INTEGRATED CIRCUITS DATA SHEET SAA7124; SAA7125 Digital Video Encoder (ECO-DENC) Preliminary specification File under Integrated Circuits, IC22 1996 Nov 07 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 FEATURES • Monolithic CMOS 5 V device • Digital PAL/NTSC encoder • System pixel frequency 13.5 MHz • Accepts MPEG decoded data on 8-bit wide input port. Input data format Cb, Y, Cr etc. “(CCIR 656)” • Controlled rise and fall times of output syncs and blanking • Four DACs for CVBS (10-bit resolution), RGB (9-bit resolution) operating at 27 MHz; RGB sync on CVBS • Down-mode of DACs • Optionally 2 times CVBS and Y, C (all 10-bit resolution) available simultaneously • LQFP64 (V1 devices only), QFP80 or PLCC84 package. • Closed captioning encoding • On-chip YUV to RGB dematrix optionally to be by-passed for Cr, Y, Cb output on RGB DACs GENERAL DESCRIPTION • Fast I2C-bus control port (400 kHz) The SAA7124; SAA7125 encodes digital YUV video data to an NTSC or PAL CVBS plus RGB or alternatively to S-Video and CVBS output. • Encoder can be master or slave • Programmable horizontal and vertical input synchronization phase, via input pins or auxiliary codes at MP data port Optionally, the YUV to RGB dematrix can be by-passed providing the digital-to-analog converted Cb, Y, Cr signals instead of RGB. • Programmable horizontal sync output phase The circuit accepts CCIR compatible YUV data with 720 active pixels per line in 4 : 2 : 2 multiplexed formats, for example MPEG decoded data. • Internal 100/75 Colour Bar Generator (CBG) • Macrovision Pay-per-View copy protection system as option, also partly used for RGB output. It includes a sync/clock generator and on-chip Digital-to-Analog Converters (DACs). This applies to SAA7124 only. The device is protected by USA patent numbers 4631603, 4577216 and 4819098 and other intellectual property rights. Use of the Macrovision anti-copy process in the device is licensed for non-commercial home use only. Reverse engineering or disassembly is prohibited. Please contact your nearest Philips Semiconductor sales office for more information ORDERING INFORMATION TYPE NUMBER PACKAGE(1) NAME DESCRIPTION VERSION SAA7124WP; SAA7125WP PLCC84 plastic leaded chip carrier; 84 leads SOT189-2 SAA7124HZ; SAA7125HZ LQFP64 plastic low profile quad flat package; 64 leads; body 10 × 10 × 1.4 mm SOT314-2 SAA7124H; SAA7125H QFP80 plastic quad flat package; 80 leads (lead length 2.35 mm); body 14 × 20 × 2.8 mm SOT318-3 Note 1. LQFP64 package for V1 devices only. 1996 Nov 07 2 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 QUICK REFERENCE DATA SYMBOL PARAMETER MIN. TYP. MAX. UNIT VDDA analog supply voltage 4.75 5.0 5.25 V VDDD digital supply voltage 4.75 5.0 5.25 V IDDA analog supply current − tbf 60 mA IDDD digital supply current − tbf 100 mA Vi input signal voltage levels Vo(p-p) analog output signal voltages Y, C, CVBS and RGB without load − (peak-to-peak value) 2.0 − V RL load resistance 80 − − Ω ILE LF integral linearity error − − ±4 LSB DLE LF differential linearity error − − ±1 LSB Tamb operating ambient temperature 0 − +70 °C 1996 Nov 07 TTL compatible 3 1996 Nov 07 (1) (2) (3) (4) (5) 4 CbCr Y to VDDD9 VSSD9 5, 14, 22, 29, 38, 41, 49, 80, 82 VDDD1 3, 15, 24, 30, 39, 42, 51, 79, 81 SAA7124 SAA7125 I2C-bus control to 8 DATA MANAGER I2C-bus control VSSD1 25 to 28, 31 to 34 8 4 8 n.c. CbCr Y 46 45 I2C-bus control 8 8 I2C-bus control I2C-bus control OUTPUT INTERFACE 8 78 AP 77 RGB PROCESSOR SP internal control bus C Y 36 SYNC CLOCK 35 clock and timing 50 (5) 48 LLC res 69, 71 I2C-bus control 44 XTALI RCV1 VDDDO XTALO RCV2 Fig.1 Block diagram; PLCC84. 2, 16 to 21, 23, 40, 43, 47, 66, 70, 72 I2C-bus control ENCODER 37 CDIR A VrefL2 63, 68 CUR1 CUR2 52, 76 2 VrefL1 2 MODE D 55 58 61 65 56 59 62 67 73 53, 75 54, 57, 60, 64, 74 VDDA1 to VDDA5 2 MGG550 BLUE(4) GREEN(3) RED(2) res res res res VSSA1 CVBS(1) VrefH1 VrefH2 Digital Video Encoder (ECO-DENC) Alternatively Y or CVBS. Alternatively CHROMA or Cr. Alternatively CVBS or Yin. Alternatively CVBS or Cb. V1 devices only. MP7 to MP0 83 I2C-BUS INTERFACE 84 RTCI full pagewidth 1 RESET SDA SCL SA Philips Semiconductors Preliminary specification SAA7124; SAA7125 BLOCK DIAGRAM 1996 Nov 07 (1) (2) (3) (4) 5 CbCr Y to VDDD9 VSSD8 I2C-bus control 8 Y 28 27 I2C-bus control 8 8 I2C-bus control I2C-bus control OUTPUT INTERFACE 8 50 AP 49 RGB PROCESSOR SP internal control bus C Y 20 SYNC CLOCK 19 clock and timing 31 CbCr ENCODER 21 29 LLC I2C-bus control 26 XTALI RCV1 VDDDO XTALO RCV2 Fig.2 Block diagram; TQFP64, V1 devices only. 5, 7, 13, 22, 24, 30, 52, 54, 60 VDDD1 6, 8, 14, 23, 25, 51, 53, 58 SAA7124 SAA7125 I2C-bus control to 8 DATA MANAGER I2C-bus control VSSD1 9 to 12, 15 to 18 8 59 CDIR A VrefL2 40, 44 CUR1 CUR2 32, 48 2 VrefL1 2 MODE D 2 35 37 39 42, 43 2 45 33, 47 34, 36, 38, 41, 46 VDDA1 to VDDA5 MGG551 BLUE(4) GREEN(3) RED(2) VSSA2 CVBS(1) VrefH1 VrefH2 Digital Video Encoder (ECO-DENC) Alternatively Y or CVBS. Alternatively CHROMA or Cr. Alternatively CVBS or Yin. Alternatively CVBS or Cb. MP7 to MP0 55 I2C-BUS INTERFACE 56 RTCI full pagewidth 57 RESET SDA SCL SA Philips Semiconductors Preliminary specification SAA7124; SAA7125 1996 Nov 07 (1) (2) (3) (4) (5) 6 CbCr Y to VDDD9 VSSD9 5, 13, 19, 28, 30, 37, 68, 70, 76 VDDD1 6, 14, 20, 29, 31, 39, 67, 69, 74 SAA7124 SAA7125 I2C-bus control to 8 DATA MANAGER I2C-bus control VSSD1 15 to 18, 21 to 24 8 75 8 n.c. CbCr Y 34 33 control 8 8 I2C-bus control I2C-bus control OUTPUT INTERFACE 8 I2C-bus 66 AP 65 RGB PROCESSOR SP internal control bus C Y 26 SYNC CLOCK 25 clock and timing 38 (5) 36 LLC res 57, 59 I2C-bus control 32 XTALI RCV1 VDDDO XTALO RCV2 Fig.3 Block diagram; QFP80. 7 to 12, 35, 40 58, 60 I2C-bus control ENCODER 27 CDIR A VrefL2 52, 56 CUR1 CUR2 41, 64 2 VrefL1 2 MODE D 44 47 50 45 48 51 54 55 61 53, 75 54, 57, 60, 64, 74 VDDA1 to VDDA5 2 MGG552 BLUE(4) GREEN(3) RED(2) res res res res VSSA1 CVBS(1) VrefH1 VrefH2 Digital Video Encoder (ECO-DENC) Alternatively Y or CVBS. Alternatively CHROMA or Cr. Alternatively CVBS or Yin. Alternatively CVBS or Cb. V1 devices only. MP7 to MP0 71 I2C-BUS INTERFACE 72 RTCI agewidth 73 RESET SDA SCL SA Philips Semiconductors Preliminary specification SAA7124; SAA7125 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 PINNING PIN SYMBOL TYPE DESCRIPTION PLCC84 LQFP64 QFP80 RESET I 1 57 73 Reset input, active LOW. After reset is applied, all digital I/Os are in input mode. The I2C-bus receiver waits for the START condition. n.c. − 2 − − not connected VSSD1 I 3 6 6 digital ground 1 SA I 4 59 75 The I2C-bus slave address select input pin. LOW: slave address = 88H, HIGH = 8CH. VDDD1 I 5 5 5 digital supply voltage 1 TP1 O 6 61 77 TP2 O 7 62 78 TP3 O 8 63 79 TP4 O 9 64 80 TP5 O 10 1 1 TP6 O 11 2 2 TP7 O 12 3 3 TP8 O 13 4 4 VDDD2 I 14 7 13 digital supply voltage 2 VSSD2 I 15 8 14 digital ground 2 n.c. − 16 − 7 n.c. − 17 − 8 n.c. − 18 − 9 n.c. − 19 − 10 n.c. − 20 − 11 n.c. − 21 − 12 Test pin outputs. Leave open for normal operation. not connected VDDD3 I 22 13 19 digital supply voltage 3 n.c. − 23 − − not connected VSSD3 I 24 14 20 digital ground 3 MP7 I 25 9 15 MP6 I 26 10 16 MP5 I 27 11 17 MP4 I 28 12 18 VDDD4 I 29 22 28 digital supply voltage 4 VSSD4 I 30 23 29 digital ground 4 MP3 I 31 15 21 MP2 I 32 16 22 MP1 I 33 17 23 I 34 18 24 I/O 35 19 25 MP0 RCV1 1996 Nov 07 Upper 4 bits of MPEG port. It is an input for “CCIR 656” style multiplexed Cb, Y, Cr data. Lower 4 bits of MPEG port. It is an input for “CCIR 656” style multiplexed Cb, Y, Cr data. Raster Control 1 for video port. This pin receives/provides a VS/FS/FSEQ signal. 7 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 PIN SYMBOL TYPE DESCRIPTION PLCC84 LQFP64 QFP80 RCV2 I/O 36 20 26 Raster Control 2 for video port. This pin provides an HS pulse of programmable length or receives an HS pulse. RTCI I 37 21 27 Real Time Control input. If the LLC clock is provided by an SAA7111 or SAA7151B, RTCI should be connected to the RTCO pin of the respective decoder to improve the signal quality. VDDD5 I 38 24 30 digital supply voltage 5 VSSD5 I 39 25 31 digital ground 5 n.c. − 40 − 35 not connected VDDD6 I 41 30 37 digital supply voltage 6 VSSD6 I 42 51 39 digital ground 6 n.c. − 43 − 40 not connected XTALI I 44 26 32 Crystal oscillator input (from crystal). If the oscillator is not used, this pin should be connected to ground. XTALO O 45 27 33 Crystal oscillator output (to crystal). VDDDO I 46 28 34 digital supply voltage for the internal oscillator; note 1 n.c. − 47 − − not connected LLC I/O 48 29 36 Line-Locked Clock. This is the 27 MHz master clock for the encoder. The I/O direction is set by the CDIR pin. VDDD7 I 49 52 68 digital supply voltage 7 CDIR I 50 31 38 Clock direction. If CDIR input is HIGH, the circuit receives a clock signal, otherwise if CDIR is LOW, LLC is generated by the internal crystal oscillator. VSSD7 I 51 53 67 digital ground 7 VrefL1 I 52 32 41 Lower reference voltage 1 input for DACs; connect to analog ground. VrefH1 I 53 33 42 Upper reference voltage 1 input for DACs; connect via 100 nF capacitor to analog ground. VDDA1 I 54 34 43 Analog supply voltage 1 for DACs. BLUE O 55 35 44 Analog output of the BLUE component. res I 56 − 45 reserved VDDA2 I 57 36 46 Analog supply voltage 2 for DACs. GREEN O 58 37 47 Analog output of GREEN component. res I 59 − 48 reserved VDDA3 I 60 38 49 Analog supply voltage 3 for DACs. RED O 61 39 50 Analog output of RED component. res I 62 − 51 reserved CUR1 I 63 40 52 Current input 1 for RGB amplifiers; connect via 15 kΩ resistor to VDDA. VDDA4 I 64 41 53 Analog supply voltage 4 for DACs. res I 65 − 54 reserved n.c. − 66 − − not connected 1996 Nov 07 8 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 PIN SYMBOL TYPE DESCRIPTION PLCC84 LQFP64 QFP80 VSSA1 I 67 42 55 Analog ground 1 for the DACs. VSSA2 I − 43 − Analog ground 2 for the DACs. CUR2 I 68 44 56 Current input 2 for RGB amplifiers; connect via 15 kΩ resistor to VDDA. res O 69 − 57 reserved n.c. − 70 − 58 not connected res O 71 − 59 reserved n.c. − 72 − 60 not connected CVBS O 73 45 61 Analog output of the CVBS signal. VDDA5 I 74 46 62 Analog supply voltage 5 for DACs. VrefH2 I 75 47 63 Upper reference voltage 2 input for DACs; connect via 100 nF capacitor to analog ground. VrefL2 I 76 48 64 Lower reference voltage 2 input for DACs; connect to analog ground. AP I 77 49 65 Test pin. Connected to digital ground for normal operation. SP I 78 50 66 Test pin. Connected to digital ground for normal operation. VSSD8 I 79 58 69 digital ground 8 VDDD8 I 80 54 70 digital supply voltage 8 VSSD9 I 81 − 74 digital ground 9 VDDD9 I 82 60 76 digital supply voltage 9 SCL I 83 55 71 I2C-bus serial clock input. SDA I/O 84 56 72 I2C-bus serial data input/output. Note 1. V1 devices only. 1996 Nov 07 9 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 TP6 TP5 TP4 TP3 TP2 TP1 VDDD1 SA VSSD1 n.c. RESET SDA SCL VDDD9 VSSD9 VDDD8 VSSD8 SP AP VrefL2 VrefH2 11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 handbook, full pagewidth TP7 12 74 VDDA5 TP8 13 73 CVBS VDDD2 14 72 n.c. VSSD2 15 71 res n.c. 16 70 n.c. n.c. 17 69 res n.c. 18 68 CUR2 n.c. 19 67 VSSA1 n.c. 20 66 n.c. n.c. 21 65 res VDDD3 22 64 VDDA4 SAA7124 SAA7125 n.c. 23 63 CUR1 VSSD3 24 62 res MP7 25 61 RED MP6 26 60 VDDA3 MP5 27 59 res MP4 28 58 GREEN VDDD4 29 57 VDDA2 VSSD4 30 56 res (1) V1 devices only. Fig.4 Pin configuration; PLCC84. 1996 Nov 07 10 Vref H1 53 VrefL1 52 VSSD7 51 CDIR 50 VDDD7 49 LLC 48 n.c. 47 VDDDO(1) 46 XTALO 45 XTALI 44 n.c. 43 VSSD6 42 VDDD6 41 n.c. 40 VSSD5 39 VDDD5 38 RTCI 37 RCV2 36 54 VDDA1 RCV1 35 MP2 32 MP0 34 55 BLUE MP1 33 MP3 31 MGG548 Philips Semiconductors Preliminary specification TP5 1 48 VrefL2 TP6 2 47 VrefH2 TP7 3 46 VDDA5 TP8 4 45 CVBS VDDD1 5 44 CUR2 VSSD1 6 43 VSSA2 VDDD2 7 42 VSSA1 VSSD2 8 MP7 9 MP6 10 39 RED MP5 11 38 VDDA3 MP4 12 37 GREEN VDDD3 13 36 VDDA2 VSSD3 14 35 BLUE MP3 15 34 VDDA1 MP2 16 33 VrefH1 41 VDDA4 25 26 27 28 29 VSSD5 XTALI XTALO VDDDO LLC 32 24 VDDD5 VrefL1 23 VSSD4 31 22 VDDD4 CDIR 21 RTCI VDDD6 30 20 40 CUR1 RCV2 RCV1 19 MP0 18 MP1 17 SAA7124 SAA7125 Fig.5 Pin configuration; LQFP64 (V1 devices only). 1996 Nov 07 49 AP 50 SP 51 VSSD6 52 VDDD7 53 VSSD7 54 VDDD8 56 SDA 55 SCL SAA7124; SAA7125 57 RESET 58 VSSD8 59 SA 61 TP1 62 TP2 63 TP3 64 TP4 handbook, full pagewidth 60 VDDD9 Digital Video Encoder (ECO-DENC) 11 MGG547 Philips Semiconductors Preliminary specification 65 AP 66 SP 67 VSSD7 68 VDDD7 69 VSSD8 70 VDDD8 71 SCL 72 SDA SAA7124; SAA7125 73 RESET 74 VSSD9 75 SA 77 TP1 78 TP2 79 TP3 80 TP4 handbook, full pagewidth 76 VDDD9 Digital Video Encoder (ECO-DENC) TP5 1 64 VrefL2 TP6 2 63 VrefH2 TP7 3 62 VDDA5 TP8 4 61 CVBS VDDD1 5 60 n.c. VSSD1 6 59 res n.c. 7 58 n.c. n.c. 8 57 res n.c. 9 56 CUR2 n.c. 10 55 VSSA1 n.c. 11 54 res 53 VDDA4 52 CUR1 VSSD2 14 51 res MP7 15 50 RED MP6 16 49 VDDA3 MP5 17 48 res MP4 18 47 GREEN VDDD3 19 46 VDDA2 VSSD3 20 45 res MP3 21 44 BLUE MP2 22 43 VDDA1 MP1 23 42 VrefH1 MP0 24 41 VrefL1 n.c. 12 (1) V1 devices only. Fig.6 Pin configuration; QFP80. 1996 Nov 07 12 n.c. 40 VSSD6 39 CDIR 38 VDDD6 37 LLC 36 n.c. 35 34 VDDDO (1) XTALO 33 VSSD5 31 VDDD5 30 VSSD4 29 VDDD4 28 RTCI 27 RCV2 26 RCV1 25 VDDD2 13 XTALI 32 SAA7124 SAA7125 MGG549 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 The encoder can be configured as slave with respect to RCV trigger inputs or auxiliary “CCIR 656” codes, or can be master to output horizontal and vertical trigger pulses. FUNCTIONAL DESCRIPTION The digital video encoder (ECO-DENC) encodes digital luminance and colour difference signals into analog CVBS and simultaneously RGB signals. NTSC-M, PAL B/G standards and sub-standards are supported. The IC also contains Closed Caption and Extended Data Services Encoding (Line 21), and supports anti-taping signal generation in accordance with Macrovision. Both interlaced and non-interlaced operation is possible for all standards. A number of possibilities are provided for setting different video parameters such as: Optionally, the input Y, Cb and Cr data, digital-to-analog converted, is available at the analog RGB outputs. Black and blanking level control Colour subcarrier frequency For applications that do not require RGB output, the device can be configured in such a way that S-Video and twice CVBS is available (Y at CVBS-DAC, C at R-DAC, and CVBS at G-DAC and B-DAC). Variable burst amplitude etc. During reset (RESET = LOW) and after reset is released, all digital I/O stages are set to input mode. A reset forces the I2C-bus interface to abort any running bus transfer and sets register 3A to 03H, register 61 to 06H and registers 6BH and 6EH to 00H. All other control registers are not influenced by a reset. The basic encoder function consists of subcarrier generation, colour modulation and insertion of synchronization signals. Luminance and chrominance signals are filtered in accordance with the standard requirements of “RS-170-A” and “CCIR 624”. Data manager For ease of analog post filtering the signals are twice oversampled with respect to the pixel clock before digital-to-analog conversion. In the data manager, real time arbitration on the data stream to be encoded is performed. Optionally, the device can operate as a 100/75 colour bar test pattern generator without need for an external data source. For total filter transfer characteristics see Figs 7, 8, 9, 10, 11 and 12. The DACs for Y, C, and CVBS are realized with full 10-bit resolution, DACs for RGB with 9-bit resolution. Encoder The MPEG port (MP) accepts 8 line multiplexed Cb, Y, Cr data. VIDEO PATH The 8-bit multiplexed Cb-Y-Cr formats are “CCIR 656” (D1 format) compatible, but auxiliary codes such as SAV and EAV are decoded optionally for trigger purposes. The encoder generates out of Y, U and V baseband signals luminance and colour subcarrier output signals, suitable for use as CVBS or separate Y and C signals. A crystal-stable master clock (LLC) of 27 MHz, which is twice the CCIR line-locked pixel clock of 13.5 MHz, needs to be supplied externally. Optionally, a crystal oscillator input/output pair of pins and an on-chip clock driver is provided. Luminance is modified in gain and in offset (latter programmable in a certain range to enable different black level set-ups). After having been inserted a fixed synchronization level, in accordance with standard composite synchronization schemes, and blanking level, programmable also in a certain range to allow for manipulations with Macrovision anti-taping, additional insertion of AGC super-white pulses, programmable in height, is supported. It is also possible to connect a Philips Digital Video Decoder (SAA7111 or SAA7151B) in conjunction with a CREF clock qualifier to ECO-DENC. Via the RTCI pin, connected to RTCO of a decoder, information concerning actual subcarrier, PAL-ID, and if connected to SAA7111, definite subcarrier phase can be inserted. In order to enable easy analog post filtering, luminance is interpolated from 13.5 MHz data rate to 27 MHz data rate, providing luminance in 10-bit resolution. This filter is also used to define smoothed transients for synchronization pulses and blanking period. For transfer characteristic of the luminance interpolation filter see Figs 9 and 10. The ECO-DENC synthesizes all necessary internal signals, colour subcarrier frequency, and synchronization signals, from that clock. 1996 Nov 07 13 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 Chrominance is modified in gain (programmable separately for U and V), standard dependent burst is inserted, before baseband colour signals are interpolated from 6.75 MHz data rate to 27 MHz data rate. One of the interpolation stages can be bypassed, thus providing a higher colour bandwidth, which can be made use of for Y and C output. For transfer characteristics of the chrominance interpolation filter see Figs 7 and 8. Output interface/DACs In the output interface encoded both Y and C signals are converted from digital-to-analog in 10-bit resolution. Y and C signals are also combined to a 10-bit CVBS signal. RED, GREEN and BLUE signals (optionally Cr, Y, Cb) are also converted from digital-to-analog, each providing a 9-bit resolution. The amplitude of inserted burst is programmable in a certain range, suitable for standard signals and for special effects. Behind the succeeding quadrature modulator, colour in 10-bit resolution is provided on subcarrier. All output occurs with the same processing delay. Absolute amplitudes at the input of the DAC for CVBS is reduced by 15⁄16 with respect to Y and C DACs to make maximum use of conversion ranges. The numeric ratio between Y and C outputs is in accordance with set standards. Depending on control bits YC_EN and DEMOFF, different signal combinations are available at DACs #1 to #4. YC_EN = DEMOFF = LOW is the default configuration after reset. CLOSED CAPTION ENCODER Using this circuit, data in accordance with the specification of Closed Caption or Extended Data Service, delivered by the control interface, can be encoded (Line 21). Two dedicated pairs of bytes (two bytes per field), each pair preceded by run-in clocks and framing code, are possible. Table 1 The actual line number where data is to be encoded in, can be modified in a certain range. Data clock frequency is in accordance with definition for NTSC-M standard 32 times horizontal line frequency. Control of DAC signals YC_EN DEMOFF DAC1 DAC2 DAC3 0 0 0 1 1 1 DAC4 CVBS R G B CVBS Cr Y Cb 0 VBS C CVBS CVBS 1 VBS C CVBS CVBS Data LOW at the output of the DACs corresponds to 0 IRE, data HIGH at the output of the DACs corresponds to approximately 50 IRE. Outputs of the DACs can be set together in two groups (#1 and #2 by DOWNB, #3 and #4 by DOWNA) via software control to minimum output voltage for either purpose. It is also possible to encode Closed Caption Data for 50 Hz field frequencies at 32 times horizontal line frequency. Synchronization ANTI-TAPING (SAA7124 ONLY) Synchronization of the ECO-DENC is able to operate in two modes; slave mode and master mode. For more information contact your nearest Philips Semiconductors sales office. In the slave mode, the circuit accepts synchronization pulses at the bidirectional RCV1 port (or equivalently as frame synchronization from “CCIR 656” data stream). The timing and trigger behaviour related to RCV1 can be influenced by programming the polarity and on-chip delay of RCV1. Active slope of RCV1 defines the vertical phase and optionally the odd/even and colour frame phase to be initialized, it can be also used to set the horizontal phase. RGB processor This block contains a dematrix in order to produce RED, GREEN and BLUE signals to be fed to a SCART plug. Before Y, Cb and Cr signals are de-matrixed, 2 times oversampling for luminance and 4 times oversampling for colour difference signals is performed. For transfer curves of luminance and colour difference components of RGB see Figs 11 and 12. 1996 Nov 07 If the horizontal phase is not to be influenced by RCV1, a horizontal pulse needs to be supplied at the RCV2 pin (or a horizontal synchronization from “CCIR 656” data stream). Timing and trigger behaviour can also be influenced for RCV2. 14 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 If there are missing pulses at RCV1 and/or RCV2, the time base of ECO-DENC runs free, thus an arbitrary number of synchronization slopes may miss, but no additional pulses (with the incorrect phase) must occur. I2C-bus interface The I2C-bus interface is a standard slave transceiver, supporting 7-bit slave addresses and 400 kbits/s guaranteed transfer rate. It uses 8-bit subaddressing with an auto-increment function. All registers are write only, except one readable status byte. If the vertical and horizontal phase is derived from RCV1, RCV2 can be used for horizontal or composite blanking input or output. Two I2C-bus slave addresses are selected: Alternatively, the device can be triggered by auxiliary codes in a “CCIR 656” data stream at the MP port. 88H: LOW at pin SA 8CH: HIGH at pin SA. In the master mode, the time base of the circuit continuously runs free. On the RCV1 port, the IC can output: Input levels and formats • A Vertical Sync signal (VS) with 3 or 2.5 lines duration, or; ECO-DENC expects digital Y, Cb, Cr data with levels (digital codes) in accordance with “CCIR 601”. • An ODD/EVEN signal which is LOW in odd fields, or; For C and CVBS outputs, deviating amplitudes of the colour difference signals can be compensated by independent gain control setting, while gain for luminance is set to predefined values, distinguishable for 7.5 IRE set-up or without set-up. • A field sequence signal (FSEQ) which is HIGH in the first of 4, 8 fields respectively. On the RCV2 port, the IC can provide a horizontal pulse with programmable start and stop phase; this pulse can be inhibited in the vertical blanking period to build up, for example, a composite blanking signal. For RGB (or Y, Cb and Cr) outputs fixed amplification in accordance with “CCIR 601” is provided. Reference levels are measured with a colour bar, 100% white, 100% amplitude and 100% saturation. The polarity of both RCV1 and RCV2 is selectable by software control. TRANSFORMATION Field length is in accordance with to 50 Hz or 60 Hz standards, including non-interlaced options; start and end of its active part can be programmed. The active part of a field always starts at the beginning of a line, If the standard blanking option SBLBN is not set. R = Y + 1.3707 × (Cr − 128) G = Y − 0.3365 × (Cb − 128) − 0.6982 × (Cr − 128) B = Y + 1.7324 × (Cb − 128). Representation of R, G and B at the output is 9 bits at 27 MHz. Table 2 8-bit multiplexed format (similar to “CCIR 656” ) BITS TIME Sample Luminance pixel number Colour pixel number 1996 Nov 07 0 1 2 2 4 5 6 7 Cb0 Y0 Cr0 Y1 Cb2 Y2 Cr2 Y3 0 1 0 2 3 2 15 1996 Nov 07 16 6C 6D 6E Trigger control Trigger control Multi control Line 21 odd 1 6B 68 Line 21 odd 0 RCV port control 67 Subcarrier 3 69 66 Subcarrier 2 6A 65 Subcarrier 1 Line 21 even 1 64 Subcarrier 0 SBLBN HTRIG10 HTRIG7 SRCV11 L21E17 L21E07 L21O17 L21O07 FSC31 FSC23 FSC15 FSC07 RTCE DOWNB 0 0 GAINV8 GAINU8 GAINV7 GAINU7 CHPS7 0 0 CBENB 0 0 D7 0 HTRIG9 HTRIG6 SRCV10 L21E16 L21E06 L21O16 L21O06 FSC30 FSC22 FSC14 FSC06 BSTA6 DOWNA 0 0 DECTYP 0 GAINV6 GAINU6 CHPS6 0 0 0 0 0 D6 CHPS5 0 0 YC_EN 0 0 PHRES1 HTRIG8 HTRIG5 TRCV2 L21E15 L21E05 L21O15 L21O05 FSC29 FSC21 FSC13 FSC05 BSTA5 INPI 0 BLNVB5 BLNNL5 BLCKL5 GAINV5 GAINU5 ↓ ↓ D5 PHRES0 VTRIG4 HTRIG4 ORCV1 L21E14 L21E04 L21O14 L21O04 FSC28 FSC20 FSC12 FSC04 BSTA4 YGS 0 BLNVB4 BLNNL4 BLCKL4 GAINV4 GAINU4 CHPS4 0 0 SYMP 0 0 D4 0 VTRIG3 HTRIG3 PRCV1 L21E13 L21E03 L21O13 L21O03 FSC27 FSC19 FSC11 FSC03 BSTA3 0 0 BLNVB3 BLNNL3 BLCKL3 GAINV3 GAINU3 CHPS3 0 0 DEMOFF 0 0 D3 DATA BYTE(1) 0 VTRIG2 HTRIG2 CBLF L21E12 L21E02 L21O12 L21O02 FSC26 FSC18 FSC10 FSC02 BSTA2 SCBW 0 BLNVB2 BLNNL2 BLCKL2 GAINV2 GAINU2 CHPS2 0 0 0 0 0 D2 FLC1 VTRIG1 HTRIG1 ORCV2 L21E11 L21E01 L21O11 L21O01 FSC25 FSC17 FSC09 FSC01 BSTA1 PAL 0 BLNVB1 BLNNL1 BLCKL1 GAINV1 GAINU1 CHPS1 0 0 Y2C 0 0 D1 FLCO VTRIG0 HTRIG0 PRCV2 L21E10 L21E00 L21O10 L21O00 FSC24 FSC16 FSC08 FSC00 BSTA0 FISE 0 BLNVB0 BLNNL0 BLCKL0 GAINV0 GAINU0 CHPS0 0 0 UV2C 0 0 D0 Digital Video Encoder (ECO-DENC) Line 21 even 0 62 63 RTC enable burst amplitude 61 Standard control 5E Gain V MSB, blanking level, decoder type 60 5D Gain U MSB, black level 5F 5C Gain V Null 5B Gain U Blanking level VBI 59 42 Null 5A 3A I/O port control Chrominance phase 39 Null Null 00 Null SUB ADDRESS Slave receiver (slave address 88H or 8CH) REGISTER FUNCTION Table 3 Bit allocation map Philips Semiconductors Preliminary specification SAA7124; SAA7125 1996 Nov 07 75 76 77 78 79 7A 7B 7C Null Null Null Null Null First active line Last active line MSBs vertical 17 CCEN1 D7 0 0 0 0 LAL7 FAL7 0 0 0 0 0 0 0 0 RCV2E7 RCV2S7 1. All bits marked 0 must be programmed to zero. Note 7F 74 Null Null 73 Null 7E 72 MSBs RCV2 output Null 71 RCV2 output end 7D 70 Null 6F RCV2 output start SUB ADDRESS Closed caption REGISTER FUNCTION 0 0 0 LAL8 LAL6 FAL6 0 0 0 0 0 0 0 RCV2E10 RCV2E6 RCV2S6 CCEN0 D6 0 0 0 0 LAL5 FAL5 0 0 0 0 0 0 0 RCV2E9 RCV2E5 RCV2S5 0 D5 0 0 0 FAL8 LAL4 FAL4 0 0 0 0 0 0 0 RCV2E8 RCV2E4 RCV2S4 SCCLN4 D4 0 0 0 0 LAL3 FAL3 0 0 0 0 0 0 0 0 RCV2E3 RCV2S3 SCCLN3 D3 DATA BYTE(1) 0 0 0 0 LAL2 FAL2 0 0 0 0 0 0 0 RCV2S10 RCV2E2 RCV2S2 SCCLN2 D2 0 0 0 0 LAL1 FAL1 0 0 0 0 0 0 0 RCV2S9 RCV2E1 RCV2S1 SCCLN1 D1 0 0 0 0 LAL0 FAL0 0 0 0 0 0 0 0 RCV2S8 RCV2E0 RCV2S0 SCCLN0 D0 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 I2C-bus format I2C-bus address; see Table 5 Table 4 S SLAVE ADDRESS Table 5 ACK SUBADDRESS ACK DATA 0 ACK -------- DATA n ACK P Explanation of Table 4 PART DESCRIPTION S START condition Slave address 1 0 0 0 1 0 0 X or 1 0 0 0 1 1 0 X (note 1) ACK acknowledge, generated by the slave Subaddress (note 2) subaddress byte DATA data byte -------- continued data bytes and ACKs P STOP condition Notes 1. X is the read/write control bit; X = logic 0 is order to write; X = logic 1 is order to read, no subaddressing with read. 2. If more than 1 byte DATA is transmitted, then auto-increment of the subaddress is performed. Slave Receiver Table 6 Subaddress 3A DATA BYTE UV2C Y2C DEMOFF SYMP YC_EN CBENB 1996 Nov 07 LOGIC LEVEL DESCRIPTION 0 Cb, Cr data are two’s complement. 1 Cb, Cr data are straight binary. Default after reset. 0 Y data is two’s complement. 1 Y data is straight binary. Default after reset. 0 Y, Cb and Cr for RGB dematrix is active. Default after reset. 1 Y, Cb and Cr for RGB dematrix is bypassed. 0 Horizontal and vertical trigger is taken from RCV2 and RCV1 respectively. Default after reset. 1 Horizontal and vertical trigger is decoded out of “CCIR 656” compatible data at MP port. 0 Output of CVBS and RGB signals. Default after reset. 1 Output of Y, C, and CVBS, CVBS signals. 0 Data from input ports is encoded. Default after reset. 1 Colour bar with fixed colours is encoded. The LUTs are read in upward order from index 0 to index 7. 18 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) Table 7 Subaddress 5A DATA BYTE CHPS Table 8 SAA7124; SAA7125 DESCRIPTION VALUE RESULT phase of encoded colour subcarrier (including burst) relative to horizontal sync. Can be adjusted in steps of 360/256 degrees tbf PAL-B/G and data from input ports tbf PAL-B/G and data from look-up table tbf NTSC-M and data from input ports tbf NTSC-M and data from look-up table Subaddress 5B and 5D DATA BYTE DESCRIPTION CONDITIONS REMARKS variable gain for Cb signal; white-to-black = 92.5 IRE(1) input representation GAINU = 0 accordance with GAINU = 118 (76H) “CCIR 601” white-to-black = 100 IRE(2) GAINU output subcarrier of U contribution = 0 output subcarrier of U contribution = nominal GAINU = 0 output subcarrier of U contribution = 0 GAINU = 125 (7DH) output subcarrier of U contribution = nominal Notes 1. GAINU = −2.17 × nominal to +2.16 × nominal. 2. GAINU = −2.05 × nominal to +2.04 × nominal. Table 9 Subaddress 5C and 5E DATA BYTE GAINV DESCRIPTION variable gain for Cr signal; input representation accordance with “CCIR 601” CONDITIONS white-to-black = 92.5 GAINV = 0 output subcarrier of V contribution = 0 GAINV = 165 (A5H) white-to-black = 100 output subcarrier of V contribution = nominal IRE(2) GAINV = 0 output subcarrier of V contribution = 0 GAINV = 175 (AFH) output subcarrier of V contribution = nominal Notes 1. GAINV = −1.55 × nominal to +1.55 × nominal. 2. GAINV = −1.46 × nominal to +1.46 × nominal. 1996 Nov 07 REMARKS IRE(1) 19 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 Table 10 Subaddress 5D DATA BYTE BLCKL DESCRIPTION CONDITIONS variable black level; input white-to-sync = 140 IRE(1) representation accordance BLCKL = 0 with “CCIR 601” BLCKL = 63 (3FH) white-to-sync = 143 REMARKS output black level = 24 IRE output black level = 49 IRE IRE(2) BLCKL = 0 output black level = 24 IRE BLCKL = 63 (3FH) output black level = 50 IRE Notes 1. Output black level/IRE = BLCKL × 25/63 + 24; recommended value: BLCKL = 60 (3CH) normal. 2. Output black level/IRE = BLCKL × 26/63 + 24; recommended value: BLCKL = 45 (2DH) normal. Table 11 Subaddress 5E DATA BYTE BLNNL DESCRIPTION variable blanking level CONDITIONS REMARKS white-to-sync = 140 IRE(1) BLNNL = 0 output blanking level = 17 IRE BLNNL = 63 (3FH) output blanking level = 42 IRE white-to-sync = 143 IRE(2) DECTYP RTCI BLNNL = 0 output blanking level = 17 IRE BLNNL = 63 (3FH) output blanking level = 43 IRE logic 0 real time control input from SAA7151B logic 1 real time control input from SAA7111 Notes 1. Output black level/IRE = BLNNL × 25/63 + 17; recommended value: BLNNL = 58 (3AH) normal. 2. Output black level/IRE = BLNNL × 26/63 + 17; recommended value: BLNNL = 63 (3FH) normal. Table 12 Subaddress 5F DATA BYTE BLNVB 1996 Nov 07 DESCRIPTION variable blanking level during vertical blanking interval is typically identical to value of BLNNL 20 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 Table 13 Subaddress 61 DATA BYTE FISE PAL SCBW YGS INPI DOWNA DOWNB LOGIC LEVEL DESCRIPTION 0 864 total pixel clocks per line; default after reset 1 858 total pixel clocks per line 0 NTSC encoding (non-alternating V component) 1 PAL encoding (alternating V component); default after reset 0 enlarged bandwidth for chrominance encoding (for overall transfer characteristic of chrominance in baseband representation see Figs 7 and 8) 1 standard bandwidth for chrominance encoding (for overall transfer characteristic of chrominance in baseband representation see Figs 7 and 8); default after reset 0 luminance gain for white − black 100 IRE; default after reset 1 luminance gain for white − black 92.5 IRE including 7.5 IRE set-up of black 0 PAL switch phase is nominal; default after reset 1 PAL switch phase is inverted compared to nominal 0 DACs for G and B (Y and Cb or CVBS and CVBS) in normal operational mode; default after reset 1 DACs for G and B (Y and Cb or CVBS and CVBS) forced to lowest output voltage 0 DACs for CVBS and R (CVBS and Cr or VBS and C) in normal operational mode; default after reset 1 DACs for CVBS and R (CVBS and Cr or VBS and C) forced to lowest output voltage Table 14 Subaddress 62A DATA BYTE BSTA DESCRIPTION amplitude of colour burst; input representation in accordance with “CCIR 601” CONDITIONS white-to-black = 92.5 IRE; burst = 40 IRE; NTSC encoding REMARKS recommended value: BSTA = 102 (66H BSTA = 0 to 1.25 × nominal white-to-black = 92.5 IRE; burst = 40 IRE; PAL encoding recommended value: BSTA = 72 (48H) BSTA = 0 to 1.76 × nominal white-to-black = 100 IRE; burst = 43 IRE; NTSC encoding recommended value: BSTA = 106 (6AH) BSTA = 0 to 1.20 × nominal white-to-black = 100 IRE; burst = 43 IRE; PAL encoding recommended value: BSTA = 75 (4BH) BSTA = 0 to 1.67 × nominal Table 15 Subaddress 62B DATA BYTE RTCE 1996 Nov 07 LOGIC LEVEL DESCRIPTION 0 no real time control of generated subcarrier frequency 1 real time control of generated subcarrier frequency through SAA7151B or SAA7111 (timing see Fig.15) 21 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 Table 16 Subaddress 63 to 66 (four bytes to program subcarrier frequency) DATA BYTE DESCRIPTION FSC0 to FSC3 ffsc = subcarrier frequency (in multiples of line frequency); fllc = clock frequency (in multiples of line frequency) CONDITIONS f fsc 32 FSC = round -------- × 2 f llc REMARKS FSC3 = most significant byte FSC0 = least significant byte see note 1 Note 1. Examples: a) NTSC-M: ffsc = 227.5, fllc = 1716 → FSC = 569408543 (21F07C1FH). b) PAL-B/G: ffsc = 283.7516, fllc = 1728 → FSC = 705268427 (2A098ACBH). Table 17 Subaddress 67 to 6A DATA BYTE DESCRIPTION REMARK L21O0 first byte of captioning data, odd field L21O1 second byte of captioning data, odd field L21E0 first byte of extended data, even field L21E1 second byte of extended data, even field 1996 Nov 07 22 LSB of the respective bytes are encoded immediately after run-in and framing code, the MSBs of the respective bytes have to carry the parity bit, in accordance with the definition of Line 21 encoding format Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 Table 18 Subaddress 6B DATA BYTE LOGIC LEVEL PRCV2 ORCV2 CBLF DESCRIPTION 0 polarity of RCV2 as output is active HIGH, rising edge is taken when input, respectively; default after reset 1 polarity of RCV2 as output is active LOW, falling edge is taken when input, respectively 0 pin RCV2 is switched to input; default after reset 1 pin RCV2 is switched to output 0 if ORCV2 = HIGH, pin RCV2 provides an HREF signal (Horizontal Reference pulse that is defined by RCV2S and RCV2E, also during vertical blanking Interval); default after reset if ORCV2 = LOW and bit SYMP = LOW, signal input to RCV2 is used for horizontal synchronization only (if TRCV2 = HIGH); default after reset 1 if ORCV2 = HIGH, pin RCV2 provides a ‘Composite-Blanking-Not’ signal, this is a reference pulse that is defined by RCV2S and RCV2E, excluding Vertical Blanking Interval, which is defined by FAL and LAL if ORCV2 = LOW and bit SYMP = LOW, signal input to RCV2 is used for horizontal synchronization (if TRCV2 = HIGH) and as an internal blanking signal PRCV1 ORCV1 TRCV2 SRCV1 0 polarity of RCV1 as output is active HIGH, rising edge is taken when input; default after reset 1 polarity of RCV1 as output is active LOW, falling edge is taken when input 0 pin RCV1 is switched to input; default after reset 1 pin RCV1 is switched to output 0 horizontal synchronization is taken from RCV1 port (at bit SYMP = LOW) or from decoded frame sync of “CCIR 656” input (at bit SYMP = HIGH); default after reset 1 horizontal synchronization is taken from RCV2 port (at bit SYMP = LOW) − defines signal type on pin RCV1; see Table 19 Table 19 Logic levels and function of SRCV1 DATA BYTE AS OUTPUT AS INPUT 0 VS VS vertical sync each field; default after reset 1 FS FS frame sync (odd/even) 1 0 FSEQ FSEQ 1 1 not applicable not applicable SRCV11 SRCV10 0 0 1996 Nov 07 23 FUNCTION field sequence, vertical sync every fourth field (PAL = 0) or eighth field (PAL = 1) − Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 Table 20 Subaddress 6C and 6D DATA BYTE DESCRIPTION sets the horizontal trigger phase related to signal on RCV1 or RCV2 input (or to decoded “CCIR 656” data) HTRIG values above 1715 (FISE = 1) or 1727 (FISE = 0) are not allowed increasing HTRIG decreases delays of all internally generated timing signals reference mark: analog output horizontal sync (leading slope) coincides with active edge of RCV used for triggering at HTRIG = tbfH (tbfH) Table 21 Subaddress 6D DATA BYTE DESCRIPTION sets the vertical trigger phase related to signal on RCV1 input (or to decoded “CCIR 656” data) VTRIG increasing VTRIG decreases delays of all internally generated timing signals, measured in half lines variation range of VTRIG = 0 to 31 (1FH) Table 22 Subaddress 6E DATA BYTE LOGIC LEVEL SBLBN DESCRIPTION 0 vertical blanking is defined by programming of FAL and LAL; default after reset 1 vertical blanking is forced in accordance with “CCIR 624” (50 Hz) or “RS170A” (60 Hz) PHRES − selects the phase reset mode of the colour subcarrier generator; see Table 23 FLC − field length control; see Table 24 Table 23 Logic levels and function of PHRES DATA BYTE FUNCTION PHRES1 PHRES0 0 0 no reset or reset via RTCI from SAA7111 if bit RTCE = 1; default after reset 0 1 reset every two lines 1 0 reset every eight fields 1 1 reset every four fields Table 24 Logic levels and function of FLC DATA BYTE FUNCTION FLC1 FLC0 0 0 interlaced 312.5 lines/field at 50 Hz, 262.5 lines/field at 60 Hz; default after reset 0 1 non-interlaced 312 lines/field at 50 Hz, 262 lines/field at 60 Hz 1 0 non-interlaced 313 lines/field at 50 Hz, 263 lines/field at 60 Hz 1 1 non-interlaced 313 lines/field at 50 Hz, 263 lines/field at 60 Hz 1996 Nov 07 24 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 Table 25 Subaddress 6F DATA BYTE DESCRIPTION CCEN enables individual Line 21 encoding; see Table 26 SCCLN selects the actual line, where closed caption or extended data are encoded line = (SCCLN + 4) for M-systems line = (SCCLN + 1) for other systems Table 26 Logic levels and function of CCEN DATA BYTE FUNCTION CCEN1 CCEN0 0 0 line 21 encoding off 0 1 enables encoding in field 1 (odd) 1 0 enables encoding in field 2 (even) 1 1 enables encoding in both fields Table 27 Subaddress 70 to 72 DATA BYTE RCV2S DESCRIPTION start of output signal on RCV2 pin values above 1715 (FISE = 1) or 1727 (FISE = 0) are not allowed first active pixel at analog outputs (corresponding input pixel coinciding with RCV2) at RCV2S = tbfH (tbfH) RCV2E end of output signal on RCV2 pin values above 1715 (FISE = 1) or 1727 (FISE = 0) are not allowed last active pixel at analog outputs (corresponding input pixel coinciding with RCV2) at RCV2E = tbfH (tbfH) Table 28 Subaddress 7A to 7C DATA BYTE FAL DESCRIPTION first active line = FAL + 4 for M-systems, = FAL + 1 for other systems, measured in lines FAL = 0 coincides with the first field synchronization pulse LAL last active line = LAL + 3 for M-systems, = LAL for other system, measured in lines LAL = 0 coincides with the first field synchronization pulse SUBADDRESSES In subaddresses 5B, 5C, 5D, 5E and 62 all IRE values are rounded up. 1996 Nov 07 25 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 Slave Transmitter Table 29 Slave transmitter (slave address 89H or 8DH) REGISTER FUNCTION DATA BYTE SUBADDRESS − Status byte D7 D6 D5 VER2 VER1 VER0 D4 D3 D2 D1 D0 0 FSEQ O_E CCRDO CCRDE Table 30 No subaddress DATA BYTE LOGIC LEVEL DESCRIPTION VER − Version identification of the device. It will be changed with all versions of the IC that have different programming models. Current Version is 100 binary. CCRDO 1 Closed caption bytes of the odd field have been encoded. 0 The bit is reset after information has been written to the subaddresses 67 and 68. It is set immediately after the data has been encoded. 1 Closed caption bytes of the even field have been encoded. 0 The bit is reset after information has been written to the subaddresses 69 and 6A. It is set immediately after the data has been encoded. 1 During first field of a sequence (repetition rate: NTSC = 4 fields, PAL = 8 fields. 0 Not first field of a sequence. 1 During even field. 0 During odd field. CCRDE FSEQ O_E 1996 Nov 07 26 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 MBE737 handbook, full 6 pagewidth Gv (dB) 0 −6 −12 −18 −24 (1) (2) −30 −36 −42 −48 −54 0 2 4 6 8 10 (1) SCBW = 1. (2) SCBW = 0. Fig.7 Chrominance transfer characteristic 1. MBE735 handbook, halfpage 2 Gv (dB) 0 (1) (2) −2 −4 −6 0 0.4 0.8 1.2 f (MHz) 1.6 (1) SCBW = 1. (2) SCBW = 0. Fig.8 Chrominance transfer characteristic 2. 1996 Nov 07 27 12 f (MHz) 14 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 MGG556 handbook, full 6 pagewidth Gv (dB) 0 (1) −6 −12 −18 −24 −30 −36 −42 −48 −54 0 2 4 6 8 10 12 14 f (MHz) (1) Total luminance of Y and CVBS. Fig.9 Luminance transfer characteristic 1. MBE736 handbook, halfpage 1 Gv (dB) (1) 0 −1 −2 −3 −4 −5 0 2 4 f (MHz) 6 (1) Detailed luminance of Y and CVBS. Fig.10 Luminance transfer characteristic 2. 1996 Nov 07 28 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 MGB708 handbook, full pagewidth Gv 6 (dB) 0 −6 −12 −18 −24 −30 −36 −42 −48 −54 0 2 4 6 8 10 12 f (MHz) 14 Fig.11 Luminance transfer characteristic in RGB. MGB706 handbook, full pagewidth Gv 6 (dB) 0 −6 −12 −18 −24 −30 −36 −42 −48 −54 0 2 4 6 8 10 Fig.12 Colour difference transfer characteristic in RGB. 1996 Nov 07 29 12 f (MHz) 14 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 CHARACTERISTICS VDDD = 4.75 to 5.25 V; Tamb = 0 to +70 °C; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT Supplies VDDA analog supply voltage 4.75 5.25 V VDDD digital supply voltage 4.75 5.25 V IDDA analog supply current note 1 − 60 mA IDDD digital supply current note 1 − 100 mA Inputs VIL LOW level input voltage (except SDA, SCL, AP, SP and XTALI) −0.5 +0.8 V VIH HIGH level input voltage (except LLC, SDA, SCL, AP, SP and XTALI) 2.0 VDDD + 0.5 V HIGH level input voltage (LLC) 2.4 VDDD + 0.5 V ILI input leakage current − 1 µA Ci input capacitance clocks − 10 pF data − 8 pF I/Os at high impedance − 8 pF Outputs VOL LOW level output voltage (except SDA and XTALO) note 2 0 0.6 V VOH HIGH level output voltage (except LLC, SDA, and XTALO) note 2 2.4 VDDD + 0.5 V HIGH level output voltage (LLC) note 2 2.6 VDDD + 0.5 V −0.5 +1.5 V I2C-bus; SDA and SCL VIL LOW level input voltage VIH HIGH level input voltage 3.0 VDDD + 0.5 V Ii input current Vi = LOW or HIGH −10 +10 µA VOL LOW level output voltage (SDA) IOL = 3 mA − 0.4 V Io output current during acknowledge 3 − mA Clock timing (LLC) TLLC cycle time note 3 34 41 ns δ duty factor tHIGH/TLLC note 4 40 60 % tr rise time note 3 − 5 ns tf fall time note 3 − 6 ns Input timing tSU;DAT input data set-up time (any other except CDIR, SCL, SDA, RESET, AP and SP) 6 − ns tHD;DAT input data hold time (any other except CDIR, SCL, SDA, RESET, AP and SP) 3 − ns 1996 Nov 07 30 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SYMBOL SAA7124; SAA7125 PARAMETER CONDITIONS MIN. MAX. UNIT Crystal oscillator fn nominal frequency (usually 27 MHz) 3rd harmonic − 30 MHz ∆f/fn permissible deviation of nominal frequency note 5 −50 +50 10−6 CRYSTAL SPECIFICATION Tamb operating ambient temperature 0 70 °C CL load capacitance 8 − pF RS series resistance − 80 Ω C1 motional capacitance (typical) 1.5 − 20% 1.5 + 20% fF C0 parallel capacitance (typical) 3.5 − 20% 3.5 + 20% pF Data and reference signal output timing CL output load capacitance 7.5 40 pF th output hold time 4 − ns td output delay time − 25 ns 1.9 2.1 V 18 35 Ω CHROMA, Y, CVBS and RGB outputs Vo(p-p) output signal voltage (peak-to-peak value) Rint internal serial resistance note 6 80 − Ω 10 − MHz LF integral linearity error of DACs − ±4 LSB LF differential linearity error of DACs − ±1 LSB RL output load resistance B output signal bandwidth of DACs ILE DLE −3 dB Notes 1. At maximum supply voltage with highly active input signals. 2. The levels have to be measured with load circuits of 1.2 kΩ to 3.0 V (standard TTL load) and CL = 25 pF. 3. The data is for both input and output direction. 4. With LLC in input mode. In output mode, with a crystal connected to XTALO/XTALI duty factor is typically 50%. 5. If an internal oscillator is used, crystal deviation of nominal frequency is directly proportional to the deviation of subcarrier frequency and line/field frequency. 6. For full digital range, without load, VDDA = 5.0 V. The typical voltage swing is 2.0 V, the typical minimum output voltage (digital zero at DAC) is 0.2 V. 1996 Nov 07 31 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) handbook, full pagewidth SAA7124; SAA7125 TLLC tHIGH 2.6 V 1.5 V 0.6 V LLC clock output tHD; DAT tf tr TLLC tHIGH 2.4 V 1.5 V 0.8 V LLC clock input tSU; DAT tHD; DAT tf tr 2.0 V input data valid valid not valid 0.8 V td tHD; DAT 2.4 V output data valid valid not valid 0.6 V MBE742 Fig.13 Clock data timing. handbook, full pagewidth LLC MP(n) Cb(0) Y(0) Cr(0) Y(1) Cb(2) RCV2 MGB699 The data demultiplexing phase is coupled to the internal horizontal phase. The phase of the RCV2 signal is programmed to 0F2H (110H for 50 Hz) in this example in output mode (RCV2S). Fig.14 Functional timing. 1996 Nov 07 32 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 sequence reserved (2) 5 bits bit (1) reset reserved bit (3) handbook, full pagewidth H/L transition count start LOW 128 13 4 bits reserved HPLL increment FSCPLL increment (4) 0 21 0 RTCI time slot: 0 1 14 19 67 68 not used in SAA7124/25 valid sample (1) Sequence bit: PAL = logic 0 then (R − Y) line normal; PAL = logic 1 then (R − Y) line inverted. NTSC = logic 0 then no change. (2) Reserved bits: 235 with 50 Hz systems; 232 with 60 Hz systems. (3) Only from SAA7111 decoder. (4) SAAA7111 provides (22 : 0) bits, resulting in 3 reserved bits before sequence bit. Fig.15 RTCI timing. 1996 Nov 07 33 invalid sample 8/LLC MGG557 1996 Nov 07 34 VDDD9 82 +5 V digital 0.1 µF VDDD8 80 VDDD7 49 VDDD6 41 VDDD5 38 VDDD4 29 VDDD3 22 VDDD2 14 46 VDDDO VDDA4 64 VSSA 0.1 µF VSSA 3, 15, 24, 30, 39, 42, 51, 79, 81 VSSD1 to VSSD9 SAA7124 SAA7125 XTALO 45 (4) VSSD 0.1 µF +5 V digital VDDA3 60 VSSA Fig.16 Application environment of the ECO-DENC; PLCC84. 61 35 Ω(1) 55 35 Ω(1) 58 35 Ω(1) 35 Ω(1) 73 VDDA5 74 VSSA1 VDDA2 57 67 VDDA1 54 VSSA VSSA VSSA VSSA VrefL CUR 63, 68 0.1 µF 0.1 µF 0.1 µF 0.1 µF 52, 76 DAC4 DAC3 DAC2 DAC1 VrefH 53, 75 0.1 µF (1) Typical value. (2) For 100⁄100 colour bar. (3) Philips 12NC ordering code: 9922 520 30003. (4) V1 devices only. VSSD 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF VDDD1 5 XTALI 44 3rd harmonic (3) X1 27.0 MHz 10 pF 15 kΩ MGG553 75 Ω 74 Ω 75 Ω 74 Ω 75 Ω 74 Ω 75 Ω 12 Ω VSSA BLUE 0.7 V (p-p)(2) VSSA GREEN 0.7 V (p-p)(2) VSSA RED 0.7 V (p-p)(2) VSSA CVBS 1.23 V (p-p)(2) Digital Video Encoder (ECO-DENC) VSSD VSSD VSSD VSSD VSSD VSSD VSSD VSSD 0.1 µF digital inputs and outputs 1 nF 10 pF +5 V analog andbook, full pagewidth 10 µH VSSD Philips Semiconductors Preliminary specification SAA7124; SAA7125 APPLICATION INFORMATION 1996 Nov 07 35 VDDD9 60 VDDD8 54 VDDD7 52 VDDD6 30 VDDD5 24 VDDD4 22 VDDD3 13 VDDD2 7 VDDDO 28 VDDA4 41 VSSA 0.1 µF VSSA 6, 8, 14, 23, 25, 51, 53, 58 VSSD1 to VSSD8 SAA7124 SAA7125 XTALO 27 VSSD 0.1 µF +5 V digital VDDA3 38 35 Ω(1) VSSA 35 35 Ω(1) 37 35 Ω(1) 39 35 Ω(1) 45 VDDA5 46 42, 43 VDDA2 36 VSSA1 VDDA1 34 VSSA VSSA VSSA VSSA VrefL CUR 40, 44 0.1 µF 0.1 µF 0.1 µF 32, 48 DAC4 DAC3 DAC2 DAC1 VrefH 33, 47 0.1 µF 0.1 µF Fig.17 Application environment of the ECO-DENC; LQFP64 (V1 devices only). (1) Typical value. (2) For 100⁄100 colour bar. (3) Philips 12NC ordering code: 9922 520 30003. +5 V digital 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF VDDD1 5 XTALI 20 3rd harmonic (3) X1 27.0 MHz 10 pF 15 kΩ MGG554 75 Ω 74 Ω 75 Ω 74 Ω 75 Ω 74 Ω 75 Ω 12 Ω VSSA BLUE 0.7 V (p-p)(2) VSSA GREEN 0.7 V (p-p)(2) VSSA RED 0.7 V (p-p)(2) VSSA CVBS 1.23 V (p-p)(2) Digital Video Encoder (ECO-DENC) VSSD VSSD VSSD VSSD VSSD VSSD VSSD VSSD VSSD 0.1 µF digital inputs and outputs 1 nF 10 pF +5 V analog dbook, full pagewidth 10 µH VSSD Philips Semiconductors Preliminary specification SAA7124; SAA7125 1996 Nov 07 36 VDDD9 76 VDDD8 70 VDDD7 68 VDDD6 37 VDDD5 30 VDDD4 28 VDDD3 19 VDDD2 13 VDDDO(4) 34 VDDA4 53 VSSA 0.1 µF VSSA 6, 14, 20, 29, 31 39, 67, 69, 74 VSSD1 to VSSD8 SAA7124 SAA7125 XTALO 33 VSSD 0.1 µF +5 V digital VDDA3 49 35 Ω(1) 44 35 Ω(1) 47 35 Ω(1) 50 35 Ω(1) 61 VDDA5 62 VSSA 55 VDDA2 46 VSSA1 VDDA1 43 VSSA VSSA VSSA VSSA VrefL CUR 52, 56 0.1 µF 0.1 µF 0.1 µF 0.1 µF 41, 64 DAC4 DAC3 DAC2 DAC1 VrefH 42, 63 0.1 µF Fig.18 Application environment of the ECO-DENC; QFP80. (1) Typical value. (2) For 100⁄100 colour bar. (3) Philips 12NC ordering code: 9922 520 30003. (4) V1 devices only. +5 V digital 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF VDDD1 5 XTALI 32 3rd harmonic (3) X1 27.0 MHz 10 pF 15 kΩ MGG555 75 Ω 74 Ω 75 Ω 74 Ω 75 Ω 74 Ω 75 Ω 12 Ω VSSA BLUE 0.7 V (p-p)(2) VSSA GREEN 0.7 V (p-p)(2) VSSA RED 0.7 V (p-p)(2) VSSA CVBS 1.23 V (p-p)(2) Digital Video Encoder (ECO-DENC) VSSD VSSD VSSD VSSD VSSD VSSD VSSD VSSD VSSD 0.1 µF digital inputs and outputs 1 nF 10 pF +5 V analog dbook, full pagewidth 10 µH VSSD Philips Semiconductors Preliminary specification SAA7124; SAA7125 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 PACKAGE OUTLINES PLCC84: plastic leaded chip carrier; 84 leads SOT189-2 eD eE y X 74 A 54 53 Z E 75 bp b1 w M 84 1 HE E pin 1 index e A A4 A1 (A 3) β 11 k1 33 Lp k detail X 12 32 e v M A ZD D B HD v M B 0 5 10 mm scale DIMENSIONS (millimetre dimensions are derived from the original inch dimensions) UNIT A A1 min. A3 A4 max. bp b1 mm 4.57 4.19 0.51 0.25 3.30 0.53 0.33 0.81 0.66 0.180 inches 0.020 0.01 0.165 D (1) E (1) e eD eE HD HE k 29.41 29.41 28.70 28.70 30.35 30.35 1.22 1.27 29.21 29.21 27.69 27.69 30.10 30.10 1.07 k1 max. Lp v w y 0.51 1.44 1.02 0.18 0.18 0.10 Z D(1) Z E (1) max. max. 2.16 β 2.16 45 o 1.130 1.130 1.195 1.195 0.048 0.057 0.021 0.032 1.158 1.158 0.020 0.05 0.007 0.007 0.004 0.085 0.085 0.13 1.090 1.090 1.185 1.185 0.042 0.040 0.013 0.026 1.150 1.150 Note 1. Plastic or metal protrusions of 0.01 inches maximum per side are not included. OUTLINE VERSION REFERENCES IEC JEDEC EIAJ ISSUE DATE 92-11-17 95-03-11 SOT189-2 1996 Nov 07 EUROPEAN PROJECTION 37 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm SOT314-2 c y X A 48 33 49 32 ZE e Q E HE A A2 (A 3) A1 wM θ bp pin 1 index 64 Lp L 17 detail X 16 1 ZD e v M A wM bp D B HD v M B 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e mm 1.60 0.20 0.05 1.45 1.35 0.25 0.27 0.17 0.18 0.12 10.1 9.9 10.1 9.9 0.5 HD HE 12.15 12.15 11.85 11.85 L Lp Q v w y 1.0 0.75 0.45 0.69 0.59 0.2 0.12 0.1 Z D (1) Z E (1) θ 1.45 1.05 7 0o 1.45 1.05 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION REFERENCES IEC JEDEC EIAJ ISSUE DATE 94-01-07 95-12-19 SOT314-2 1996 Nov 07 EUROPEAN PROJECTION 38 o Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 QFP80: plastic quad flat package; 80 leads (lead length 2.35 mm); body 14 x 20 x 2.8 mm SOT318-3 c y X 64 A 41 65 40 ZE e Q E HE A A2 (A 3) A1 θ wM pin 1 index Lp bp 80 L 25 detail X 24 1 wM bp e ZD v M A D B HD v M B 0 5 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HD HE L Lp Q v w y mm 3.25 0.30 0.10 2.90 2.65 0.25 0.45 0.30 0.25 0.14 20.1 19.9 14.1 13.9 0.8 25.0 24.4 19.0 18.4 2.35 1.4 1.0 1.4 1.2 0.2 0.2 0.1 Z D (1) Z E (1) 1.0 0.6 1.2 0.8 θ Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION REFERENCES IEC JEDEC EIAJ ISSUE DATE 95-02-04 95-04-25 SOT318-3 1996 Nov 07 EUROPEAN PROJECTION 39 o 7 0o Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 • The longitudinal axis of the package footprint must be parallel to the solder flow. SOLDERING Introduction • The package footprint must incorporate solder thieves at the downstream corners. There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. QFP Wave soldering is not recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 9398 652 90011). If wave soldering cannot be avoided, the following conditions must be observed: Reflow soldering • A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. Reflow soldering techniques are suitable for all PLCC and QFP packages. • The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners. The choice of heating method may be influenced by larger PLCC or QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our “Quality Reference Handbook” (order code 9397 750 00192). Even with these conditions, do not consider wave soldering the following packages: QFP52 (SOT379-1), QFP100 (SOT317-1), QFP100 (SOT317-2), QFP100 (SOT382-1) or QFP160 (SOT322-1). METHOD (PLCC AND QFP) During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C. Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C. Repairing soldered joints Wave soldering Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. PLCC Wave soldering techniques can be used for all PLCC packages if the following conditions are observed: • A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. 1996 Nov 07 40 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. PURCHASE OF PHILIPS I2C COMPONENTS Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011. 1996 Nov 07 41 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 NOTES 1996 Nov 07 42 Philips Semiconductors Preliminary specification Digital Video Encoder (ECO-DENC) SAA7124; SAA7125 NOTES 1996 Nov 07 43 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580/xxx France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 247 9145, Fax. +7 095 247 9144 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777 For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com © Philips Electronics N.V. 1996 SCA52 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 657021/1200/01/pp44 Date of release: 1996 Nov 07 Document order number: 9397 750 01467