V,IOUT=1 mA, CL=1 µF 10 V 4V V OUT (0.2 V/div) 3V TIME(200 µs/div) Load dependencies of overshoot at power fluctuation VIN=VOUT(S)+1 V→ VOUT(S)+2 V, CL=1 µF 0.4 2V 0.3 5V 3V 0.2 VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=1 mA 1 Over Shoot(V) 0.5 Over Shoot(V) CL dependencies of overshoot at power fluctuation 0.1 2V 0.8 3V 5V 0.6 0.4 0.2 0 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.01 0.1 IOUT(A) VDD dependencies of overshoot at power fluctuation 1 0.8 5V 0.6 Over Shoot(V) Over Shoot(V) 10 “Ta” dependencies of overshoot at power fluctuation VIN=VOUT(S)+1 V→VDD, IOUT=1 mA, CL=1 µF 1 1 CL(µF) 3V 0.4 2V 0.2 VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=1 mA, CL=1 µF 0.8 0.6 5V 3V 0.4 2V 0.2 0 0 0 2 4 6 8 10 -50 0 50 100 Ta(°C) VDD(V) Seiko Instruments Inc. 27 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 VIN=10 V→4 V,IOUT=1 mA, CL=1 µF 10 V 4V VOUT 3 V (0.02 V/div) TIME(50 µs/div) Load dependencies of undershoot at power fluctuation CL dependencies of undershoot at power fluctuation VIN=VOUT(S)+2 V→VOUT(S)1 V, CL=1 µF 0.5 5V 0.3 Under Shoot(V) Under Shoot(V) 0.4 3V 2V 0.2 VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=1 mA 1 0.1 2V 0.8 3V 5V 0.6 0.4 0.2 0 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.01 0.1 IOUT(A) VDD dependencies of undershoot at power fluctuation “Ta” dependencies of undershoot at power fluctuation VIN=VDD→VOUT(S)+1 V, IOUT=1 mA, CL=1 µF 0.1 5V 0.06 Under Shoot(V) Under Shoot(V) 0.08 3V 0.04 2V 0.02 VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=1 mA, CL=1 µF 0.1 2V 0.08 3V 0.06 0.04 5V 0.02 0 0 0 2 4 6 8 10 -50 0 50 Ta(°C) VDD(V) 28 10 1 CL(µF) Seiko Instruments Inc. 100 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 1. 4 Load fluctuation S-817A30A/S-817B30A (when using a ceramic capacitor, CL=1 µF) IOUT=30 mA→10 µA,V IN=5 V, CL=1 µF 30 mA 10 µA V OUT (0.2 V/div) 3V TIME(20 ms/div) Load current dependencies of overshoot at load fluctuation CL dependencies of overshoot at load fluctuation VIN=VOUT(S)+2 V, IOUT=IL→ 10 µA, CL=1 µF 2 2V 3V 0.5 0 1.E-05 2V 0.8 Over Shoot(V) Over Shoot(V) 5V 1.5 1 VIN=VOUT(S)+2 V, IOUT=10 mA→10 µA 1 3V 0.6 5V 0.4 0.2 0 1.E-04 1.E-03 1.E-02 1.E-01 0.01 1.E+00 0.1 IOUT(A) VDD dependencies of overshoot at load fluctuation 0.2 5V 0.15 Over Shoot(V) Over Shoot(V) 10 “Ta” dependencies of overshoot at load fluctuation VIN=VDD, IOUT=10 mA,→10 µA, CL=1 µF 0.2 1 CL(µF) 0.1 3V 2V 0.05 VIN=VOUT(S)+2 V, IOUT=10 mA→10 µA, CL=1 µF 2V 5V 0.15 0.1 3V 0.05 0 0 0 2 4 6 8 10 -50 0 50 100 Ta(°C) VDD(V) Seiko Instruments Inc. 29 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.3.0_00 IOUT=10 µA→30mA, VIN=5V, CL=1 µF 30mA 10µA 3V VOUT (0.2V/div) TIME(50 ms/div) Load current dependencies of undershoot at load fluctuation VIN=VOUT(S)+2 V, IOUT=10 µA→IL, CL=1 µA 2 1 3V 0.5 2V 0 1.E-05 3V 1.2 5V 1.5 VIN=VOUT(S)+2 V, IOUT=10 µA→10 mA 1.4 Under Shoot(V) Under Shoot(V) CL dependencies of undershoot at load fluctuation 5V 1 0.8 0.6 2V 0.4 0.2 0 1.E-04 1.E-03 1.E-02 1.E-01 0.01 1.E+00 0.1 IOUT(A) CL(µF) VDD dependencies of undershoot at load fluctuation “Ta” dependencies of undershoot at load fluctuation VIN=VDD, IOUT=10 µA→10 mA, CL=1 µF 0.5 0.5 5V 3V 0.3 Under Shoot(V) Under Shoot(V) 0.4 0.2 2V 0.1 VIN=VOUT(S)+2 V, IOUT=10 µA →10 mA, CL=1 µF 0.4 3V 5V 0.3 0.2 2V 0.1 0 0 0 2 4 6 8 10 -50 0 50 Ta(°C) VDD(V) 30 10 1 Seiko Instruments Inc. 100 1.2±0.04 +0.05 0.08 -0.02 0.65 0.48±0.02 0.2±0.05 No. PF004-A-P-SD-3.0 TITLE SNT-4A-A-PKG Dimensions PF004-A-P-SD-3.0 No. SCALE UNIT mm Seiko Instruments Inc. +0.1 ø1.5 -0 4.0±0.1 2.0±0.05 0.25±0.05 +0.1 5° 1.45±0.1 ø0.5 -0 4.0±0.1 0.65±0.05 TF type 2 1 3 4 Feed direction No. PF004-A-C-SD-1.0 TITLE SNT-4A-A-Carrier Tape PF004-A-C-SD-1.0 No. SCALE UNIT mm Seiko Instruments Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. PF004-A-R-SD-1.0 SNT-4A-A-Reel TITLE PF004-A-R-SD-1.0 No. SCALE UNIT QTY. mm Seiko Instruments Inc. 5,000 2.0±0.2 1.3±0.2 4 3 0.05 0.3 +0.1 -0.05 0.16 2 1 0.4 +0.1 -0.06 +0.1 -0.05 No. NP004-A-P-SD-1.1 TITLE SC82AB-A-PKG Dimensions NP004-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 1.5 +0.1 -0.05 4.0±0.1 2.0±0.05 1.1±0.1 4.0±0.1 0.2±0.05 1.05±0.1 (0.7) 2.2±0.2 Feed direction No. NP004-A-C-SD-2.1 TITLE SC82AB-A-Carrier Tape No. NP004-A-C-SD-2.1 SCALE UNIT mm Seiko Instruments Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. NP004-A-R-SD-1.1 TITLE SC82AB-A-Reel No. NP004-A-R-SD-1.1 QTY. SCALE UNIT mm Seiko Instruments Inc. 3,000 2.9±0.2 1.9±0.2 4 5 1 2 +0.1 0.16 -0.06 3 0.95±0.1 0.4±0.1 No. MP005-A-P-SD-1.2 TITLE No. SOT235-A-PKG Dimensions MP005-A-P-SD-1.2 SCALE UNIT mm Seiko Instruments Inc. 4.0±0.1(10 pitches:40.0±0.2) +0.1 ø1.5 -0 2.0±0.05 +0.2 ø1.0 -0 0.25±0.1 4.0±0.1 1.4±0.2 3.2±0.2 3 2 1 4 5 Feed direction No. MP005-A-C-SD-2.1 TITLE SOT235-A-Carrier Tape No. MP005-A-C-SD-2.1 SCALE UNIT mm Seiko Instruments Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. MP005-A-R-SD-1.1 SOT235-A-Reel TITLE No. MP005-A-R-SD-1.1 SCALE QTY. UNIT mm Seiko Instruments Inc. 3,000 4.5±0.1 1.5±0.1 1.6±0.2 1 2 3 1.5±0.1 1.5±0.1 0.4±0.05 45° 0.4±0.1 0.4±0.1 0.45±0.1 No. UP003-A-P-SD-1.1 TITLE SOT893-A-PKG Dimensions No. UP003-A-P-SD-1.1 SCALE UNIT mm Seiko Instruments Inc. +0.1 ø1.5 -0 4.0±0.1(10 pitches : 40.0±0.2) 2.0±0.05 ø1.5 +0.1 -0 5° max. 0.3±0.05 8.0±0.1 2.0±0.1 4.75±0.1 Feed direction No. UP003-A-C-SD-1.1 TITLE SOT893-A-Carrier Tape No. UP003-A-C-SD-1.1 SCALE UNIT mm Seiko Instruments Inc. 16.5max. 13.0±0.3 Enlarged drawing in the central part (60°) (60°) No. UP003-A-R-SD-1.1 SOT893-A-Reel TITLE No. UP003-A-R-SD-1.1 SCALE UNIT QTY. mm Seiko Instruments Inc. 1,000 5.2max. 4.2max. Marked side 0.6max. 0.45±0.1 0.45±0.1 1.27 No. YS003-B-P-SD-1.1 TITLE No. TO92-B-PKG Dimensions YS003-B-P-SD-1.1 SCALE UNIT mm Seiko Instruments Inc. 4.2max. 5.2max. Marked side 0.6max. 0.45±0.1 0.45±0.1 +0.4 2.5 -0.1 1.27 No. YF003-A-P-SD-1.1 TITLE TO92-A-PKG Dimensions YF003-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 12.7±1.0 1.0max. 0.5max. 1.0max. Marked side 1#pin 3#pin 1.45max. 0.7±0.2 6.35±0.4 ø4.0±0.2 12.7±0.3(20 pitches : 254.0±1.0) Feed direction Marked side Feed direction No. YF003-A-C-SD-4.1 TITLE No. TO92-A-Radial Tape YF003-A-C-SD-4.1 SCALE UNIT mm Seiko Instruments Inc. 2±0.5 5±0.5 43±0.5 ø358±2 53±0.5 No. YF003-A-R-SD-2.1 TO92-A-Reel TITLE No. YF003-A-R-SD-2.1 SCALE UNIT QTY. mm Seiko Instruments Inc. 2,000 4.2max. 5.2max. Marked side 0.6max. 0.45±0.1 0.45±0.1 +0.4 2.5 -0.1 1.27 No. YF003-A-P-SD-1.1 TITLE TO92-A-PKG Dimensions YF003-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 12.7±1.0 1.0max. 0.5max. 1.0max. Marked side 1#pin 3#pin 1.45max. 0.7±0.2 6.35±0.4 ø4.0±0.2 12.7±0.3(20 pitches : 254.0±1.0) Feed direction No. YZ003-C-C-SD-3.1 TITLE TO92-C-Radial Tape No. YZ003-C-C-SD-3.1 SCALE UNIT mm Seiko Instruments Inc. Spacer 60 320 40 Side spacer placed in front side 165 320 Space more than 4 strokes 262 330 47 No. YZ003-C-Z-SD-2.1 TO92-C-Ammo Packing TITLE YZ003-C-Z-SD-2.1 No. SCALE UNIT QTY. mm Seiko Instruments Inc. 2,500 • • • • • • The information described herein is subject to change without notice. Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited. The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc. Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.