SN74LVC373A-Q1 OCTAL TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com SCAS710B – SEPTEMBER 2003 – REVISED FEBRUARY 2008 FEATURES 1 • • • • • • • • • Qualified for Automotive Applications ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Operates From 2 V to 3.6 V Inputs Accept Voltages to 5.5 V Max tpd of 7.5 ns at 3.3 V Typical VOLP (Output Ground Bounce) < 0.8 V at VCC = 3.3 V, TA = 25°C Typical VOHV (Output VOH Undershoot) > 2 V at VCC = 3.3 V, TA = 25°C Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V VCC) Ioff Supports Partial-Power-Down Mode Operation DW OR PW PACKAGE (TOP VIEW) OE 1Q 1D 2D 2Q 3Q 3D 4D 4Q GND 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 VCC 8Q 8D 7D 7Q 6Q 6D 5D 5Q LE DESCRIPTION/ORDERING INFORMATION The SN74LVC373A octal transparent D-type latch is designed for 2.7-V to 3.6-V VCC operation. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D inputs. A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment. ORDERING INFORMATION (1) PACKAGE (2) TA –40°C to 125°C (1) (2) ORDERABLE PART NUMBER TOP-SIDE MARKING SOIC – DW Reel of 2000 SN74LVC373AQDWRQ1 L373AQ1 TSSOP – PW Reel of 2000 SN74LVC373AQPWRQ1 L373AQ1 For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2003–2008, Texas Instruments Incorporated SN74LVC373A-Q1 OCTAL TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com SCAS710B – SEPTEMBER 2003 – REVISED FEBRUARY 2008 FUNCTION TABLE (EACH LATCH) INPUTS OE LE D OUTPUT Q L H H H L H L L L L X Q0 H X X Z LOGIC DIAGRAM (POSITIVE LOGIC) OE LE 1 11 C1 1D 3 2 1D 1Q To Seven Other Channels Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) MIN MAX VCC Supply voltage range –0.5 6.5 V VI Input voltage range (2) –0.5 6.5 V VO Voltage range applied to any output in the high-impedance or power-off state (2) –0.5 6.5 V –0.5 VCC + 0.5 (2) (3) UNIT VO Voltage range applied to any output in the high or low state IIK Input clamp current VI < 0 –50 mA IOK Output clamp current VO < 0 –50 mA IO Continuous output current ±50 mA ±100 mA Continuous current through VCC or GND θJA Package thermal impedance (4) Tstg Storage temperature range (1) (2) (3) (4) 2 DW package 58 PW package 83 –65 150 V °C/W °C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. The value of VCC is provided in the recommended operating conditions table. The package thermal impedance is calculated in accordance with JESD 51-7. Submit Documentation Feedback Copyright © 2003–2008, Texas Instruments Incorporated Product Folder Link(s): SN74LVC373A-Q1 SN74LVC373A-Q1 OCTAL TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com SCAS710B – SEPTEMBER 2003 – REVISED FEBRUARY 2008 Recommended Operating Conditions (1) Operating VCC Supply voltage VIH High-level input voltage VCC = 2.7 V to 3.6 V VIL Low-level input voltage VCC = 2.7 V to 3.6 V VI Input voltage VO Output voltage IOH High-level output current IOL Low-level output current Δt/Δv Input transition rise or fall rate TA Operating free-air temperature (1) Data retention only MIN MAX 2 3.6 1.5 2 UNIT V V 0.8 V 0 5.5 V High or low state 0 VCC 3-state 0 5.5 VCC = 2.7 V –12 VCC = 3 V –24 VCC = 2.7 V 12 VCC = 3 V 24 –40 V mA mA 10 ns/V 125 °C All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOH = –100 µA VOH VOL 2.7 V to 3.6 V 2.7 V 2.2 3V 2.4 IOH = –24 mA 3V 2.2 IOL = 100 µA 2.7 V to 3.6 V IOL = 12 mA 2.7 V 0.4 IOL = 24 mA 3V 0.55 IOH = –12 mA UNIT VCC – 0.2 V 0.2 V II VI = 0 to 5.5 V 3.6 V ±5 µA IOZ VO = 0 to 5.5 V 3.6 V ±15 µA ICC ΔICC (1) (2) MIN TYP (1) MAX VCC VI = VCC or GND IO = 0 3.6 V ≤ VI ≤ 5.5 V (2) One input at VCC – 0.6 V, Other inputs at VCC or GND 10 3.6 V 10 2.7 V to 3.6 V µA 500 µA Ci VI = VCC or GND 3.3 V 4 12 pF Co VO = VCC or GND 3.3 V 5.5 12 pF All typical values are at VCC = 3.3 V, TA = 25°C. This applies in the disabled state only. Timing Requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) VCC = 2.7 V MIN tw Pulse duration, LE high tsu th MAX VCC = 3.3 V ± 0.3 V MIN UNIT MAX 3.3 3.3 ns Setup time, data before LE↓ 2 2 ns Hold time, data after LE↓ 2 2 ns Copyright © 2003–2008, Texas Instruments Incorporated Product Folder Link(s): SN74LVC373A-Q1 Submit Documentation Feedback 3 SN74LVC373A-Q1 OCTAL TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com SCAS710B – SEPTEMBER 2003 – REVISED FEBRUARY 2008 Switching Characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) D tpd VCC = 2.7 V TO (OUTPUT) MIN MAX MIN MAX 8.5 1 7.5 9.5 1 8.5 Q LE VCC = 3.3 V ± 0.3 V UNIT ns ten OE Q 8.7 1 7.7 ns tdis OE Q 8 0.5 7 ns Operating Characteristics TA = 25°C TEST CONDITIONS PARAMETER Cpd (1) 4 Power dissipation capacitance per latch Outputs enabled Outputs disabled f = 10 MHz VCC = 2.5 V VCC = 3.3 V TYP TYP (1) 46 (1) 3 UNIT pF This information was not available at the time of publication. Submit Documentation Feedback Copyright © 2003–2008, Texas Instruments Incorporated Product Folder Link(s): SN74LVC373A-Q1 SN74LVC373A-Q1 OCTAL TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS www.ti.com SCAS710B – SEPTEMBER 2003 – REVISED FEBRUARY 2008 PARAMETER MEASUREMENT INFORMATION VLOAD S1 RL From Output Under Test CL (see Note A) Open GND RL TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open VLOAD GND LOAD CIRCUIT INPUTS VCC 2.7 V 3.3 V ± 0.3 V VI tr/tf 2.7 V 2.7 V ≤2.5 ns ≤2.5 ns VM VLOAD CL RL V∆ 1.5 V 1.5 V 6V 6V 50 pF 50 pF 500 Ω 500 Ω 0.3 V 0.3 V VI Timing Input VM 0V tw tsu VI Input VM VM th VI Data Input VM VM 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VI VM Input VM 0V tPLH VM VM VOL tPHL VM VM 0V tPLZ Output Waveform 1 S1 at VLOAD (see Note B) tPLH VLOAD/2 VM tPZH VOH Output VM tPZL tPHL VOH Output VI Output Control VM VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS VOL + V∆ VOL tPHZ Output Waveform 2 S1 at GND (see Note B) VM VOH - V∆ VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms Copyright © 2003–2008, Texas Instruments Incorporated Product Folder Link(s): SN74LVC373A-Q1 Submit Documentation Feedback 5 PACKAGE OPTION ADDENDUM www.ti.com 17-Aug-2012 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) CLVC373AQDWRG4Q1 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CLVC373AQPWRG4Q1 ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC373AQDWRQ1 ACTIVE SOIC DW 20 TBD Call TI Call TI SN74LVC373AQPWRQ1 ACTIVE TSSOP PW 20 TBD Call TI Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SN74LVC373A-Q1 : • Catalog: SN74LVC373A Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 17-Aug-2012 • Enhanced Product: SN74LVC373A-EP • Military: SN54LVC373A NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Enhanced Product - Supports Defense, Aerospace and Medical Applications • Military - QML certified for Military and Defense Applications Addendum-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated