TI SN74ALVCH162525DL

SN74ALVCH162525
18-BIT REGISTERED BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES058F – NOVEMBER 1995 – REVISED SEPTEMBER 1999
D
D
D
D
D
D
D
Member of the Texas Instruments
Widebus  Family
EPIC  (Enhanced-Performance Implanted
CMOS) Submicron Process
B-Port Outputs Have Equivalent 26-Ω
Series Resistors, So No External Resistors
Are Required
ESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
Latch-Up Performance Exceeds 250 mA Per
JESD 17
Bus Hold on Data Inputs Eliminates the
Need for External Pullup/Pulldown
Resistors
Package Option Includes Plastic 300-mil
Shrink Small-Outline (DL) and Thin Shrink
Small-Outline (DGG) Packages
NOTE: For tape and reel order entry:
The DGGR package is abbreviated to GR.
description
This 18-bit universal bus transceiver is designed
for 1.65-V to 3.6-V VCC operation.
Data flow in each direction is controlled by
output-enable (OEAB and OEBA) and
clock-enable (CLKENAB and CLKENBA) inputs.
For the A-to-B data flow, the data flows through a
single register. The B-to-A data can flow through
a four-stage pipeline register path, or through a
single register path, depending on the state of the
select (SEL) input.
DGG OR DL PACKAGE
(TOP VIEW)
CLKENAB
OEAB
A1
GND
A2
A3
VCC
A4
A5
A6
GND
A7
A8
A9
A10
A11
A12
GND
A13
A14
A15
VCC
A16
A17
GND
A18
OEBA
CLKENBA
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
SEL
CLKAB
B1
GND
B2
B3
VCC
B4
B5
B6
GND
B7
B8
B9
B10
B11
B12
GND
B13
B14
B15
VCC
B16
B17
GND
B18
CLK1BA
CLK2BA
Data is stored in the internal registers on the low-to-high transition of the clock (CLK) input, provided that the
appropriate CLKEN inputs are low. The A-to-B data transfer is synchronized to the CLKAB input, and B-to-A
data transfer is synchronized with the CLK1BA and CLK2BA inputs.
The B outputs, which are designed to sink up to 12 mA, include equivalent 26-Ω resistors to reduce overshoot
and undershoot.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74ALVCH162525 is characterized for operation from –40°C to 85°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
EPIC and Widebus are trademarks of Texas Instruments Incorporated.
Copyright  1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN74ALVCH162525
18-BIT REGISTERED BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES058F – NOVEMBER 1995 – REVISED SEPTEMBER 1999
Function Tables
A-TO-B STORAGE
(OEAB = L)
INPUTS
CLKENAB
CLKAB
A
H
X
X
L
↑
L
OUTPUT
B
B0†
L
L
↑
H
H
† Output level before the indicated steady-state
input conditions were established
B-TO-A STORAGE
(OEBA = L)
INPUTS
CLKENBA
CLK2BA
CLK1BA
SEL
B
H
X
X
X
X
L
↑
X
H
L
L
↑
X
H
H
L
↑
↑
L
L
OUTPUT
A
A0†
L
H
L‡
H‡
L
↑
↑
L
H
† Output level before the indicated steady-state input conditions were
established
‡ Three CLK1BA edges and one CLK2BA edge are needed to
propagate data from B to A when SEL is low.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74ALVCH162525
18-BIT REGISTERED BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES058F – NOVEMBER 1995 – REVISED SEPTEMBER 1999
logic diagram (positive logic)
CLKAB
CLK1BA
CLK2BA
CLKENBA
CLKENAB
OEAB
OEBA
SEL
55
30
29
28
1
2
27
56
1 of 18 Channels
G1
CE
3
A1
C1
1D
1
1
CE
C1
1D
CE
C1
1D
CE
C1
1D
54
B1
CE
C1
1D
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN74ALVCH162525
18-BIT REGISTERED BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES058F – NOVEMBER 1995 – REVISED SEPTEMBER 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V
Input voltage range, VI: Except I/O ports (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V
I/O ports (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Output voltage range, VO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous current through each VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA
Package thermal impedance, θJA (see Note 3): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81°C/W
DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. This value is limited to 4.6 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74ALVCH162525
18-BIT REGISTERED BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES058F – NOVEMBER 1995 – REVISED SEPTEMBER 1999
recommended operating conditions (see Note 4)
VCC
Supply voltage
VIH
High-level input voltage
VCC = 1.65 V to 1.95 V
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
VCC = 1.65 V to 1.95 V
MIN
MAX
1.65
3.6
2
0.35 × VCC
VI
VO
Input voltage
0
Output voltage
0
High level output current (B port)
High-level
Low level output current (A port)
Low-level
IOL
Low level output current (B port)
Low-level
∆t/∆v
0.7
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
IOH
V
1.7
Low-level input voltage
High level output current (A port)
High-level
V
V
–4
–12
–12
VCC = 1.65 V
VCC = 2.3 V
–2
–24
mA
–6
VCC = 2.7 V
VCC = 3 V
–12
VCC = 1.65 V
VCC = 2.3 V
12
–8
4
VCC = 2.7 V
VCC = 3 V
12
VCC = 1.65 V
VCC = 2.3 V
2
Input transition rise or fall rate
V
0.8
VCC
VCC
VCC = 2.7 V
VCC = 3 V
VCC = 2.7 V
VCC = 3 V
V
0.65 × VCC
VIL
VCC = 1.65 V
VCC = 2.3 V
UNIT
24
mA
6
8
12
10
ns/V
TA
Operating free-air temperature
–40
85
°C
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN74ALVCH162525
18-BIT REGISTERED BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES058F – NOVEMBER 1995 – REVISED SEPTEMBER 1999
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
1.65 V to 3.6 V
IOH = –100 µA
IOH = –4 mA
1.65 V
IOH = –6 mA
A port
IOH = –12 mA
IOH = –24 mA
IOH = –100 µA
VOH
A port
2.4
2
1.7
3V
2.4
IOH = –8 mA
IOH = –12 mA
2.7 V
2
3V
2
IOL = 100 µA
IOL = 4 mA
1.65 V to 3.6 V
0.2
1.65 V
0.45
2.3 V
0.4
2.3 V
0.7
IOH = –6
6 mA
IOL = 6 mA
2.7 V
0.4
3V
0.55
1.65 V to 3.6 V
0.2
1.65 V
0.45
2.3 V
0.4
2.3 V
0.55
3V
0.55
IOL = 8 mA
IOL = 12 mA
2.7 V
0.6
3V
0.8
VI = VCC or GND
VI = 0.58 V
3.6 V
±5
IOL = 6 mA
1 65 V
1.65
23V
2.3
3V
VI = 2 V
VI = 0 to 3.6 V‡
IOZ§
ICC
VO = VCC or GND
VI = VCC or GND,
∆ICC
Ci
One input at VCC – 0.6 V,
IO = 0
Other inputs at VCC or GND
VI = VCC or GND
VO = VCC or GND
UNIT
V
1.9
VI = 1.7 V
VI = 0.8 V
Control inputs
2.2
3V
2.3 V
VI = 1.07 V
VI = 0.7 V
II(hold)
(
)
2.7 V
2.3 V
IOL = 2 mA
IOL = 4 mA
II
1.7
1.65 V
IOL = 24 mA
IOL = 100 µA
B port
MAX
VCC–0.2
1.2
IOL = 12 mA
VOL
2
2.3 V
3V
TYP†
VCC–0.2
1.2
2.3 V
1.65 V to 3.6 V
IOH = –2 mA
IOH = –4 mA
B port
MIN
V
µA
25
–25
45
µA
–45
75
–75
3.6 V
±500
3.6 V
±10
µA
3.6 V
40
µA
3 V to 3.6 V
750
µA
3.3 V
3
pF
Cio
A or B ports
3.3 V
7
pF
† All typical values are at VCC = 3.3 V, TA = 25°C.
‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
§ For I/O ports, the parameter IOZ includes the input leakage current.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74ALVCH162525
18-BIT REGISTERED BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES058F – NOVEMBER 1995 – REVISED SEPTEMBER 1999
timing requirements over recommended operating free-air temperature range (unless otherwise
noted) (see Figures 1 through 3)
VCC = 2.5 V
± 0.2 V
VCC = 1.8 V
MIN
fclock
tw
tsu
th
Clock frequency
Hold time
MIN
MAX
MIN
120
MAX
VCC = 3.3 V
± 0.3 V
MIN
150
3.2
3.2
3
A data before CLKAB↑
†
1.3
1.3
1.3
B data before CLK2BA↑
†
2.1
1.8
1.7
B data before CLK1BA↑
†
1.3
1.2
1.1
SEL before CLK2BA↑
†
3.3
3.3
3.3
CLKENAB before CLKAB↑
†
2.1
1.9
1.6
CLKENBA before CLK1BA↑
†
2.7
2.5
2.1
CLKENBA before CLK2BA↑
†
2.7
2.5
2.2
A data after CLKAB↑
†
0.7
0.4
0.9
B data after CLK2BA↑
†
0.4
0
0.6
B data after CLK1BA↑
†
0.8
0.4
1
SEL after CLK2BA↑
†
0
0
0.1
CLKENAB after CLKAB↑
†
0.1
0.3
0.3
CLKENBA after CLK1BA↑
†
0
0
0.1
CLKENBA after CLK2BA↑
†
0
0
0
UNIT
MAX
125
†
Pulse duration, CLK high or low
Setup time
MAX
†
VCC = 2.7 V
MHz
ns
ns
ns
† This information was not available at the time of publication.
switching characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Figures 1 through 3)
PARAMETER
VCC = 1.8 V
VCC = 2.7 V
VCC = 3.3 V
± 0.3 V
TO
(OUTPUT)
CLKAB
B
†
1
5.5
5.4
1
4.7
CLK2BA
A
†
1
4.5
4.4
1
4.2
OEBA
A
†
1
6.1
6.1
1
5.1
OEAB
B
†
1
6.7
6.8
1
5.7
OEBA
A
†
1
6.3
5.4
1
4.9
OEAB
B
†
1
6.3
5.4
1
4.9
MIN
†
fmax
tpd
d
VCC = 2.5 V
± 0.2 V
FROM
(INPUT)
ten
tdis
di
MAX
MIN
MAX
120
MIN
MAX
125
MIN
UNIT
MAX
150
MHz
ns
ns
ns
† This information was not available at the time of publication.
operating characteristics, TA = 25°C
PARAMETER
Cpd
d
Power dissipation
capacitance
TEST CONDITIONS
Outputs enabled
Outputs disabled
CL = 50 pF,
pF
VCC = 1.8 V
TYP
†
f = 10 MHz
†
VCC = 2.5 V
TYP
VCC = 3.3 V
TYP
160
160
160
160
UNIT
pF
† This information was not available at the time of publication.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SN74ALVCH162525
18-BIT REGISTERED BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES058F – NOVEMBER 1995 – REVISED SEPTEMBER 1999
PARAMETER MEASUREMENT INFORMATION
VCC = 1.8 V
2 × VCC
S1
1 kΩ
From Output
Under Test
Open
GND
CL = 30 pF
(see Note A)
1 kΩ
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VCC
VCC/2
tPZH
VOH
VCC/2
VOL
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.15 V
VOL
tPHZ
VCC/2
VOH
VOH – 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74ALVCH162525
18-BIT REGISTERED BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES058F – NOVEMBER 1995 – REVISED SEPTEMBER 1999
PARAMETER MEASUREMENT INFORMATION
VCC = 2.5 V ± 0.2 V
2 × VCC
S1
500 Ω
From Output
Under Test
Open
GND
CL = 30 pF
(see Note A)
500 Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VCC
VCC/2
tPZH
VOH
VCC/2
VOL
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.15 V
VOL
tPHZ
VCC/2
VOH
VOH – 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 2. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SN74ALVCH162525
18-BIT REGISTERED BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES058F – NOVEMBER 1995 – REVISED SEPTEMBER 1999
PARAMETER MEASUREMENT INFORMATION
VCC = 2.7 V AND 3.3 V ± 0.3 V
From Output
Under Test
6V
Open
S1
500 Ω
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
tw
LOAD CIRCUIT
2.7 V
2.7 V
Timing
Input
1.5 V
Input
1.5 V
0V
1.5 V
0V
tsu
VOLTAGE WAVEFORMS
PULSE DURATION
th
2.7 V
Data
Input
1.5 V
1.5 V
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
2.7 V
Output
Control
(low-level
enabling)
1.5 V
0V
tPZL
2.7 V
Input
1.5 V
1.5 V
0V
tPLH
1.5 V
tPLZ
3V
1.5 V
tPZH
VOH
Output
Output
Waveform 1
S1 at 6 V
(see Note B)
tPHL
1.5 V
VOL
1.5 V
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH
VOH – 0.3 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 3. Load Circuit and Voltage Waveforms
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated