TI SN74CBTD16211DL

SN74CBTD16211
24-BIT FET BUS SWITCH
WITH LEVEL SHIFTING
SCDS048C – MARCH 1998 – REVISED MAY 1998
D
D
D
D
5-Ω Switch Connection Between Two Ports
TTL-Compatible Input Levels
Designed to Be Used in Level-Shifting
Applications
Package Options Include Plastic 300-mil
Shrink Small-Outline (DL), Thin Shrink
Small-Outline (DGG), and Thin Very
Small-Outline (DGV) Packages
DGG, DGV, OR DL PACKAGE
(TOP VIEW)
NC
1A1
1A2
1A3
1A4
1A5
1A6
GND
1A7
1A8
1A9
1A10
1A11
1A12
2A1
2A2
VCC
2A3
GND
2A4
2A5
2A6
2A7
2A8
2A9
2A10
2A11
2A12
description
The SN74CBTD16211 provides 24 bits of
high-speed TTL-compatible bus switching. The
low on-state resistance of the switch allows
connections to be made with minimal propagation
delay. A diode to VCC is integrated in the circuit to
allow for level shifting between 5-V inputs and
3.3-V outputs.
The device is organized as a dual 12-bit bus
switch with separate output-enable (OE) inputs. It
can be used as two 12-bit bus switches or as one
24-bit bus switch. When OE is low, the associated
12-bit bus switch is on and A port is connected to
B port. When OE is high, the switch is open, and
a high-impedance state exists between the ports.
The SN74CBTD16211 is characterized for
operation from –40°C to 85°C.
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
1OE
2OE
1B1
1B2
1B3
1B4
1B5
GND
1B6
1B7
1B8
1B9
1B10
1B11
1B12
2B1
2B2
2B3
GND
2B4
2B5
2B6
2B7
2B8
2B9
2B10
2B11
2B12
NC – No internal connection
FUNCTION TABLE
(each 12-bit bus switch)
INPUT
OE
FUNCTION
L
A port = B port
H
Disconnect
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1998, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN74CBTD16211
24-BIT FET BUS SWITCH
WITH LEVEL SHIFTING
SCDS048C – MARCH 1998 – REVISED MAY 1998
logic diagram (positive logic)
54
2
1A1
1A12
1B1
14
42
1B12
56
1OE
15
41
2A1
2B1
28
29
2A12
2B12
55
2OE
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Continuous channel current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Package thermal impedance, θJA (see Note 2): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions (see Note 3)
VCC
VIH
Supply voltage
VIL
TA
Low-level control input voltage
High-level control input voltage
MIN
MAX
4.5
5.5
2
Operating free-air temperature
–40
UNIT
V
V
0.8
V
85
°C
NOTE 3: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74CBTD16211
24-BIT FET BUS SWITCH
WITH LEVEL SHIFTING
SCDS048C – MARCH 1998 – REVISED MAY 1998
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VIK
VOH
VCC = 4.5 V,
See Figure 2
II = –18 mA
II
ICC
VCC = 5.5 V,
VCC = 5.5 V,
VI = 5.5 V or GND
IO = 0,
VCC = 5.5 V,
VI = 3 V or 0
One input at 3.4 V,
VO = 3 V or 0,
OE = VCC
∆ICC‡
Ci
Control inputs
Control inputs
Cio(OFF)
ron§
VCC = 4.5 V
MIN
TYP†
VI = VCC or GND
Other inputs at VCC or GND
MAX
UNIT
–1.2
V
±1
µA
1.5
mA
2.5
mA
3
VI = 0
pF
5.5
II = 64 mA
II = 30 mA
pF
5
7
5
7
Ω
VI = 2.4 V,
II = 15 mA
35
50
† All typical values are at VCC = 5 V, TA = 25°C.
‡ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
§ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by
the lowest voltage of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tpd¶
A or B
B or A
ten
OE
A or B
MIN
1.5
MAX
UNIT
0.25
ns
9.8
ns
tdis
OE
A or B
1.5
8.9
ns
¶ The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when
driven by an ideal voltage source (zero output impedance).
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN74CBTD16211
24-BIT FET BUS SWITCH
WITH LEVEL SHIFTING
SCDS048C – MARCH 1998 – REVISED MAY 1998
PARAMETER MEASUREMENT INFORMATION
7V
S1
500 Ω
From Output
Under Test
Open
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
7V
Open
Output
Control
(low-level
enabling)
LOAD CIRCUIT
3V
1.5 V
1.5 V
0V
tPZL
3V
Input
1.5 V
1.5 V
0V
tPLH
1.5 V
1.5 V
tPZH
tPHL
VOH
Output
tPLZ
Output
Waveform 1
S1 at 7 V
(see Note B)
1.5 V
VOL
Output
Waveform 2
S1 at Open
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
3.5 V
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH
VOH – 0.3 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74CBTD16211
24-BIT FET BUS SWITCH
WITH LEVEL SHIFTING
SCDS048C – MARCH 1998 – REVISED MAY 1998
TYPICAL CHARACTERISTICS
OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE
4
4
–100 µA
TA = 85°C
3.75
TA = 25°C
VOH – Output Voltage High – V
–6 mA
–12 mA
–24 mA
3.5
3.25
3
2.75
2.5
2.25
2
1.75
3.75
–100 µA
3.5
–6 mA
–12 mA
–24 mA
3.25
3
2.75
2.5
2.25
2
1.75
1.5
1.5
4.5
4.75
5
4.75
4.5
5.75
5.5
5.25
VCC – Supply Voltage – V
5
5.25
5.5
5.75
VCC – Supply Voltage – V
OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE
4
TA = 0°C
OH – Output Voltage High – V
VOH – Output Voltage High – V
OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE
3.75
–100 µA
3.5
–6 mA
–12 mA
–24 mA
3.25
3
2.75
2.5
2.25
2
1.75
1.5
4.5
4.75
5
5.25
5.5
5.75
VCC – Supply Voltage – V
Figure 2. VOH Values
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated