SED1560/1/2 Technical Manual (Preliminary) S-MOS Systems, Inc. October, 1996 Version 3.0 (Preliminary) 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 1 THIS PAGE INTENTIONALLY BLANK 2 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 Table of Contents SED1560 Series TABLE OF CONTENTS 1.0 Overview ................................................................................................................................................... 5 1.1 Description .................................................................................................................................... 7 1.2 Features ........................................................................................................................................ 7 1.3 System Block Diagrams ................................................................................................................ 7 1.4 Block Diagram ............................................................................................................................... 9 2.0 Pin Description ....................................................................................................................................... 11 2.1 Power Supply .............................................................................................................................. 13 2.2 LCD Driver Power Supplies ......................................................................................................... 13 2.3 Microprocessor Interface ............................................................................................................. 14 2.4 Oscillator and Display Timing Control ......................................................................................... 15 2.5 LCD Driver Outputs ..................................................................................................................... 16 3.0 Electrical Characteristics ...................................................................................................................... 17 3.1 Absolute Maximum Ratings ......................................................................................................... 19 3.2 DC Characteristics ...................................................................................................................... 20 3.3 AC Characteristics........................................................................................................................ 24 3.3.1 Reset ............................................................................................................................ 24 3.4 Display Control Timing ................................................................................................................ 25 3.5 System Buses: Read/Write Characteristics I (80-Series MPU) ................................................... 27 3.6 System Buses: Read/Write Characteristics II (68-Series MPU) .................................................. 28 3.7 Serial Interface ............................................................................................................................ 30 4.0 Functional Description .......................................................................................................................... 33 4.1 Microprocessor Interface ............................................................................................................. 35 4.1.1 Parallel/Serial Interface ................................................................................................ 35 4.1.2 Parallel Interface ........................................................................................................... 35 4.1.3 Serial Interface ............................................................................................................. 35 4.1.4 Chip Select Inputs ........................................................................................................ 36 4.2 Data Transfer .............................................................................................................................. 36 4.3 Status Flag .................................................................................................................................. 38 4.4 Display Data RAM ....................................................................................................................... 38 4.5 Column Address Counter ............................................................................................................ 38 4.6 Page Address Register ............................................................................................................... 38 4.7 Initial Display Line Register ......................................................................................................... 40 4.8 Output Selection Circuit............................................................................................................... 40 4.9 SED1560 Output Status .............................................................................................................. 42 4.10 SED1561 Output Status ............................................................................................................ 42 4.11 SED1562 Output Status ............................................................................................................ 43 4.12 Display Timers ........................................................................................................................... 43 4.12.1 Line Counter and Display Data Latch Timing ............................................................. 43 4.12.2 FR and SYNC ............................................................................................................. 43 4.12.3 Common Timing Signals ............................................................................................ 43 4.13 Two-frame AC Driver Waveform (SED1561, 1/32 duty) ............................................................ 44 4.14 n Line Inverse Driver Waveform (n-5, line inverse register 4) .................................................. 45 4.15 Display Data Latch .................................................................................................................... 46 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 3 SED1560 Series 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 Table of Contents LCD Driver ................................................................................................................................. 46 Display Data Latch Circuit ......................................................................................................... 46 LCD Driver Circuit ..................................................................................................................... 46 Oscillator Circuit ........................................................................................................................ 46 FR Control Circuit ...................................................................................................................... 46 Power Supply Circuit ................................................................................................................. 48 Tripler Boosting Circuit .............................................................................................................. 48 Voltage Regulation Circuit (Software Contrast Adjustment Function is Not Used) ................... 49 Voltage Regulation Circuit Using Software Contrast Adjustment Control Function .................. 50 Precautions on Using the SED1560 Series Software Contrast Adjustment Control Function .. 51 Liquid Crystal Voltage Generating Circuit ................................................................................. 54 Reset ......................................................................................................................................... 56 5.0 Commands .............................................................................................................................................. 57 5.1 Command Summary .................................................................................................................. 59 5.2 Command Definitions ................................................................................................................. 60 5.3 Software Contrast Control Register............................................................................................. 67 5.4 Microprocessor Interface ............................................................................................................. 69 5.5 LCD Panel Interface Examples ................................................................................................... 70 5.6 Special Common Driver Configurations ...................................................................................... 72 6.0 Packaging ............................................................................................................................................... 73 6.1 Pad Layout .................................................................................................................................. 75 6.2 SED1560/1/2 TAB Pin Layout ..................................................................................................... 77 6.3 TCP Dimensions (2-sided) .......................................................................................................... 78 6.4 TCP Dimensions (4-sided) .......................................................................................................... 79 6.5 TCP Dimensions (D1561TOC) .................................................................................................... 80 6.6 Pad Profile ................................................................................................................................... 81 6.7 BGA Package Dimensions .......................................................................................................... 82 6.8 BGA Pin Assignment ................................................................................................................... 83 6.9 SED1560TQA OL Dimensions .................................................................................................... 84 4 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 1.0 Overview 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 5 THIS PAGE INTENTIONALLY BLANK 6 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 1.0 Overview 1.0 – 1.3 1.1 DESCRIPTION 1.2 FEATURES The SED1560 Series are intelligent CMOS LCD drivercontrollers with the ability to drive alphanumeric and graphic displays. The SED1560 Series communicates with a high-speed microprocessor, such as the Intel 80XX family or the Motorola 68XX family, through either a serial or an 8-bit parallel interface. It stores the data sent from the microprocessor in the built-in display data RAM (166 × 65 bits) and generates an LCD drive signal. These devices incorporate an internal DC/DC converter to generate the negative voltage needed for LCD contrast. The controllers feature software contrast adjustment by command setting. The three different versions of the SED1560 Series support the following duty ratios and display sizes: Model SED1560 SED1561 SED1562 Duty Ratio SEG × COM 1/65, 1/64, 1/49, 1/48 102 × 65 1/33, 1/32, 1/25, 1/24 134 × 33 1/17, 1/16 150 × 17 • Low-power operation: 8 µA @ 1 kHz, 6V LCD • 350 µA current consumption during CPU access @ 200 kHz • Direct interface to both 80XX and 68XX, 5 MHz, zero wait-state • On-chip display data RAM (166 × 65 bits) • On-chip DC/DC converter for LCD voltage • On-chip voltage regulator and low-power voltage follower • –.17% / °C temperature gradient • On-chip oscillator with external resistor • 32 levels of contrast adjustment by software • Supports master/slave operation • Selectable output configuration • 2.4V to 6.0V supply voltage • 3.5V to 16V LCD voltage • Package: TAB 2 side T0B TAB 4 side TQA Al pad D*A Au bump D*B BGA 225 pad B0A 1.3 SYSTEM BLOCK DIAGRAMS 20 CHAR × 8 LINES RES CPU CS D0 ~ D7 SED1560 80xx 68xx 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 7 1.3 1.0 Overview 1.3 SYSTEM BLOCK DIAGRAMS (cont.) COM0~COM32 26 CHAR × 4 LINES SEG0~SEG133 RES CPU CS D0 ~ D7 SED1561 80xx 68xx 30 CHAR × 2 LINES RES CPU CS D0 ~ D7 SED1562 80xx 68xx 8 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 1.0 Overview 1.4 1.4 BLOCK DIAGRAM O00 to O31 O32 to O101 O102 to O165 COM1 VSS VDD VDD V1 Common and segment drivers V2 V3 V4 Common and segment drivers Segment driver V1 V2 Commons only V3 V4 V5 CAP1+ CAP1– CAP2+ Shift register LCD supply voltage generator V5 Frame control Shift register 166-bit display data latch CAP2– VR T1, T2 Output status select I/O buffer Line address decoder 166 x 65-bit display data RAM Line counter Display initial line register 166-bit column address decoder 8-bit column address counter Page address register Bus holder 174-3.0 Display timing generator 8-bit column address register Command decoder Status flag Oscillator MPU interface I/O buffer CS1 CS2 A0 RD WR C86 SI SCL P/S RES D7 D6 D5 D4 D3 D2 D1 D0 FR SYNC CL CLO DYO M/S OSC1 OSC2 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 9 THIS PAGE INTENTIONALLY BLANK 10 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 2.0 Pin Description 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 11 THIS PAGE INTENTIONALLY BLANK 12 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 2.0 Pin Description 2.1 – 2.2 2.1 POWER SUPPLY Number of Pins 2 2 11 I/O Supply Supply Name Description VDD Common to MPU power supply pin VCC VSS Ground Supply V1 to V5 LCD driver supply voltages. The voltage determined by the LCD cell is impedance-converted by a resistive divider or an operational LCD amplifier for application. Voltage levels are based on VDD. The voltage voltages must satisfy the following relationship: VDD ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ V5 Master mode select: bias voltages are generated on-chip. SED1560 1/9 V5 2/9 V5 7/9 V5 8/9 V5 V1 V2 V3 V4 SED1561 1/7 V5 2/7 V5 5/7 V5 6/7 V5 SED1562 1/5 V5 2/5 V5 3/5 V5 4/5 V5 2.2 LCD DRIVER POWER SUPPLIES Number of Pins 1 I/O O Name CAP1+ Description DC/DC voltage converter capacitor 1 positive connection 1 1 1 1 O O O O CAP1– CAP2+ CAP2– VOUT DC/DC voltage converter capacitor 1 negative connection DC/DC voltage converter capacitor 2 positive connection DC/DC voltage converter capacitor 2 negative connection 1 I VR 2 I T1, T2 DC/DC voltage converter output Voltage adjustment pin. Applies voltage between VDD and V5 using a resistive divider. Liquid crystal power control terminals T1 T2 Boosting Circuit L L H H L H L H Valid Valid Invalid Invalid Voltage Regulation Circuit Valid Valid Valid Invalid V/F Circuit Valid Valid* Valid Valid * V/F circuit current capacity enhancement 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 13 2.3 2.0 Pin Description 2.3 MICROPROCESSOR INTERFACE Number of Pins 8 1 I/O I/O I 1 2 I I 1 1 1 I I I 1 1 I I 1 I Name Description D0 to D7 Data is transferred between the controller and MPU via these pins A0 Control/display data flag input. This is connected to the LSB of the microprocessor address bus. • When LOW, the data on D0 to D7 is command data • When HIGH, the data on D0 to D7 is display data RES Reset input. Setting this pin low initializes the SED156X. CS1, Chip select inputs. Data input/output is enabled when CS1 is LOW CS2 and CS2 is HIGH. RD Read enable input. See note 1. WR Write enable input. See note 2. C86 Microprocessor interface select input. • LOW when interfacing to 8080-series • HIGH when interfacing to 6800-series SI Serial data input SCL Serial clock input. Data is read on the rising edge of SCL and converted to 8-bit parallel data. P/S Parallel/serial data input select P/S Operating Mode Chip Select Data/ command Data I/O Read/ write Serial Clock HIGH Parallel CS1, CS2 A0 D0 to D7 RD, WR — LOW Serial CS1, CS2 A0 SI Write only SCL In serial mode, data cannot be read from the RAM, and D0 to D7, HZ, RD and WR must be HIGH or LOW. In parallel mode, SI and SCL must be HIGH or LOW. Notes: 1. When interfacing to 8080-series microprocessors, RD is active-LOW. When interfacing to 6800-series microprocessors, they are active-HIGH. 2. When interfacing to 8080-series microprocessors, WR is active-LOW. When interfacing to 6800-series microprocessors, read mode is selected when WR is HIGH, and write mode is selected when WR is LOW. 14 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 2.0 Pin Description 2.4 2.4 OSCILLATOR AND DISPLAY TIMING CONTROL Number of Pins I/O Name Description 2 I OSC1 Using internal oscillator when M/S = “H”, connect resistor Rf to the OSC1 and OSC2 pins. The OSC2 pin is used for output of the oscillator amplifier. 2 I/O OSC2 When M/S = “L”: the OSC2 pin is used for input of oscillation signal. The OSC1 pin should be left open. Fix the CL pin to the VSS level when using the internal oscillator circuit as the display clock. 1 I CL Display clock input. The line counter increments on the rising edge of CL, and the display pattern is output on the falling edge. When using the external display clock, OSC1 = “H”, OSC2 = “L”, and reset this LSI by RES pin. 1 O CLO 1 I M/S Display clock output. When using the internal oscillator, the clock signal is output on this pin. Connect CLO to YSCL on the common driver. Master/slave select input. Master produces signals for display, and slave receives them. This is for display synchronization. Device 156X M/S Operating Internal Power Mode Oscillator Supply FR SYNC OSC1 OSC2 DYO LOW Slave OFF OFF I I Open I O HIGH Master ON ON O O I O O Note: I = input mode O = output mode 1 I/O FR 1 I/O SYNC 1 O DYO LCD AC drive signal input/output. Output is selected when M/S is HIGH, and input is selected when M/S is LOW. Display sync input/output. Output is selected when M/S is HIGH, and input is selected when M/S is LOW. Start-up output for common driver. Connect to DIO of the common driver, such as the SED1630. * SED1630 has a DIO input. 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 15 2.5 2.0 Pin Description 2.5 LCD DRIVER OUTPUTS Number of Pins 166 I/O O Name O0 to O165 Description LCD driver outputs. O0 to O31 and O102 to O165 are selectable segment or common outputs, determined by a selection command. O32 to O101 are segment outputs only. For segment outputs, the ON voltage level is given as shown in the following table: RAM Data LOW HIGH LCD ON Voltage FR Normal Display Inverse Display LOW V3 V5 HIGH V2 VDD LOW V5 V3 HIGH VDD V2 For common outputs, the ON voltage is given as shown in the following table: Scan Data LOW HIGH 1 O COM1 FR LCD ON Voltage LOW V4 HIGH V1 LOW VDD HIGH V5 LCD driver common output. Common outputs when the “DUTY + 1” command is executed are as follows: Device “DUTY + 1” ON “DUTY + 1” OFF SED1560 COM64, COM48 V1 or V4 SED1561 COM32, COM24 V1 or V4 SED1562 COM16 V1 or V4 Common output special for the indicator. 16 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 3.0 Electrical Characteristics 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 17 THIS PAGE INTENTIONALLY BLANK 18 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 3.0 Electrical Characteristics 3.1 3.1 ABSOLUTE MAXIMUM RATINGS Parameter Symbol Supply voltage range Driver supply voltage range (1) Driver supply voltage range (2) Input voltage range Output voltage range Operating temperature range Storage temperature range (TCP) VSS V5 V1, V2, V3, V4 VIN V0 Topr Tstr Rating –7.0 to 0.03 –6.0 to 0.3 (when triple voltage conversion) –18.0 to 0.3 V5 to 0.3 VSS–0.3 to 0.3 VSS–0.3 to 0.3 –30 to 85 –55 to 125 Unit V V V V V °C °C Notes: 1. The voltages shown are based on VDD = 0V. 2. Always keep the condition VDD ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ V5 for voltages V1, V2, V3 and V4. 3. If devices are used over the absolute maximum rating, the LSIs may be destroyed permanently. It is desirable to use them under the electrical characteristic conditions for general operation. Otherwise, a malfunction of the LSI may be caused and LSI reliability may be affected. 4. For operating temperatures below –30°C, please consult an S-MOS engineer. 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 19 3.2 3.0 Electrical Characteristics 3.2 DC CHARACTERISTICS VDD = 0V, VSS = –5 ± 10%, Ta = –30 to +85°C unless otherwise noted. Parameter Power voltage (1) Recommended operation Symbol Condition High-level input voltage Low-level input voltage High-level output voltage Low-level output voltage –4.5 V VSS V5 V1, V2 –16.0 0.4 × V5 — — –3.5 VDD V V V5 *2 V1, V2 V3, V4 VIHC1 V5 0.3 × VSS — — 0.6 × V5 VDD V V V3, V4 *3 VIHC2 0.15 × VSS — VDD V *4 0.2 × VSS 0.15 × VSS — — VDD VDD V V *3 *4 VSS VSS — — 0.7 × VSS 0.85 × VSS V V *3 *4 VIHC1 VIHC2 VSS = –2.7V VSS = –2.7V V ILC1 V ILC2 VSS *1 V ILC1 VSS = –2.7V VSS — 0.8 × VSS V *3 V ILC2 VOHC1 VSS = –2.7V VSS 0.85 × VSS V *4 0.2 × VSS — — — — VDD VDD V *5 OSC2 V *5 OSC2 V *5 OSC2 V *5 OSC2 IOH = –1 mA VDD VOHC2 VOHC1 VSS = –2.7V IOH = –120 µA 0.2 × VSS IOH = –0.5 mA 0.2 × VSS VOHC2 VSS = –2.7V IOH = –50 µA 0.2 × VSS — VDD IOL = 1 mA IOL = 120 µA VSS VSS — — 0.8 × VSS IOL = 0.5 mA IOL = 50 µA VSS VSS — — 0.8 × VSS –1.0 — 1.0 µA *6 –3.0 — — 2.0 3.0 3.0 µA *7 — — 3.0 0.00 4.5 5.0 — 0.01 f = 1 MHz VSS = –5V — 15 VSS = –2.7V V OLC1 V OLC2 V OLC1 V OLC2 ILO RON VSS = –2.7V VSS = –2.7V VIN = VDD or VSS Ta = 25°C V5 = –14.0V V5 = –8.0V 0.8 × VSS 0.8 × VSS kΩ O0 ~ O166 *8 µA VSS 15.0 µA V5 5.0 18 8.0 22 pF *3 *4 11 16 21 kHz *9 tR 1.0 — — µs *10 tRW 10 — — µs *11 ISSQ I5Q V5 = –18.0V Input terminal capacity CIN Ta = 25°C Oscillator frequency fOSC Rf = 1 MΩ ±2% Reset “L” pulse width –5.0 Applicable Pin –2.4 Output leakage current Reset time –5.5 Unit — ILI Static power consumption Max –6.0 Input leakage current LCD driver ON resistance Typ VSS Operational Operational Operating Operational voltage (2) Operational Min (continued) 20 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 3.0 Electrical Characteristics VDD = 0V, VSS = –5 ± 10%, Ta = –30 to +85°C unless otherwise noted. (continued) Parameter Symbol Built-in power circuit Input voltage Condition VSS Amplified output voltage V OUT Voltage regulator circuit operation voltage V OUT Voltage follower operation voltage If amplified 3 times Min Typ Max Unit Applicable Pin –6.0 — –2.4 V *12 –18.0 — — V V OUT –18.0 — –6.0 V V OUT V5 1 Supplied to SED1560 –16.0 — –6.0 V V5 2 V5 3 Supplied to SED1561 Supplied to SED1562 –16.0 –16.0 — — –5.0 –4.5 V V VREG Ta = 25°C –2.35 –2.5 –2.65 V Reference voltage Notes: 3.2 *13 * See Notes on page 22. When dynamic current consumption (I) is displayed; the built-in power supply is on and T1 = T2 = Low. Test conditions, unless otherwise specified: VDD = 0V, VSS = –5V ±10%, T a = –30 to 85°C Parameter Symbol SED1560 SED1561 SED1562 IDD (1) Typ Max V5 = –12.5V; 3 times amplified Condition Min 169 340 Unit Remarks µA V5 = –8.0V; 3 times amplified V5 = –6.0V; 2 times amplified 124 53 250 110 µA µA VSS = –2.7V; 3 times amplified V5 = –6.0V 66 130 µA *16 Typical current consumption characteristics • Dynamic current consumption (I), if an external clock and an external power supply are used. (µA) Conditions: The built-in power supply is off but the external one is used. 40 SED1560 IDD (1) 30 (ISS +I5) 20 SED1560 ......... V5 = –12.5V SED1561 ......... V5 = –8.0V SED1562 ......... V5 = –6.0V SED1561 External clock: SED1560 ......... fCL = 4 kHz SED1561 ......... fCL = 2 kHz SED1562 ......... fCL = 1 kHz SED1562 10 0 –1 –2 –3 –4 VSS 174-3.0 –5 –6 –7 (V) Remarks: *14 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 21 3.2 3.0 Electrical Characteristics • Dynamic current consumption (I), if the built-in oscillator and the external power supply are used. Conditions: The built-in power supply is off but the external one is used. (µA) 80 SED1560 ......... V5 = –12.5V SED1561 ......... V5 = –8.0V SED1562 ......... V5 = –6.0V SED1560 IDD (1) 60 (ISS +I5) 40 SED1561 Internal oscillation: SED1562 SED1560 ......... Rf = 1 MΩ SED1561 ......... Rf = 1 MΩ SED1562 ......... Rf = 1 MΩ 20 0 –1 –2 –3 –4 –5 –6 –7 Remarks: *15 (V) VSS • Dynamic current consumption (I), if the built-in power supply is used. Conditions: The built-in power supply is on and T1 = T2 = Low. 200 (µA) SED1560 ......... V5 = –12.5V; 3 times amplified SED1560 150 IDD (1) SED1561 SED1561 ......... V5 = –8.0V; 3 times amplified 100 SED1562 ......... V5 = –6.0V; 2 times amplified SED1562 50 Internal oscillation: 0 –1 –2 –3 –4 –5 VSS –6 SED1560 ......... Rf = 1 MΩ SED1561 ......... Rf = 1 MΩ SED1562 ......... Rf = 1 MΩ –7 (V) Remarks: *16 Notes: *1. A wide range of operating voltage is possible, but considerable voltage variation during MPU access is not guaranteed. the SED156* is usually operable after “tr” time. *11. Specifies the minimum pulse width of RES signal. The Low pulse greater than “tRW” must be entered for reset. *2. The operating voltage range of the VSS and V5 systems (see Figure 3.3). The operating voltage range is applied if an external power supply is used. *12. If the voltage is amplified three times by the built-in power circuit, the primary power VSS must be used within the input voltage range. *3. Pins A0, D0 to D7, RD (E),WR (R/W), CS1, CS2, FR, SYNC, M/S, C86, SI, P/S, T1 AND T2. *13. The V5 voltage can be adjusted within the voltage follower operating range by the voltage regulator circuit. *4. Pins CL, SCL, and RES. *5. Pins D0 to D7, FR, SYNC, CL0, and DY0 *6. Pins A0, RD (E), WR (R/W), CS1, CS2, CL, M/S, RES, C86, SI, SCL, P/S, T1, and T2. *7. Applied if pins D0 to D7, FR, and SYNC are high impedance. *14, 15, 16. Indicates the current consumed by the separate IC. The current consumption due to the LCD panel capacity and wiring capacity is not included. The current consumption is shown if the checker is used, the display is turned on, the output status of Case 6 is selected, and the SED1560 is set to 1/64 duty, the SED1561 is set to 1/32 duty, and the SED1562 is set to 1/64 duty. *8. The resistance when the 0.1 -volt voltage is applied between the “On” output terminal and each power terminal (V1, V2, V3 or V4). It must be within the operating voltage (2). *14. Applied if an external clock is used and if not accessed by the MPU. *9. The relationship between the oscillation frequency, frame and Rf value (see Figure 3.2). *15. Applied if the built-in oscillation circuit is used and if not accessed by the MPU. *10. “tr” (reset time) indicates the period between the time when the RES signal rises and when the internal circuit has been reset. Therefore, *16. Applied if the built-in oscillation circuit and the built-in power circuit are used (T1 = T2 = Low) and if not accessed by the MPU. 22 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 3.0 Electrical Characteristics 3.2 The relationship between oscillator frequency fOSC and LCD frame frequency fF is obtained from the following expression: VSS = –5V Ta = 25°C 40 30 [KHz] fOSC Table 3.1 20 Device 10 SED1560 0 0.5 1.0 1.5 2.0 2.5 SED1561 Rf [MΩ] SED1562 Figure 3.1 Oscillator frequency vs. frame vs. Rf [SED1560 Series] Duty fF 1/64 1/48 fOSC/256 fOSC/192 1/32 1/24 1/16 fOSC/256 fOSC/192 fOSC/256 (fF indicates not fF signal cycle but cycle of LCD AC.) 200 duty 1/64 SED1560 duty 1/48 [Hz] 100 fF duty 1/32 SED1561 duty 1/24 duty 1/16 SED1562 0 2 4 6 8 fCL [KHz] Figure 3.2 External clock (fCL) vs. frame frequency [SED1560 Series] 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 23 3.2 – 3.3.1 3.0 Electrical Characteristics 10 –20 5.0V –16 1 –15 2.7V –13 [V] V5 [mA] IDD (2) –10 –5 0 0.1 0.01 –2 –2.4 –3.0 –4 –6 –8 0 VSS [V] 0.01 0.1 1 10 fcyc [MHz] Figure 3.3 Operating voltage range for VSS and V5 Figure 3.4 Power consumption during CPU access cycle (IDD [2]) 3.3 AC CHARACTERISTICS 3.3.1 Reset Table 3.5 Reset Parameter Reset time Reset LOW-level pulsewidth Symbol Condition tR tR is measured from the rising edge of RES. The SED156X resumes normal operating mode after a reset. tRW Min Rating Typ Max 1.0 — — µs 1.0 — — µs 24 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 Unit 174-3.0 3.0 Electrical Characteristics 3.4 3.4 DISPLAY CONTROL TIMING CL tWLCL tf tWHCL tDFR tr FR tDSNC SYNC tDOH tDOL tCDH tCDL DYO CLO Figure 3.5 Display control timing Display Control Input Timing Parameter CL LOW-level pulsewidth CL HIGH-level pulsewidth CL rise time CL fall time FR delay time SYNC delay time Parameter CL LOW-level pulsewidth CL HIGH-level pulsewidth CL rise time CL fall time FR delay time SYNC delay time Symbol tWLCL t WHCL tr tf t DFR t DSNC Symbol tWLCL t WHCL tr tf t DFR t DSNC 1. Effective only when the SED156X is in the master mode. 2. The FR/SYNC delay time input timing is provided in the slave operation. 174-3.0 Condition Condition VSS = –5.5 to –4.5V, Ta = –30 to 85°C Rating Unit Min Typ Max 35 — — µs 35 — — µs — 30 — ns — 30 — ns –1.0 — 1.0 µs –1.0 — 1.0 µs VSS = –4.5 to –2.7V, Ta = –30 to 85°C Rating Unit Min Typ Max 35 — — µs 35 — — µs — 40 — ns — 40 — ns –1.0 — 1.0 µs –1.0 — 1.0 µs The FR/SYNC delay time output timing is provided in the master operation. 3. Each timing is based on 20% and 80% of VSS. S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 25 3.4 3.0 Electrical Characteristics Display Control Output Timing Parameter FR delay time SYNC delay time DYO LOW-level delay time DYO HIGH-level delay time CLO to DYO LOW-level delay time CLO to DYO HIGH-level delay time Parameter FR delay time SYNC delay time DYO LOW-level delay time DYO HIGH-level delay time CLO to DYO LOW-level delay time CLO to DYO HIGH-level delay time Symbol tDFR tDSNC tDOL tDOH tCDL tCDH Symbol tDFR tDSNC tDOL tDOH tCDL tCDH Condition CL = 50 pF CL = 100 pF SED156X operating in master mode only SED156X operating in master mode only Condition CL = 50 pF CL = 100 pF SED156X operating in master mode only SED156X operating in master mode only VSS = –5.5 to –4.5V, Ta = –30 to 85°C Rating Unit Min Typ Max — 60 150 ns — 60 150 ns — 70 160 ns — 70 160 ns — 40 100 ns — 40 100 ns VSS = –4.5 to –2.7V, Ta = –30 to 85°C Rating Unit Min Typ Max — 120 240 ns — 120 240 ns — 140 250 ns — 140 250 ns — 100 200 ns — 100 200 ns 26 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 3.0 Electrical Characteristics 3.5 3.5 SYSTEM BUSES: READ/WRITE CHARACTERISTICS I (80-SERIES MPU) tAH8 A0 tAW8 tCYC8 tCCLR tCCLW WR, RD, (CS) tf tr tCCHR tCCHW tDS8 tDH8 D0 to D7 (Write) tACC8 tCH8 D0 to D7 (Read) VSS = –5.0 ± 10%, Ta = –30 to 85°C Parameter Address hold time Address setup time System cycle time Control L pulse width (WR) Control L pulse width (RD) Control H pulse width (WR) Control H pulse width (RD) Data setup time Data hold time RD access time Output disable time Input signal change time 174-3.0 Signal A0, CS WR RD WR RD D0 ~ D7 Symbol t AH8 t AW8 tCYC8 t CCLW t CCLR tCCHW tCCHR t DS8 tDH8 tACC8 tCH8 tr, t f Condition CL = 100pF Min 10 10 200 22 77 172 117 20 10 — 10 — Max — — — — — — — — — 70 50 15 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 Unit ns ns ns ns ns ns ns ns ns ns ns ns 27 3.5 – 3.6 3.0 Electrical Characteristics VSS = –2.7 to –4.5V, Ta = –30 to 85°C Parameter Address hold time Address setup time System cycle time Control L pulse width (WR) Control L pulse width (RD) Control H pulse width (WR) Control H pulse width (RD) Data setup time Data hold time RD access time Output disable time Input signal change time Notes: Signal A0, CS Symbol tAH8 tAW8 tCYC8 tCCLW tCCLR tCCHW tCCHR tDS8 tDH8 tACC8 tCH8 tr, t f WR RD WR RD D0 ~ D7 Condition Min 25 25 450 44 194 394 244 40 20 — 10 — CL = 100pF Max — — — — — — — — — 140 100 15 Unit ns ns ns ns ns ns ns ns ns ns ns ns 1. When using the system cycle time in the high-speed mode, it is limited by tr + tf ≤ (tCYC8 – tCCLW – t CCHW) or tr + tf ≤ (tCYC8 – tCCLR – tCCHR) 2. All signal timings are limited based on 20% and 80% of VSS voltage. 3. Read/write operation is performed while CS (CS1 and CS2) is active and the RD or WR signal is in the low level. If read/write operation is performed by the RD or WR signal while CS is active, it is determined by the RD or WR signal timing. If read/write operation is performed by CS while the RD or WR signal is in the low level, it is determined by the CS active timing. 3.6 SYSTEM BUSES: READ/WRITE CHARACTERISTICS II (68-SERIES MPU) tCYC6 E tEWLR tEWLW tAW6 tEWHR tEWHW tr tAH6 tf A0, RW tDS6 tAH6 tDH6 D0 ~ D7 (WRITE) tACC6 tOH6 D0 ~ D7 (READ) 28 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 3.0 Electrical Characteristics 3.6 VSS = –5.0 ± 10%, Ta = –30 to 85°C Parameter System cycle time Address setup time Address hold time Data setup time Data hold time Output disable time Access time READ WRITE READ Enable L pulse width WRITE Input signal change time Enable H pulse width Signal (A0) R/W D0 ~ D7 E E Symbol tCYC6 t AW6 t AH6 t DS6 tDH6 t OH6 tACC6 t EWHR t EWHW tEWLR tEWLW tr, t f Condition CL = 100pF Min 200 10 10 20 10 10 — 77 22 117 172 — Max — — — — — 50 70 — — — — 15 Unit ns ns ns ns ns ns ns ns ns ns ns ns VSS = –2.7 to +4.5V, T a = –30 to 85°C Parameter System cycle time Address setup time Address hold time Data setup time Data hold time Output disable time Access time Signal Symbol A0, CS tCYC6 (CS1, CS2) t AW6 R/W t AH6 t DS6 tDH6 D0 ~ D7 t OH6 tACC5 READ t EWHR Enable H pulse E width WRITE t EWHW READ tEWLR Enable L pulse E width WRITE tEWLW Input signal change time tr, t f Notes: Condition CL = 100pF Min 450 25 25 40 20 20 — 154 44 244 394 — Max — — — — — 100 140 — — — — 15 Unit ns ns ns ns ns ns ns ns ns ns ns ns 1. When using the system cycle time in the high-speed mode, it is limited by tr + tf ≤ (tCYC6 – tEWLW – tEWHW) or tr + tf ≤ (tCYC6 – tEWLR – tEWHR) 2. All signal timings are limited based on 20% and 80% of VSS voltage. 3. Read/write operation is performed while CS (CS1 and CS2) is active and the E signal is in the high level. If read/write operation is performed by the E signal while CS is active, it is determined by the E signal timing. If read/write operation is performed by CS while the E signal is in the high level, it is determined by the CS active timing. 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 29 3.7 3.0 Electrical Characteristics 3.7 SERIAL INTERFACE tCSS tCSH CS tSAS tSAH A0 tSCYC tSLW SCL tf tr tSDS tSHW tSDH SI 30 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 3.0 Electrical Characteristics 3.7 VSS = –5.0 ± 10%, Ta = –30 to 85°C Parameter Serial clock cycle SCL high pulse width SCL low pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time Signal SCL A0 SI CS Input signal change time Symbol tSCYC tSHW t SLW tSAS t SAH t SDS tSDH t CSS tCSH tr, t f Condition Min 500 150 150 120 200 120 50 30 400 — Max — — — — — — — — — 50 Unit ns ns ns ns ns ns ns ns ns ns VSS = –2.7 to –4.5V, Ta = –30 to 85°C Parameter Serial clock cycle SCL high pulse width SCL low pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time Input signal change time Note: Signal SCL A0 SI CS Symbol tSCYC tSHW t SLW tSAS t SAH t SDS tSDH t CSS tCSH tr, t f Condition Min 1000 300 300 250 400 250 100 60 800 — Max — — — — — — — — — 50 Unit ns ns ns ns ns ns ns ns ns ns *2. All signal timings are limited based on 20% and 80% of VSS voltage. 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 31 THIS PAGE INTENTIONALLY BLANK 32 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 4.0 Functional Description 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 33 THIS PAGE INTENTIONALLY BLANK 34 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 4.0 Functional Description 4.0 – 4.1.3 4.1 MICROPROCESSOR INTERFACE 4.1.1 Parallel/Serial Interface Table 4.1 Parallel/serial Interface Selection P/S HIGH LOW Input Type Parallel Serial CS1 CS1 CS1 CS2 CS2 CS2 A0 A0 A0 RD RD × WR WR × C86 C86 × SI × SI SCL × SCL D0 to D7 D0 to D7 (Hi-Z) × = don’t care Parallel data can be transferred in either direction between the controlling microprocessor and the SED1560 Series via an 8-bit I/O buffer (D0 to D7). Serial data can be sent from the microprocessor to the SED1560 Series through the serial data input (SI), but not from the SED1560 Series to the microprocessor. The parallel or serial interface is selected by setting P/S as shown in Table 4.1. Table 4.3 Parallel Data Transfer Common 6800 Series A0 R/W RD WR 1 1 0 1 Display data read out 1 0 1 0 Display data write 0 1 0 1 Status read 0 0 1 0 Write to internal register (command) 8080 Series For the parallel interface, the type of microprocessor is selected by C86 as shown in Table 4.2. Table 4.2 Microprocessor Selection for Parallel Interface C86 MPU Bus Type CS1 CS2 A0 HIGH 6800-series CS1 CS2 A0 LOW 8080-series CS1 CS2 A0 RD WR E D0 to D7 R/W D0 to D7 RD WR D0 to D7 4.1.2 Parallel Interface A0, WR (or R/W) and RD (or E) determine the type of parallel data transfer. See Table 4.3. Description 4.1.3 Serial Interface The serial interface consists of an 8-bit shift register and a 3-bit counter. These are reset when CS1 is HIGH and CS2 is LOW. When these states are reversed, serial data and clock pulses can be received from the microprocessor on SI and SCL respectively. Serial data is read on the rising edge of SCL and must be input at SI in the sequence D7 to D0. On every eighth clock pulse, the data is transferred from the shift register and processed as 8-bit parallel data. Input data is display data when A0 is HIGH and command data when A0 is LOW. A0 is read on the rising edge of every eighth clock signal. See Figure 4.1. 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 35 4.1.3 – 4.2 4.0 Functional Description CS1 CS2 SI SCL D7 1 D6 2 D5 3 D4 4 D3 5 D2 6 D1 7 D0 8 D7 9 D6 10 A0 Figure 4.1 Serial interface timing 4.1.4 Chip Select Inputs Data transfer between the microprocessor and the SED1560 Series is enabled when CS1 is LOW and CS2 is HIGH. If these pins are set to any other values, D0 to D7 are in high impedance state and will not accept data. 4.2 DATA TRANSFER To match the timing of the display data RAM and registers to that of the controlling microprocessor, the SED1560 Series uses an internal data bus and bus buffer. When the microprocessor reads the contents of RAM, the data for the initial read cycle is first stored in the bus buffer (dummy read cycle). On the next read cycle, the data is read from the bus buffer onto the microprocessor bus. At the same time, the next block of data is transferred from RAM to the bus buffer. Likewise, when the microprocessor writes data to display data RAM, the data is first stored in the bus buffer before being written to RAM at the next write cycle. When writing data from the microprocessor to RAM, there is no delay since data is automatically transferred from the bus buffer to the display data RAM. If the data rate is required to slow down, the microprocessor can insert a NOP instruction which has the same effect as executing a wait procedure. When a sequence of address sets is executed, a dummy read cycle must be inserted between each pair of address sets. This is necessary because the addressed data from the RAM is delayed one cycle by the bus buffer, before it is sent to the microprocessor. A dummy read cycle is thus necessary after an address set and after a write cycle. 36 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 4.0 Functional Description 4.2 WR MPU DATA N Bus holder N+1 N N+2 N+1 N+3 N+2 N+3 Internal timing WR Figure 4.2 Write timing WR RD MPU DATA N N Address set n Dummy read n+1 Data read n Data read (n+1) WR RD Internal timing Column address Bus holder N N N+1 n N+2 N+1 N+2 Figure 4.3 Read timing 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 37 4.3 – 4.6 4.0 Functional Description 4.3 STATUS FLAG 4.5 COLUMN ADDRESS COUNTER The SED1560 Series has a single bit status flag, D7. When D7 is HIGH, the device is busy and will accept only a Status Read command. It is not necessary for the microprocessor to check the status of this bit before each command, if enough time is allowed for the last cycle to be completed. The column address counter is an 8-bit presettable counter that provides the column address to display data RAM. See Figure 4.4. It is incremented by 1 each time a read or write command is received. The counter automatically stops at the highest address, A6H. The contents of the column address counter are changed by the Column Address Set command. This counter is independent of the page address register. 4.4 DISPLAY DATA RAM The SED1560 Series stores the display data sent from the microcomputer in the built-in display data RAM (166 × 65 bits) and generates the LCD drive signals. It is a 166-column × 65-row addressable array as shown in Figure 4.4. The 65 rows are divided into 8 pages of 8 lines and a ninth page with a single line (D0 only). Data is read from or written to the 8 lines of each page directly through D0 to D7. The microprocessor reads from and writes to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written to RAM at the same time as data is being displayed, without causing the LCD to flicker. When the Select ADC command is used to select inverse display operation, the column address decoder inverts the relationship between the RAM column data and the display segment outputs. 4.6 PAGE ADDRESS REGISTER The 4-bit page address register provides the page address to display data RAM. The contents of the register are changed by the Page Address Set command. Page address 8 (1000) is a special use RAM area for the indicator. The time taken to transfer data is very short, because the microprocessor inputs D0 to D7 correspond to the LCD common lines as shown in Figure 4.5. Large display configuration can thus be created using multiple SED1560 Series devices. 38 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 4.0 Functional Description 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Common address 1/64 Start 1/32 Page 8 ADC LCD OUT DO DO =1 =0 O0 A5 O0 O1 A4 O1 O2 A3 O2 O3 A2 O3 O4 A1 O4 O5 A0 O5 O6 9F O6 O7 9E O7 0 1 00H 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F to to to COM 0 COM 1 COM 2 COM 3 COM 4 COM 5 COM 6 COM 7 COM 8 COM 9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM 1 Note: For 1/65 and 1/33 display duty cycles, page 9 is accessed following 1BH and 3BH, respectively. A2 A3 A4 A5 0 0 Line address Column address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 O3 O2 O1 O0 0 0 DATA O162 O163 O164 O165 Page address 4.6 Figure 4.4 Display data RAM addressing D0 D1 D2 D3 D4 1 0 1 0 0 COM0 COM1 COM2 COM3 COM4 Figure 4.5 RAM-to-LCD data transfer 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 39 4.7 – 4.8 4.0 Functional Description 4.7 INITIAL DISPLAY LINE REGISTER The Initial Display Line register stores the address of the RAM line that corresponds to the first (normally the top) line (COM0) of the display. See Figure 4.4. The contents of this 6-bit register are changed by the Initial Display Line command. At the start of each LCD frame, synchronized with SYNC, the initial line is copied to the line counter. The line counter is then incremented on the CL clock signal once for every display line. This generates the line addresses for the transfer of the 166 bits of RAM data to the LCD drivers. the six different LCD driver arrangements. If a 1/65 or 1/33 display duty cycle is selected by the DUTY+1 command, the line address corresponding to the 65th or 33rd SYNC signal is changed and the indicator special-use line address is selected. If the DUTY+1 command is not used, the indicator specialuse line address is not selected. When COM outputs are assigned to the output drivers, the unused RAM area is not available. However, all RAM column addresses can still be accessed by the microprocessor. 4.8 OUTPUT SELECTION CIRCUIT Cases 1 to 6 are determined according to the three lowest bits in the output status register in the output selection circuit. The COM output scanning direction can be selected by setting bit D3 in the output status register to “H” or “L”. The number of common (COM) and segment (SEG) driver outputs can be selected to fit different LCD panel configurations by the output selection circuit. There are 70 segment-only outputs (O32 to O101) and 96 common or segment dual outputs (O0 to O31 and O102 to O165). A command selects the status of the dual common/segment outputs. Figure 4.6 shows ADC (D0) L H 0 165 The necessary LCD driver voltage is automatically allocated to the COM/SEG dual outputs when their function is determined by the output selection circuit. The SED1560 selects Case 1, 2 or 6 while the SED1561 selects Case 3, 4, 5 or 6. The COM/SEG output status for the SED1562 is fixed and so cannot be selected. Since duty setting and output selection are independent, the appropriate duty must be selected for each case. When the DUTY+1 command is executed, pin COM1 becomes as shown in Figure 4.4 irrelevant to output selection. 165 0 Column address Display data RAM Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 SED1562 102 segments 32 commons 32 commons 102 segments 134 segments 134 segments 134 segments 166 segments 150 segments 16 commons O0 O15 O31 O101 64 commons 32 commons 32 commons 16 commons 16 commons O133 O149 O165 Figure 4.6 Output configuration selection 40 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 4.0 Functional Description Since master/slave operation and the output selection circuit are completely independent in the SED1560 Series, a chip on either the master or slave side can be allocated to the COM output function in multi-chip configuration. 4.8 The LCD driver outputs shown in Table 4.5 become ineffective when the SED1560 or SED1561 is used with 1/48 or 1/24 duty, respectively. In this case, ineffective outputs are used in the open state. Table 4.4 SED1560 Duty COMI function 1/64 COM64 SED1561 1/48 COM48 1/32 COM32 1/24 COM24 SED1562 1/16 COM16 Table 4.5 Case 1 SED1560 Case 2 Case 3 SED1561 Case 4 Case 5 174-3.0 D3 0 1 0 1 0 1 0 1 0 1 Output Status Register D2 D1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 D0 1 1 0 0 1 1 0 0 1 1 Ineffective Output O150 ~ O165 O102 ~ O117 O150 ~ O165 O16 ~ O31 O0 ~ O7 O23 ~ O31 O158 ~ O165 O134 ~ O141 O158 ~ O165 O8 ~ O15 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 41 4.9 – 4.10 4.0 Functional Description 4.9 SED1560 OUTPUT STATUS The SED1560 selects any output status from Cases 1, 2 and 6. 1/64 Duty (Display Area 102 × 64) Case 1 2 6 Status Register LCD Driver Output D3 D2 D1 D0 O0 O31 O32 O101 O102 O133 O134 O165 0 1 0 1 COM0 COM63 1 1 0 1 COM63 COM0 0 1 0 0 COM31 COM0 SEG102 COM32 COM63 1 1 0 0 COM32 COM63 SEG102 COM31 COM0 — 0 0 0 SEG166 1/48 Duty (Display Area 102 × 48) Case 1 2 6 Status Register LCD Driver Output D3 D2 D1 D0 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 0 — 0 0 0 O0 O31 O32 O101 O102 O133 COM0 O134 O165 COM47 COM47 COM31 COM32 COM0 SEG102 47 COM0 COM32 SEG102 47 COM31 COM0 SEG166 4.10 SED1561 OUTPUT STATUS The SED1561 selects any output status from Cases 3, 4, 5 and 6. 1/32 Duty (Display Area 134 × 32) Case 3 4 5 6 Status Register LCD Driver Output D3 D2 D1 D0 O0 O15 O16 O31 O32 0 0 1 1 COM31 COM0 SEG134 1 0 1 1 COM0 COM31 SEG134 0 0 1 0 SEG134 COM0 COM31 1 0 1 0 SEG134 COM31 COM0 0 0 0 1 15 1 0 0 1 COM16 — 0 0 0 COM0 31 O133 O134 149 150 O165 SEG134 COM16 31 SEG134 15 COM0 SEG166 42 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 4.0 Functional Description 4.10 – 4.12.3 1/24 Duty (Display Area 134 × 24) Case 3 4 5 6 Status Register LCD Driver Output D3 D2 D1 D0 0 0 1 1 O0 O15 O16 O31 O32 COM23 COM0 O133 O134 149 150 O165 COM0 SEG134 1 0 1 1 0 0 1 0 COM23 SEG134 1 0 1 0 0 0 0 1 15 COM0 SEG134 16 23 1 0 0 1 16 23 SEG134 15 COM0 — 0 0 0 SEG134 COM0 SEG134 COM23 COM23 COM0 SEG166 4.11 SED1562 OUTPUT STATUS COM/SEG output status of the SED1562 is fixed. 1/16 Duty (Display Area 150 × 16) LCD Driver Output O0 O149 SEG150 O150 15 O165 COM0 4.12 DISPLAY TIMERS 4.12.1 Line Counter and Display Data Latch Timing The display clock, CL, provides the timing signals for the line counter and the display data latch. The RAM line address is generated synchronously using the display clock. The display data latch synchronizes the 166-bit display data with the display clock. The timing of the LCD panel driver outputs is independent of the timing of the input data from the microprocessor. 4.12.2 FR and SYNC The LCD AC signal, FR, and the synchronization signal, SYNC, are generated from the display clock. The FR controller generates the timing for the LCD panel driver outputs. Normally, 2-frame wave patterns are generated, but n-line inverse wave patterns can also be generated. These produce a high-quality display if n is based on the LCD panel being used. 174-3.0 SYNC synchronizes the timing of the line counter and common timers. It is also needed to synchronize the frame period and a 50% duty clock. In a multiple-chip configuration, FR and SYNC are inputs. The SYNC signal from the master synchronizes the line counter and common timing of the slave. 4.12.3 Common Timing Signals The internal common timing and the special-use common driver start signal, DYO, are generated from CL. As shown in Figures 4.7 and 4.8, DYO outputs a HIGH-level pulse on the rising edge of the CL clock pulse that precedes a change on SYNC. DYO is generated by both the SED1560 Series devices, regardless of whether the device is in master or slave mode. However, when operating in slave mode, the device duty and the external SYNC signal must be the same as that of the master. In a multiple-chip configuration, FR and SYNC must be supplied to the slave from the master. S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 43 4.13 4.0 Functional Description Table 4.6 Master and Slave Timing Signal Status Part Number SED1560 Series Mode FR Master Output Slave Input SYNC CLO DYO CL Output Output Output Input High Imped- Output ance 4.13 TWO-FRAME AC DRIVER WAVEFORM (SED1561, 1/32 DUTY) 31 32 1 2 3 4 5 6 27 28 29 30 31 32 1 2 3 4 5 CL SYNC FR DYO COM0 VDD V1 V2 V3 COM1 VDD V1 V2 V3 RAM data VDD V2 V3 V5 SEG n Figure 4.7 Frame driver timing for duty 1/32 44 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 4.0 Functional Description 4.14 4.14 n LINE INVERSE DRIVER WAVEFORM (n=5, LINE INVERSE REGISTER 4) 31 32 1 2 3 4 5 6 27 28 29 30 31 32 1 2 3 4 5 CL SYNC FR DYO COM0 VDD V1 V4 V5 COM1 VDD V1 V4 V5 RAM data VDD V2 V3 V5 SEG n Note: When n = 5, the line inversion register is set to 4. Figure 4.8 Line inverse driver timing 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 45 4.15 – 4.20 4.0 Functional Description 4.15 DISPLAY DATA LATCH 4.19 OSCILLATOR CIRCUIT Display data is transferred from RAM to the LCD drivers through the display data latch. This latch is controlled by the Display ON/OFF, Display All Points ON/OFF and Normal/Inverse Display commands. The low power consumption type CR oscillator adjusting the oscillator frequency by use of only oscillator resistor Rf is used as a display timing signal source or clock for the voltage raising circuit of the LCD power supply. These commands do not alter the data. 4.16 LCD DRIVER The LCD driver converts RAM data into the 167 outputs that drive the LCD panel. There are 70 segment outputs, 96 segment or common dual outputs, and a COM1 output for the indicator display. Two shift registers for the common/segment drivers are used to ensure that the common outputs are output in the correct sequence. The driver output voltages depend on the display data, the common scanning signal and FR. The oscillator circuit is available only in the master operation mode. When a signal from the oscillator circuit is used for display clock, fix the CL pin to the VSS level. When the oscillator circuit is not used, fix the OSC1 or OSC2 pin to the VDD or VSS level, respectively. The oscillator signal frequency is divided and output from the CL0 pin as display clock. The frequency is divided to one-fourth, one-eighth, or one-sixteenth in the SED1560, SED1561, or SED1562, respectively. 4.20 FR CONTROL CIRCUIT The LCD driver voltage supplied to the LCD driver outputs is selected using FR signal. 4.17 DISPLAY DATA LATCH CIRCUIT The display data latch circuit temporarily stores the output display data from the display data RAM to the LCD driver circuit in each common period. Since the Normal/Inverse Display, Display ON/ OFF and Display All Points ON/OFF commands control the data in this latch, the data in the display data RAM remains unchanged. 4.18 LCD DRIVER CIRCUIT This multiplexer generates 4-value levels for the LCD driver, having 167 outputs of 70 SEG outputs, 96 SEG/COM dual outputs and a COM output for the indicator display. The SEG/COM dual outputs have a shift register and sequentially transmit COM scanning signals. The LCD driver voltage is output according to the combination of display data, COM scanning signal and FR signal. Figure 4.9 shows a typical SEG/ COM output waveform. 46 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 4.0 Functional Description FR (SYNC) COM0 COM1 COM2 COM0 COM3 COM4 COM5 COM6 COM1 COM7 COM8 COM9 COM2 COM10 COM11 COM12 COM13 SEG0 COM14 COM15 SEG0 SEG1 SEG2 SEG3 SEG4 SEG1 COM0 to SEG0 COM0 to SEG1 4.20 VDD VSS VDD V1 V2 V3 V4 V5 VDD V1 V2 V3 V4 V5 VDD V1 V2 V3 V4 V5 VDD V1 V2 V3 V4 V5 VDD V1 V2 V3 V4 V5 V5 V4 V3 V2 V1 VDD –V1 –V2 –V3 –V4 –V5 V5 V4 V3 V2 V1 VDD –V1 –V2 –V3 –V4 –V5 Figure 4.9 Example of segment and common timing 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 47 4.21 – 4.22 4.0 Functional Description When (T1, T2) = (H, L), the boosting circuit does not work and open the boosting circuit terminals (CAP1+, CAP1–, CAP2+ and CAP2–) and apply liquid crystal driving voltage to the VOUT terminals from outside. 4.21 POWER SUPPLY CIRCUIT The SED1560 Series has an internal DC/DC converter to generate LCD bias voltages. The internal power supply circuit can be used only when the controller operates in master mode. The power circuit consists of a triple boosting circuit, a voltage regulation circuit and a low power voltage follower circuit. When (T1, T2) = (H, H), the boosting circuit and voltage regulation circuit do not work and open the boosting circuit terminals and the VR terminals and apply liquid crystal driving voltage to the V5, and leave the VOUT pin open. The power circuit built into SED1560 Series is set for smaller scale liquid crystal panels and it is not suitable when the picture element is larger or to drive a liquid crystal panel with larger indication capacity using multiple chips. It is recommended that an external power supply is used when using a liquid crystal panel with a larger load capacity. 4.22 TRIPLER BOOSTING CIRCUIT By connecting capacitors C1 between CAP1+ and CAP1–, CAP2+ and CAP2– and VSS – VOUT, the electric potential between VDD – VSS is boosted to the triple toward negative side and outputted from the VOUT terminal. When a double boosting is required, disconnect the capacitor between CAP2+ and CAP2– and short-circuit the CAP2– and VOUT terminals to obtain output boosted to the double out of the VOUT (or CAP2–) terminal. The power supply circuit can be controlled by the builtin power ON/OFF command. When the built-in power is turned off, the boosting circuit, voltage regulation circuit and voltage follower circuit all go open. In this case, the liquid crystal driving voltage V1, V2, V3, V4 and V5 should be supplied from outside and the terminals CAP1+, CAP1–, CAP2+, CAP2–, VOUT and VR should be kept opened. Signals from the oscillation circuit are used in the boosting circuit and it then is necessary that the oscillation circuit is in operation. Various functions of the power circuit can be selected by combinations of the setting of the T1 and T2. It is also possible to make a combined use of the external power supply and a portion of the functions of the builtin power supply. Electric potentials by the boosting functions are shown in Figure 4.10 and 4.11. Table 4.7 T1 T2 Voltage Converter Circuit L L H H L H L H O O X X Voltage Regulation Circuit V/F Circuit O O O X O O O O External Voltage Input Voltage Converter Circuit Terminals Voltage Regulation Terminals — — VOUT V5 OPEN OPEN 48 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 OPEN 174-3.0 4.0 Functional Description 4.22 – 4.23 VDD = 0V (VCC = +5V) VDD = 0V VSS = –5V (GND) VSS = –5V VOUT = 2vss = –10V VOUT = 3vss = –15V Figure 4.10 Electric potentials of double boosting Figure 4.11 Electric potentials of triple boosting 4.23 VOLTAGE REGULATION CIRCUIT (SOFTWARE CONTRAST ADJUSTMENT FUNCTION IS NOT USED) The boosted voltage coming out from VOUT is adjusted to become the liquid crystal driving voltage V5 via the voltage regulation circuit. V5 voltage can be regulated within a range of |V5| < |VOUT| by adjustment of resistors Ra and Rb and it may be calculated by the following equation: Rb V5 = (1 + ) VREG Ra Equation 4.1 wherein VREG is the constant voltage source inside the IC and the voltage is constant at VREG ≈ 2.5V. Voltage regulation of the V5 output is made by connecting variable resistors between VR, VDD and V5. For fine adjustment of the V5 voltage, a combination of fixed resistors R1 and R3 and a variable resistor R2 is needed. The voltage regulation circuit renders a temperature gradient, after VREG output, of about –0.17% / °C, but when any other temperature gradient is needed, connect a thermistor in series with the output voltage regulating resistors. Since the VR terminal has a high input impedance, it is necessary to take some noise suppression measures, such as using the shortest length wiring or shielded wiring. VDD VREG Ra + Examples of settings of R1, R2, and R3: V5 VR • R1 + R2 + R3 = 5 MΩ (determined by the current required to flow between VDD and V5) • Voltage variation range by R2: –11V ~ –13V (determined based on the characteristics of the liquid crystal being used) Using the above conditions and Equation 4.1, the following calculations can be made: – Rb Figure 4.12 Voltage regulation circuit R1 = 0.947 MΩ R2 = 0.174 MΩ R3 = 3.879 MΩ 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 49 4.24 4.0 Functional Description 4.24 VOLTAGE REGULATION CIRCUIT USING SOFTWARE CONTRAST ADJUSTMENT CONTROL FUNCTION By using software contrast adjustment control function, it is possible to control the liquid crystal driving voltage V5 by inputting corresponding commands to adjust the contrast of the liquid crystal display. With such an electronic contrast control function, setting 5-bit data to the electronic contrast control register will make available 32 states of voltages from which one voltage level can be selected for the liquid crystal driving voltage V5. When using the software contrast control function, it is necessary to execute built-in power supply on command after one of (T1, T2) = (L, L), (T1, T2) = (L, H), or (T1, T2) = (H, L) is set. Example of Constant Setting When Using the Software Contrast Adjustment Control Function (1) Determine a V5 voltage setting range by the electronic contrast control. Liquid crystal driving voltage ...........................V5 – 10V max. to –15V min. V5 variable voltage width ................................ 4V (2) Determine Rb. Rb = V5 variable voltage width / IREF Rb = 4V / 6.5µA = 615 kΩ (32 states (16 states IREF ≈ 6.5µA constant-current value) IREF ≈ 3.2µA constant-current value) (3) Determine Ra. Ra = VREG (V5 set voltage max – VREG) / Rb Ra = 2.5V (10V – 2.5V) / 615Ω (For VREG and V5 set voltage, absolute values are used.) = 205 kΩ (4) Adjust Ra. Set the electronic contrast control register value to (D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0) or (0, 1, 1, 1, 1), and adjust the Ra value to the optimum contrast. To set the voltage value by the software contrast adjustment control to the 16 states, fix the data D4 of the electronic contrast control register to L and set data in D3 to D0. At this time, set IREF ≈ 3.2µA and determine Ra and Rb according to the above steps (1) to (4). Because IREF is a simplified constant-current source, it is necessary to consider the variation of maximum ±40% as manufacturing dispersion. The temperature dependency of IREF becomes ∆IREF ≈ –0.0525 µA/°C (in the variable voltage 32 states) or ∆IREF ≈ –0.0234 µA/°C (variable voltage 16 states). Determine Ra and Rb for the LCD to be used, by taking the above dispersion and variations due to temperatures into consideration. When using the software contrast adjustment control function, Ra must be a variable resistance and the 50 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 4.0 Functional Description 4.24 – 4.25 optimum contrast adjustment described in (4) must be made for each IC chip in order to compensate the V5 voltage value due to the dispersion of VREG and IREF. When the contrast control function is not used, set the register value to (D4, D3, D2, D1, D0) = (0, 0, 0, 0, 0) by the RES signal or electronic contrast control register set command. 4.25 PRECAUTIONS ON USING THE SED1560 SERIES SOFTWARE CONTRAST ADJUSTMENT CONTROL FUNCTION The SED1560 Series is provided with a software contrast adjustment control function having up to 32 levels to control the regulator. The V5 voltage, when the software contrast control function is used, is represented by the following expression: V5 = (1 + Rb / Ra). VREG + Rb × ∆IREF By this expression, the software contrast control function controls an increment of V5 voltage by means of the current source IREF built into the IC. (In the case of 32 levels, ∆IREF = IREF / 32). The V5 minimum voltage is set by the resistance ratio of the externally-installed Ra and Rb, and the voltage step width by the software contrast control is determined by the resistance value of Rb. The reference voltage VREG and current source IREF built into the SED1560 Series are kept constant against voltage variations. However, IC manufacturing dispersion and variations due to temperatures are caused as shown below. VREG = 2.5V ± 0.15V IREF = 3.2µA ± 40% (for 16 levels) 6.5µA ± 40% (for 32 levels) VREG = –0.17%/°C IREF = –0.0234 µA/°C IREF = –0.0525 µA/°C Example of Constant Setting Conditions: Center value ............................. VDD – V5 = 8.5V Variable voltage width ............... 3.2V Variable voltage level................ 32 levels (1) Determination of Rb. Rb = V5 variable voltage width / IREF = 3.2V / 6.5µA = 492 kΩ VDD VREG Ra + V5 – VR Rb 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 51 4.25 4.0 Functional Description (2) Determination of Ra. Ra = VREG (V5 minimum set voltage – VREG) / Rb = 2.5V {(8.5V – 3.2V/2) – 2.5V} / 492kΩ = 280 kΩ (3) Temperature dependency of V5 when VREG = 2.5V and IREF = 6.5µA (32 levels). V5 minimum set voltage (V5 min) = 8.5V – 3.2V/2 = 6.9V Ta = 25°C V5 max = V5 minimum set voltage + Rb × IREF = 6.9V + 492kΩ × 6.5 µA = 10.1V ....................................... 1 V5 typ = (V5 max + V5 min) / 2 = (10.1V + 6.9V) / 2 = 8.5V ......................................... 2 Ta = –10°C V5 min = (1 + Rb / R a) × VREG (Ta = –10°C) = (1 + 492kΩ / 280kΩ) × 2.5V × {1 + (–0.17%/°C) × (–10°C – 25°C)} = 7.3V ......................................... 3 V5 max = V5 min + Rb × IREF (Ta = –10°C) = 7.3V + 492kΩ × {6.5µA + (–0.0525 µA/°C) × (–10°C – 25°C)} = 11.4V ....................................... 4 V5 typ = (V5 max + V5 min) / 2 = (11.4V + 7.3V) / 2 = 9.35V ....................................... 5 Ta = 50°C V5 min = (1 + Rb / R a) × VREG (Ta = 50°C) = (1 + 492kΩ / 280kΩ) × 2.5V × {1 + (–0.17%/°C) × (50°C – 25°C)} = 6.6V ......................................... 6 V5 max = V5 min + Rb × IREF (Ta = 50°C) = 6.6V + 492kΩ × {6.5µA + (–0.0525 µA/°C) × (50°C – 25°C)} = 9.15V ....................................... 7 V5 typ = (V5 max + V5 min) / 2 = (9.15V + 6.6V) / 2 = 7.9V ......................................... 8 52 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 4.0 Functional Description • • • • 4.25 To set the number of variable voltage levels to 16, specify IREF = 3.2µA. Margin calculation is performed by considering the dispersion of VREG and VREF according to the same procedure as (3). From this margin calculation, it is made clear that the center value of V5 is affected by variations of VREG and IREF. Accordingly, it is necessary to set the electronic contrast control register value to (D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0) or (0, 1, 1, 1, 1) and adjust the Ra value to the optimum contrast. The voltage step width by the electronic contrast control is changed by the dispersion of IREF. It is necessary to consider that supposing that 0.2V/STEP is set by TYP value, the maximum variation of 0.12V to 0.28V occurs. SED 1560 Series 14 (V) 12 • 4 1 10 ° 8 V5 ∗ • 5 • 2 ° 7 ° 6 ∗ ∗ 3 8 6 • V5 max ° ∗ V5 typ 4 2 0 –20 –10 0 10 20 Ta 30 40 V5 min 50 60 (°C) Example of V5 voltage when using SED1560 Series electronic contrast control 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 53 4.25 – 4.26 Since the IREF is a simplified constant current source, when using the electronic contrast control function, it becomes necessary to make adjustment to the optimum contrast as given in the above item (4), with each of the IC chips, using the R a as a variable resistor. When not using the software contrast adjustment control function, set the register to (D3, D2, D1, D0) = (0, 0, 0, 0) using the RES signal or by means of the software contrast adjustment control register setting command. 4.0 Functional Description Table 4.8 Type SED1560 SED1561 SED1562 Table 4.9 Reference Setting Value Reference set values: SED1560 ..... V5 ≈ –11 ~ –13V SED1561 ..... V5 ≈ –7 ~ –9V SED1562 ..... V5 ≈ –5 ~ –7V (Variable) 4.26 LIQUID CRYSTAL VOLTAGE GENERATING CIRCUIT A V5 potential is resistively divided within the IC to cause V1, V2, V3 and V4 potentials needed for driving of liquid crystals. The V1, V2, V3 and V4 potentials are further converted in the impedance by the voltage follower before being supplied to the liquid crystal driving circuit. The liquid crystal driving voltage is fixed with each type (see Table 4.8). As shown in Figure 4.13, it needs to connect, externally, 5 units of voltage stabilizing capacitors C2 to the liquid crystal power terminals. When selecting such capacitor C2, make actual liquid crystal displays matching to the display capacity of the liquid crystal display panel, before determining the capacitance as the constant value for voltage stabilization. Liquid Crystal Driving Voltage 1/9 of the bias voltage 1/7 of the bias voltage 1/5 of the bias voltage C1 C2 R1 R2 R3 LCD SIZE DOT SED1560 0.47µF~ 1.0µF~ 1.0µF~ 1MΩ 200KΩ 4MΩ 32 × 51 mm 64 × 102 SED1561 0.47µF~ 0.47µF~ 0.47µF~ 700KΩ 200KΩ 1.6MΩ 16 × 67 mm 32 × 134 54 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 SED1562 0.47µF~ 0.47µF~ 0.47µF~ 500KΩ 200KΩ 700KΩ 8 × 75 mm 16 × 150 174-3.0 4.0 Functional Description Rf 4.26 Rf *1 VDD VDD OSC1 OSC2 OSC1 M/S CAP1+ CAP1+ C1 CAP1– VSS CAP1– C1 CAP2+ CAP2+ C1 CAP2– CAP2– VOUT VOUT R3 V5 V5 VR R2 M/S VSS CL VSS OSC2 *2 VR SED156X SED156X R1 VDD VDD V1 V1 V2 C2 V3 V4 External supply voltage V2 V3 V4 V5 V5 Figure 4.13 When the built-in power supply is used Figure 4.14 When external LCD power supply is used *1 Connect oscillator feedback resistor Rf as short as possible and place it close to the IC for preventing a malfunction. *2 Use short wiring or shielded cables for the VR pin due to high input impedance. *3 Determine C1 and C2 depending on the size of the LCD panel driven. You must set these values so that the LCD driving voltage becomes stable. Set (T1, T2) = (H, L) and supply an external voltage to VOUT. Display the LCD heavy load pattern and determine C2 so that the LCD driving voltages (V1 to V5) become stable. However, it is necessary to make every C2 capacitance value equal. Then, set (T1, T2) = (L, L) and determine C1. *4 The “LCD SIZE” indicates the vertical and horizontal length of the LCD panel display area. 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 55 4.27 4.0 Functional Description 4.27 RESET When power is turned ON, the SED1560 Series is initialized on the rising edge of RES. Initial settings are as follows: 1. Display : OFF 2. Display mode : Normal 3. n-line inversion : OFF 4. Duty cycle 5. ADC select 6. Read/write modify 7. On-chip power supply 8. Serial interface register 9. Display initial line register 10. Column address counter 11. Page address register 12. Output selection circuit 13. n-line inversion register 14. Software contrast setting : : : : : : : : : : : 1/64 Normal OFF OFF Cleared Line 1 0 Page 0 Case 6 16 zero The RES pin should be connected to the microprocessor reset terminal so that both devices are reset at the same time. RES must be LOW for at least 1 µs to correctly reset the SED1560 Series. Normal operation starts 1 µs after the rising edge on RES. If the SED1560 Series is not properly initialized when power is turned ON, it can lock itself into a state that cannot be cancelled. When the Reset command is used, only initial settings 9 to 14 are active. 56 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 5.0 Commands 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 57 THIS PAGE INTENTIONALLY BLANK 58 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 5.0 Commands 5.1 5.1 COMMAND SUMMARY A0, RD and WR identify the data bus commands. Interpretation and execution of commands are synchronized to the internal clock. Since a busy check is normally not needed, commands can be processed at high speed. When the serial interface is used, the order of data entry is D7 to D0. Table 5.1 Command Code A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 Display ON/OFF 0 1 0 1 0 1 0 1 1 1 D Initial display line 0 1 0 0 1 Page address set 0 1 0 1 0 1 Description Turns the display ON and OFF. D = 0 OFF D = 1 ON Display line address Sets the display RAM line address for COM0. 1 Page address Sets the RAM page address register. Sets the column address register upper four bits. Sets the column address register lower four bits. Column address set (upper four bits) 0 1 0 0 0 0 1 Column address upper four bits Column address set (lower four bits) 0 1 0 0 0 0 0 Column address lower four bits Read status 0 0 1 Write display data 1 1 0 Status Write data 0 0 Read display data 1 0 1 Read data 0 0 Reads out status information. Writes to display RAM. Reads from display RAM. Select ADC 0 1 0 1 0 1 0 0 0 0 D Sets the display RAM segment output. D = 0 Normal D = 1 Inverse Normal/inverse display 0 1 0 1 0 1 0 0 1 1 D Sets the LCD display mode. D = 0 Normal D = 1 Inverse Display all points ON/OFF 0 1 0 1 0 1 0 0 1 0 D Sets the segments display mode. D = 0 Normal D = 1 All display segments ON Select duty 0 1 0 1 0 1 0 1 0 0 D Sets the LCD controller duty (1). D = 0, D=1 See Table 5.3 Duty + 1 0 1 0 1 0 1 0 1 0 1 D Sets the LCD controller duty (2). D = 0 Normal D = 1 Duty + 1 Set n-line inversion 0 1 0 0 0 1 1 Cancel n-line inversion 0 1 0 0 0 1 0 0 0 0 0 Cancels line inversion display mode. Read Modify Write 0 1 0 1 1 1 0 0 0 0 0 Sets modified read mode. The column address counter is not incremented when reading. End 0 1 0 1 1 1 0 1 1 1 0 Cancels modified read mode. Power-on completion 0 1 0 1 1 1 0 1 1 0 1 Completes the turn-on sequence of builtin power supply Reset 0 1 0 1 1 1 0 0 0 1 0 Resets the internal registers. Output status set 0 1 0 1 1 0 0 LCD power supply ON/OFF 0 1 0 0 0 1 0 Software contrast setting 0 1 0 1 0 0 Electronic contrast control resistance value Power save 174-3.0 Number of inverted items Sets the number of inverted lines in the inversion register for the inversion controller. Sets the common and segment output status register. Output status 0 1 0 D Turns the power supply ON and OFF. D = 0 OFF D = 1 ON Setting the V5 output voltage to the electronic contrast control register. A complex command to turn off the display and light all indicators. S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 59 5.2 – 5.2.4 5.2 Command Definitions 5.2 COMMAND DEFINITIONS 5.2.1 Display ON/OFF Alternately turns the display ON and OFF. R/W A0 RD WR D7 D6 0 1 0 1 0 Note: D=0 D=1 D5 1 D4 0 D3 1 D2 D1 1 1 D0 D Display OFF Display ON 5.2.2 Initial Display Line Loads the RAM line address of the initial display line, COM0, into the initial display line register. The RAM display data becomes the top line of the LCD screen. It is followed by the higher number lines in ascending order, corresponding to the duty cycle. The screen can be scrolled using this command by incrementing the line address. A3 A2 A1 A0 Page 0 0 0 0 0 0 0 1 0 1 0 0 1 0 2 0 0 0 1 1 0 1 0 3 4 0 0 1 1 0 1 1 0 5 6 0 1 1 1 7 1 0 0 0 8 5.2.4 Column Address Set Loads the RAM column address from the microprocessor into the column address register. The column address is divided into two parts—4 high-order bits and 4 low-order bits. R/W A0 RD WR D7 D6 0 1 0 0 1 D5 A5 D4 A4 D3 A3 D2 D1 A2 A1 D0 A0 When the microprocessor reads or writes display data to or from RAM, column addresses are automatically incremented, starting with the address stored in the column address register and ending with address 166. A5 0 A4 0 A3 0 A2 0 A1 0 A0 0 Line Address 0 0 0 0 0 0 0 0 0 1 1 0 1 2 The page address is not incremented automatically. ↓ D5 D4 D3 D2 D1 D0 0 1 A7 A6 A5 A4 A0 RD WR D7 D6 0 1 0 0 0 D5 0 D4 0 D3 A3 D2 D1 A2 A1 D0 A0 A7 A6 A5 A2 A1 A0 Column Address 0 0 0 0 0 0 0 0 0 0 0 0 0 ↓ 0 0 0 1 1 ↓ 1 0 1 0 0 1 0 1 165 0 ↓ 1 1 1 1 1 1 1 1 1 1 0 1 R/W A0 RD WR D7 D6 62 63 0 1 0 0 0 R/W 5.2.3 Page Address Set Loads the RAM page address from the microprocessor into the page address register. A page address, along with a column address, defines a RAM location for writing or reading display data. When the page address is changed, the display status is not affected. Page address 8 is a special use RAM area for the indicator. Only D0 is available for data exchange. R/W A0 RD WR D7 D6 0 1 0 1 0 D5 D4 D3 D2 D1 D0 1 1 A3 A2 A0 A1 A4 A3 60 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 5.2 Command Definitions 5.2.5 – 5.2.9 5.2.5 Read Status 5.2.7 Read Display Data Indicates to the microprocessor the SED1560 Series status conditions. Sends bytes of display data to the microprocessor from the RAM location specified by the column address and page address registers. The column address is incremented automatically so that the microprocessor can continuously read data from the addressed page. A dummy read is required after loading an address into the column address register. R/W A0 RD WR D7 D6 0 0 1 BUSY ADC D5 D4 D3 ON/ OFF RESET 0 D2 D1 0 0 D0 0 • BUSY - Indicates whether or not the SED1560 Series will accept a command. If BUSY is 1, the device is currently executing a command or is resetting, and no new commands can be accepted. If BUSY is 0, a new command can be accepted. It is not necessary for the microprocessor to check the status of this bit if enough time is allowed for the last cycle to be completed. • ADC - Indicates the relationship between RAM column addresses and the segment drivers. If ADC is 1, the relationship is normal and column address n corresponds to segment driver n . If ADC is 0, the relationship is inverted and column address (165 – n) corresponds to segment driver n. • ON/OFF - Indicates whether the display is ON or OFF. If ON/OFF is 1, the display is OFF. If ON/OFF is 0, the display is ON. Note that this is the opposite of the Display ON/OFF command. • RESET - Indicates whether initialization is in process as the result of RES or the Reset command. Display data cannot be read through the serial interface. R/W A0 RD WR D7 D6 1 0 1 D5 D4 D3 Read data D2 D1 D0 5.2.8 Select ADC Selects the relationship between the RAM column addresses and the segment drivers. When reading or writing display data, the column address is incremented as shown in Figure 5.4. R/W A0 RD WR D7 D6 0 1 0 1 0 D5 1 D4 0 D3 0 D2 D1 0 0 D0 D Note: D = 0 Rotate right (normal direction) D = 1 Rotate left (reverse direction) The output pin relationship can also be changed by the microprocessor. There are very few restrictions on pin assignments when constructing an LCD module. 5.2.9 Normal/Inverse Display 5.2.6 Write Display Data Writes bytes of display data from the microprocessor to the RAM location specified by the column address and page address registers. The column address is incremented automatically so that the microprocessor can continuously write data to the addressed page. R/W A0 RD WR D7 D6 1 1 0 174-3.0 Determines whether the data in RAM is displayed normally or inverted. R/W A0 RD WR D7 D6 0 1 0 1 0 D5 D4 D3 1 0 0 D2 D1 1 D0 1 D Note: D = 0 LCD segment is ON when RAM data is 1 (normal). D = 1 LCD segment is ON when RAM data is 0 (inverse). D5 D4 D3 D2 D1 Write data D0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 61 5.2.10 – 5.2.14 5.2 Command Definitions 5.2.10 Display All Points ON/OFF Turns all LCD points ON independently of the display data in RAM. The RAM contents are not changed. This command has priority over the normal/inverse display command. R/W A0 RD WR D7 D6 0 1 0 1 0 D5 D4 D3 1 0 0 D2 D1 1 0 D0 the RAM area corresponding to page address 8, D0. (Refer to Figure 5.4.) In multi-chip configuration, the Duty + 1 command must be executed to both the master and slave sides. R/W A0 RD WR D7 D6 0 1 0 1 0 D5 D4 D3 1 0 1 D2 D1 0 1 D0 D D Table 5.3 Note: D = 0 Normal display status D = 1 All display segments ON Model D 0 Duty 1/48 or 1/64 1 1/49 or 1/65 SED1561 0 1 1/24 or 1/32 1/25 or 1/33 SED1562 0 1 1/16 1/17 SED1560 If this command is received when the display status is OFF, the Power Save command is executed. 5.2.11 Select Duty Selects the LCD driver duty. Since this is independent from the contents of the output status register, the duty must be selected according to the LCD output status. In multi-chip configuration, the master and slave devices must have the same duty. R/W A0 RD WR D7 D6 0 1 0 1 0 5.2.13 Set n-line Inversion Selects the number of inverse lines for the LCD AC controller. The value of n is set between 2 and 16 and is stored in the n-line inversion register. R/W A0 RD WR D7 D6 0 D5 1 D4 0 D3 1 D2 D1 0 0 D0 D Table 5.2 1 0 0 0 D5 D4 D3 D2 D1 D0 1 1 A3 A2 A0 A3 A2 A1 A0 Number of Inverted Lines 0 0 0 0 0 0 0 1 — 2 0 0 1 0 3 ↓ Model D Duty SED1560 0 1 1/48 1/64 1 1 1 0 15 0 1/24 1 1 1 1 16 1 0 1/32 1/16 1 1/16 SED1561 SED1562 5.2.12 Duty + 1 Increases the duty by 1. If 1/48 or 1/64 duty is selected in the SED1560, for example, 1/49 or 1/65 is set, respectively, and COM1 functions as either the COM48 or COM64 output. The display line always accesses A1 ↓ 5.2.14 Cancel n-line Inversion Cancels n -line inversion and restores the normal 2frame AC control. The contents of the n-line inversion register are not changed. R/W A0 RD WR D7 D6 0 1 0 0 0 D5 1 D4 0 D3 0 D2 D1 0 0 62 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 D0 0 174-3.0 5.2 Command Definitions 5.2.15 – 5.2.17 5.2.15 Modify Read Following this command, the column address is no longer incremented automatically by a Read Display Data command. The column address is still incremented by the Write Display Data command. This mode is cancelled by the End command. The column address is then returned to its value prior to the Modify Read command. This command makes it easy to manage the duplication of data from a particular display area for features such as cursor blinking. Page address set Column address set Read–modify–write cycle R/W A0 RD WR D7 D6 0 1 0 1 1 D5 1 D4 0 D3 0 D2 D1 0 0 D0 0 Dummy read Note: the Column Address Set command cannot be used in modify-read mode. Data read 5.2.16 End Cancels the modify read mode. The column address prior to the Modify Read command is restored. Data write R/W A0 RD WR D7 D6 0 1 0 1 1 D5 D4 D3 1 0 1 D2 D1 1 1 D0 0 No 5.2.17 Reset Resets the initial display line, column address, page address, and n-line inversion registers to their initial values. This command does not affect the display data in RAM. Changes finished? Yes END R/W A0 RD WR D7 D6 0 1 0 1 1 D5 D4 D3 1 0 0 D2 D1 0 1 D0 0 Figure 5.1 Command sequence for cursor blinking The reset command does not initialize the LCD power supply. Only hardware RES can be used to initialize the power supplies. Return Column address N N+1 N+2 N+3 N+m N Read–modify–write mode set End Figure 5.2 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 63 5.2.18 – 5.2.20 5.2 Command Definitions 5.2.18 Output Status Set 5.2.20 LCD Power Supply ON/OFF Selects the common or segment output state of the LCD driver dual outputs. The A3 bit selects the scan direction of the outputs. Turns the SED1560 Series LCD power supply ON or OFF. When the power supply is ON, the voltage converter, the voltage regulator circuit and the voltage followers are operating. In order for the converter to function, the oscillator must also be operating. R/W A0 RD WR D7 D6 0 1 0 1 1 D5 D4 D3 D2 D1 D0 0 0 A3 A2 A0 A1 R/W A0 RD WR D7 D6 0 1 0 0 0 5.2.19 Output Status Register Available only in the SED1560 and SED1561. The COM output scanning direction can be selected by setting A3 to “H” or “L”. For details, refer to the Output Status Circuit in each function description. R/W D5 0 D4 0 D3 A3 D2 D1 A2 A1 D4 D3 1 2 0 0 D2 D1 1 4 0 D0 0 OFF Note: D = 0 Supply OFF (24H) This command selects the role of the COM/SEG dual pins and determines the LCD driver output status. A0 RD WR D7 D6 0 1 0 1 1 D5 D0 A0 D = 1 Supply ON (25H) When an external power supply is used with the SED1560 Series, the internal supply must be OFF. If the SED1560 Series is used in a multiple-chip configuration, an external power supply that meets the specifications of the LCD panel must be used. An SED1560 Series operating as a slave must have its internal power supply turned OFF. A3: Selection of the COM output scanning direction Table 5.4 A2 A1 A0 Sequence in the Built-In Power ON/OFF Status Output Status Number of COM/SEG Output Pins Remarks Applies to the SED1560/61 0 0 0 Case 6 SEG 166 0 0 1 Case 5 SEG 134, COM 32 0 1 0 Case 4 SEG 134, COM 32 0 1 1 Case 3 SEG 134, COM 32 1 0 0 Case 2 1 0 1 Case 1 SEG 102, COM 64 Applies to the SEG 102, COM 64 SED1560 1 1 0 Case 6 SEG 166 1 1 1 Case 6 SEG 166 Applies to the SED1561 To turn on internal power supply, execute the following built-in power supply ON sequence. To turn off internal power supply, execute the power save sequence as shown in the following power supply OFF status. Accordingly, to turn on internal power supply again after turn it off (power save), execute the “Power Save Clear Sequence” that is described below. Applies to the SED1560/61 64 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 5.2 Command Definitions 5.2.20 Sequence in the Power Save Status To give a liquid crystal driving voltage level by the externally-installed resistance dividing circuit, the current flowing in this resistance must be cut before or concurrently with putting the SED1560 Series into the power save status so that it may be fixed to the floating or VDD level. When using an external power supply, likewise, its function must be stopped before or concurrently with putting the SED1560 Series into the power save status so that it may be fixed to the floating or VDD level. In a configuration in which an exclusive common driver such as SED1630 is combined with the SED1560 Series, it is necessary to stop the external power supply function after putting all the common output into non-selection level. Power Save Sequence Power Save Clear Sequence Power Save and Power Save Clear must be executed according to the following sequence. *3 Output Status Select command C*(H) *2 *DUTY+1 command AB(H) Internal Power Supply ON command 25(H) command ED(H) Display OFF command AE(H) *3 Output Status case 6 command CF(H) *2 *DUTY+1 Clear command AA(H) *1 Display All ON Status OFF *1 Display all ON command A5(H) *6 (Waiting time) *5 Power Supply Startup End *1. In the power save sequence, the power save status is provided after the display all ON command. In the power save clear sequence, the power save status is cleared after the display all ON status OFF command. *2. When the COMI pin is not used, it is not necessary to enter the DUTY + 1 command and DUTY + 1 clear command. *3. In the SED1562, it is not necessary to execute a command to decide an output status. *4. The display ON command can be executed anywhere if it is later than the display all ON status OFF command. 174-3.0 *5. When internal power supply startup end command is not executed, current is consumed stationarily. Internal power supply startup end command must always be used in a pair with internal power supply ON command. *6. The waiting time depends on the externallyinstalled capacitance C2 (refer to Table 5.9). After the waiting time shown in the graph above (see bottom of previous page), the power supply can be started surely. S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 65 5.2.20 5.2 Command Definitions Internal Power Supply ON Status Internal Power Supply OFF Status Reset by RES signal *1 Output Status Select command A*(H) Display OFF command AE(H) *2 *DUTY+1 command AB(H) Output Status case 6 command CF(H) Internal Power Supply ON command 25(H) *DUTY+1 Clear command AA(H) Display all ON command A5(H) *4,5 (Waiting time) *3 Power Supply Startup End command *2 ED(H) *1. Regarding the SED1562, it is not necessary to execute a command to decide an output status. *2. When the COMI pin is not used, it is not necessary to enter the DUTY + 1 and DUTY + 1 Clear commands. *3. When the built-in power supply startup end command is not executed, current is consumed stationarily. Internal power supply startup end command must always be used in a pair with internal power supply ON command. *4. The waiting time depends on the externallyinstalled capacitance C2 (refer to Table 5.9). After the waiting time shown in the graph below, the power supply can be started surely. *5. Within the waiting time in internal power supply ON status, any command other than internal power supply control commands such as Power Save, and display ON/OFF command, display normal rotation/reverse command, display all ON command, output status select command and DUTY + 1 clear command can accept another command without any problem. RAM read and write operations can be freely performed. 120 (mS) 100 80 Waiting time 60 V5 voltage conditions 1/9 bias V5 = –6.0 to –16.0 V 1/7 bias V5 = –5.0 to –12.0 V 1/5 bias V5 = –4.5 to –8.0 V 1/9 bias 1/7 bias 40 20 1/5 bias 0 0.5 Capacitance C2 1.0 (µF) 66 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 5.3 Software Contrast Control Register 5.3 SOFTWARE CONTRAST CONTROL REGISTER Through these commands, the liquid crystal driving voltage V5 is output from the voltage regulation circuit of the built-in liquid crystal power supply, in order to adjust the contrast of the liquid crystal display. By setting data to the 5-bit register, one of the 32 voltage statuses may be selected for the liquid crystal driving voltage V5. External resistors are used for setting the voltage regulation range of the V5. For details refer to the paragraph of the voltage regulation circuit in the clause for the explanation of functions. R/W A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 0 A4 A3 A2 A0 0 1 0 1 0 A4 0 A3 0 A2 0 A1 0 A0 | V5 | 0 Small (as the absolute value) ↓ 1 1 1 A1 ↓ 1 1 Large (as the absolute value) When not using the electronic contrast control function, set to (0, 0, 0, 0). 5.3 – 5.3.2 (a) The oscillator and power supply circuits are stopped. (b) The LCD driver is stopped and segment and common driver outputs output the VDD level. (c) An input of an external clock is inhibited and OSC2 enters the high-impedance state. (d) The display data and operation mode before execution of the power save command are held. (e) All LCD driver voltages are fixed to the VDD level. The power save mode is cancelled by entering either the Display ON command or the Display All Points OFF command (display operation state). When external voltage driver resistors are used to supply the LCD driver voltage level, the current through them must be cut off by the power save signal. If an external power supply is used, it must be turned OFF using the power save signal in the same manner, and voltage levels must be fixed to the floating or VDD level. 5.3.2 Connection between LCD Drivers 5.3.1 Power Save (Complex Command) If the Display All Points ON command is specified in the display OFF state, the system enters the power save status, reducing the power consumption to approximate the static power consumption value. The internal state in the power save status is as follows: The LCD display area can be increased by using the SED1560 Series in a multiple-chip configuration or with the SED1560 Series special common driver (SED1630). VDD SED1630 DIO YSCL FR FR SYNC SED156X (Master) OSC1 OSC2 CL M/S CLO DYO Rf VSS Figure 5.3 Application with external driver: SED156X – SED1630 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 67 5.3.2 5.3 Electronic Contrast Control Register VDD M/S SED156X (Master) FR SYNC OSC1 OSC2 CL CLO DYO Rf VSS FR SYNC SED156X (Slave) OSC1 OSC2 CL M/S VSS CLO DYO VSS VDD M/S SED156X (Master) OSC1 OSC2 CL VSS Rf FR SYNC CLO DYO FR SYNC VDD SED156X (Slave) OSC1 OSC2 CL VSS M/S CLO DYO Figure 5.4 SED156X – SED156X (when oscillator circuit is used) VDD M/S SED156X (Master) OSC1 OSC2 CL VSS FR SYNC FR SYNC CLO DYO VDD SED156X (Slave) OSC1 OSC2 CL VSS M/S VSS CLO DYO External clock Figure 5.5 SED156X – SED156X (External clock) 68 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 5.4 Microprocessor Interface 5.4 5.4 MICROPROCESSOR INTERFACE The SED1560 Series communicates with a highspeed microprocessor, such as the Intel 80XX family or the Motorola 68XX family, through 8-bit parallel data transfer. The number of connections to the VCC microprocessor can be minimized by using a serial interface. When used in a multiple-chip configuration, the SED1560 Series is controlled by the chip select signals from the microprocessor. A0 A0 VDD C86 A0 to A7 MPU Decoder IORQ SED156X D0 to D7 D0 to D7 GND CS1 CS2 RD WR RES RD WR RES P/S VSS RESET Figure 5.6 8080-series microprocessors VCC A0 A0 VDD C86 A0 to A15 MPU Decoder VMA SED156X D0 to D7 D0 to D7 GND CS1 CS2 E R/W RES E R/W RES P/S VSS RESET Figure 5.7 6800-series microprocessors 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 69 5.4 – 5.5 5.4 Microprocessor Interface VCC A0 A0 VDD C86 A0 to A7 CS1 CS2 Decoder MPU PORT1 PORT2 VDD or GND SED156X SI SCL P/S GND RES RES VSS RESET Figure 5.8 Serial interface 5.5 LCD PANEL INTERFACE EXAMPLES 65 × 102 Segments Commons SED1560 (Master) Case 1 33 × 134 17 × 150 Segments Commons SED1561 (Master) Segments Commons SED1562 Case 4 Figure 5.9 Single-chip configurations 70 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 5.5 LCD Panel Interface Examples 5.5 65 × 268 Segments Commons Segments SED1560 (Master) SED1560 (Slave) Case 1 Case 6 33 × 300 Segments Segments Commons SED1561 (Master) SED1561 (Slave) Case 4 Case 6 Figure 5.10 Multiple-chip combinations 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 71 5.6 5.6 Special Common Driver Configurations 5.6 SPECIAL COMMON DRIVER CONFIGURATIONS SED1630 Commons 65 × 166 Segments SED1560 (Master) Case 6 Case 6 SED1560 (Master) Segments Commons 128 × 166 SED1631 Commons Segments SED1560 (Slave) Case 6 Figure 5.11 Special common driver configurations 72 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 6.0 Packaging 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 73 THIS PAGE INTENTIONALLY BLANK 74 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 6.0 Pad Layout 6.1 O0 O45 6.1 PAD LAYOUT O46 V5 V4 V3 V2 V1 VDD VR V5 VOUT CAP2– CAP2+ CAP1– CAP1+ VSS T1 T2 OSC1 OSC2 CL FR SYNC CLO DYO D7 D6 D5 D4 D3 D2 D1 D0 VSS RD WR A0 C86 CS2 CS1 P/S SI SCL RES M/S VDD V1 V2 V3 V4 V5 SED156X Chip Size Pad Pitch Chip thickness : 8.08 × 5.28 mm : 100 µm (min) : 625 µm ± 25 µm O165 COM1 O121 O120 Figure 6.1 Pad layout 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 75 6.1 6.0 Pad Layout Table 6.1 SED1560 Series Pad Center Coordinates Pad No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Pin Name V5 V4 V3 V2 V1 VDD M/S RES SCL SI P/S CS1 CS2 C86 A0 WR RD VSS D0 D1 D2 D3 D4 D5 D6 D7 DYO CLO SYNC FR CL OSC2 OSC1 T2 T1 VSS CAP1+ CAP1– CAP2+ CAP2– VOUT V5* VR VDD V1 V2 V3 V4 V5 O0 O1 O2 O3 O4 X Y 3640 3489 3339 3188 3037 2889 2755 2604 2453 2302 2151 2001 1850 1699 1548 1397 1247 1077 945 794 643 493 342 191 40 –111 –261 –412 –563 –714 –865 –1015 –1166 –1317 –1468 –1638 –1789 –1939 –2090 –2241 –2392 –2543 –2674 –2844 –2995 –3146 –3297 –3447 –3598 –3887 –3887 –3887 –3887 –3887 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2487 2294 2194 2094 1994 1894 Pad No. 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 Pin Name O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 O18 O19 O20 O21 O22 O23 O24 O25 O26 O27 O28 O29 O30 O31 O32 O33 O34 O35 O36 O37 O38 O39 O40 O41 O42 O43 O44 O45 O46 O47 O48 O49 O50 O51 O52 O53 O54 O55 O56 O57 O58 X Y –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3887 –3711 –3611 –3511 –3411 –3311 –3211 –3111 –3011 –2911 –2811 –2711 –2611 –2511 1794 1694 1594 1494 1394 1294 1194 1094 994 894 794 694 594 494 394 294 194 94 –6 –106 –206 –306 –406 –506 –606 –706 –806 –906 –1006 –1106 –1206 –1306 –1406 –1506 –1606 –1706 –1806 –1906 –2006 –2106 –2206 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 Pad No. 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 Pin Name O59 O60 O61 O62 O63 O64 O65 O66 O67 O68 O69 O70 O71 O72 O73 O74 O75 O76 O77 O78 O79 O80 O81 O82 O83 O84 O85 O86 O87 O88 O89 O90 O91 O92 O93 O94 O95 O96 O97 O98 O99 O100 O101 O102 O103 O104 O105 O106 O107 O108 O109 O110 O111 O112 X Y –2411 –2311 –2211 –2111 –2011 –1911 –1811 –1711 –1611 –1511 –1411 –1311 –1211 –1111 –1011 –911 –811 –711 –611 –511 –411 –311 –211 –111 –11 89 189 289 389 489 589 689 789 889 989 1089 1189 1289 1389 1489 1589 1689 1789 1889 1989 2089 2189 2289 2389 2489 2589 2689 2789 2889 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 Pad No. 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 Pin Name O113 O114 O115 O116 O117 O118 O119 O120 O121 O122 O123 O124 O125 O126 O127 O128 O129 O130 O131 O132 O133 O134 O135 O136 O137 O138 O139 O140 O141 O142 O143 O144 O145 O146 O147 O148 O149 O150 O151 O152 O153 O154 O155 O156 O157 O158 O159 O160 O161 O162 O163 O164 O165 COMI X Y 2989 3089 3189 3289 3389 3489 3589 3689 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 3887 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2487 –2206 –2106 –2006 –1906 –1806 –1706 –1606 –1506 –1406 –1306 –1206 –1106 –1006 –906 –806 –706 –606 –506 –406 –306 –206 –106 –6 94 194 294 394 494 594 694 794 894 994 1094 1194 1294 1394 1494 1594 1694 1794 1894 1994 2094 2194 2294 * One V5 output is used for the LCD driver supply voltage; the other is used for the electronic volume control. 76 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 6.2 SED1560 Series TAB Pin Layout 6.2 6.2 SED1560/1/2 TAB PIN LAYOUT This drawing is not for specifying the TAB outline shape. O0 SED156X TOP VIEW V5 V4 V3 V2 V1 VDD VR V5 VOUT CAP2– CAP2+ CAP1– CAP1+ VSS T1 T2 OSC1 OSC2 CL FR SYNC CLO DYO D7 D6 D5 D4 D3 D2 D1 D0 VSS RD WR A0 C86 CS2 CS1 P/S SI SCL RES M/S VDD V1 V2 V3 V4 V5 O165 COMI Figure 6.2 SED1560 Series TAB pin layout 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 77 6.3 6.3 TCP Dimensions (2-sided) X(+) MAX 1.0 MAX 0.8 MAX 0.15 SED1560T0B 6.3 TCP DIMENSIONS (2-SIDED) SED156XT0B NC x 2 00 8.8 ø1.7 NC V5 V4 V3 60 V2 D1 5 1.5 V1 VDD VR V5 VOUT CAP2– CAP2+ CAP1– VSS T1 T2 OSC1 OSC2 CL FR SYNC CLO DYO D6 D5 0.28 D4 0.80 D3 D2 D1 D0 VSS RD WR 40.00 44.00 36.00 Y(+) 47.5 D7 Note 1: Resist position tolerance: ±0.3 2: Product pitch: 52.25mm CAP1+ A0 C86 CS2 CS1 P/S SI SCL RES ø2.10 SR ø1.50 PI M/S VDD V1 V2 V3 V4 V5 NC 4.40 NC x 2 COM1 0165 0.5 5.34 15.16 2.70 28.98 ± 0.04 Figure 6.3 TCP dimensions (2-sided) 78 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 6.4 TCP Dimensions (4-sided) 6.4 4 – RO. 2 X(+) 4 – RO. 2 MAX 1.0 MAX 0.8 MAX 0.15 6.4 TCP DIMENSIONS (4-SIDED) SED156XT0A 0.30 0 56 22.50 26.95 D 15 60 0.30 18.00 Y (+) D1 D1560 0.60 25.95 31.82 34.9750 Figure 6.4 TCP dimensions (4-sided) 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 79 6.5 6.5 TCP Dimensions (D1561TOC) 6.5 TCP DIMENSIONS (SED1561TOC) 0.01 28.98±0.07 8.50 (SR) 6.66 (SR) 10.23 (SR) 2.54 (SR) 5.34 2.39 (SR) 0.11±0.02 0.14±0.02 NCX2 COM1 0165 • • • 4.40 0.14 NC V5 V4 ø 2.10 SR ø 1.50 PI V3 V2 V1 VDD M/S RES SCL SI P/S CS1 CS2 C86 A0 D0 D1 D2 D6 D7 MAX 8.28 DYO 1.98±0.01 CLO SYNC FR 4.75 ± 0.01 CL OSC2 OSC1 T2 T1 Y (+) D5 MAX 11.08 D4 0.28 0.14 5.28 (IC) D3 8.08 (IC) 0.40 0.80 36.00 PO. 80 x 51 – 1 = 40.00 (W 0.4, G 0.4) 41.00 (SR) RD VSS 48.34 (SR) PO. 28 x 171 – 1 = 47.60±0.06 (W 0.14, G 0.14) WR VSS CAP1+ CAP1– CAP2+ CAP2– VOUT V5 VR VDD V1 1.5 V2 V3 V4 V5 ø 1.7 NC • • • 00 NCX2 ø 2.0 X (+) MAX 1.50 MAX 1.50 MAX 1.0 MAX 0.8 MAX 1.50 IC : SED1561DOB MAX 1.50 Figure 6.5 TCP dimensions (D1561TOC) 80 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 6.6 Pad Profile 6.6 6.6 PAD PROFILE TBD 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 81 6.7 6.7 BGA Package Dimensions 6.7 BGA PACKAGE DIMENSIONS D SED1560BOA E E1 D1 INDEX 4–C2 4–C1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Q P N M L K J H G F E D C B A Ø2 A2 A e øb A1 Figure 6.7 Plastic BGA 225pin Table 6.2 BGA 225pin package dimensions Symbol øb A A1 A2 θ2 C1 C2 e D1 E1 D E Dimension in Millimeters Min. Nom. Max. 0.6 0.75 0.90 2.13 Dimension in inches* Min. Nom. Max. (0.024) (0.030) (0.035) (0.084) 0.5 1.43 0.7 1.63 (0.020) (0.057) 24.1 24.1 (0.941) (0.941) 23.9 23.9 0.6 1.53 25° 1.5 1.2 1.5 24 24 27 27 (0.024) (0.060) (25°) (0.059) (0.047) (0.059) (0.945) (0.945) (1.063) (1.063) (0.027) (0.064) (0.948) (0.948) * for reference 82 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 6.8 BGA Pin Assignment 6.8 6.8 BGA PIN ASSIGNMENT SED1560 SED1560 BGA225 SED1560 SED1560 BGA225 SED1560 SED1560 BGA225 SED1560 SED1560 BGA225 pad# pin name pin# pad# pin name pin# pad# pin name pin# pad# pin name pin# 1 V5 B-2 55 05 R-2 109 059 K-10 163 0113 D-12 2 V4 D-4 56 06 P-3 110 060 M-13 164 0114 B-14 B-1 57 07 K-6 111 061 N-15 165 0115 A-15 3 V3 C-2 58 08 N-4 112 062 M-14 166 0116 C-13 4 V2 5 V1 F-6 59 09 R-3 113 063 J-10 167 0117 A-14 D-3 60 010 P-4 114 064 L-12 168 0118 B-13 6 VDD 7 M/S C-1 61 011 K-7 115 065 M-15 169 0119 E-11 8 /RES D-2 62 012 M-5 116 066 L-13 170 0120 C-12 9 SCL G-6 63 013 R-4 117 067 L-14 171 0121 A-13 10 SI E-4 64 014 N-5 118 068 K-11 172 0122 B-12 11 P/S D-1 65 015 P-5 119 069 L-15 173 0123 F-9 12 /CS1 E-3 66 016 L-6 120 070 K-12 174 0124 D-11 13 CS2 E-2 67 017 R-5 121 071 K-13 175 0125 A-12 14 C86 F-5 68 018 M-6 122 072 K-14 176 0126 C-11 15 A0 E-1 69 019 N-6 123 073 K-15 177 0127 B-11 16 /WR F-4 70 020 P-6 124 074 J-12 178 0128 E-10 17 /RD F-3 71 021 R-6 125 075 J-13 179 0129 A-11 F-2 72 022 M-7 126 076 J-14 180 0130 D-10 18 VSS 19 D0 F-1 73 023 N-7 127 077 J-15 181 0131 C-10 20 D1 G-4 74 024 P-7 128 078 J-11 182 0132 B-10 21 D2 G-3 75 025 R-7 129 079 L-8 183 0133 A-10 22 D3 G-2 76 026 L-7 130 080 K-8 184 0134 D-9 23 D4 G-1 77 027 M-8 131 081 H-10 185 0135 C-9 24 D5 G-5 78 028 P-8 132 082 H-11 186 0136 B-9 25 D6 H-3 79 029 R-8 133 083 H-6 187 0137 A-9 26 D7 H-1 80 030 N-8 134 084 H-5 188 0138 E-9 27 DYO H-2 81 031 L-9 135 085 F-8 189 0139 D-8 28 CLO H-4 82 032 R-9 136 086 E-8 190 0140 B-8 29 SYNC J-5 83 033 P-9 137 087 H-12 191 0141 A-8 30 FR J-1 84 034 N-9 138 088 H-14 192 0142 C-8 31 CL J-2 85 035 M-9 139 089 H-15 193 0143 E-7 32 OSC2 J-3 86 036 R-10 140 090 H-13 194 0144 A-7 33 OSC1 J-4 87 037 P-10 141 091 G-11 195 0145 B-7 34 T2 K-1 88 038 N-10 142 092 G-15 196 0146 C-7 35 T1 K-2 89 039 M-10 143 093 G-14 197 0147 D-7 K-3 90 040 R-11 144 094 G-13 198 0148 A-6 36 VSS 37 CAP1+ K-4 91 041 L-10 145 095 G-12 199 0149 B-6 38 CAP1− L-1 92 042 P-11 146 096 F-15 200 0150 C-6 39 CAP2+ K-5 93 043 N-11 147 097 F-14 201 0151 D-6 40 CAP2− L-2 94 044 R-12 148 098 F-13 202 0152 A-5 L-3 95 045 M-11 149 099 F-12 203 0153 E-6 41 VOUT 42 V5 M-1 96 046 K-9 150 0100 E-15 204 0154 B-5 L-4 97 047 P-12 151 0101 F-11 205 0155 C-5 43 VR J-6 98 048 R-13 152 0102 E-14 206 0156 A-4 44 VDD 45 V1 M-2 99 049 N-12 153 0103 E-13 207 0157 D-5 N-1 100 050 L-11 154 0104 D-15 208 0158 F-7 46 V2 47 V3 M-3 101 051 P-13 155 0105 E-12 209 0159 B-4 L-5 102 052 R-14 156 0106 G-10 210 0160 A-3 48 V4 N-2 103 053 N-13 157 0107 D-14 211 0161 C-4 49 V5 50 00 P-1 104 054 R-15 158 0108 C-15 212 0162 E-5 51 01 N-3 105 055 P-14 159 0109 D-13 213 0163 B-3 52 02 R-1 106 056 M-12 160 0110 F-10 214 0164 A-2 53 03 P-2 107 057 P-15 161 0111 C-14 215 0165 C-3 54 04 M-4 108 058 N-14 162 0112 B-15 216 COMI A-1 174-3.0 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 N/C J-7 H-7 G-7 J-8 H-8 G-8 J-9 H-9 G-9 83 6.9 6.9 SED1560TQA OL Dimensions 6.9 SED1560TQA OL DIMENSIONS 100% Sn 110 +/– 15uM [90(+10,–20uM)] 190uM 0.5 +/–0.1uM CU CU 25 +/–1uM Adhesive 300uM Polymide Film Figure 6.8 SED1560TQA OL Dimensions S-MOS assumes no responsibility or liability for (1) any errors or inaccuracies contained in the information herein and (2) the use of the information or a portion thereof in any application, including any claim for (a) copyright or patent infringement or (b) direct, indirect, special or consequential damages. There are no warranties extended or granted by this document. The information herein is subject to change without notice from S-MOS. October 1996 © Copyright 1996 S-MOS Systems, Inc. Printed in U.S.A. 84 S-MOS Systems, Inc. • 150 River Oaks Parkway • San Jose, CA 95134 • Tel: (408) 922-0200 • Fax: (408) 922-0238 174-3.0 174-3.0