TI SN74AUC2G04DCKR

SN74AUC2G04
DUAL INVERTER GATE
SCES437A – APRIL 2003 – REVISED JUNE 2003
D
D
D
D
D
D
D
D
D
DBV OR DCK PACKAGE
(TOP VIEW)
Available in the Texas Instruments
NanoStar and NanoFree Packages
Optimized for 1.8-V Operation and Is 3.6-V
I/O Tolerant to Support Mixed-Mode Signal
Operation
Ioff Supports Partial-Power-Down Mode
Operation
Sub 1-V Operable
Max tpd of 1.7 ns at 1.8 V
Low Power Consumption, 10 µA at 1.8 V
±8-mA Output Drive at 1.8 V
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
1A
GND
2A
1
6
2
5
3
4
1Y
VCC
2Y
YEP OR YZP PACKAGE
(BOTTOM VIEW)
2A
GND
1A
3 4
2 5
1 6
2Y
VCC
1Y
description/ordering information
This dual inverter is operational at 0.8-V to 2.7-V VCC, but is designed specifically for 1.65-V to 1.95-V VCC
operation.
The SN74AUC2G04 performs the Boolean function Y = A.
NanoStar and NanoFree package technology is a major breakthrough in IC packaging concepts, using the
die as the package.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
ORDERING INFORMATION
–40 C to 85
–40°C
85°C
C
ORDERABLE
PART NUMBER
PACKAGE†
TA
TOP-SIDE
MARKING‡
NanoStar – WCSP (DSBGA)
0.23-mm Large Bump – YEP
Tape and reel
SN74AUC2G04YEPR
NanoFree – WCSP (DSBGA)
0.23-mm Large Bump – YZP (Pb-free)
Tape and reel
SN74AUC2G04YZPR
SOT (SOT-23) – DBV
Tape and reel
SN74AUC2G04DBVR
U04_
SOT (SC-70) – DCK
Tape and reel
SN74AUC2G04DCKR
UC_
_ _ _UC_
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
‡ DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.
YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one
following character to designate the assembly/test site.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
NanoStar and NanoFree are trademarks of Texas Instruments.
Copyright  2003, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN74AUC2G04
DUAL INVERTER GATE
SCES437A – APRIL 2003 – REVISED JUNE 2003
FUNCTION TABLE
(each inverter)
INPUT
A
OUTPUT
Y
H
L
L
H
logic diagram (positive logic)
1A
2A
1
6
3
4
1Y
2Y
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V
Voltage range applied to any output in the high-impedance or power-off state, VO
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V
Output voltage range, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA
Package thermal impedance, θJA (see Note 2): DBV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165°C/W
DCK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258°C/W
YEP/YZP package . . . . . . . . . . . . . . . . . . . . . . . . . . . 123°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74AUC2G04
DUAL INVERTER GATE
SCES437A – APRIL 2003 – REVISED JUNE 2003
recommended operating conditions (see Note 3)
VCC
Supply voltage
VIH
High-level input voltage
VCC = 0.8 V
VCC = 1.1 V to 1.95 V
MIN
MAX
0.8
2.7
UNIT
V
VCC
0.65 × VCC
VCC = 2.3 V to 2.7 V
VCC = 0.8 V
V
1.7
0
0.35 × VCC
VIL
Low-level input voltage
VI
VO
Input voltage
0
3.6
V
Output voltage
0
VCC
–0.7
V
VCC = 1.1 V to 1.95 V
VCC = 2.3 V to 2.7 V
0.7
VCC = 0.8 V
VCC = 1.1 V
IOH
High-level output current
IOL
Low-level output current
∆t/∆v
V
–3
VCC = 1.4 V
VCC = 1.65 V
–5
VCC = 2.3 V
VCC = 0.8 V
–9
mA
–8
0.7
VCC = 1.1 V
VCC = 1.4 V
3
VCC = 1.65 V
VCC = 2.3 V
8
mA
5
9
Input transition rise or fall rate
20
ns/V
TA
Operating free-air temperature
–40
85
°C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
IOH = –100 µA
IOH = –0.7 mA
VOH
VOL
II
Ioff
ICC
Ci
A inputs
VCC
0.8 V to 2.7 V
MIN
MAX
0.8 V
0.55
1.1 V
0.8
1.4 V
1
IOH = –8 mA
IOH = –9 mA
1.65 V
1.2
2.3 V
1.8
IOL = 100 µA
IOL = 0.7 mA
0.8 V to 2.7 V
V
0.2
0.25
IOL = 3 mA
IOL = 5 mA
1.1 V
0.3
1.4 V
0.4
IOL = 8 mA
IOL = 9 mA
1.65 V
0.45
2.3 V
0.6
VI = VCC or GND
VI or VO = 2.7 V
VI = VCC or GND,
VI = VCC or GND
IO = 0
UNIT
VCC–0.1
IOH = –3 mA
IOH = –5 mA
0.8 V
TYP†
V
0 to 2.7 V
±5
µA
0
±10
µA
0.8 V to 2.7 V
10
µA
2.5 V
2.1
pF
† All typical values are at TA = 25°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN74AUC2G04
DUAL INVERTER GATE
SCES437A – APRIL 2003 – REVISED JUNE 2003
switching characteristics over recommended operating free-air temperature range, CL = 15 pF
(unless otherwise noted) (see Figure 1)
PARAMETER
VCC = 1.2 V
± 0.1 V
VCC = 1.5 V
± 0.1 V
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
FROM
(INPUT)
TO
(OUTPUT)
VCC = 0.8 V
TYP
MIN
MAX
MIN
MAX
MIN
TYP
MAX
MIN
MAX
A
Y
5.4
0.9
3.1
0.7
2
0.6
1
1.7
0.5
1.2
tpd
UNIT
ns
switching characteristics over recommended operating free-air temperature range, CL = 30 pF
(unless otherwise noted) (see Figure 1)
PARAMETER
tpd
FROM
(INPUT)
TO
(OUTPUT)
A
Y
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
MIN
TYP
MAX
MIN
MAX
0.8
1.3
2
0.7
1.5
UNIT
ns
operating characteristics, TA = 25°C
PARAMETER
Cpd
4
Power dissipation
capacitance
TEST
CONDITIONS
VCC = 0.8 V
TYP
VCC = 1.2 V
TYP
VCC = 1.5 V
TYP
VCC = 1.8 V
TYP
f = 10 MHz
12.5
12.5
12.5
12.5
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VCC = 2.5 V
TYP
14
UNIT
pF
SN74AUC2G04
DUAL INVERTER GATE
SCES437A – APRIL 2003 – REVISED JUNE 2003
PARAMETER MEASUREMENT INFORMATION
2 × VCC
S1
RL
From Output
Under Test
Open
GND
CL
(see Note A)
RL
VCC
0.8 V
1.2 V ± 0.1 V
1.5 V ± 0.1 V
1.8 V ± 0.15 V
2.5 V ± 0.2 V
1.8 V ± 0.15 V
2.5 V ± 0.2 V
LOAD CIRCUIT
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
CL
RL
15 pF
15 pF
15 pF
15 pF
15 pF
30 pF
30 pF
2 kΩ
2 kΩ
2 kΩ
2 kΩ
2 kΩ
1 kΩ
500 Ω
V∆
0.1 V
0.1 V
0.1 V
0.15 V
0.15 V
0.15 V
0.15 V
VCC
Timing Input
VCC/2
0V
tw
tsu
VCC
VCC/2
Input
th
VCC
VCC/2
VCC/2
Data Input
VCC/2
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC
VCC/2
Input
0V
tPHL
tPLH
VOH
VCC/2
Output
VCC/2
VOL
tPHL
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
VOH
Output
VCC/2
VCC/2
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VCC/2
0V
tPLZ
tPZL
VCC
VCC/2
Output
Waveform 2
S1 at GND
(see Note B)
VOL + V∆
VOL
tPHZ
tPZH
tPLH
VCC/2
VCC
Output
Control
VCC/2
VCC/2
VOH – V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, slew rate ≥ 1 V/ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
PACKAGE OPTION ADDENDUM
www.ti.com
22-Jul-2008
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74AUC2G04DBVR
ACTIVE
SOT-23
DBV
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AUC2G04DBVRE4
ACTIVE
SOT-23
DBV
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AUC2G04DBVRG4
ACTIVE
SOT-23
DBV
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AUC2G04DCKR
ACTIVE
SC70
DCK
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AUC2G04DCKRE4
ACTIVE
SC70
DCK
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AUC2G04DCKRG4
ACTIVE
SC70
DCK
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AUC2G04YZPR
ACTIVE
DSBGA
YZP
6
3000 Green (RoHS &
no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
24-Sep-2009
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
SOT-23
DBV
6
3000
180.0
9.2
SN74AUC2G04DCKR
SC70
DCK
6
3000
180.0
SN74AUC2G04YZPR
DSBGA
YZP
6
3000
180.0
SN74AUC2G04DBVR
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
3.23
3.17
1.37
4.0
8.0
Q3
8.4
2.24
2.34
1.22
4.0
8.0
Q3
8.4
1.02
1.52
0.63
4.0
8.0
Q1
Pack Materials-Page 1
W
Pin1
(mm) Quadrant
PACKAGE MATERIALS INFORMATION
www.ti.com
24-Sep-2009
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74AUC2G04DBVR
SOT-23
DBV
6
3000
202.0
201.0
28.0
SN74AUC2G04DCKR
SC70
DCK
6
3000
202.0
201.0
28.0
SN74AUC2G04YZPR
DSBGA
YZP
6
3000
220.0
220.0
34.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated