TI SN74ALVCH16952

SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES011D – JULY 1995 – REVISED FEBRUARY 1999
D
D
D
D
D
D
Member of the Texas Instruments
Widebus  Family
EPIC  (Enhanced-Performance Implanted
CMOS) Submicron Process
ESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
Latch-Up Performance Exceeds 500 mA Per
JESD 17
Bus Hold on Data Inputs Eliminates the
Need for External Pullup/Pulldown
Resistors
Package Options Include Plastic 300-mil
Shrink Small-Outline (DL), Thin Shrink
Small-Outline (DGG), and Thin Very
Small-Outline (DGV) Packages
description
This 16-bit registered transceiver is designed for
1.65-V to 3.6-V VCC operation.
The SN74ALVCH16952 contains two sets of
D-type flip-flops for temporary storage of data
flowing in either direction. This device can be used
as two 8-bit transceivers or one 16-bit transceiver.
Data on the A or B bus is stored in the registers on
the low-to-high transition of the clock (CLKAB or
CLKBA) input provided that the clock-enable
(CLKENAB or CLKENBA) input is low. Taking the
output-enable (OEAB or OEBA) input low
accesses the data on either port.
DGG, DGV, OR DL PACKAGE
(TOP VIEW)
1OEAB
1CLKAB
1CLKENAB
GND
1A1
1A2
VCC
1A3
1A4
1A5
GND
1A6
1A7
1A8
2A1
2A2
2A3
GND
2A4
2A5
2A6
VCC
2A7
2A8
GND
2CLKENAB
2CLKAB
2OEAB
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
1OEBA
1CLKBA
1CLKENBA
GND
1B1
1B2
VCC
1B3
1B4
1B5
GND
1B6
1B7
1B8
2B1
2B2
2B3
GND
2B4
2B5
2B6
VCC
2B7
2B8
GND
2CLKENBA
2CLKBA
2OEBA
To ensure the high-impedance state during power
up or power down, OE should be tied to VCC
through a pullup resistor; the minimum value of
the resistor is determined by the current-sinking
capability of the driver.
Active bus-hold circuitry is provided to hold
unused or floating data inputs at a valid logic level.
The SN74ALVCH16952 is characterized for
operation from –40°C to 85°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus and EPIC are trademarks of Texas Instruments Incorporated.
Copyright  1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES011D – JULY 1995 – REVISED FEBRUARY 1999
FUNCTION TABLE†
INPUTS
OUTPUT
B
CLKENAB
CLKAB
OEAB
A
H
X
L
X
X
L
L
X
L
↑
L
L
L
L
↑
L
H
H
B0‡
B0‡
X
X
H
X
Z
† A-to-B data flow is shown; B-to-A data flow is similar, but
uses CLKENBA, CLKBA, and OEBA.
‡ Level of B before the indicated steady-state input
conditions were established
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES011D – JULY 1995 – REVISED FEBRUARY 1999
logic symbol†
1OEBA
56
54
1CLKENBA
1CLKBA
55
1
1OEAB
3
1CLKENAB
1CLKAB
2
29
2OEBA
31
2CLKENBA
2CLKBA
2OEAB
30
28
26
2CLKENAB
2CLKAB
1A1
27
5
EN3
G1
1C5
EN4
G2
2C6
EN9
G7
7C11
EN10
G8
8C12
3
6D
1A2
1A3
1A4
1A5
1A6
1A7
1A8
2A1
6
2A3
2A4
2A5
2A6
2A7
2A8
4
52
51
8
49
9
48
10
47
12
45
13
44
14
43
15
42
9
12D
2A2
5D
11D
1B1
1B2
1B3
1B4
1B5
1B6
1B7
1B8
2B1
10
16
41
17
40
19
38
20
37
21
36
23
34
24
33
2B2
2B3
2B4
2B5
2B6
2B7
2B8
† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES011D – JULY 1995 – REVISED FEBRUARY 1999
logic diagram (positive logic)
1CLKENAB
1CLKAB
1OEBA
1A1
3
54
2
55
56
1
5
One of Eight
Channels
C1
CE
1D
52
1CLKENBA
1CLKBA
1OEAB
1B1
C1
CE
1D
To Seven Other Channels
2CLKENAB
2CLKAB
2OEBA
26
31
27
30
29
28
One of Eight
Channels
2A1
C1
CE
1D
15
C1
CE
1D
To Seven Other Channels
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
42
2CLKENBA
2CLKBA
2OEAB
2B1
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES011D – JULY 1995 – REVISED FEBRUARY 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V
Input voltage range, VI: Except I/O ports (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V
I/O ports (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Output voltage range, VO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous current through each VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA
Package thermal impedance, θJA (see Note 3): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed..
2. This value is limited to 4.6 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions (see Note 4)
VCC
VIH
Supply voltage
VCC = 1.65 V to 1.95 V
VCC = 2.3 V to 2.7 V
High-level input voltage
VCC = 2.7 V to 3.6 V
VCC = 1.65 V to 1.95 V
VIL
VI
VO
IOH
Low-level input voltage
MIN
MAX
1.65
3.6
2
0.35 × VCC
0.7
0
0
IOL
Low level output current
Low-level
∆t/∆v
Input transition rise or fall rate
VCC = 1.65 V
VCC = 2.3 V
VCC = 2.7 V
VCC = 3 V
V
0.8
Output voltage
VCC = 2.7 V
VCC = 3 V
V
1.7
Input voltage
High level output current
High-level
V
0.65 × VCC
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
VCC = 1.65 V
VCC = 2.3 V
UNIT
VCC
VCC
V
V
–4
–12
–12
mA
–24
4
12
12
mA
24
10
ns/V
TA
Operating free-air temperature
–40
85
°C
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES011D – JULY 1995 – REVISED FEBRUARY 1999
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
1.65 V to 3.6 V
IOH = –100 µA
IOH = –4 mA
1.65 V
IOH = –6 mA
VOH
IOH = –12 mA
IOH = –24 mA
IOL = 100 µA
IOZ§
ICC
∆ICC
Ci
2
2.3 V
1.7
UNIT
2.7 V
2.2
3V
2.4
3V
2
V
0.2
2.3 V
0.4
2.3 V
0.7
2.7 V
0.4
3V
0.55
±5
3.6 V
VI = 0.58 V
VI = 1.07 V
1.65 V
25
1.65 V
–25
VI = 0.7 V
VI = 1.7 V
2.3 V
45
2.3 V
–45
VI = 0.8 V
VI = 2 V
3V
75
3V
–75
V
µA
µA
VI = 0 to 3.6 V‡
3.6 V
±500
VO = VCC or GND
VI = VCC or GND,
3.6 V
±10
µA
3.6 V
40
µA
750
µA
One input at VCC – 0.6 V,
Control inputs
2.3 V
0.45
IOL = 24 mA
VI = VCC or GND
II(hold)
(
)
MAX
VCC–0.2
1.2
1.65 V
IOL = 12 mA
II
TYP†
1.65 V to 3.6 V
IOL = 4 mA
IOL = 6 mA
VOL
MIN
IO = 0
Other inputs at VCC or GND
VI = VCC or GND
VO = VCC or GND
3 V to 3.6 V
3.3 V
3.5
pF
Cio
A or B ports
3.3 V
8.5
pF
† All typical values are at VCC = 3.3 V, TA = 25°C.
‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
§ For I/O ports, the parameter IOZ includes the input leakage current.
timing requirements over recommended operating free-air temperature range (unless otherwise
noted) (see Figures 1 through 3)
VCC = 1.8 V
MIN
fclock
Clock frequency
tw
Pulse duration
tsu
Setup time
th
Hold time
MAX
¶
VCC = 2.5 V
± 0.2 V
MIN
MIN
150
MAX
VCC = 3.3 V
± 0.3 V
MIN
150
CLKEN high
3.3
3.3
3.3
CLK high or low
¶
3.3
3.3
3.3
Data before CLK
¶
1.7
1.9
1.5
CLKEN before CLK
¶
1.2
1
1
Data after CLK
¶
0.6
0.6
0.8
CLKEN after CLK
¶
1.1
0.9
1.1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
MAX
150
¶
¶ This information was not available at the time of publication.
6
MAX
VCC = 2.7 V
MHz
ns
ns
ns
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES011D – JULY 1995 – REVISED FEBRUARY 1999
switching characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Figures 1 through 3)
FROM
(INPUT)
PARAMETER
fmax
tpd
ten
TO
(OUTPUT)
VCC = 1.8 V
MIN
†
TYP
VCC = 2.5 V
± 0.2 V
MIN
MAX
150
VCC = 2.7 V
MIN
MAX
150
VCC = 3.3 V
± 0.3 V
MIN
UNIT
MAX
150
MHz
CLK
A or B
†
1
4.1
4.6
1
3.9
ns
OEBA or OEAB
A or B
†
1
5.4
5.3
1
4.4
ns
†
1
5.3
4.4
1.1
4
ns
tdis
A or B
OEBA or OEAB
† This information was not available at the time of publication.
operating characteristics, TA = 25°C
PARAMETER
Cpd
d
Power dissipation
capacitance
TEST CONDITIONS
Outputs enabled
Outputs disabled
CL = 0
0,
VCC = 1.8 V
TYP
†
f = 10 MHz
†
VCC = 2.5 V
TYP
VCC = 3.3 V
TYP
53
71
34
40
UNIT
pF
† This information was not available at the time of publication.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES011D – JULY 1995 – REVISED FEBRUARY 1999
PARAMETER MEASUREMENT INFORMATION
VCC = 1.8 V
2 × VCC
S1
1 kΩ
From Output
Under Test
Open
GND
CL = 30 pF
(see Note A)
1 kΩ
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VCC
VCC/2
VCC/2
VOL
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.15 V
VOL
tPHZ
tPZH
VOH
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
VCC/2
VOH
VOH – 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES011D – JULY 1995 – REVISED FEBRUARY 1999
PARAMETER MEASUREMENT INFORMATION
VCC = 2.5 V ± 0.2 V
2 × VCC
S1
500 Ω
From Output
Under Test
Open
GND
CL = 30 pF
(see Note A)
500 Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VCC
VCC/2
VCC/2
VOL
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.15 V
VOL
tPHZ
tPZH
VOH
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
VCC/2
VOH
VOH – 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 2. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES011D – JULY 1995 – REVISED FEBRUARY 1999
PARAMETER MEASUREMENT INFORMATION
VCC = 2.7 V AND 3.3 V ± 0.3 V
6V
S1
500 Ω
From Output
Under Test
GND
CL = 50 pF
(see Note A)
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
Open
500 Ω
tw
LOAD CIRCUIT
2.7 V
2.7 V
Timing
Input
1.5 V
Input
1.5 V
0V
1.5 V
0V
tsu
VOLTAGE WAVEFORMS
PULSE DURATION
th
2.7 V
Data
Input
1.5 V
1.5 V
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
Output
Control
(low-level
enabling)
2.7 V
1.5 V
0V
tPZL
2.7 V
Input
1.5 V
1.5 V
0V
tPLH
1.5 V
tPLZ
3V
1.5 V
tPZH
VOH
Output
Output
Waveform 1
S1 at 6 V
(see Note B)
tPHL
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
1.5 V
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH
VOH – 0.3 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 3. Load Circuit and Voltage Waveforms
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated