ST72521M/R/AR 8-BIT MCU WITH NESTED INTERRUPTS, FLASH, 10-BIT ADC, FIVE TIMERS, SPI, SCI, I2C, CAN INTERFACE ■ ■ ■ ■ ■ Memories – 32K to 60K dual voltage High Density Flash (HDFlash) or ROM with read-out protection capability. In-Application Programming and In-Circuit Programming for HDFlash devices – 1K to 2K RAM – HDFlash endurance: 100 cycles, data retention: 20 years at 55°C Clock, Reset And Supply Management – Enhanced low voltage supervisor (LVD) for main supply and auxiliary voltage detector (AVD) with interrupt capability – Clock sources: crystal/ceramic resonator oscillators, internal or external RC oscillator, clock security system and bypass for external clock – PLL for 2x frequency multiplication – Four power saving modes: Halt, Active-Halt, Wait and Slow Interrupt Management – Nested interrupt controller – 14 interrupt vectors plus TRAP and RESET – Top Level Interrupt (TLI) pin – 15 external interrupt lines (on 4 vectors) Up to 64 I/O Ports – 48 multifunctional bidirectional I/O lines – 34 alternate function lines – 16 high sink outputs 5 Timers – Main Clock Controller with: Real time base, Beep and Clock-out capabilities – Configurable watchdog timer – Two 16-bit timers with: 2 input captures, 2 output compares, external clock input on one timer, PWM and pulse generator modes – 8-bit PWM Auto-Reload timer with: 2 input captures, 4 PWM outputs, output compare TQFP64 14 x 14 TQFP80 14 x 14 ■ ■ ■ ■ TQFP64 10 x 10 and time base interrupt, external clock with event detector 4 Communications Interfaces – SPI synchronous serial interface – SCI asynchronous serial interface (LIN compatible) – I2C multimaster interface – CAN interface (2.0B Passive) Analog peripheral – 10-bit ADC with 16 input pins Instruction Set – 8-bit Data Manipulation – 63 Basic Instructions – 17 main Addressing Modes – 8 x 8 Unsigned Multiply Instruction Development Tools – Full hardware/software development package – In-Circuit Testing capability Device Summary Features ST72(F)521(M/R/AR)9 Program memory - bytes RAM (stack) - bytes Operating Voltage Temp. Range (ROM) Temp. Range (Flash) 60K 2048 (256) Package up to -40°C to +125°C TQFP80 14x14 (M), TQFP64 14x14 (R), TQFP64 10x10 (AR) ST72521(R/AR)7 48K 1536 (256) 3.8V to 5.5V up to -40°C to +125°C N/A ST72(F)521(R/AR)6 32K 1024 (256) up to -40°C to +125 °C TQFP64 14x14 (R), TQFP64 10x10 (AR) Rev. 1.6 October 2002 1/199 1 Table of Contents 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 4 FLASH PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 4.3 STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 4.3.1 Read-out Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 ICC INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.5 ICP (IN-CIRCUIT PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6 IAP (IN-APPLICATION PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6.1 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 5.3 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1 PHASE LOCKED LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2 MULTI-OSCILLATOR (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3 RESET SEQUENCE MANAGER (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 Asynchronous External RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.3 External Power-On RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.4 Internal Low Voltage Detector (LVD) RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.5 Internal Watchdog RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 SYSTEM INTEGRITY MANAGEMENT (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 26 27 27 27 28 6.4.1 Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.2 Auxiliary Voltage Detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.3 Clock Security System (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.5 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 29 31 31 32 33 33 7.2 MASKING AND PROCESSING FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.3 INTERRUPTS AND LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.4 CONCURRENT & NESTED MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.5 INTERRUPT REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.6 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.7 7.6.1 I/O Port Interrupt Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 EXTERNAL INTERRUPT CONTROL REGISTER (EICR) . . . . . . . . . . . . . . . . . . . . . . . 40 8 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 199 8.2 SLOW MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 8.3 WAIT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2/199 2 Table of Contents 8.4 ACTIVE-HALT AND HALT MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8.4.1 ACTIVE-HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.2 HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 44 45 47 47 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9.2.1 Input Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.2 Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.3 Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 I/O PORT IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 47 47 50 9.4 LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 9.5 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 9.5.1 I/O Port Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 10.1 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.4 How to Program the Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.6 Hardware Watchdog Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.7 Using Halt Mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . . . . . . . . . 10.1.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.9 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) . 53 53 53 54 56 56 56 56 56 58 10.2.1 Programmable CPU Clock Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.2 Clock-out Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.3 Real Time Clock Timer (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.4 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 PWM AUTO-RELOAD TIMER (ART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 58 58 58 59 59 59 61 10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.3 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 62 66 70 10.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.6 Summary of Timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 70 70 82 82 82 83 89 10.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 10.5.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3/199 1 Table of Contents 10.5.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 10.5.4 Clock Phase and Clock Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 10.5.5 Error Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 10.5.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 10.5.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 10.5.8 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 10.6 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 10.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7 I2C BUS INTERFACE (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 100 100 102 107 107 108 114 10.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8 CONTROLLER AREA NETWORK (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 114 114 116 120 120 121 127 10.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8.4 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9 10-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 128 128 134 144 10.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 ST7 ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 144 145 145 145 146 148 148 11.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.7 Relative mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 149 149 149 149 150 150 151 12 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 12.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 . . . 154 12.1.1 Minimum and Maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4/199 1 Table of Contents 12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 154 154 154 155 12.2.1 Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.2 Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 155 156 156 12.3.1 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.2 Operating Conditions with Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . 12.3.3 Auxiliary Voltage Detector (AVD) Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.4 External Voltage Detector (EVD) Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4 SUPPLY CURRENT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 157 158 158 159 12.4.1 RUN and SLOW Modes (Flash devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.2 WAIT and SLOW WAIT Modes (Flash devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.3 RUN and SLOW Modes (ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.4 WAIT and SLOW WAIT Modes (ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.5 HALT and ACTIVE-HALT Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.6 Supply and Clock Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.7 On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 160 161 161 162 162 163 164 12.5.1 General Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.2 External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.3 Crystal and Ceramic Resonator Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.4 RC Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.5 Clock Security System (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.6 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 MEMORY CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 164 165 167 168 168 169 12.6.1 RAM and Hardware Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 12.6.2 FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 12.7 EMC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 12.7.1 Functional EMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7.2 Electro Magnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7.3 Absolute Electrical Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7.4 ESD Pin Protection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.8 I/O PORT PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 170 171 173 175 12.8.1 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 12.8.2 Output Driving Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 12.9 CONTROL PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 12.9.1 Asynchronous RESET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 12.9.2 ICCSEL/VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 12.10 TIMER PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 12.10.18-Bit PWM-ART Auto-Reload Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 12.10.216-Bit Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 12.11 COMMUNICATION INTERFACE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . 180 12.11.1SPI - Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 5/199 1 Table of Contents 12.11.2CAN - Controller Area Network Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 12.11.3I2C - Inter IC Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 12.12 10-BIT ADC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 12.12.1ADC Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 13 PACKAGE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 13.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 13.2 THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 13.3 SOLDERING AND GLUEABILITY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 14 ST72521M/(A)R DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . 191 14.1 FLASH OPTION BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 14.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE . . . . 193 14.3 DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 14.3.1 Socket and Emulator Adapter Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 14.4 ST7 APPLICATION NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15 SUMMARY OF CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 6/199 1 ST72521M/R/AR 1 INTRODUCTION The ST72521(A)R and ST72521M devices are members of the ST7 microcontroller family designed for mid-range applications with a CAN bus interface (Controller Area Network). All devices are based on a common industrystandard 8-bit core, featuring an enhanced instruction set and are available with FLASH or ROM program memory. Under software control, all devices can be placed in WAIT, SLOW, ACTIVE-HALT or HALT mode, reducing power consumption when the application is in idle or stand-by state. The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes. Figure 1. Device Block Diagram 8-BIT CORE ALU RESET VPP TLI VSS VDD PROGRAM MEMORY (32K - 60K Bytes) CONTROL RAM (1024-2048 Bytes) LVD EVD AVD OSC1 OSC2 OSC WATCHDOG PORT F PF7:0 (8-bits) TIMER A BEEP ADDRESS AND DATA BUS MCC/RTC/BEEP I2C PORT A PORT B PB7:0 (8-bits) PWM ART PORT C PORT E TIMER B PE7:0 (8-bits) PA7:0 (8-bits) PC7:0 (8-bits) CAN SPI SCI PORT D PORT G1 PG7:0 (8-bits) 10-BIT ADC PORT H1 PH7:0 (8-bits) PD7:0 (8-bits) VAREF VSSA 1 On some devices only, see Device Summary on page 1 7/199 3 ST72521M/R/AR 2 PIN DESCRIPTION PA4 (HS) PA7 (HS) / SCLI PA6 (HS) / SDAI PA5 (HS) VPP / ICCSEL TLI EVD RESET PH4 PH7 PH6 PH5 OSC2 VSS_2 OSC1 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PE3 / CANRX PE2 / CANTX PE1 / RDI PE0 / TDO VDD_2 Figure 2. 80-Pin TQFP 14x14 Package Pinout 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ei0 ei2 ei3 ei1 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 VSS_1 VDD_1 PA3 (HS) PA2 PA1 PA0 PC7 / SS / AIN15 PC6 / SCK /ICCCLK PH3 PH2 PH1 PH0 PC5 / MOSI / AIN14 PC4 / MISO / ICCDATA PC3 (HS) /ICAP1_B PC2(HS) / ICAP2_B PC1 / OCMP1_B / AIN13 PC0 / OCMP2_B /AIN12 VSS_0 VDD_0 ICAP1_A / (HS) / PF6 EXTCLK_A / (HS) PF7 MCO /AIN8 / PF0 BEEP / (HS) PF1 (HS) PF2 OCMP2_A / AIN9 /PF3 OCMP1_A/AIN10 /PF4 ICAP2_A/ AIN11 /PF5 PG6 PG7 AIN4/PD4 AIN5 / PD5 AIN6 / PD6 AIN7 / PD7 VAREF VSSA VDD3 VSS3 PG4 PG5 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 (HS) PE4 (HS) PE5 (HS) PE6 (HS) PE7 PWM3 / PB0 PWM2 / PB1 PWM1 / PB2 PWM0 / PB3 PG0 PG1 PG2 PG3 ARTCLK / (HS) PB4 ARTIC1 / PB5 ARTIC2 / PB6 PB7 AIN0 / PD0 AIN1 / PD1 AIN2 / PD2 AIN3 / PD3 (HS) 20mA high sink capability eix associated external interrupt vector 8/199 ST72521M/R/AR PIN DESCRIPTION (Cont’d) PE3 / CANRX PE2 / CANTX PE1 / RDI PE0 / TDO VDD_2 OSC1 OSC2 VSS_2 TLI EVD RESET VPP / ICCSEL PA7 (HS) / SCLI PA6 (HS) / SDAI PA5 (HS) PA4 (HS) Figure 3. 64-Pin TQFP 14x14 and 10x10 Package Pinout AIN2 / PD2 AIN3 / PD3 64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 ei0 44 43 ei2 42 41 40 39 ei3 38 37 36 35 ei1 34 33 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VSS_1 VDD_1 PA3 (HS) PA2 PA1 PA0 PC7 / SS / AIN15 PC6 / SCK / ICCCLK PC5 / MOSI / AIN14 PC4 / MISO / ICCDATA PC3 (HS) / ICAP1_B PC2 (HS) / ICAP2_B PC1 / OCMP1_B / AIN13 PC0 / OCMP2_B / AIN12 VSS_0 VDD_0 AIN4 / PD4 AIN5 / PD5 AIN6 / PD6 AIN7 / PD7 VAREF VSSA VDD_3 VSS_3 MCO / AIN8 / PF0 BEEP / (HS) PF1 (HS) PF2 OCMP2_A / AIN9 / PF3 OCMP1_A / AIN10 / PF4 ICAP2_A / AIN11 / PF5 ICAP1_A / (HS) PF6 EXTCLK_A / (HS) PF7 (HS) PE4 (HS) PE5 (HS) PE6 (HS) PE7 PWM3 / PB0 PWM2 / PB1 PWM1 / PB2 PWM0 /PB3 ARTCLK /(HS) PB4 ARTIC1 / PB5 ARTIC2 / PB6 PB7 AIN0 / PD0 AIN1 / PD1 (HS) 20mA high sink capability eix associated external interrupt vector 9/199 ST72521M/R/AR PIN DESCRIPTION (Cont’d) For external pin connection guidelines, refer to See “ELECTRICAL CHARACTERISTICS” on page 154. Legend / Abbreviations for Table 1: Type: I = input, O = output, S = supply Input level: A = Dedicated analog input In/Output level: C = CMOS 0.3VDD/0.7VDD CT= CMOS 0.3VDD/0.7VDD with input trigger TT= TTL 0.8V / 2V with Schmitt trigger Output level: HS = 20mA high sink (on N-buffer only) Port and control configuration: – Input: float = floating, wpu = weak pull-up, int = interrupt 1), ana = analog – Output: OD = open drain 2), PP = push-pull Refer to “I/O PORTS” on page 47 for more details on the software configuration of the I/O ports. The RESET configuration of each pin is shown in bold. This configuration is valid as long as the device is in reset state. Table 1. Device Pin Description 4 PE7 (HS) 5 5 PB0/PWM3 6 6 7 7 8 PP 4 OD PE6 (HS) HS X X X X Port E4 HS X X X X Port E5 I/O CT I/O CT HS X X X X Port E6 X X Alternate function X X Port E7 X ei2 X X Port B0 PWM Output 3 PB1/PWM2 I/O CT I/O CT X ei2 X X Port B1 PWM Output 2 PB2/PWM1 I/O CT X ei2 X X Port B2 PWM Output 1 8 PB3/PWM0 I/O CT I/O TT X X X Port B3 PWM Output 0 X X X X Port G0 I/O TT I/O TT X X X X Port G1 X X X X Port G2 I/O TT I/O CT X X X X Port G3 9 - PG0 10 - PG1 11 - PG2 12 - PG3 13 9 PB4 (HS)/ARTCLK 14 10 PB5/ARTIC1 15 11 HS ana PE5 (HS) 3 I/O CT I/O CT int 2 3 wpu 2 float PE4 (HS) Input Main function Output (after reset) Output 1 Port Input 1 Pin Name Type TQFP64 Level TQFP80 Pin n° HS ei2 X ei3 X X Port B4 PWM-ART External Clock X ei3 X X Port B5 PWM-ART Input Capture 1 PB6/ARTIC2 I/O CT I/O CT X ei3 X X Port B6 PWM-ART Input Capture 2 16 12 PB7 I/O CT X X X Port B7 17 13 PD0 /AIN0 X X X X X Port D0 ADC Analog Input 0 18 14 PD1/AIN1 I/O CT I/O CT X X X X X Port D1 ADC Analog Input 1 19 15 PD2/AIN2 X X X X X Port D2 ADC Analog Input 2 20 16 I/O CT I/O CT X X X X X Port D3 ADC Analog Input 3 21 - PG6 X X X X Port G6 22 - PG7 I/O TT I/O TT X X X X Port G7 23 17 PD4/AIN4 I/O CT X X X X Port D4 10/199 PD3/AIN3 ei3 X ADC Analog Input 4 ST72521M/R/AR OD PP PD7/AIN7 X X X X X Port D5 ADC Analog Input 5 X X X X X Port D6 ADC Analog Input 6 I/O CT I X X X X X Port D7 ADC Analog Input 7 ana PD6/AIN6 20 Alternate function I/O CT I/O CT int 19 26 Input Main function Output (after reset) wpu 25 Port float PD5/AIN5 Output TQFP64 18 Type TQFP80 24 Pin Name Input Level Pin n° Analog Reference Voltage for ADC 27 21 VAREF 28 22 VSSA S Analog Ground Voltage 29 23 VDD_3 S Digital Main Supply Voltage 30 24 VSS_3 S Digital Ground Voltage 31 - PG4 I/O TT X X X X Port G4 32 - PG5 I/O TT X X X X Port G5 33 25 PF0/MCO/AIN8 I/O CT X ei1 X X Port F0 Main clock out (fOSC/2) 34 26 PF1 (HS)/BEEP HS X ei1 X X Port F1 Beep signal output 35 27 PF2 (HS) I/O CT I/O CT HS X X X Port F2 36 28 PF3/OCMP2_A/AIN9 I/O CT X X X X Port F3 Timer A OutADC Analog put Compare Input 9 2 37 29 PF4/OCMP1_A/AIN10 I/O CT X X X X Port F4 Timer A OutADC Analog put Compare Input 10 1 38 30 PF5/ICAP2_A/AIN11 I/O CT X X X X Port F5 Timer A Input ADC Analog Capture 2 Input 11 39 31 PF6 (HS)/ICAP1_A I/O CT X X X X Port F6 Timer A Input Capture 1 Port F7 Timer A External Clock Source I/O CT HS HS X ei1 X X X ADC Analog Input 8 40 32 PF7 (HS)/EXTCLK_A 41 33 VDD_0 S Digital Main Supply Voltage 42 34 VSS_0 S Digital Ground Voltage 43 35 PC0/OCMP2_B/AIN12 I/O CT X X X X Port C0 Timer B OutADC Analog put Compare Input 12 2 44 36 PC1/OCMP1_B/AIN13 I/O CT X X X X Port C1 Timer B OutADC Analog put Compare Input 13 1 45 37 PC2 (HS)/ICAP2_B I/O CT HS X X X X Port C2 Timer B Input Capture 2 46 38 PC3 (HS)/ICAP1_B I/O CT HS X X X X Port C3 Timer B Input Capture 1 47 39 PC4/MISO/ICCDATA I/O CT X X X X Port C4 SPI Master In ICC Data In/ Slave Out put Data 48 40 PC5/MOSI/AIN14 I/O CT X X X X Port C5 SPI Master ADC Analog Out / Slave In Input 14 Data 49 - PH0 X X X Port H0 - PH1 I/O TT I/O TT X 50 X X X X Port H1 51 - PH2 I/O TT X X X X Port H2 11/199 ST72521M/R/AR Port PP I/O TT X X X X Port H3 41 PC6/SCK/ICCCLK I/O CT X X X X Port C6 SPI Serial Clock 54 42 PC7/SS/AIN15 I/O CT X X X X Port C7 SPI Slave ADC Analog Select (active Input 15 low) 55 43 PA0 I/O CT X ei0 X X Port A0 56 44 PA1 X ei0 X X Port A1 57 45 PA2 I/O CT I/O CT X ei0 58 46 PA3 (HS) 59 47 VDD_1 60 48 VSS_1 61 49 PA4 (HS) 62 50 PA5 (HS) 63 51 PA6 (HS)/SDAI 64 52 PA7 (HS)/SCLI 65 53 VPP/ ICCSEL 66 54 RESET 67 55 EVD I/O CT S HS X ei0 ana PH3 int OD Alternate function wpu Input Main function Output (after reset) float 53 Output - Pin Name Input TQFP64 52 Level Type TQFP80 Pin n° X X Port A2 X X Port A3 ICC Clock Output Digital Main Supply Voltage S Digital Ground Voltage I/O CT I/O CT HS X X X X Port A4 HS X X X X I/O CT I/O CT HS X T Port A6 I2C Data 1) HS X T Port A7 I2C Clock 1) Port A5 Must be tied low. In flash programming mode, this pin acts as the programming voltage input VPP. See Section 12.9.2 for more details. High voltage must not be applied to ROM devices I I/O CT Top priority non maskable interrupt. External voltage detector CT X I/O TT I/O TT X X X X Port H4 X X X X Port H5 I/O TT I/O TT X X X X Port H6 X X X X I X Top level interrupt input pin 68 56 TLI 69 - PH4 70 - PH5 71 - PH6 72 - PH7 73 57 VSS_2 74 58 OSC23) I/O 75 59 OSC13) I External clock input or Resonator oscillator inverter input or resistor input for RC oscillator 76 60 VDD_2 S Digital Main Supply Voltage 77 61 PE0/TDO I/O CT X X X X Port E0 SCI Transmit Data Out 78 62 PE1/RDI X X X X Port E1 SCI Receive Data In Port E2 CAN Transmit Data Output X X X Port E3 CAN Receive Data Input S 79 63 PE2/CANTX I/O CT I/O CT 80 64 PE3/CANRX I/O CT Port H7 Digital Ground Voltage Resonator oscillator inverter output or capacitor input for RC oscillator X X Notes: 1. In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up 12/199 ST72521M/R/AR column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input. 2. In the open drain output column, “T” defines a true open drain I/O (P-Buffer and protection diode to VDD are not implemented). See See “I/O PORTS” on page 47. and Section 12.8 I/O PORT PIN CHARACTERISTICS for more details. 3. OSC1 and OSC2 pins connect a crystal/ceramic resonator, an RC oscillator, or an external source to the on-chip oscillator; see Section 1 INTRODUCTION and Section 12.5 CLOCK AND TIMING CHARACTERISTICS for more details. 4. On the chip, each I/O port has 8 pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption. 13/199 ST72521M/R/AR 3 REGISTER & MEMORY MAP As shown in Figure 4, the MCU is capable of addressing 64K bytes of memories and I/O registers. The available memory locations consist of 128 bytes of register locations, up to 2Kbytes of RAM and up to 60Kbytes of user program memory. The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh. The highest address bytes contain the user reset and interrupt vectors. Figure 4. Memory Map 0000h 007Fh 0080h HW Registers (see Table 2) 087Fh 0880h Reserved 0FFFh 1000h Program Memory (60K, 48K or 32K) FFFFh 14/199 Short Addressing RAM (zero page) 00FFh 0100h RAM (2048, 1536 or 1024 Bytes) FFDFh FFE0h 0080h Interrupt & Reset Vectors (see Table 8) 256 Bytes Stack 01FFh 0200h or 047Fh or 067Fh or 087Fh 1000h 16-bit Addressing RAM 4000h 8000h FFFFh 60 KBytes 48 KBytes 32 KBytes ST72521M/R/AR Table 2. Hardware Register Map Register Label Block 0000h 0001h 0002h Port A PADR PADDR PAOR Port A Data Register Port A Data Direction Register Port A Option Register 00h1) 00h 00h R/W R/W R/W 0003h 0004h 0005h Port B PBDR PBDDR PBOR Port B Data Register Port B Data Direction Register Port B Option Register 00h1) 00h 00h R/W R/W R/W 0006h 0007h 0008h Port C PCDR PCDDR PCOR Port C Data Register Port C Data Direction Register Port C Option Register 00h1) 00h 00h R/W R/W R/W Port D PDDR PDDDR PDOR Port D Data Register Port D Data Direction Register Port D Option Register 00h1) 00h 00h R/W R/W R/W 000Ch 000Dh 000Eh Port E PEDR PEDDR PEOR Port E Data Register Port E Data Direction Register Port E Option Register 00h1) 00h 00h R/W R/W2) R/W2) 000Fh 0010h 0011h Port F PFDR PFDDR PFOR Port F Data Register Port F Data Direction Register Port F Option Register 00h1) 00h 00h R/W R/W R/W 0009h 000Ah 000Bh Register Name Reset Status Address Remarks 0012h 0013h 0014h Port G 2) PGDR PGDDR PGOR Port G Data Register Port G Data Direction Register Port G Option Register 00h1) 00h 00h R/W R/W R/W 0015h 0016h 0017h Port H 2) PHDR PHDDR PHOR Port H Data Register Port H Data Direction Register Port H Option Register 00h1) 00h 00h R/W R/W R/W I2CCR I2CSR1 I2CSR2 I2CCCR I2COAR1 I2COAR2 I2CDR I2C I2C I2C I2C I2C I2C I2C 0018h 0019h 001Ah 001Bh 001Ch 001Dh 001Eh I2C 001Fh 0020h 0021h 0022h 0023h Control Register Status Register 1 Status Register 2 Clock Control Register Own Address Register 1 Own Address Register2 Data Register 00h 00h 00h 00h 00h 00h 00h R/W Read Only Read Only R/W R/W R/W R/W xxh 0xh 00h R/W R/W R/W Reserved Area (2 Bytes) SPI SPIDR SPICR SPICSR SPI Data I/O Register SPI Control Register SPI Control/Status Register 15/199 ST72521M/R/AR Address 0024h 0025h 0026h 0027h Block ITC 0028h 0029h FLASH 002Ah WATCHDOG 002Bh 002Ch 002Dh MCC Register Label 16/199 Remarks R/W R/W R/W R/W External Interrupt Control Register 00h R/W FCSR Flash Control/Status Register 00h R/W WDGCR Watchdog Control Register 7Fh R/W SICSR System Integrity Control/Status Register MCCSR MCCBCR Main Clock Control / Status Register Main Clock Controller: Beep Control Register Interrupt Interrupt Interrupt Interrupt EICR Software Priority Software Priority Software Priority Software Priority Register 0 Register 1 Register 2 Register 3 000x 000x b R/W 00h 00h R/W R/W 00h 00h xxh xxh xxh 80h 00h FFh FCh FFh FCh xxh xxh 80h 00h R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W 00h 00h xxh xxh xxh 80h 00h FFh FCh FFh FCh xxh xxh 80h 00h R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W Reserved Area (3 Bytes) TIMER A TACR2 TACR1 TACSR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACLR TAACHR TAACLR TAIC2HR TAIC2LR TAOC2HR TAOC2LR 0040h 0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Dh 004Eh 004Fh Reset Status FFh FFh FFh FFh ISPR0 ISPR1 ISPR2 ISPR3 002Eh to 0030h 0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh Register Name Timer A Control Register 2 Timer A Control Register 1 Timer A Control/Status Register Timer A Input Capture 1 High Register Timer A Input Capture 1 Low Register Timer A Output Compare 1 High Register Timer A Output Compare 1 Low Register Timer A Counter High Register Timer A Counter Low Register Timer A Alternate Counter High Register Timer A Alternate Counter Low Register Timer A Input Capture 2 High Register Timer A Input Capture 2 Low Register Timer A Output Compare 2 High Register Timer A Output Compare 2 Low Register Reserved Area (1 Byte) TIMER B TBCR2 TBCR1 TBCSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR Timer B Control Register 2 Timer B Control Register 1 Timer B Control/Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter Low Register Timer B Alternate Counter High Register Timer B Alternate Counter Low Register Timer B Input Capture 2 High Register Timer B Input Capture 2 Low Register Timer B Output Compare 2 High Register Timer B Output Compare 2 Low Register ST72521M/R/AR Address 0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h Block SCI Register Label SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR SCIETPR 0058h 0059h CAN 0070h 0071h 0072h ADC 0073h 0074h 0075h 0076h 0077h 007Bh 007Ch 007Dh 007Eh 007Fh SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Extended Receive Prescaler Register Reserved area SCI Extended Transmit Prescaler Register Reset Status Remarks C0h xxh 00xx xxxxb xxh 00h 00h --00h Read Only R/W R/W R/W R/W R/W 00h 00h 00h 00h 23h 00h -- R/W R/W R/W R/W R/W R/W See CAN Description R/W Reserved Area (2 Bytes) 005Ah 005Bh 005Ch 005Dh 005Eh 005Fh 0060h to 006Fh 0078h 0079h 007Ah Register Name PWM ART CANISR CANICR CANCSR CANBRPR CANBTR CANPSR CAN Interrupt Status Register CAN Interrupt Control Register CAN Control / Status Register CAN Baud Rate Prescaler Register CAN Bit Timing Register CAN Page Selection Register First address to Last address of CAN page x ADCCSR ADCDRH ADCDRL Control/Status Register Data High Register Data Low Register PWMDCR3 PWMDCR2 PWMDCR1 PWMDCR0 PWMCR ARTCSR ARTCAR ARTARR ARTICCSR ARTICR1 ARTICR2 PWM AR Timer Duty Cycle Register 3 PWM AR Timer Duty Cycle Register 2 PWM AR Timer Duty Cycle Register 1 PWM AR Timer Duty Cycle Register 0 PWM AR Timer Control Register Auto-Reload Timer Control/Status Register Auto-Reload Timer Counter Access Register Auto-Reload Timer Auto-Reload Register AR Timer Input Capture Control/Status Reg. AR Timer Input Capture Register 1 AR Timer Input Capture Register 1 R/W 00h Read Only xxh 0000 00xxb Read Only 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h R/W R/W R/W R/W R/W R/W R/W R/W R/W Read Only Read Only Reserved Area (2 Bytes) Legend: x=undefined, R/W=read/write Notes: 1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents. 2. The bits associated with unavailable pins must always keep their reset value. 17/199 ST72521M/R/AR 4 FLASH PROGRAM MEMORY 4.1 Introduction The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a Byte-by-Byte basis using an external VPP supply. The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (In-Circuit Programming) or IAP (In-Application Programming). The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors. Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see Table 3). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required. The first two sectors have a fixed size of 4 Kbytes (see Figure 5). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000hFFFFh). Table 3. Sectors available in Flash devices Flash Size (bytes) Available Sectors 4K Sector 0 4.2 Main Features ■ ■ ■ ■ Three Flash programming modes: – Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased. – ICP (In-Circuit Programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board. – IAP (In-Application Programming) In this mode, all sectors except Sector 0, can be programmed or erased without removing the device from the application board and while the application is running. ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM Read-out protection against piracy Register Access Security System (RASS) to prevent accidental programming or erasing 8K Sectors 0,1 > 8K Sectors 0,1, 2 4.3.1 Read-out Protection Read-out protection, when selected, makes it impossible to extract the memory content from the microcontroller, thus preventing piracy. Even ST cannot access the user code. In flash devices, this protection is removed by reprogramming the option. In this case, the entire program memory is first automatically erased. Read-out protection selection depends on the device type: – In Flash devices it is enabled and removed through the FMP_R bit in the option byte. – In ROM devices it is enabled by mask option specified in the Option List. 4.3 Structure The Flash memory is organised in sectors and can be used for both code and data storage. Figure 5. Memory Map and Sector Address 4K 8K 10K 16K 24K 32K 48K 60K 1000h FLASH MEMORY SIZE 3FFFh 7FFFh 9FFFh SECTOR 2 BFFFh D7FFh DFFFh EFFFh FFFFh 18/199 2 Kbytes 8 Kbytes 16 Kbytes 24 Kbytes 40 Kbytes 52 Kbytes 4 Kbytes SECTOR 1 4 Kbytes SECTOR 0 ST72521M/R/AR FLASH PROGRAM MEMORY (Cont’d) – – – – ICCCLK: ICC output serial clock pin ICCDATA: ICC input/output serial data pin ICCSEL/VPP: programming voltage OSC1(or OSCIN): main clock input for external source (optional) – VDD: application board power supply (optional, see Figure 6, Note 3) 4.4 ICC Interface ICC needs a minimum of 4 and up to 6 pins to be connected to the programming tool (see Figure 6). These pins are: – RESET: device reset – VSS: device power supply ground Figure 6. Typical ICC Interface PROGRAMMING TOOL ICC CONNECTOR ICC Cable APPLICATION BOARD OPTIONAL (See Note 3) ICC CONNECTOR HE10 CONNECTOR TYPE OPTIONAL (See Note 4) 9 7 5 3 1 10 8 6 4 2 APPLICATION RESET SOURCE See Note 2 10kΩ APPLICATION POWER SUPPLY CL2 CL1 See Notes 1 and 5 Notes: 1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to implemented in case another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values. 2. During the ICC session, the programming tool must control the RESET pin. This can lead to conflicts between the programming tool and the application reset circuit if it drives more than 5mA at high level (push pull output or pull-up resistor<1K). A schottky diode can be used to isolate the application RESET circuit in this case. When using a classical RC network with R>1K or a reset management IC with open drain output and pull-up resistor>1K, no additional components are needed. In all cases the user must ensure that no external ICCDATA ICCCLK RESET ST7 ICCSEL/VPP VSS OSC1 OSC2 VDD See Note 1 APPLICATION I/O reset is generated by the application during the ICC session. 3. The use of Pin 7 of the ICC connector depends on the Programming Tool architecture. This pin must be connected when using most ST Programming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual. 4. Pin 9 has to be connected to the OSC1 or OSCIN pin of the ST7 when the clock is not available in the application or if the selected clock option is not programmed in the option byte. ST7 devices with multi-oscillator capability need to have OSC2 grounded in this case. 5. In the application, when the RESET pin is low, the ICCCLK pin must always be in pull-up or high impedance state. For instance, it must never be forced to ground or connected to an external pulldown. This is to avoid entering ICC mode unexpectedly during normal application operation. 19/199 ST72521M/R/AR FLASH PROGRAM MEMORY (Cont’d) 4.5 ICP (In-Circuit Programming) To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool. Depending on the ICP code downloaded in RAM, Flash memory programming can be fully customized (number of bytes to program, program locations, or selection serial communication interface for downloading). When using an STMicroelectronics or third-party programming tool that supports ICP and the specific microcontroller device, the user needs only to implement the ICP hardware interface on the application board (see Figure 6). For more details on the pin locations, refer to the device pinout description. mode, choice of communications protocol used to fetch the data to be stored, etc.). For example, it is possible to download code from the SPI, SCI, USB or CAN interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation. 4.6.1 Register Description FLASH CONTROL/STATUS REGISTER (FCSR) Read /Write Reset Value: 0000 0000 (00h) 7 0 0 0 0 0 0 0 0 0 4.6 IAP (In-Application Programming) This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP mode or by plugging the device in a programming tool). This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming This register is reserved for use by Programming Tool software. It controls the Flash programming and erasing operations. For details on customizing Flash programming methods and In-Circuit Testing, refer to the ST7 Flash Programming Reference Manual. Table 4. Flash Control/Status Register Address and Reset Value Address (Hex.) Register Label 0029h FCSR Reset Value 20/199 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 ST72521M/R/AR 5 CENTRAL PROCESSING UNIT 5.1 INTRODUCTION 5.3 CPU REGISTERS This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation. The 6 CPU registers shown in Figure 7 are not present in the memory mapping and are accessed by specific instructions. Accumulator (A) The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data. Index Registers (X and Y) These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.) The Y register is not affected by the interrupt automatic procedures. Program Counter (PC) The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB). 5.2 MAIN FEATURES ■ ■ ■ ■ ■ ■ ■ ■ Enable executing 63 basic instructions Fast 8-bit by 8-bit multiply 17 main addressing modes (with indirect addressing mode) Two 8-bit index registers 16-bit stack pointer Low power HALT and WAIT modes Priority maskable hardware interrupts Non-maskable software/hardware interrupts Figure 7. CPU Registers 7 0 ACCUMULATOR RESET VALUE = XXh 7 0 X INDEX REGISTER RESET VALUE = XXh 7 0 Y INDEX REGISTER RESET VALUE = XXh 15 PCH 8 7 PCL 0 PROGRAM COUNTER RESET VALUE = RESET VECTOR @ FFFEh-FFFFh 7 0 1 1 I1 H I0 N Z C CONDITION CODE REGISTER RESET VALUE = 1 1 1 X 1 X X X 15 8 7 0 STACK POINTER RESET VALUE = STACK HIGHER ADDRESS X = Undefined Value 21/199 ST72521M/R/AR CENTRAL PROCESSING UNIT (Cont’d) Bit 1 = Z Zero. Condition Code Register (CC) Read/Write Reset Value: 111x1xxx 7 1 0 1 I1 H I0 N Z C The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions. These bits can be individually tested and/or controlled by specific instructions. Arithmetic Management Bits Bit 4 = H Half carry. This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions. 0: No half carry has occurred. 1: A half carry has occurred. This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines. Bit 2 = N Negative. This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It’s a copy of the result 7th bit. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative (i.e. the most significant bit is a logic 1). This bit is accessed by the JRMI and JRPL instructions. 22/199 This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from zero. 1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test instructions. Bit 0 = C Carry/borrow. This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred. This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the “bit test and branch”, shift and rotate instructions. Interrupt Management Bits Bit 5,3 = I1, I0 Interrupt The combination of the I1 and I0 bits gives the current interrupt software priority. Interrupt Software Priority Level 0 (main) Level 1 Level 2 Level 3 (= interrupt disable) I1 1 0 0 1 I0 0 1 0 1 These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions. See the interrupt management chapter for more details. ST72521M/R/AR CENTRAL PROCESSING UNIT (Cont’d) Stack Pointer (SP) Read/Write Reset Value: 01 FFh 15 0 8 0 0 0 0 0 0 7 SP7 1 0 SP6 SP5 SP4 SP3 SP2 SP1 SP0 The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 8). Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address. The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction. Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow. The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 8. – When an interrupt is received, the SP is decremented and the context is pushed on the stack. – On return from interrupt, the SP is incremented and the context is popped from the stack. A subroutine call occupies two locations and an interrupt five locations in the stack area. Figure 8. Stack Manipulation Example CALL Subroutine PUSH Y Interrupt Event POP Y RET or RSP IRET @ 0100h SP SP CC A SP CC A X X X PCH PCH PCH PCL PCL PCL PCH PCH PCH PCH PCH PCL PCL PCL PCL PCL SP @ 01FFh Y CC A SP SP Stack Higher Address = 01FFh Stack Lower Address = 0100h 23/199 ST72521M/R/AR 6 SUPPLY, RESET AND CLOCK MANAGEMENT and Backup Safe Oscillator (enabled by option byte) The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. An overview is shown in Figure 10. For more details, refer to dedicated parametric section. 6.1 PHASE LOCKED LOOP If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply the frequency by two to obtain an fOSC2 of 4 to 8 MHz. The PLL is enabled by option byte. If the PLL is disabled, then fOSC2 = fOSC/2. Caution: The PLL is not recommended for applications where timing accuracy is required. See “PLL Characteristics” on page 168. Main features Optional PLL for multiplying the frequency by 2 (not to be used with internal RC oscillator) ■ Reset Sequence Manager (RSM) ■ Multi-Oscillator Clock Management (MO) – 5 Crystal/Ceramic resonator oscillators – 1 External RC oscillator – 1 Internal RC oscillator ■ System Integrity Management (SI) – Main supply Low voltage detection (LVD) – Auxiliary Voltage detector (AVD) with interrupt capability for monitoring the main supply or the EVD pin – Clock Security System (CSS) with Clock Filter ■ Figure 9. PLL Block Diagram PLL x 2 0 /2 1 fOSC fOSC2 PLL OPTION BIT Figure 10. Clock, Reset and Supply Block Diagram SYSTEM INTEGRITY MANAGEMENT CLOCK SECURITY SYSTEM (CSS) OSC2 MULTI- fOSC OSCILLATOR OSC1 (MO) fOSC2 PLL (option) RESET SEQUENCE RESET MANAGER (RSM) CLOCK SAFE FILTER OSC fOSC2 AVD Interrupt Request SICSR AVD AVD AVD LVD S IE F RF MAIN CLOCK fCPU CONTROLLER WITH REALTIME CLOCK (MCC/RTC) WATCHDOG TIMER (WDG) 0 CSS CSS WDG IE D RF CSS Interrupt Request LOW VOLTAGE VSS DETECTOR VDD (LVD) 0 EVD 24/199 AUXILIARY VOLTAGE DETECTOR 1 (AVD) ST72521M/R/AR 6.2 MULTI-OSCILLATOR (MO) External RC Oscillator This oscillator allows a low cost solution for the main clock of the ST7 using only an external resistor and an external capacitor. The frequency of the external RC oscillator (in the range of some MHz.) is fixed by the resistor and the capacitor values. Consequently in this MO mode, the accuracy of the clock is directly linked to the accuracy of the discrete components. The corresponding formula is fOSC=5/(REXCEX). Internal RC Oscillator The internal RC oscillator mode is based on the same principle as the external RC oscillator includ- Table 5. ST7 Clock Sources Crystal/Ceramic Resonators External Clock Hardware Configuration External RC Oscillator External Clock Source In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground. Crystal/Ceramic Oscillators This family of oscillators has the advantage of producing a very accurate rate on the main clock of the ST7. The selection within a list of 4 oscillators with different frequency ranges has to be done by option byte in order to reduce consumption (refer to Section 14.1 on page 191 for more details on the frequency ranges). In this mode of the multioscillator, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. The loading capacitance values must be adjusted according to the selected oscillator. These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase. ing the resistance and the capacitance of the device. This mode is the most cost effective one with the drawback of a lower frequency accuracy. Its frequency is in the range of several MHz. In this mode, the two oscillator pins have to be tied to ground. Internal RC Oscillator The main clock of the ST7 can be generated by four different source types coming from the multioscillator block: ■ an external source ■ 4 crystal or ceramic resonator oscillators ■ an external RC oscillator ■ an internal high frequency RC oscillator Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configurations are shown in Table 5. Refer to the electrical characteristics section for more details. ST7 OSC1 OSC2 EXTERNAL SOURCE ST7 OSC1 CL1 OSC2 LOAD CAPACITORS CL2 ST7 OSC1 OSC2 REX CEX ST7 OSC1 OSC2 25/199 ST72521M/R/AR 6.3 RESET SEQUENCE MANAGER (RSM) 6.3.1 Introduction The reset sequence manager includes three RESET sources as shown in Figure 12: ■ External RESET source pulse ■ Internal LVD RESET (Low Voltage Detection) ■ Internal WATCHDOG RESET These sources act on the RESET pin and it is always kept low during the delay phase. The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map. The basic RESET sequence consists of 3 phases as shown in Figure 11: ■ Active Phase depending on the RESET source ■ 256 or 4096 CPU clock cycle delay (selected by option byte) ■ RESET vector fetch The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from the Reset state. The shorter or longer clock cycle delay should be selected by option byte to correspond to the stabilization time of the external oscillator used in the application (see Section 14.1 on page 191). The RESET vector fetch phase duration is 2 clock cycles. Figure 11. RESET Sequence Phases RESET Active Phase INTERNAL RESET 256 or 4096 CLOCK CYCLES FETCH VECTOR 6.3.2 Asynchronous External RESET pin The RESET pin is both an input and an open-drain output with integrated RON weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See “CONTROL PIN CHARACTERISTICS” on page 178 for more details. A RESET signal originating from an external source must have a duration of at least th(RSTL)in in order to be recognized (see Figure 13). This detection is asynchronous and therefore the MCU can enter reset state even in HALT mode. Figure 12. Reset Block Diagram VDD RON RESET INTERNAL RESET Filter PULSE GENERATOR 26/199 WATCHDOG RESET LVD RESET ST72521M/R/AR RESET SEQUENCE MANAGER (Cont’d) The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section. If the external RESET pulse is shorter than tw(RSTL)out (see short ext. Reset in Figure 13), the signal on the RESET pin may be stretched. Otherwise the delay will not be applied (see long ext. Reset in Figure 13). Starting from the external RESET pulse recognition, the device RESET pin acts as an output that is pulled low during at least tw(RSTL)out. 6.3.3 External Power-On RESET If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until VDD is over the minimum level specified for the selected fOSC frequency. (see “OPERATING CONDITIONS” on page 156) A proper reset signal for a slow rising VDD supply can generally be provided by an external RC network connected to the RESET pin. 6.3.4 Internal Low Voltage Detector (LVD) RESET Two different RESET sequences caused by the internal LVD circuitry can be distinguished: ■ Power-On RESET ■ Voltage Drop RESET The device RESET pin acts as an output that is pulled low when VDD<VIT+ (rising edge) or VDD<VIT- (falling edge) as shown in Figure 13. The LVD filters spikes on VDD larger than tg(VDD) to avoid parasitic resets. 6.3.5 Internal Watchdog RESET The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 13. Starting from the Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during at least tw(RSTL)out. Figure 13. RESET Sequences VDD VIT+(LVD) VIT-(LVD) LVD RESET RUN SHORT EXT. RESET RUN ACTIVE PHASE tw(RSTL)out th(RSTL)in LONG EXT. RESET RUN ACTIVE PHASE ACTIVE PHASE WATCHDOG RESET RUN ACTIVE PHASE RUN tw(RSTL)out tw(RSTL)out th(RSTL)in DELAY EXTERNAL RESET SOURCE RESET PIN WATCHDOG RESET WATCHDOG UNDERFLOW INTERNAL RESET (256 or 4096 TCPU ) VECTOR FETCH 27/199 ST72521M/R/AR 6.4 SYSTEM INTEGRITY MANAGEMENT (SI) The System Integrity Management block contains the Low Voltage Detector (LVD), Auxiliary Voltage Detector (AVD) and Clock Security System (CSS) functions. It is managed by the SICSR register. 6.4.1 Low Voltage Detector (LVD) The Low Voltage Detector function (LVD) generates a static reset when the VDD supply voltage is below a VIT- reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset. The VIT- reference value for a voltage drop is lower than the VIT+ reference value for power-on in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis). The LVD Reset circuitry generates a reset when VDD is below: – VIT+ when VDD is rising – VIT- when VDD is falling The LVD function is illustrated in Figure 14. Provided the minimum VDD value (guaranteed for the oscillator frequency) is above VIT-, the MCU can only be in two modes: – under full software control – in static safe reset In these conditions, secure operation is always ensured for the application without the need for external reset hardware. During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices. Notes: The LVD allows the device to be used without any external RESET circuitry. The LVD is an optional function which can be selected by option byte. Figure 14. Low Voltage Detector vs Reset VDD Vhys VIT+ VIT- RESET 28/199 ST72521M/R/AR SYSTEM INTEGRITY MANAGEMENT (Cont’d) 6.4.2 Auxiliary Voltage Detector (AVD) The Voltage Detector function (AVD) is based on an analog comparison between a VIT-(AVD) and VIT+(AVD) reference value and the VDD main supply or the external EVD pin voltage level (VEVD). The VIT- reference value for falling voltage is lower than the VIT+ reference value for rising voltage in order to avoid parasitic detection (hysteresis). The output of the AVD comparator is directly readable by the application software through a real time status bit (AVDF) in the SICSR register. This bit is read only. Caution: The AVD function is active only if the LVD is enabled through the option byte. 6.4.2.1 Monitoring the V DD Main Supply This mode is selected by clearing the AVDS bit in the SICSR register. The AVD voltage threshold value is relative to the selected LVD threshold configured by option byte (see Section 14.1 on page 191). If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses the V IT+(AVD) or VIT-(AVD) threshold (AVDF bit toggles). In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing software to shut down safely before the LVD resets the microcontroller. See Figure 15. The interrupt on the rising edge is used to inform the application that the VDD warning state is over. If the voltage rise time trv is less than 256 or 4096 CPU cycles (depending on the reset delay selected by option byte), no AVD interrupt will be generated when VIT+(AVD) is reached. If trv is greater than 256 or 4096 cycles then: – If the AVD interrupt is enabled before the VIT+(AVD) threshold is reached, then 2 AVD interrupts will be received: the first when the AVDIE bit is set, and the second when the threshold is reached. – If the AVD interrupt is enabled after the VIT+(AVD) threshold is reached then only one AVD interrupt will occur. Figure 15. Using the AVD to Monitor VDD (AVDS bit=0) VDD Early Warning Interrupt (Power has dropped, MCU not not yet in reset) Vhyst VIT+(AVD) VIT-(AVD) VIT+(LVD) VIT-(LVD) AVDF bit trv VOLTAGE RISE TIME 0 1 RESET VALUE 1 0 AVD INTERRUPT REQUEST IF AVDIE bit = 1 INTERRUPT PROCESS INTERRUPT PROCESS LVD RESET 29/199 ST72521M/R/AR SYSTEM INTEGRITY MANAGEMENT (Cont’d) 6.4.2.2 Monitoring a Voltage on the EVD pin This mode is selected by setting the AVDS bit in the SICSR register. The AVD circuitry can generate an interrupt when the AVDIE bit of the SICSR register is set. This interrupt is generated on the rising and falling edges of the comparator output. This means it is generated when either one of these two events occur: – VEVD rises up to VIT+(EVD) – VEVD falls down to VIT-(EVD) The EVD function is illustrated in Figure 16. For more details, refer to the Electrical Characteristics section. Figure 16. Using the Voltage Detector to Monitor the EVD pin (AVDS bit=1) VEVD Vhyst VIT+(EVD) VIT-(EVD) AVDF 0 1 0 AVD INTERRUPT REQUEST IF AVDIE = 1 INTERRUPT PROCESS 30/199 INTERRUPT PROCESS ST72521M/R/AR SYSTEM INTEGRITY MANAGEMENT (Cont’d) 6.4.3 Clock Security System (CSS) The Clock Security System (CSS) protects the ST7 against breakdowns, spikes and overfrequencies occurring on the main clock source (fOSC). It is based on a clock filter and a clock detection control with an internal safe oscillator (fSFOSC). 6.4.3.1 Clock Filter Control The PLL has an integrated glitch filtering capability making it possible to protect the internal clock from overfrequencies created by individual spikes. This feature is available only when the PLL is enabled. If glitches occur on fOSC (for example, due to loose connection or noise), the CSS filters these automatically, so the internal CPU frequency (fCPU) continues deliver a glitch-free signal (see Figure 17). 6.4.3.2 Clock detection Control If the clock signal disappears (due to a broken or disconnected resonator...), the safe oscillator delivers a low frequency clock signal (f SFOSC) which allows the ST7 to perform some rescue operations. Automatically, the ST7 clock source switches back from the safe oscillator (fSFOSC) if the main clock source (fOSC) recovers. When the internal clock (f CPU) is driven by the safe oscillator (f SFOSC), the application software is notified by hardware setting the CSSD bit in the SICSR register. An interrupt can be generated if the CSSIE bit has been previously set. These two bits are described in the SICSR register description. 6.4.4 Low Power Modes Mode WAIT HALT Description No effect on SI. CSS and AVD interrupts cause the device to exit from Wait mode. The CRSR register is frozen. The CSS (including the safe oscillator) is disabled until HALT mode is exited. The previous CSS configuration resumes when the MCU is woken up by an interrupt with “exit from HALT mode” capability or from the counter reset value when the MCU is woken up by a RESET. 6.4.4.1 Interrupts The CSS or AVD interrupt events generate an interrupt if the corresponding Enable Control Bit (CSSIE or AVDIE) is set and the interrupt mask in the CC register is reset (RIM instruction). Interrupt Event Exit from Wait Exit from Halt CSSIE Yes No AVDIE Yes No Enable Event Control Flag Bit CSS event detection (safe oscillator acti- CSSD vated as main clock) AVD event AVDF Figure 17. Clock Filter Function PLL ON Clock Filter Function fOSC2 fCPU Clock Detection Function fOSC2 fSFOSC fCPU 31/199 ST72521M/R/AR SYSTEM INTEGRITY MANAGEMENT (Cont’d) 6.4.5 Register Description SYSTEM INTEGRITY (SI) CONTROL/STATUS REGISTER (SICSR) is detected by the Clock Security System (CSSD Read /Write bit set). It is set and cleared by software. Reset Value: 000x 000x (00h) 0: Clock security system interrupt disabled 1: Clock security system interrupt enabled 7 0 When the CSS is disabled by OPTION BYTE, the CSSIE bit has no effect. AVD AVD AVD LVD CSS CSS WDG S IE F RF 0 IE D RF Bit 7 = AVDS Voltage Detection selection This bit is set and cleared by software. Voltage Detection is available only if the LVD is enabled by option byte. 0: Voltage detection on V DD supply 1: Voltage detection on EVD pin Bit 6 = AVDIE Voltage Detector interrupt enable This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag changes (toggles). The pending interrupt information is automatically cleared when software enters the AVD interrupt routine. 0: AVD interrupt disabled 1: AVD interrupt enabled Bit 5 = AVDF Voltage Detector flag This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit changes value. Refer to Figure 15 and to Section 6.4.2.1 for additional details. 0: VDD or VEVD over VIT+(AVD) threshold 1: VDD or VEVD under VIT-(AVD) threshold Bit 4 = LVDRF LVD reset flag This bit indicates that the last Reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared by software (writing zero). See WDGRF flag description for more details. When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined. Bit 3 = Reserved, must be kept cleared. Bit 2 = CSSIE Clock security syst interrupt enable This bit enables the interrupt when a disturbance . 32/199 Bit 1 = CSSD Clock security system detection This bit indicates that the safe oscillator of the Clock Security System block has been selected by hardware due to a disturbance on the main clock signal (fOSC). It is set by hardware and cleared by reading the SICSR register when the original oscillator recovers. 0: Safe oscillator is not active 1: Safe oscillator has been activated When the CSS is disabled by OPTION BYTE, the CSSD bit value is forced to 0. Bit 0 = WDGRF Watchdog reset flag This bit indicates that the last Reset was generated by the Watchdog peripheral. It is set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts). Combined with the LVDRF flag information, the flag description is given by the following table. RESET Sources LVDRF WDGRF External RESET pin Watchdog LVD 0 0 1 0 1 X Application notes The LVDRF flag is not cleared when another RESET type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the original failure. In this case, a watchdog reset can be detected by software while an external reset can not. CAUTION: When the LVD is not activated with the associated option byte, the WDGRF flag can not be used in the application. ST72521M/R/AR 7 INTERRUPTS 7.1 INTRODUCTION The ST7 enhanced interrupt management provides the following features: ■ Hardware interrupts ■ Software interrupt (TRAP) ■ Nested or concurrent interrupt management with flexible interrupt priority and level management: – Up to 4 software programmable nesting levels – Up to 16 interrupt vectors fixed by hardware – 3 non maskable events: TLI, RESET, TRAP This interrupt management is based on: – Bit 5 and bit 3 of the CPU CC register (I1:0), – Interrupt software priority registers (ISPRx), – Fixed interrupt vector addresses located at the high addresses of the memory map (FFE0h to FFFFh) sorted by hardware priority order. This enhanced interrupt controller guarantees full upward compatibility with the standard (not nested) ST7 interrupt controller. When an interrupt request has to be serviced: – Normal processing is suspended at the end of the current instruction execution. – The PC, X, A and CC registers are saved onto the stack. – I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx registers of the serviced interrupt vector. – The PC is then loaded with the interrupt vector of the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to “Interrupt Mapping” table for vector addresses). The interrupt service routine should end with the IRET instruction which causes the contents of the saved registers to be recovered from the stack. Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack and the program in the previous level will resume. Table 6. Interrupt Software Priority Levels Interrupt software priority Level 0 (main) Level 1 Level 2 Level 3 (= interrupt disable) 7.2 MASKING AND PROCESSING FLOW The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx registers which give the interrupt software priority level of each interrupt vector (see Table 6). The processing flow is shown in Figure 18 Level Low I1 1 0 0 1 High I0 0 1 0 1 Figure 18. Interrupt Processing Flowchart FETCH NEXT INSTRUCTION “IRET” N RESTORE PC, X, A, CC FROM STACK TRAP Interrupt has the same or a lower software priority than current one N Y Y EXECUTE INSTRUCTION THE INTERRUPT STAYS PENDING Y N I1:0 Interrupt has a higher software priority than current one PENDING INTERRUPT RESET STACK PC, X, A, CC LOAD I1:0 FROM INTERRUPT SW REG. LOAD PC FROM INTERRUPT VECTOR 33/199 ST72521M/R/AR INTERRUPTS (Cont’d) Servicing Pending Interrupts As several interrupts can be pending at the same time, the interrupt to be taken into account is determined by the following two-step process: – the highest software priority interrupt is serviced, – if several interrupts have the same software priority then the interrupt with the highest hardware priority is serviced first. Figure 19 describes this decision process. Figure 19. Priority Decision Process PENDING INTERRUPTS Same SOFTWARE PRIORITY Different HIGHEST SOFTWARE PRIORITY SERVICED HIGHEST HARDWARE PRIORITY SERVICED When an interrupt request is not serviced immediately, it is latched and then processed when its software priority combined with the hardware priority becomes the highest one. Note 1: The hardware priority is exclusive while the software one is not. This allows the previous process to succeed with only one interrupt. Note 2: TLI, RESET and TRAP are non maskable and they can be considered as having the highest software priority in the decision process. Different Interrupt Vector Sources Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable type (RESET, TLI, TRAP) and the maskable type (external or from internal peripherals). Non-Maskable Sources These sources are processed regardless of the state of the I1 and I0 bits of the CC register (see Figure 18). After stacking the PC, X, A and CC registers (except for RESET), the corresponding vector is loaded in the PC register and the I1 and I0 bits of the CC are set to disable interrupts (level 3). These sources allow the processor to exit HALT mode. 34/199 TLI (Top Level Hardware Interrupt) This hardware interrupt occurs when a specific edge is detected on the dedicated TLI pin. It will be serviced according to the flowchart in Figure 18 as a trap. Caution: A TRAP instruction must not be used in a TLI service routine. ■ TRAP (Non Maskable Software Interrupt) This software interrupt is serviced when the TRAP instruction is executed. It will be serviced according to the flowchart in Figure 18. Caution: TRAP can be interrupted by a TLI. ■ RESET The RESET source has the highest priority in the ST7. This means that the first current routine has the highest software priority (level 3) and the highest hardware priority. See the RESET chapter for more details. ■ Maskable Sources Maskable interrupt vector sources can be serviced if the corresponding interrupt is enabled and if its own interrupt software priority (in ISPRx registers) is higher than the one currently being serviced (I1 and I0 in CC register). If any of these two conditions is false, the interrupt is latched and thus remains pending. ■ External Interrupts External interrupts allow the processor to exit from HALT low power mode. External interrupt sensitivity is software selectable through the External Interrupt Control register (EICR). External interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine. If several input pins of a group connected to the same interrupt line are selected simultaneously, these will be logically ORed. ■ Peripheral Interrupts Usually the peripheral interrupts cause the MCU to exit from HALT mode except those mentioned in the “Interrupt Mapping” table. A peripheral interrupt occurs when a specific flag is set in the peripheral status registers and if the corresponding enable bit is set in the peripheral control register. The general sequence for clearing an interrupt is based on an access to the status register followed by a read or write to an associated register. Note: The clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being serviced) will therefore be lost if the clear sequence is executed. ST72521M/R/AR INTERRUPTS (Cont’d) 7.3 INTERRUPTS AND LOW POWER MODES 7.4 CONCURRENT & NESTED MANAGEMENT All interrupts allow the processor to exit the WAIT low power mode. On the contrary, only external and other specified interrupts allow the processor to exit from the HALT modes (see column “Exit from HALT” in “Interrupt Mapping” table). When several pending interrupts are present while exiting HALT mode, the first one serviced can only be an interrupt with exit from HALT mode capability and it is selected through the same decision process shown in Figure 19. Note: If an interrupt, that is not able to Exit from HALT mode, is pending with the highest priority when exiting HALT mode, this interrupt is serviced after the first one serviced. The following Figure 20 and Figure 21 show two different interrupt management modes. The first is called concurrent mode and does not allow an interrupt to be interrupted, unlike the nested mode in Figure 21. The interrupt hardware priority is given in this order from the lowest to the highest: MAIN, IT4, IT3, IT2, IT1, IT0, TLI. The software priority is given for each interrupt. Warning: A stack overflow may occur without notifying the software of the failure. IT0 TRAP IT3 IT4 IT1 SOFTWARE PRIORITY LEVEL TRAP IT0 IT1 IT1 IT2 IT3 RIM IT4 MAIN MAIN 11 / 10 I1 I0 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 USED STACK = 10 BYTES HARDWARE PRIORITY IT2 Figure 20. Concurrent Interrupt Management 3/0 10 IT0 TRAP IT3 IT4 IT1 SOFTWARE PRIORITY LEVEL TRAP IT0 IT1 IT1 IT2 IT2 IT3 I1 I0 3 1 1 3 1 1 2 0 0 1 0 1 3 1 1 3 1 1 RIM IT4 MAIN 11 / 10 IT4 MAIN USED STACK = 20 BYTES HARDWARE PRIORITY IT2 Figure 21. Nested Interrupt Management 3/0 10 35/199 ST72521M/R/AR INTERRUPTS (Cont’d) INTERRUPT SOFTWARE PRIORITY REGISTERS (ISPRX) Read/Write (bit 7:4 of ISPR3 are read only) Reset Value: 1111 1111 (FFh) 7.5 INTERRUPT REGISTER DESCRIPTION CPU CC REGISTER INTERRUPT BITS Read /Write Reset Value: 111x 1010 (xAh) 7 1 7 0 1 I1 H I0 N Z Level Low High I1 1 0 0 1 I0 0 1 0 1 These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (ISPRx). They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and PUSH/POP instructions (see “Interrupt Dedicated Instruction Set” table). *Note: TLI, TRAP and RESET events are non maskable sources and can interrupt a level 3 program. 36/199 ISPR0 I1_3 I0_3 I1_2 I0_2 I1_1 I0_1 I1_0 I0_0 ISPR1 I1_7 I0_7 I1_6 I0_6 I1_5 I0_5 I1_4 I0_4 ISPR2 I1_11 I0_11 I1_10 I0_10 I1_9 I0_9 I1_8 I0_8 C Bit 5, 3 = I1, I0 Software Interrupt Priority These two bits indicate the current interrupt software priority. Interrupt Software Priority Level 0 (main) Level 1 Level 2 Level 3 (= interrupt disable*) 0 ISPR3 1 1 1 1 I1_13 I0_13 I1_12 I0_12 These four registers contain the interrupt software priority of each interrupt vector. – Each interrupt vector (except RESET and TRAP) has corresponding bits in these registers where its own software priority is stored. This correspondance is shown in the following table. Vector address ISPRx bits FFFBh-FFFAh FFF9h-FFF8h ... FFE1h-FFE0h I1_0 and I0_0 bits* I1_1 and I0_1 bits ... I1_13 and I0_13 bits – Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1 and I0 bits in the CC register. – Level 0 can not be written (I1_x=1, I0_x=0). In this case, the previously stored value is kept. (example: previous=CFh, write=64h, result=44h) The TLI, RESET, and TRAP vectors have no software priorities. When one is serviced, the I1 and I0 bits of the CC register are both set. *Note: Bits in the ISPRx registers which correspond to the TLI can be read and written but they are not significant in the interrupt process management. Caution: If the I1_x and I0_x bits are modified while the interrupt x is executed the following behaviour has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and the new software priority is higher than the previous one, the interrupt x is re-entered. Otherwise, the software priority stays unchanged up to the next interrupt request (after the IRET of the interrupt x). ST72521M/R/AR INTERRUPTS (Cont’d) Table 7. Dedicated Interrupt Instruction Set Instruction New Description Function/Example I1 H 1 I0 HALT Entering Halt mode IRET Interrupt routine return Pop CC, A, X, PC JRM Jump if I1:0=11 (level 3) I1:0=11 ? JRNM Jump if I1:0<>11 I1:0<>11 ? POP CC Pop CC from the Stack Mem => CC RIM Enable interrupt (level 0 set) Load 10 in I1:0 of CC SIM Disable interrupt (level 3 set) Load 11 in I1:0 of CC 1 1 TRAP Software trap Software NMI 1 1 WFI Wait for interrupt 1 0 N Z C 0 I1 H I0 N Z C I1 H I0 N Z C 1 0 Note: During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI instructions change the current software priority up to the next IRET instruction or one of the previously mentioned instructions. 37/199 ST72521M/R/AR INTERRUPTS (Cont’d) Table 8. Interrupt Mapping N° Source Block RESET TRAP Register Label Description Reset N/A Software interrupt 0 TLI 1 MCC/RTC CSS 2 ei0 External interrupt port A3..0 3 ei1 External interrupt port F2..0 4 ei2 External interrupt port B3..0 5 ei3 External interrupt port B7..4 6 CAN External top level interrupt EICR Main clock controller time base interrupt Safe oscillator activation interrupt MCCSR SICSR N/A FFFEh-FFFFh no FFFCh-FFFDh yes FFFAh-FFFBh yes FFF8h-FFF9h yes FFF6h-FFF7h yes FFF4h-FFF5h yes FFF2h-FFF3h yes FFF0h-FFF1h FFEEh-FFEFh SPI peripheral interrupts SPICSR yes FFECh-FFEDh TASR no FFEAh-FFEBh SPI TIMER A peripheral interrupts 9 TIMER B TIMER B peripheral interrupts TBSR 10 SCI SCI Peripheral interrupts SCISR 11 AVD Auxiliary Voltage detector interrupt SICSR I2C yes yes TIMER A PWM ART Address Vector CANISR 8 13 Higher Priority Exit from HALT1) CAN peripheral interrupts 7 12 Priority Order I2C Peripheral interrupts PWM ART interrupt Lower Priority no FFE8h-FFE9h no FFE6h-FFE7h no FFE4h-FFE5h (see periph) no FFE2h-FFE3h ARTCSR yes FFE0h-FFE1h Notes: 1. Valid for HALT and ACTIVE-HALT modes except for the MCC/RTC or CSS interrupt source which exits from ACTIVE-HALT mode only. 7.6 EXTERNAL INTERRUPTS 7.6.1 I/O Port Interrupt Sensitivity The external interrupt sensitivity is controlled by the IPA, IPB and ISxx bits of the EICR register (Figure 22). This control allows to have up to 4 fully independent external interrupt source sensitivities. Each external interrupt source can be generated on four (or five) different events on the pin: ■ Falling edge ■ Rising edge ■ Falling and rising edge 38/199 Falling edge and low level ■ Rising edge and high level (only for ei0 and ei2) To guarantee correct functionality, the sensitivity bits in the EICR register can be modified only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that interrupts must be disabled before changing sensitivity. The pending interrupts are cleared by writing a different value in the ISx[1:0], IPA or IPB bits of the EICR. ■ ST72521M/R/AR INTERRUPTS (Cont’d) Figure 22. External Interrupt Control bits EICR PORT A [3:0] INTERRUPTS PAOR.3 PADDR.3 IS20 IS21 SENSITIVITY PA3 CONTROL IPA BIT PORT F [2:0] INTERRUPTS IS21 SENSITIVITY PF2 CONTROL PORT B [3:0] INTERRUPTS PBOR.3 PBDDR.3 IS10 SENSITIVITY IPB BIT PB7 ei1 INTERRUPT SOURCE IS11 CONTROL PBOR.7 PBDDR.7 PF2 PF1 PF0 EICR PB3 PORT B [7:4] INTERRUPTS ei0 INTERRUPT SOURCE EICR IS20 PFOR.2 PFDDR.2 PA3 PA2 PA1 PA0 PB3 PB2 PB1 PB0 ei2 INTERRUPT SOURCE EICR IS10 IS11 SENSITIVITY CONTROL PB7 PB6 PB5 PB4 ei3 INTERRUPT SOURCE 39/199 ST72521M/R/AR 7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR) Read /Write Reset Value: 0000 0000 (00h) - ei0 (port A3..0) 7 IS11 0 IS10 IPB IS21 IS20 IPA TLIS External Interrupt Sensitivity IS21 IS20 IPA bit =0 IPA bit =1 Falling edge & low level Rising edge & high level TLIE Bit 7:6 = IS1[1:0] ei2 and ei3 sensitivity The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the following external interrupts: - ei2 (port B3..0) 0 0 0 1 Rising edge only Falling edge only 1 0 Falling edge only Rising edge only 1 1 Rising and falling edge External Interrupt Sensitivity IS11 IS10 IPB bit =0 IPB bit =1 0 0 Falling edge & low level Rising edge & high level 0 1 Rising edge only Falling edge only 1 0 Falling edge only Rising edge only 1 1 Rising and falling edge - ei3 (port B7..4) IS11 IS10 External Interrupt Sensitivity 0 0 Falling edge & low level 0 1 Rising edge only 1 0 Falling edge only 1 1 Rising and falling edge - ei1 (port F2..0) IS21 IS20 External Interrupt Sensitivity 0 0 Falling edge & low level 0 1 Rising edge only 1 0 Falling edge only 1 1 Rising and falling edge These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3). These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3). Bit 2 = IPA Interrupt polarity for port A This bit is used to invert the sensitivity of the port A [3:0] external interrupts. It can be set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3). 0: No sensitivity inversion 1: Sensitivity inversion Bit 5 = IPB Interrupt polarity for port B This bit is used to invert the sensitivity of the port B [3:0] external interrupts. It can be set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3). 0: No sensitivity inversion 1: Sensitivity inversion Bit 1 = TLIS TLI sensitivity This bit allows to toggle the TLI edge sensitivity. It can be set and cleared by software only when TLIE bit is cleared. 0: Falling edge 1: Rising edge Bit 4:3 = IS2[1:0] ei0 and ei1 sensitivity The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to the following external interrupts: 40/199 Bit 0 = TLIE TLI enable This bit allows to enable or disable the TLI capability on the dedicated pin. It is set and cleared by software. 0: TLI disabled 1: TLI enabled Note: a parasitic interrupt can be generated when ST72521M/R/AR INTERRUPTS (Cont’d) Table 9. Nested Interrupts Register Map and Reset Values Address (Hex.) Register Label 7 0024h ISPR0 Reset Value I1_3 1 6 5 I0_3 1 I1_2 1 ei1 ei0 SPI 0025h ISPR1 Reset Value I1_7 1 0026h ISPR2 Reset Value I1_11 1 0027h ISPR3 Reset Value EICR Reset Value I0_7 1 I1_6 1 I0_11 1 I1_10 1 0028h 1 IPB 0 2 1 0 I1_4 I0_4 1 1 TIMER A I0_10 1 I1_9 1 I0_9 1 I1_8 1 1 IS21 0 PWMART I1_13 I0_13 1 1 IS20 IPA 0 0 I1_12 1 TLIS 0 I0_6 1 SCI 1 IS10 0 3 MCC + SI I1_1 I0_1 1 1 ei3 I1_5 I0_5 1 1 TIMER B I0_2 1 CAN AVD 1 IS11 0 4 TLI 1 1 ei2 I0_8 1 I2C I0_12 1 TLIE 0 41/199 ST72521M/R/AR 8 POWER SAVING MODES 8.1 INTRODUCTION 8.2 SLOW MODE To give a large measure of flexibility to the application in terms of power consumption, four main power saving modes are implemented in the ST7 (see Figure 23): SLOW, WAIT (SLOW WAIT), ACTIVE HALT and HALT. After a RESET the normal operating mode is selected by default (RUN mode). This mode drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency divided or multiplied by 2 (fOSC2). From RUN mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status. This mode has two targets: – To reduce power consumption by decreasing the internal clock in the device, – To adapt the internal clock frequency (fCPU) to the available supply voltage. SLOW mode is controlled by three bits in the MCCSR register: the SMS bit which enables or disables Slow mode and two CPx bits which select the internal slow frequency (fCPU). In this mode, the master clock frequency (fOSC2) can be divided by 2, 4, 8 or 16. The CPU and peripherals are clocked at this lower frequency (fCPU). Note: SLOW-WAIT mode is activated when entering the WAIT mode while the device is already in SLOW mode. Figure 23. Power Saving Mode Transitions Figure 24. SLOW Mode Clock Transitions High fOSC2/2 fOSC2/4 fOSC2 MCCSR SLOW WAIT CP1:0 00 01 SMS SLOW WAIT NEW SLOW FREQUENCY REQUEST ACTIVE HALT HALT Low POWER CONSUMPTION 42/199 fOSC2 fCPU RUN NORMAL RUN MODE REQUEST ST72521M/R/AR POWER SAVING MODES (Cont’d) 8.3 WAIT MODE WAIT mode places the MCU in a low power consumption mode by stopping the CPU. This power saving mode is selected by calling the ‘WFI’ instruction. All peripherals remain active. During WAIT mode, the I[1:0] bits of the CC register are forced to ‘10’, to enable all interrupts. All other registers and memory remain unchanged. The MCU remains in WAIT mode until an interrupt or RESET occurs, whereupon the Program Counter branches to the starting address of the interrupt or Reset service routine. The MCU will remain in WAIT mode until a Reset or an Interrupt occurs, causing it to wake up. Refer to Figure 25. Figure 25. WAIT Mode Flow-chart WFI INSTRUCTION OSCILLATOR PERIPHERALS CPU I[1:0] BITS ON ON OFF 10 N RESET Y N INTERRUPT Y OSCILLATOR PERIPHERALS CPU I[1:0] BITS ON OFF ON 10 256 OR 4096 CPU CLOCK CYCLE DELAY OSCILLATOR ON PERIPHERALS ON CPU ON XX 1) I[1:0] BITS FETCH RESET VECTOR OR SERVICE INTERRUPT Note: 1. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped. 43/199 ST72521M/R/AR POWER SAVING MODES (Cont’d) 8.4 ACTIVE-HALT AND HALT MODES ACTIVE-HALT and HALT modes are the two lowest power consumption modes of the MCU. They are both entered by executing the ‘HALT’ instruction. The decision to enter either in ACTIVE-HALT or HALT mode is given by the MCC/RTC interrupt enable flag (OIE bit in MCCSR register). MCCSR OIE bit Power Saving Mode entered when HALT instruction is executed 0 HALT mode 1 ACTIVE-HALT mode pending on option byte). Otherwise, the ST7 enters HALT mode for the remaining tDELAY period. Figure 26. ACTIVE-HALT Timing Overview RUN ACTIVE HALT 256 OR 4096 CPU CYCLE DELAY 1) HALT INSTRUCTION [MCCSR.OIE=1] RESET OR INTERRUPT RUN FETCH VECTOR Figure 27. ACTIVE-HALT Mode Flow-chart 8.4.1 ACTIVE-HALT MODE ACTIVE-HALT mode is the lowest power consumption mode of the MCU with a real time clock available. It is entered by executing the ‘HALT’ instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is set (see Section 10.2 on page 58 for more details on the MCCSR register). The MCU can exit ACTIVE-HALT mode on reception of either an MCC/RTC interrupt, a specific interrupt (see Table 8, “Interrupt Mapping,” on page 38) or a RESET. When exiting ACTIVEHALT mode by means of an interrupt, no 256 or 4096 CPU cycle delay occurs. The CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 27). When entering ACTIVE-HALT mode, the I[1:0] bits in the CC register are forced to ‘10b’ to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately. In ACTIVE-HALT mode, only the main oscillator and its associated counter (MCC/RTC) are running to keep a wake-up time base. All other peripherals are not clocked except those which get their clock supply from another clock generator (such as external or auxiliary oscillator). The safeguard against staying locked in ACTIVEHALT mode is provided by the oscillator interrupt. Note: As soon as the interrupt capability of one of the oscillators is selected (MCCSR.OIE bit set), entering ACTIVE-HALT mode while the Watchdog is active does not generate a RESET. This means that the device cannot spend more than a defined delay in this power saving mode. CAUTION: When exiting ACTIVE-HALT mode following an interrupt, OIE bit of MCCSR register must not be cleared before t DELAY after the interrupt occurs (tDELAY = 256 or 4096 tCPU delay de- 44/199 HALT INSTRUCTION (MCCSR.OIE=1) OSCILLATOR PERIPHERALS 2) CPU I[1:0] BITS N N INTERRUPT 3) Y ON OFF OFF 10 RESET Y OSCILLATOR PERIPHERALS CPU I[1:0] BITS ON OFF ON XX 4) 256 OR 4096 CPU CLOCK CYCLE DELAY OSCILLATOR PERIPHERALS CPU I[1:0] BITS ON ON ON XX 4) FETCH RESET VECTOR OR SERVICE INTERRUPT Notes: 1. This delay occurs only if the MCU exits ACTIVEHALT mode by means of a RESET. 2. Peripheral clocked with an external clock source can still be active. 3. Only the MCC/RTC interrupt and some specific interrupts can exit the MCU from ACTIVE-HALT mode (such as external interrupt). Refer to Table 8, “Interrupt Mapping,” on page 38 for more details. 4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and restored when the CC register is popped. ST72521M/R/AR POWER SAVING MODES (Cont’d) 8.4.2 HALT MODE The HALT mode is the lowest power consumption mode of the MCU. It is entered by executing the ‘HALT’ instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is cleared (see Section 10.2 on page 58 for more details on the MCCSR register). The MCU can exit HALT mode on reception of either a specific interrupt (see Table 8, “Interrupt Mapping,” on page 38) or a RESET. When exiting HALT mode by means of a RESET or an interrupt, the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is used to stabilize the oscillator. After the start up delay, the CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 29). When entering HALT mode, the I[1:0] bits in the CC register are forced to ‘10b’to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately. In HALT mode, the main oscillator is turned off causing all internal processing to be stopped, including the operation of the on-chip peripherals. All peripherals are not clocked except the ones which get their clock supply from another clock generator (such as an external or auxiliary oscillator). The compatibility of Watchdog operation with HALT mode is configured by the “WDGHALT” option bit of the option byte. The HALT instruction when executed while the Watchdog system is enabled, can generate a Watchdog RESET (see Section 14.1 on page 191 for more details). Figure 29. HALT Mode Flow-chart HALT INSTRUCTION (MCCSR.OIE=0) ENABLE WDGHALT 1) WATCHDOG DISABLE 0 1 WATCHDOG RESET OSCILLATOR OFF PERIPHERALS 2) OFF CPU OFF I[1:0] BITS 10 N RESET N Y INTERRUPT 3) Y OSCILLATOR ON PERIPHERALS OFF CPU ON XX 4) I[1:0] BITS 256 OR 4096 CPU CLOCK CYCLE DELAY OSCILLATOR ON PERIPHERALS ON CPU ON I[1:0] BITS XX 4) Figure 28. HALT Timing Overview RUN HALT HALT INSTRUCTION [MCCSR.OIE=0] 256 OR 4096 CPU CYCLE DELAY FETCH RESET VECTOR OR SERVICE INTERRUPT RUN RESET OR INTERRUPT FETCH VECTOR Notes: 1. WDGHALT is an option bit. See option byte section for more details. 2. Peripheral clocked with an external clock source can still be active. 3. Only some specific interrupts can exit the MCU from HALT mode (such as external interrupt). Refer to Table 8, “Interrupt Mapping,” on page 38 for more details. 4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped. 45/199 ST72521M/R/AR POWER SAVING MODES (Cont’d) 8.4.2.1 Halt Mode Recommendations – Make sure that an external event is available to wake up the microcontroller from Halt mode. – When using an external interrupt to wake up the microcontroller, reinitialize the corresponding I/O as “Input Pull-up with Interrupt” before executing the HALT instruction. The main reason for this is that the I/O may be wrongly configured due to external interference or by an unforeseen logical condition. – For the same reason, reinitialize the level sensitiveness of each external interrupt as a precautionary measure. 46/199 – The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction due to a program counter failure, it is advised to clear all occurrences of the data value 0x8E from memory. For example, avoid defining a constant in ROM with the value 0x8E. – As the HALT instruction clears the interrupt mask in the CC register to allow interrupts, the user may choose to clear all pending interrupt bits before executing the HALT instruction. This avoids entering other peripheral interrupt routines after executing the external interrupt routine corresponding to the wake-up event (reset or external interrupt). ST72521M/R/AR 9 I/O PORTS 9.1 INTRODUCTION The I/O ports offer different functional modes: – transfer of data through digital inputs and outputs and for specific pins: – external interrupt generation – alternate signal input/output for the on-chip peripherals. An I/O port contains up to 8 pins. Each pin can be programmed independently as digital input (with or without interrupt generation) or digital output. 9.2 FUNCTIONAL DESCRIPTION Each port has 2 main registers: – Data Register (DR) – Data Direction Register (DDR) and one optional register: – Option Register (OR) Each I/O pin may be programmed using the corresponding register bits in the DDR and OR registers: bit X corresponding to pin X of the port. The same correspondence is used for the DR register. The following description takes into account the OR register, (for specific ports which do not provide this register refer to the I/O Port Implementation section). The generic I/O block diagram is shown in Figure 30 9.2.1 Input Modes The input configuration is selected by clearing the corresponding DDR register bit. In this case, reading the DR register returns the digital value applied to the external I/O pin. Different input modes can be selected by software through the OR register. Notes: 1. Writing the DR register modifies the latch value but does not affect the pin status. 2. When switching from input to output mode, the DR register has to be written first to drive the correct level on the pin as soon as the port is configured as an output. 3. Do not use read/modify/write instructions (BSET or BRES) to modify the DR register External interrupt function When an I/O is configured as Input with Interrupt, an event on this I/O can generate an external interrupt request to the CPU. Each pin can independently generate an interrupt request. The interrupt sensitivity is independently programmable using the sensitivity bits in the EICR register. Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout description and interrupt section). If several input pins are selected simultaneously as interrupt sources, these are first detected according to the sensitivity bits in the EICR register and then logically ORed. The external interrupts are hardware interrupts, which means that the request latch (not accessible directly by the application) is automatically cleared when the corresponding interrupt vector is fetched. To clear an unwanted pending interrupt by software, the sensitivity bits in the EICR register must be modified. 9.2.2 Output Modes The output configuration is selected by setting the corresponding DDR register bit. In this case, writing the DR register applies this digital value to the I/O pin through the latch. Then reading the DR register returns the previously stored value. Two different output modes can be selected by software through the OR register: Output push-pull and open-drain. DR register value and output pin status: DR 0 1 Push-pull VSS VDD Open-drain Vss Floating 9.2.3 Alternate Functions When an on-chip peripheral is configured to use a pin, the alternate function is automatically selected. This alternate function takes priority over the standard I/O programming. When the signal is coming from an on-chip peripheral, the I/O pin is automatically configured in output mode (push-pull or open drain according to the peripheral). When the signal is going to an on-chip peripheral, the I/O pin must be configured in input mode. In this case, the pin state is also digitally readable by addressing the DR register. Note: Input pull-up configuration can cause unexpected value at the input of the alternate peripheral input. When an on-chip peripheral use a pin as input and output, this pin has to be configured in input floating mode. 47/199 ST72521M/R/AR I/O PORTS (Cont’d) Figure 30. I/O Port General Block Diagram ALTERNATE OUTPUT REGISTER ACCESS 1 P-BUFFER (see table below) VDD 0 ALTERNATE ENABLE PULL-UP (see table below) DR VDD DDR PULL-UP CONDITION DATA BUS OR PAD If implemented OR SEL N-BUFFER DIODES (see table below) DDR SEL DR SEL ANALOG INPUT CMOS SCHMITT TRIGGER 1 0 ALTERNATE INPUT EXTERNAL INTERRUPT SOURCE (eix) Table 10. I/O Port Mode Options Configuration Mode Input Output Floating with/without Interrupt Pull-up with/without Interrupt Push-pull Open Drain (logic level) True Open Drain Legend: NI - not implemented Off - implemented not activated On - implemented and activated 48/199 Pull-Up P-Buffer Off On Off Off NI On Off NI Diodes to VDD On to VSS On NI (see note) Note: The diode to V DD is not implemented in the true open drain pads. A local protection between the pad and VSS is implemented to protect the device against positive stress. ST72521M/R/AR I/O PORTS (Cont’d) Table 11. I/O Port Configurations Hardware Configuration NOT IMPLEMENTED IN TRUE OPEN DRAIN I/O PORTS DR REGISTER ACCESS VDD RPU PULL-UP CONDITION DR REGISTER PAD W DATA BUS INPUT 1) R ALTERNATE INPUT EXTERNAL INTERRUPT SOURCE (eix) INTERRUPT CONDITION PUSH-PULL OUTPUT 2) OPEN-DRAIN OUTPUT 2) ANALOG INPUT NOT IMPLEMENTED IN TRUE OPEN DRAIN I/O PORTS DR REGISTER ACCESS VDD RPU DR REGISTER PAD ALTERNATE ENABLE NOT IMPLEMENTED IN TRUE OPEN DRAIN I/O PORTS R/W DATA BUS ALTERNATE OUTPUT DR REGISTER ACCESS VDD RPU PAD DR REGISTER ALTERNATE ENABLE R/W DATA BUS ALTERNATE OUTPUT Notes: 1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR register will read the alternate function output status. 2. When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate function reads the pin status given by the DR register content. 49/199 ST72521M/R/AR I/O PORTS (Cont’d) CAUTION: The alternate function must not be activated as long as the pin is configured as input with interrupt, in order to avoid generating spurious interrupts. Analog alternate function When the pin is used as an ADC input, the I/O must be configured as floating input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail which is connected to the ADC input. It is recommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it is recommended not to have clocking pins located close to a selected analog pin. WARNING: The analog input voltage level must be within the limits stated in the absolute maximum ratings. Figure 31. Interrupt I/O Port State Transitions 01 00 10 11 INPUT floating/pull-up interrupt INPUT floating (reset state) OUTPUT open-drain OUTPUT push-pull XX = DDR, OR 9.4 LOW POWER MODES Mode WAIT HALT Description No effect on I/O ports. External interrupts cause the device to exit from WAIT mode. No effect on I/O ports. External interrupts cause the device to exit from HALT mode. 9.5 INTERRUPTS 9.3 I/O PORT IMPLEMENTATION The hardware implementation on each I/O port depends on the settings in the DDR and OR registers and specific feature of the I/O port such as ADC Input or true open drain. Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 31 Other transitions are potentially risky and should be avoided, since they are likely to present unwanted side-effects such as spurious interrupt generation. 50/199 The external interrupt event generates an interrupt if the corresponding configuration is selected with DDR and OR registers and the interrupt mask in the CC register is not active (RIM instruction). Interrupt Event External interrupt on selected external event Enable Event Control Flag Bit - DDRx ORx Exit from Wait Exit from Halt Yes Yes ST72521M/R/AR I/O PORTS (Cont’d) 9.5.1 I/O Port Implementation The I/O port register configurations are summarised as follows. PA3, PB7, PB3, PF2 (without pull-up) MODE floating input floating interrupt input open drain output push-pull output Standard Ports PA5:4, PC7:0, PD7:0, PE7:34, PE1:0, PF7:3, PG7:0, PH7:0 MODE floating input pull-up input open drain output push-pull output DDR 0 0 1 1 OR 0 1 0 1 DDR 0 0 1 1 OR 0 1 0 1 True Open Drain Ports PA7:6 MODE floating input open drain (high sink ports) Interrupt Ports PA2:0, PB6:5, PB4, PB2:0, PF1:0 (with pull-up) MODE floating input pull-up interrupt input open drain output push-pull output DDR 0 0 1 1 OR 0 1 0 1 DDR 0 1 Pull-up Input Port (CANTX requirement) PE2 MODE pull-up input Table 12. Port Configuration Port Pin name Input Output OR = 0 PA7:6 OR = 1 floating OR = 0 OR = 1 true open-drain PA5:4 PA3 PA2:0 floating floating floating pull-up floating interrupt pull-up interrupt open drain open drain open drain push-pull push-pull push-pull PB7, PB3 PB6:5, PB4, PB2:0 floating floating interrupt open drain push-pull Port B floating pull-up interrupt open drain push-pull Port C Port D PC7:0 PD7:0 floating floating pull-up pull-up open drain open drain push-pull push-pull Port E PE7:3, PE1:0 PE2 floating pull-up open drain pull-up input only * push-pull Port F PF7:3 PF2 floating floating pull-up floating interrupt open drain open drain push-pull push-pull Port G PF1:0 PG7:0 floating floating pull-up interrupt pull-up open drain open drain push-pull push-pull Port H PH7:0 floating pull-up open drain push-pull Port A * Note: when the CANTX alternate function is selected the I/O port operates in output push-pull mode. 51/199 ST72521M/R/AR I/O PORTS (Cont’d) Table 13. I/O Port Register Map and Reset Values Address (Hex.) Register Label Reset Value of all I/O port registers 0000h PADR 0001h PADDR 0002h PAOR 0003h PBDR 0004h PBDDR 0005h PBOR 0006h PCDR 0007h PCDDR 0008h PCOR 0009h PDDR 000Ah PDDDR 000Bh PDOR 000Ch PEDR 000Dh PEDDR 000Eh PEOR 000Fh PFDR 0010h PFDDR 0011h PFOR 0012h PGDR 0013h PGDDR 0014h PGOR 0015h PHDR 0016h PHDDR 0017h PHOR 52/199 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB ST72521M/R/AR 10 ON-CHIP PERIPHERALS 10.1 WATCHDOG TIMER (WDG) 10.1.1 Introduction The Watchdog timer is used to detect the occurrence of a software fault, usually generated by external interference or by unforeseen logical conditions, which causes the application program to abandon its normal sequence. The Watchdog circuit generates an MCU reset on expiry of a programmed time period, unless the program refreshes the counter’s contents before the T6 bit becomes cleared. 10.1.2 Main Features ■ Programmable timer ■ Programmable reset ■ Reset (if watchdog activated) when the T6 bit reaches zero ■ Optional reset on HALT instruction (configurable by option byte) ■ Hardware Watchdog selectable by option byte 10.1.3 Functional Description The counter value stored in the Watchdog Control register (WDGCR bits T[6:0]), is decremented every 16384 fOSC2 cycles (approx.), and the length of the timeout period can be programmed by the user in 64 increments. If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T[6:0]) rolls over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling low the reset pin for typically 500ns. The application program must write in the WDGCR register at regular intervals during normal operation to prevent an MCU reset. The value to be stored in the WDGCR register must be between FFh and C0h: – The WDGA bit is set (watchdog enabled) – The T6 bit is set to prevent generating an immediate reset – The T[5:0] bits contain the number of increments which represents the time delay before the watchdog produces a reset (see Figure 33. Approximate Timeout Duration). The timing varies between a minimum and a maximum value due to the unknown status of the prescaler when writing to the WDGCR register (see Figure 34). Following a reset, the watchdog is disabled. Once activated it cannot be disabled, except by a reset. The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared). If the watchdog is activated, the HALT instruction will generate a Reset. Figure 32. Watchdog Block Diagram RESET fOSC2 MCC/RTC WATCHDOG CONTROL REGISTER (WDGCR) DIV 64 WDGA T6 T5 T4 T3 T2 T1 T0 6-BIT DOWNCOUNTER (CNT) 12-BIT MCC RTC COUNTER MSB 11 LSB 6 5 0 TB[1:0] bits (MCCSR Register) WDG PRESCALER DIV 4 53/199 ST72521M/R/AR WATCHDOG TIMER (Cont’d) 10.1.4 How to Program the Watchdog Timeout Figure 33 shows the linear relationship between the 6-bit value to be loaded in the Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be used for a quick calculation without taking the timing variations into account. If more precision is needed, use the formulae in Figure 34. Caution: When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an immediate reset. Figure 33. Approximate Timeout Duration 3F 38 CNT Value (hex.) 30 28 20 18 10 08 00 1.5 18 34 50 65 82 Watchdog timeout (ms) @ 8 MHz. fOSC2 54/199 98 114 128 ST72521M/R/AR WATCHDOG TIMER (Cont’d) Figure 34. Exact Timeout Duration (tmin and tmax) WHERE: tmin0 = (LSB + 128) x 64 x tOSC2 tmax0 = 16384 x tOSC2 tOSC2 = 125ns if fOSC2=8 MHz CNT = Value of T[5:0] bits in the WDGCR register (6 bits) MSB and LSB are values from the table below depending on the timebase selected by the TB[1:0] bits in the MCCSR register TB1 Bit TB0 Bit (MCCSR Reg.) (MCCSR Reg.) 0 0 0 1 1 0 1 1 Selected MCCSR Timebase MSB LSB 2ms 4ms 10ms 25ms 4 8 20 49 59 53 35 54 To calculate the minimum Watchdog Timeout (tmin): IF CNT < MSB ------------4 THEN t m in = t min0 + 16384 × CNT × tosc2 CNT 4CNT ELSE tmin = t min0 + 16384 × CN T – 4---------------- + ( 192 + LS B) × 64 × ---------------- MSB MSB × tosc2 To calculate the maximum Watchdog Timeout (t max): IF CNT ≤ MSB ------------4 THEN tma x = t max0 + 16384 × C NT × t osc2 4CNT ELSE tmax = t max0 + 16384 × C NT – 4CNT ----------------- + ( 192 + LSB) × 64 × ---------------- MSB MSB × tosc2 Note: In the above formulae, division results must be rounded down to the next integer value. Example: With 2ms timeout selected in MCCSR register Value of T[5:0] Bits in WDGCR Register (Hex.) 00 3F Min. Watchdog Timeout (ms) tmin 1.496 128 Max. Watchdog Timeout (ms) tmax 2.048 128.552 55/199 ST72521M/R/AR WATCHDOG TIMER (Cont’d) 10.1.5 Low Power Modes Mode SLOW WAIT Description No effect on Watchdog. No effect on Watchdog. OIE bit in MCCSR register WDGHALT bit in Option Byte 0 0 0 1 1 x HALT No Watchdog reset is generated. The MCU enters Halt mode. The Watchdog counter is decremented once and then stops counting and is no longer able to generate a watchdog reset until the MCU receives an external interrupt or a reset. If an external interrupt is received, the Watchdog restarts counting after 256 or 4096 CPU clocks. If a reset is generated, the Watchdog is disabled (reset state) unless Hardware Watchdog is selected by option byte. For application recommendations see Section 10.1.7 below. A reset is generated. No reset is generated. The MCU enters Active Halt mode. The Watchdog counter is not decremented. It stop counting. When the MCU receives an oscillator interrupt or external interrupt, the Watchdog restarts counting immediately. When the MCU receives a reset the Watchdog restarts counting after 256 or 4096 CPU clocks. 10.1.6 Hardware Watchdog Option If Hardware Watchdog is selected by option byte, the watchdog is always active and the WDGA bit in the WDGCR is not used. Refer to the Option Byte description. 10.1.7 Using Halt Mode with the WDG (WDGHALT option) The following recommendation applies if Halt mode is used when the watchdog is enabled. – Before executing the HALT instruction, refresh the WDG counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller. 10.1.8 Interrupts None. 56/199 10.1.9 Register Description CONTROL REGISTER (WDGCR) Read /Write Reset Value: 0111 1111 (7Fh) 7 WDGA 0 T6 T5 T4 T3 T2 T1 T0 Bit 7 = WDGA Activation bit. This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset. 0: Watchdog disabled 1: Watchdog enabled Note: This bit is not used if the hardware watchdog option is enabled by option byte. Bit 6:0 = T[6:0] 7-bit counter (MSB to LSB). These bits contain the value of the watchdog counter. It is decremented every 16384 fOSC2 cycles (approx.). A reset is produced when it rolls over from 40h to 3Fh (T6 becomes cleared). ST72521M/R/AR Table 14. Watchdog Timer Register Map and Reset Values Address (Hex.) Register Label 7 6 5 4 3 2 1 0 002Ah WDGCR Reset Value WDGA 0 T6 1 T5 1 T4 1 T3 1 T2 1 T1 1 T0 1 57/199 ST72521M/R/AR 10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) The Main Clock Controller consists of three different functions: ■ a programmable CPU clock prescaler ■ a clock-out signal to supply external devices ■ a real time clock timer with interrupt capability Each function can be used independently and simultaneously. 10.2.1 Programmable CPU Clock Prescaler The programmable CPU clock prescaler supplies the clock for the ST7 CPU and its internal peripherals. It manages SLOW power saving mode (See Section 8.2 SLOW MODE for more details). The prescaler selects the fCPU main clock frequency and is controlled by three bits in the MCCSR register: CP[1:0] and SMS. 10.2.2 Clock-out Capability The clock-out capability is an alternate function of an I/O port pin that outputs a f OSC2 clock to drive external devices. It is controlled by the MCO bit in the MCCSR register. CAUTION: When selected, the clock out pin suspends the clock during ACTIVE-HALT mode. 10.2.3 Real Time Clock Timer (RTC) The counter of the real time clock timer allows an interrupt to be generated based on an accurate real time clock. Four different time bases depending directly on fOSC2 are available. The whole functionality is controlled by four bits of the MCCSR register: TB[1:0], OIE and OIF. When the RTC interrupt is enabled (OIE bit set), the ST7 enters ACTIVE-HALT mode when the HALT instruction is executed. See Section 8.4 ACTIVE-HALT AND HALT MODES for more details. 10.2.4 Beeper The beep function is controlled by the MCCBCR register. It can output three selectable frequencies on the BEEP pin (I/O port alternate function). Figure 35. Main Clock Controller (MCC/RTC) Block Diagram BC1 BC0 MCCBCR BEEP BEEP SIGNAL GENERATOR MCO 12-BIT MCC RTC COUNTER DIV 64 MCO CP1 CP0 SMS TB1 TB0 MCCSR fOSC2 DIV 2, 4, 8, 16 OIF MCC/RTC INTERRUPT 1 0 58/199 OIE TO WATCHDOG TIMER fCPU CPU CLOCK TO CPU AND PERIPHERALS ST72521M/R/AR MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (Cont’d) 10.2.5 Low Power Modes Mode WAIT ACTIVEHALT HALT Description No effect on MCC/RTC peripheral. MCC/RTC interrupt cause the device to exit from WAIT mode. No effect on MCC/RTC counter (OIE bit is set), the registers are frozen. MCC/RTC interrupt cause the device to exit from ACTIVE-HALT mode. MCC/RTC counter and registers are frozen. MCC/RTC operation resumes when the MCU is woken up by an interrupt with “exit from HALT” capability. 10.2.6 Interrupts The MCC/RTC interrupt event generates an interrupt if the OIE bit of the MCCSR register is set and the interrupt mask in the CC register is not active (RIM instruction). Interrupt Event Time base overflow event Enable Event Control Flag Bit OIF OIE Exit from Wait Exit from Halt Yes No 1) Note: The MCC/RTC interrupt wakes up the MCU from ACTIVE-HALT mode, not from HALT mode. 10.2.7 Register Description MCC CONTROL/STATUS REGISTER (MCCSR) Read /Write Reset Value: 0000 0000 (00h ) 7 MCO 0 CP1 CP0 SMS TB1 TB0 OIE Bit 6:5 = CP[1:0] CPU clock prescaler These bits select the CPU clock prescaler which is applied in the different slow modes. Their action is conditioned by the setting of the SMS bit. These two bits are set and cleared by software fCPU in SLOW mode CP1 CP0 fOSC2 / 2 0 0 fOSC2 / 4 0 1 fOSC2 / 8 1 0 fOSC2 / 16 1 1 Bit 4 = SMS Slow mode select This bit is set and cleared by software. 0: Normal mode. fCPU = fOSC2 1: Slow mode. fCPU is given by CP1, CP0 See Section 8.2 SLOW MODE and Section 10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) for more details. Bit 3:2 = TB[1:0] Time base control These bits select the programmable divider time base. They are set and cleared by software. Time Base Counter Prescaler f OSC2 =4MHz fOSC2 =8MHz TB1 TB0 16000 4ms 2ms 0 0 32000 8ms 4ms 0 1 80000 20ms 10ms 1 0 200000 50ms 25ms 1 1 A modification of the time base is taken into account at the end of the current period (previously set) to avoid an unwanted time shift. This allows to use this time base as a real time clock. OIF Bit 7 = MCO Main clock out selection This bit enables the MCO alternate function on the PF0 I/O port. It is set and cleared by software. 0: MCO alternate function disabled (I/O pin free for general-purpose I/O) 1: MCO alternate function enabled (f CPU on I/O port) Note: To reduce power consumption, the MCO function is not active in ACTIVE-HALT mode. Bit 1 = OIE Oscillator interrupt enable This bit set and cleared by software. 0: Oscillator interrupt disabled 1: Oscillator interrupt enabled This interrupt can be used to exit from ACTIVEHALT mode. When this bit is set, calling the ST7 software HALT instruction enters the ACTIVE-HALT power saving mode. 59/199 ST72521M/R/AR MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (Cont’d) Bit 0 = OIF Oscillator interrupt flag This bit is set by hardware and cleared by software reading the MCCSR register. It indicates when set that the main oscillator has reached the selected elapsed time (TB1:0). 0: Timeout not reached 1: Timeout reached CAUTION: The BRES and BSET instructions must not be used on the MCCSR register to avoid unintentionally clearing the OIF bit. MCC BEEP CONTROL REGISTER (MCCBCR) Read /Write Reset Value: 0000 0000 (00h) 7 0 0 0 0 0 0 0 BC1 BC0 Bit 7:2 = Reserved, must be kept cleared. Bit 1:0 = BC[1:0] Beep control These 2 bits select the PF1 pin beep capability. BC1 BC0 Beep mode with fOSC2=8MHz 0 0 Off 0 1 ~2-KHz 1 0 ~1-KHz 1 1 ~500-Hz Output Beep signal ~50% duty cycle The beep output signal is available in ACTIVEHALT mode but has to be disabled to reduce the consumption. Table 15. Main Clock Controller Register Map and Reset Values Address (Hex.) 002Bh 002Ch 002Dh 60/199 Register Label SICSR Reset Value MCCSR Reset Value MCCBCR Reset Value 7 6 5 4 3 2 1 0 VDS 0 MCO 0 VDIE 0 CP1 0 VDF 0 CP0 0 LVDRF x SMS 0 0 TB1 0 CFIE 0 TB0 0 0 0 0 0 0 0 CSSD 0 OIE 0 BC1 0 WDGRF x OIF 0 BC0 0 ST72521M/R/AR 10.3 PWM AUTO-RELOAD TIMER (ART) 10.3.1 Introduction The Pulse Width Modulated Auto-Reload Timer on-chip peripheral consists of an 8-bit auto reload counter with compare/capture capabilities and of a 7-bit prescaler clock source. These resources allow five possible operating modes: – Generation of up to 4 independent PWM signals – Output compare and Time base interrupt – Up to two input capture functions – External event detector – Up to two external interrupt sources The three first modes can be used together with a single counter frequency. The timer can be used to wake up the MCU from WAIT and HALT modes. Figure 36. PWM Auto-Reload Timer Block Diagram OEx PWMCR OCRx REGISTER OPx DCRx REGISTER LOAD PWMx PORT ALTERNATE FUNCTION POLARITY CONTROL COMPARE 8-BIT COUNTER ARR REGISTER INPUT CAPTURE CONTROL ARTICx ICSx ARTCLK ICIEx LOAD (CAR REGISTER) LOAD ICFx ICRx REGISTER ICCSR ICx INTERRUPT fEXT fCOUNTER fCPU MUX fINPUT EXCL PROGRAMMABLE PRESCALER CC2 CC1 CC0 TCE FCRL OIE OVF ARTCSR OVF INTERRUPT 61/199 ST72521M/R/AR PWM AUTO-RELOAD TIMER (Cont’d) 10.3.2 Functional Description Counter The free running 8-bit counter is fed by the output of the prescaler, and is incremented on every rising edge of the clock signal. It is possible to read or write the contents of the counter on the fly by reading or writing the Counter Access register (ARTCAR). When a counter overflow occurs, the counter is automatically reloaded with the contents of the ARTARR register (the prescaler is not affected). Counter clock and prescaler The counter clock frequency is given by: fCOUNTER = fINPUT / 2CC[2:0] The timer counter’s input clock (fINPUT) feeds the 7-bit programmable prescaler, which selects one of the 8 available taps of the prescaler, as defined by CC[2:0] bits in the Control/Status Register (ARTCSR). Thus the division factor of the prescaler can be set to 2 n (where n = 0, 1,..7). This fINPUT frequency source is selected through the EXCL bit of the ARTCSR register and can be either the f CPU or an external input frequency fEXT. The clock input to the counter is enabled by the TCE (Timer Counter Enable) bit in the ARTCSR register. When TCE is reset, the counter is stopped and the prescaler and counter contents are frozen. When TCE is set, the counter runs at the rate of the selected clock source. Counter and Prescaler Initialization After RESET, the counter and the prescaler are cleared and fINPUT = fCPU. The counter can be initialized by: – Writing to the ARTARR register and then setting the FCRL (Force Counter Re-Load) and the TCE (Timer Counter Enable) bits in the ARTCSR register. – Writing to the ARTCAR counter access register, In both cases the 7-bit prescaler is also cleared, whereupon counting will start from a known value. Direct access to the prescaler is not possible. Output compare control The timer compare function is based on four different comparisons with the counter (one for each PWMx output). Each comparison is made between the counter value and an output compare register (OCRx) value. This OCRx register can not be accessed directly, it is loaded from the duty cycle register (PWMDCRx) at each overflow of the counter. This double buffering method avoids glitch generation when changing the duty cycle on the fly. Figure 37. Output compare control fCOUNTER ARTARR=FDh COUNTER FDh FEh FFh OCRx PWMDCRx PWMx 62/199 FDh FEh FFh FDh FEh FDh FDh FEh FEh FFh ST72521M/R/AR PWM AUTO-RELOAD TIMER (Cont’d) Independent PWM signal generation This mode allows up to four Pulse Width Modulated signals to be generated on the PWMx output pins with minimum core processing overhead. This function is stopped during HALT mode. Each PWMx output signal can be selected independently using the corresponding OEx bit in the PWM Control register (PWMCR). When this bit is set, the corresponding I/O pin is configured as output push-pull alternate function. The PWM signals all have the same frequency which is controlled by the counter period and the ARTARR register value. fPWM = fCOUNTER / (256 - ARTARR) When a counter overflow occurs, the PWMx pin level is changed depending on the corresponding OPx (output polarity) bit in the PWMCR register. When the counter reaches the value contained in one of the output compare register (OCRx) the corresponding PWMx pin level is restored. It should be noted that the reload values will also affect the value and the resolution of the duty cycle of the PWM output signal. To obtain a signal on a PWMx pin, the contents of the OCRx register must be greater than the contents of the ARTARR register. The maximum available resolution for the PWMx duty cycle is: Resolution = 1 / (256 - ARTARR) Note: To get the maximum resolution (1/256), the ARTARR register must be 0. With this maximum resolution, 0% and 100% can be obtained by changing the polarity. Figure 38. PWM Auto-reload Timer Function COUNTER 255 DUTY CYCLE REGISTER (PWMDCRx) AUTO-RELOAD REGISTER (ARTARR) PWMx OUTPUT 000 t WITH OEx=1 AND OPx=0 WITH OEx=1 AND OPx=1 Figure 39. PWM Signal from 0% to 100% Duty Cycle fCOUNTER ARTARR=FDh COUNTER FDh FEh FFh FDh FEh FFh FDh FEh PWMx OUTPUT WITH OEx=1 AND OPx=0 OCRx=FCh OCRx=FDh OCRx=FEh OCRx=FFh t 63/199 ST72521M/R/AR PWM AUTO-RELOAD TIMER (Cont’d) Output compare and Time base interrupt On overflow, the OVF flag of the ARTCSR register is set and an overflow interrupt request is generated if the overflow interrupt enable bit, OIE, in the ARTCSR register, is set. The OVF flag must be reset by the user software. This interrupt can be used as a time base in the application. External clock and event detector mode Using the fEXT external prescaler input clock, the auto-reload timer can be used as an external clock event detector. In this mode, the ARTARR register is used to select the nEVENT number of events to be counted before setting the OVF flag. nEVENT = 256 - ARTARR When entering HALT mode while fEXT is selected, all the timer control registers are frozen but the counter continues to increment. If the OIE bit is set, the next overflow of the counter will generate an interrupt which wakes up the MCU. Figure 40. External Event Detector Example (3 counts) fEXT=f COUNTER ARTARR=FDh COUNTER FDh FEh FFh FDh FEh FFh FDh OVF ARTCSR READ ARTCSR READ INTERRUPT IF OIE=1 INTERRUPT IF OIE=1 t 64/199 ST72521M/R/AR PWM AUTO-RELOAD TIMER (Cont’d) Input capture function This mode allows the measurement of external signal pulse widths through ARTICRx registers. Each input capture can generate an interrupt independently on a selected input signal transition. This event is flagged by a set of the corresponding CFx bits of the Input Capture Control/Status register (ARTICCSR). These input capture interrupts are enabled through the CIEx bits of the ARTICCSR register. The active transition (falling or rising edge) is software programmable through the CSx bits of the ARTICCSR register. The read only input capture registers (ARTICRx) are used to latch the auto-reload counter value when a transition is detected on the ARTICx pin (CFx bit set in ARTICCSR register). After fetching the interrupt vector, the CFx flags can be read to identify the interrupt source. Note: After a capture detection, data transfer in the ARTICRx register is inhibited until it is read (clearing the CFx bit). The timer interrupt remains pending while the CFx flag is set when the interrupt is enabled (CIEx bit set). This means, the ARTICRx register has to be read at each capture event to clear the CFx flag. External interrupt capability This mode allows the Input capture capabilities to be used as external interrupt sources. The interrupts are generated on the edge of the ARTICx signal. The edge sensitivity of the external interrupts is programmable (CSx bit of ARTICCSR register) and they are independently enabled through CIEx bits of the ARTICCSR register. After fetching the interrupt vector, the CFx flags can be read to identify the interrupt source. During HALT mode, the external interrupts can be used to wake up the micro (if the CIEx bit is set). The timing resolution is given by auto-reload counter cycle time (1/fCOUNTER ). Note: During HALT mode, if both input capture and external clock are enabled, the ARTICRx register value is not guaranteed if the input capture pin and the external clock change simultaneously. Figure 41. Input Capture Timing Diagram f COUNTER COUNTER 01h 02h 03h 04h 05h 06h 07h INTERRUPT ARTICx PIN CFx FLAG xxh 04h ICRx REGISTER t 65/199 ST72521M/R/AR PWM AUTO-RELOAD TIMER (Cont’d) 10.3.3 Register Description 0: New transition not yet reached 1: Transition reached CONTROL / STATUS REGISTER (ARTCSR) Read /Write Reset Value: 0000 0000 (00h) 7 EXCL 0 CC2 CC1 CC0 TCE FCRL OIE COUNTER ACCESS REGISTER (ARTCAR) Read /Write Reset Value: 0000 0000 (00h) OVF 7 Bit 7 = EXCL External Clock This bit is set and cleared by software. It selects the input clock for the 7-bit prescaler. 0: CPU clock. 1: External clock. Bit 6:4 = CC[2:0] Counter Clock Control These bits are set and cleared by software. They determine the prescaler division ratio from f INPUT. fCOUNTER fINPUT fINPUT / 2 fINPUT / 4 fINPUT / 8 fINPUT / 16 fINPUT / 32 fINPUT / 64 fINPUT / 128 CA6 CA5 CA4 CA3 CA2 CA1 CA0 Bit 7:0 = CA[7:0] Counter Access Data These bits can be set and cleared either by hardware or by software. The ARTCAR register is used to read or write the auto-reload counter “on the fly” (while it is counting). With fINPUT=8 MHz CC2 CC1 CC0 8 MHz 4 MHz 2 MHz 1 MHz 500 KHz 250 KHz 125 KHz 62.5 KHz 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 Bit 3 = TCE Timer Counter Enable This bit is set and cleared by software. It puts the timer in the lowest power consumption mode. 0: Counter stopped (prescaler and counter frozen). 1: Counter running. Bit 2 = FCRL Force Counter Re-Load This bit is write-only and any attempt to read it will yield a logical zero. When set, it causes the contents of ARTARR register to be loaded into the counter, and the content of the prescaler register to be cleared in order to initialize the timer before starting to count. Bit 1 = OIE Overflow Interrupt Enable This bit is set and cleared by software. It allows to enable/disable the interrupt which is generated when the OVF bit is set. 0: Overflow Interrupt disable. 1: Overflow Interrupt enable. Bit 0 = OVF Overflow Flag This bit is set by hardware and cleared by software reading the ARTCSR register. It indicates the transition of the counter from FFh to the ARTARR value. 66/199 CA7 0 AUTO-RELOAD REGISTER (ARTARR) Read /Write Reset Value: 0000 0000 (00h) 7 AR7 0 AR6 AR5 AR4 AR3 AR2 AR1 AR0 Bit 7:0 = AR[7:0] Counter Auto-Reload Data These bits are set and cleared by software. They are used to hold the auto-reload value which is automatically loaded in the counter when an overflow occurs. At the same time, the PWM output levels are changed according to the corresponding OPx bit in the PWMCR register. This register has two PWM management functions: – Adjusting the PWM frequency – Setting the PWM duty cycle resolution PWM Frequency vs. Resolution: ARTARR value Resolution 0 [ 0..127 ] [ 128..191 ] [ 192..223 ] [ 224..239 ] 8-bit > 7-bit > 6-bit > 5-bit > 4-bit fPWM Min Max ~0.244-KHz ~0.244-KHz ~0.488-KHz ~0.977-KHz ~1.953-KHz 31.25-KHz 62.5-KHz 125-KHz 250-KHz 500-KHz ST72521M/R/AR PWM AUTO-RELOAD TIMER (Cont’d) DUTY CYCLE REGISTERS (PWMDCRx) Read /Write Reset Value: 0000 0000 (00h) PWM CONTROL REGISTER (PWMCR) Read /Write Reset Value: 0000 0000 (00h) 7 OE3 OE2 OE1 OE0 OP3 OP2 OP1 0 7 OP0 DC7 Bit 7:4 = OE[3:0] PWM Output Enable These bits are set and cleared by software. They enable or disable the PWM output channels independently acting on the corresponding I/O pin. 0: PWM output disabled. 1: PWM output enabled. Bit 3:0 = OP[3:0] PWM Output Polarity These bits are set and cleared by software. They independently select the polarity of the four PWM output signals. 0 DC6 DC5 DC4 DC3 DC2 DC1 DC0 Bit 7:0 = DC[7:0] Duty Cycle Data These bits are set and cleared by software. A PWMDCRx register is associated with the OCRx register of each PWM channel to determine the second edge location of the PWM signal (the first edge location is common to all channels and given by the ARTARR register). These PWMDCR registers allow the duty cycle to be set independently for each PWM channel. PWMx output level OPx Counter <= OCRx Counter > OCRx 1 0 0 1 0 1 Note: When an OPx bit is modified, the PWMx output signal polarity is immediately reversed. 67/199 ST72521M/R/AR PWM AUTO-RELOAD TIMER (Cont’d) INPUT CAPTURE CONTROL / STATUS REGISTER (ARTICCSR) Read /Write Reset Value: 0000 0000 (00h) INPUT CAPTURE REGISTERS (ARTICRx) Read only Reset Value: 0000 0000 (00h) 7 7 IC7 0 0 CS2 CS1 CIE2 CIE1 CF2 IC6 IC5 IC4 IC3 IC2 IC1 IC0 CF1 Bit 7:6 = Reserved, always read as 0. Bit 5:4 = CS[2:1] Capture Sensitivity These bits are set and cleared by software. They determine the trigger event polarity on the corresponding input capture channel. 0: Falling edge triggers capture on channel x. 1: Rising edge triggers capture on channel x. Bit 3:2 = CIE[2:1] Capture Interrupt Enable These bits are set and cleared by software. They enable or disable the Input capture channel interrupts independently. 0: Input capture channel x interrupt disabled. 1: Input capture channel x interrupt enabled. Bit 1:0 = CF[2:1] Capture Flag These bits are set by hardware and cleared by software reading the corresponding ARTICRx register. Each CFx bit indicates that an input capture x has occurred. 0: No input capture on channel x. 1: An input capture has occured on channel x. 68/199 0 0 Bit 7:0 = IC[7:0] Input Capture Data These read only bits are set and cleared by hardware. An ARTICRx register contains the 8-bit auto-reload counter value transferred by the input capture channel x event. ST72521M/R/AR PWM AUTO-RELOAD TIMER (Cont’d) Table 16. PWM Auto-Reload Timer Register Map and Reset Values Address (Hex.) 0073h 0074h 0075h 0076h 0077h 0078h 0079h 007Ah 007Bh 007Ch 007Dh Register Label PWMDCR3 Reset Value PWMDCR2 Reset Value PWMDCR1 Reset Value PWMDCR0 Reset Value PWMCR Reset Value ARTCSR Reset Value ARTCAR Reset Value ARTARR Reset Value 7 6 5 4 3 2 1 0 DC7 0 DC6 0 DC5 0 DC4 0 DC3 0 DC2 0 DC1 0 DC0 0 DC7 0 DC6 0 DC5 0 DC4 0 DC3 0 DC2 0 DC1 0 DC0 0 DC7 0 DC6 0 DC5 0 DC4 0 DC3 0 DC2 0 DC1 0 DC0 0 DC7 0 DC6 0 DC5 0 DC4 0 DC3 0 DC2 0 DC1 0 DC0 0 OE3 0 OE2 0 OE1 0 OE0 0 OP3 0 OP2 0 OP1 0 OP0 0 EXCL 0 CC2 0 CC1 0 CC0 0 TCE 0 FCRL 0 RIE 0 OVF 0 CA7 0 CA6 0 CA5 0 CA4 0 CA3 0 CA2 0 CA1 0 CA0 0 AR7 0 AR6 0 AR5 0 AR4 0 AR3 0 AR2 0 AR1 0 AR0 0 0 0 CS2 0 CS1 0 CIE2 0 CIE1 0 CF2 0 CF1 0 IC7 0 IC6 0 IC5 0 IC4 0 IC3 0 IC2 0 IC1 0 IC0 0 IC7 0 IC6 0 IC5 0 IC4 0 IC3 0 IC2 0 IC1 0 IC0 0 ARTICCSR Reset Value ARTICR1 Reset Value ARTICR2 Reset Value 69/199 ST72521M/R/AR 10.4 16-BIT TIMER 10.4.1 Introduction The timer consists of a 16-bit free-running counter driven by a programmable prescaler. It may be used for a variety of purposes, including pulse length measurement of up to two input signals ( input capture) or generation of up to two output waveforms (output compare and PWM). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the CPU clock prescaler. Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and do not share any resources. They are synchronized after a MCU reset as long as the timer clock frequencies are not modified. This description covers one or two 16-bit timers. In ST7 devices with two timers, register names are prefixed with TA (Timer A) or TB (Timer B). 10.4.2 Main Features ■ Programmable prescaler: fCPU divided by 2, 4 or 8. ■ Overflow status flag and maskable interrupt ■ External clock input (must be at least 4 times slower than the CPU clock speed) with the choice of active edge ■ 1 or 2 Output Compare functions each with: – 2 dedicated 16-bit registers – 2 dedicated programmable signals – 2 dedicated status flags – 1 dedicated maskable interrupt ■ 1 or 2 Input Capture functions each with: – 2 dedicated 16-bit registers – 2 dedicated active edge selection signals – 2 dedicated status flags – 1 dedicated maskable interrupt ■ Pulse width modulation mode (PWM) ■ One pulse mode ■ Reduced Power Mode ■ 5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)* The Block Diagram is shown in Figure 42. *Note: Some timer pins may not available (not bonded) in some ST7 devices. Refer to the device pin out description. 70/199 When reading an input signal on a non-bonded pin, the value will always be ‘1’. 10.4.3 Functional Description 10.4.3.1 Counter The main block of the Programmable Timer is a 16-bit free running upcounter and its associated 16-bit registers. The 16-bit registers are made up of two 8-bit registers called high & low. Counter Register (CR): – Counter High Register (CHR) is the most significant byte (MS Byte). – Counter Low Register (CLR) is the least significant byte (LS Byte). Alternate Counter Register (ACR) – Alternate Counter High Register (ACHR) is the most significant byte (MS Byte). – Alternate Counter Low Register (ACLR) is the least significant byte (LS Byte). These two read-only 16-bit registers contain the same value but with the difference that reading the ACLR register does not clear the TOF bit (Timer overflow flag), located in the Status register, (SR), (see note at the end of paragraph titled 16-bit read sequence). Writing in the CLR register or ACLR register resets the free running counter to the FFFCh value. Both counters have a reset value of FFFCh (this is the only value which is reloaded in the 16-bit timer). The reset value of both counters is also FFFCh in One Pulse mode and PWM mode. The timer clock depends on the clock control bits of the CR2 register, as illustrated in Table 17 Clock Control Bits. The value in the counter register repeats every 131072, 262144 or 524288 CPU clock cycles depending on the CC[1:0] bits. The timer frequency can be fCPU/2, fCPU/4, fCPU/8 or an external frequency. ST72521M/R/AR 16-BIT TIMER (Cont’d) Figure 42. Timer Block Diagram ST7 INTERNAL BUS fCPU MCU-PERIPHERAL INTERFACE 8 low 8 8 8 low 8 high 8 low 8 high EXEDG 8 low high 8 high 8-bit buffer low 8 high 16 1/2 1/4 1/8 OUTPUT COMPARE REGISTER 2 OUTPUT COMPARE REGISTER 1 COUNTER REGISTER ALTERNATE COUNTER REGISTER EXTCLK pin INPUT CAPTURE REGISTER 1 INPUT CAPTURE REGISTER 2 16 16 16 CC[1:0] TIMER INTERNAL BUS 16 16 OVERFLOW DETECT CIRCUIT OUTPUT COMPARE CIRCUIT 6 ICF1 OCF1 TOF ICF2 OCF2 TIMD 0 EDGE DETECT CIRCUIT1 ICAP1 pin EDGE DETECT CIRCUIT2 ICAP2 pin LATCH1 OCMP1 pin LATCH2 OCMP2 pin 0 (Control/Status Register) CSR ICIE OCIE TOIE FOLV2 FOLV1OLVL2 IEDG1 OLVL1 (Control Register 1) CR1 OC1E OC2E OPM PWM CC1 CC0 IEDG2 EXEDG (Control Register 2) CR2 (See note) TIMER INTERRUPT Note: If IC, OC and TO interrupt requests have separate vectors then the last OR is not present (See device Interrupt Vector Table) 71/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) 16-bit read sequence: (from either the Counter Register or the Alternate Counter Register). Beginning of the sequence At t0 Read MS Byte LS Byte is buffered Other instructions Read At t0 +∆t LS Byte Returns the buffered LS Byte value at t0 Sequence completed The user must read the MS Byte first, then the LS Byte value is buffered automatically. This buffered value remains unchanged until the 16-bit read sequence is completed, even if the user reads the MS Byte several times. After a complete reading sequence, if only the CLR register or ACLR register are read, they return the LS Byte of the count value at the time of the read. Whatever the timer mode used (input capture, output compare, one pulse mode or PWM mode) an overflow occurs when the counter rolls over from FFFFh to 0000h then: – The TOF bit of the SR register is set. – A timer interrupt is generated if: – TOIE bit of the CR1 register is set and – I bit of the CC register is cleared. If one of these conditions is false, the interrupt remains pending to be issued as soon as they are both true. 72/199 Clearing the overflow interrupt request is done in two steps: 1. Reading the SR register while the TOF bit is set. 2. An access (read or write) to the CLR register. Notes: The TOF bit is not cleared by accesses to ACLR register. The advantage of accessing the ACLR register rather than the CLR register is that it allows simultaneous use of the overflow function and reading the free running counter at random times (for example, to measure elapsed time) without the risk of clearing the TOF bit erroneously. The timer is not affected by WAIT mode. In HALT mode, the counter stops counting until the mode is exited. Counting then resumes from the previous count (MCU awakened by an interrupt) or from the reset count (MCU awakened by a Reset). 10.4.3.2 External Clock The external clock (where available) is selected if CC0=1 and CC1=1 in the CR2 register. The status of the EXEDG bit in the CR2 register determines the type of level transition on the external clock pin EXTCLK that will trigger the free running counter. The counter is synchronized with the falling edge of the internal CPU clock. A minimum of four falling edges of the CPU clock must occur between two consecutive active edges of the external clock; thus the external clock frequency must be less than a quarter of the CPU clock frequency. ST72521M/R/AR 16-BIT TIMER (Cont’d) Figure 43. Counter Timing Diagram, internal clock divided by 2 CPU CLOCK INTERNAL RESET TIMER CLOCK FFFD FFFE FFFF 0000 COUNTER REGISTER 0001 0002 0003 TIMER OVERFLOW FLAG (TOF) Figure 44. Counter Timing Diagram, internal clock divided by 4 CPU CLOCK INTERNAL RESET TIMER CLOCK COUNTER REGISTER FFFC FFFD 0000 0001 TIMER OVERFLOW FLAG (TOF) Figure 45. Counter Timing Diagram, internal clock divided by 8 CPU CLOCK INTERNAL RESET TIMER CLOCK COUNTER REGISTER FFFC FFFD 0000 TIMER OVERFLOW FLAG (TOF) Note: The MCU is in reset state when the internal reset signal is high, when it is low the MCU is running. 73/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) 10.4.3.3 Input Capture In this section, the index, i, may be 1 or 2 because there are 2 input capture functions in the 16-bit timer. The two 16-bit input capture registers (IC1R and IC2R) are used to latch the value of the free running counter after a transition is detected on the ICAP i pin (see figure 5). ICiR MS Byte ICiHR LS Byte ICiLR IC iR register is a read-only register. The active transition is software programmable through the IEDGi bit of Control Registers (CRi). Timing resolution is one count of the free running counter: (fCPU/CC[1:0]). Procedure: To use the input capture function select the following in the CR2 register: – Select the timer clock (CC[1:0]) (see Table 17 Clock Control Bits). – Select the edge of the active transition on the ICAP2 pin with the IEDG2 bit (the ICAP2 pin must be configured as floating input or input with pull-up without interrupt if this configuration is available). And select the following in the CR1 register: – Set the ICIE bit to generate an interrupt after an input capture coming from either the ICAP1 pin or the ICAP2 pin – Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the ICAP1pin must be configured as floating input or input with pullup without interrupt if this configuration is available). 74/199 When an input capture occurs: – ICFi bit is set. – The ICiR register contains the value of the free running counter on the active transition on the ICAPi pin (see Figure 47). – A timer interrupt is generated if the ICIE bit is set and the I bit is cleared in the CC register. Otherwise, the interrupt remains pending until both conditions become true. Clearing the Input Capture interrupt request (i.e. clearing the ICFi bit) is done in two steps: 1. Reading the SR register while the ICFi bit is set. 2. An access (read or write) to the ICiLR register. Notes: 1. After reading the ICiHR register, transfer of input capture data is inhibited and ICFi will never be set until the ICiLR register is also read. 2. The ICiR register contains the free running counter value which corresponds to the most recent input capture. 3. The 2 input capture functions can be used together even if the timer also uses the 2 output compare functions. 4. In One pulse Mode and PWM mode only Input Capture 2 can be used. 5. The alternate inputs (ICAP1 & ICAP2) are always directly connected to the timer. So any transitions on these pins activates the input capture function. Moreover if one of the ICAPi pins is configured as an input and the second one as an output, an interrupt can be generated if the user toggles the output pin and if the ICIE bit is set. This can be avoided if the input capture function i is disabled by reading the IC iHR (see note 1). 6. The TOF bit can be used with interrupt generation in order to measure events that go beyond the timer range (FFFFh). ST72521M/R/AR 16-BIT TIMER (Cont’d) Figure 46. Input Capture Block Diagram ICAP1 pin ICAP2 pin (Control Register 1) CR1 EDGE DETECT CIRCUIT2 EDGE DETECT CIRCUIT1 ICIE IEDG1 (Status Register) SR IC1R Register IC2R Register ICF1 ICF2 0 0 0 (Control Register 2) CR2 16-BIT 16-BIT FREE RUNNING COUNTER CC1 CC0 IEDG2 Figure 47. Input Capture Timing Diagram TIMER CLOCK COUNTER REGISTER FF01 FF02 FF03 ICAPi PIN ICAPi FLAG ICAPi REGISTER FF03 Note: The rising edge is the active edge. 75/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) 10.4.3.4 Output Compare In this section, the index, i, may be 1 or 2 because there are 2 output compare functions in the 16-bit timer. This function can be used to control an output waveform or indicate when a period of time has elapsed. When a match is found between the Output Compare register and the free running counter, the output compare function: – Assigns pins with a programmable value if the OCiE bit is set – Sets a flag in the status register – Generates an interrupt if enabled Two 16-bit registers Output Compare Register 1 (OC1R) and Output Compare Register 2 (OC2R) contain the value to be compared to the counter register each timer clock cycle. OCiR MS Byte OCiHR LS Byte OCiLR These registers are readable and writable and are not affected by the timer hardware. A reset event changes the OCiR value to 8000h. Timing resolution is one count of the free running counter: (fCPU/CC[1:0]). Procedure: To use the output compare function, select the following in the CR2 register: – Set the OCiE bit if an output is needed then the OCMPi pin is dedicated to the output compare i signal. – Select the timer clock (CC[1:0]) (see Table 17 Clock Control Bits). And select the following in the CR1 register: – Select the OLVLi bit to applied to the OCMP i pins after the match occurs. – Set the OCIE bit to generate an interrupt if it is needed. When a match is found between OCRi register and CR register: – OCFi bit is set. 76/199 – The OCMP i pin takes OLVLi bit value (OCMPi pin latch is forced low during reset). – A timer interrupt is generated if the OCIE bit is set in the CR1 register and the I bit is cleared in the CC register (CC). The OCiR register value required for a specific timing application can be calculated using the following formula: ∆ OCiR = ∆t * fCPU PRESC Where: ∆t = Output compare period (in seconds) fCPU = CPU clock frequency (in hertz) PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 17 Clock Control Bits) If the timer clock is an external clock, the formula is: ∆ OCiR = ∆t * fEXT Where: ∆t = Output compare period (in seconds) fEXT = External timer clock frequency (in hertz) Clearing the output compare interrupt request (i.e. clearing the OCFi bit) is done by: 1. Reading the SR register while the OCFi bit is set. 2. An access (read or write) to the OCiLR register. The following procedure is recommended to prevent the OCFi bit from being set between the time it is read and the write to the OCiR register: – Write to the OCiHR register (further compares are inhibited). – Read the SR register (first step of the clearance of the OCFi bit, which may be already set). – Write to the OCiLR register (enables the output compare function and clears the OCFi bit). ST72521M/R/AR 16-BIT TIMER (Cont’d) Notes: 1. After a processor write cycle to the OCiHR register, the output compare function is inhibited until the OCiLR register is also written. 2. If the OCiE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit will not appear when a match is found but an interrupt could be generated if the OCIE bit is set. 3. When the timer clock is fCPU/2, OCFi and OCMPi are set while the counter value equals the OCiR register value (see Figure 49 on page 78). This behaviour is the same in OPM or PWM mode. When the timer clock is fCPU/4, fCPU/8 or in external clock mode, OCFi and OCMPi are set while the counter value equals the OCiR register value plus 1 (see Figure 50 on page 78). 4. The output compare functions can be used both for generating external events on the OCMPi pins even if the input capture mode is also used. 5. The value in the 16-bit OCiR register and the OLVi bit should be changed after each successful comparison in order to control an output waveform or establish a new elapsed timeout. Forced Compare Output capability When the FOLVi bit is set by software, the OLVLi bit is copied to the OCMPi pin. The OLVi bit has to be toggled in order to toggle the OCMPi pin when it is enabled (OCiE bit=1). The OCFi bit is then not set by hardware, and thus no interrupt request is generated. The FOLVLi bits have no effect in both one pulse mode and PWM mode. Figure 48. Output Compare Block Diagram 16 BIT FREE RUNNING COUNTER OC1E OC2E CC1 CC0 (Control Register 2) CR2 16-bit (Control Register 1) CR1 OUTPUT COMPARE CIRCUIT 16-bit OCIE FOLV2 FOLV1 OLVL2 OLVL1 16-bit Latch 1 Latch 2 OC1R Register OCF1 OCF2 0 0 OCMP1 Pin OCMP2 Pin 0 OC2R Register (Status Register) SR 77/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) Figure 49. Output Compare Timing Diagram, fTIMER =fCPU/2 INTERNAL CPU CLOCK TIMER CLOCK COUNTER REGISTER 2ECF 2ED0 2ED1 2ED2 2ED3 2ED4 OUTPUT COMPARE REGISTER i (OCRi) 2ED3 OUTPUT COMPARE FLAG i (OCFi) OCMPi PIN (OLVLi=1) Figure 50. Output Compare Timing Diagram, fTIMER =fCPU/4 INTERNAL CPU CLOCK TIMER CLOCK COUNTER REGISTER OUTPUT COMPARE REGISTER i (OCRi) COMPARE REGISTER i LATCH OUTPUT COMPARE FLAG i (OCFi) OCMPi PIN (OLVLi=1) 78/199 2ECF 2ED0 2ED1 2ED2 2ED3 2ED4 2ED3 ST72521M/R/AR 16-BIT TIMER (Cont’d) 10.4.3.5 One Pulse Mode One Pulse mode enables the generation of a pulse when an external event occurs. This mode is selected via the OPM bit in the CR2 register. The one pulse mode uses the Input Capture1 function and the Output Compare1 function. Procedure: To use one pulse mode: 1. Load the OC1R register with the value corresponding to the length of the pulse (see the formula in the opposite column). 2. Select the following in the CR1 register: – Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after the pulse. – Using the OLVL2 bit, select the level to be applied to the OCMP1 pin during the pulse. – Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the ICAP1 pin must be configured as floating input). 3. Select the following in the CR2 register: – Set the OC1E bit, the OCMP1 pin is then dedicated to the Output Compare 1 function. – Set the OPM bit. – Select the timer clock CC[1:0] (see Table 17 Clock Control Bits). One pulse mode cycle When event occurs on ICAP1 ICR1 = Counter OCMP1 = OLVL2 Counter is reset to FFFCh ICF1 bit is set When Counter = OC1R OCMP1 = OLVL1 Then, on a valid event on the ICAP1 pin, the counter is initialized to FFFCh and OLVL2 bit is loaded on the OCMP1 pin, the ICF1 bit is set and the value FFFDh is loaded in the IC1R register. Because the ICF1 bit is set when an active edge occurs, an interrupt can be generated if the ICIE bit is set. Clearing the Input Capture interrupt request (i.e. clearing the ICFi bit) is done in two steps: 1. Reading the SR register while the ICFi bit is set. 2. An access (read or write) to the ICiLR register. The OC1R register value required for a specific timing application can be calculated using the following formula: OCiR Value = t * fCPU -5 PRESC Where: t = Pulse period (in seconds) fCPU = CPU clock frequency (in hertz) PRESC = Timer prescaler factor (2, 4 or 8 depending on the CC[1:0] bits, see Table 17 Clock Control Bits) If the timer clock is an external clock the formula is: OCiR = t * fEXT -5 Where: t = Pulse period (in seconds) fEXT = External timer clock frequency (in hertz) When the value of the counter is equal to the value of the contents of the OC1R register, the OLVL1 bit is output on the OCMP1 pin, (See Figure 51). Notes: 1. The OCF1 bit cannot be set by hardware in one pulse mode but the OCF2 bit can generate an Output Compare interrupt. 2. When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the PWM mode is the only active one. 3. If OLVL1=OLVL2 a continuous signal will be seen on the OCMP1 pin. 4. The ICAP1 pin can not be used to perform input capture. The ICAP2 pin can be used to perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take care that the counter is reset each time a valid edge occurs on the ICAP1 pin and ICF1 can also generates interrupt if ICIE is set. 5. When one pulse mode is used OC1R is dedicated to this mode. Nevertheless OC2R and OCF2 can be used to indicate a period of time has been elapsed but cannot generate an output waveform because the level OLVL2 is dedicated to the one pulse mode. 79/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) Figure 51. One Pulse Mode Timing Example COUNTER 2ED3 01F8 IC1R 01F8 FFFC FFFD FFFE 2ED0 2ED1 2ED2 FFFC FFFD 2ED3 ICAP1 OLVL2 OCMP1 OLVL1 OLVL2 compare1 Note: IEDG1=1, OC1R=2ED0h, OLVL1=0, OLVL2=1 Figure 52. Pulse Width Modulation Mode Timing Example with 2 Output Compare Functions COUNTER 34E2 FFFC FFFD FFFE 2ED0 2ED1 2ED2 OLVL2 OCMP1 compare2 OLVL1 compare1 34E2 FFFC OLVL2 compare2 Note: OC1R=2ED0h, OC2R=34E2, OLVL1=0, OLVL2= 1 Note: On timers with only 1 Output Compare register, a fixed frequency PWM signal can be generated using the output compare and the counter overflow to define the pulse length. 80/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) 10.4.3.6 Pulse Width Modulation Mode Pulse Width Modulation (PWM) mode enables the generation of a signal with a frequency and pulse length determined by the value of the OC1R and OC2R registers. Pulse Width Modulation mode uses the complete Output Compare 1 function plus the OC2R register, and so this functionality can not be used when PWM mode is activated. In PWM mode, double buffering is implemented on the output compare registers. Any new values written in the OC1R and OC2R registers are taken into account only at the end of the PWM period (OC2) to avoid spikes on the PWM output pin (OCMP1). Procedure To use pulse width modulation mode: 1. Load the OC2R register with the value corresponding to the period of the signal using the formula in the opposite column. 2. Load the OC1R register with the value corresponding to the period of the pulse if (OLVL1=0 and OLVL2=1) using the formula in the opposite column. 3. Select the following in the CR1 register: – Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC1R register. – Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC2R register. 4. Select the following in the CR2 register: – Set OC1E bit: the OCMP1 pin is then dedicated to the output compare 1 function. – Set the PWM bit. – Select the timer clock (CC[1:0]) (see Table 17 Clock Control Bits). Pulse Width Modulation cycle When Counter = OC1R When Counter = OC2R OCMP1 = OLVL1 OCMP1 = OLVL2 Counter is reset to FFFCh If OLVL1=1 and OLVL2=0 the length of the positive pulse is the difference between the OC2R and OC1R registers. If OLVL1=OLVL2 a continuous signal will be seen on the OCMP1 pin. The OCiR register value required for a specific timing application can be calculated using the following formula: OCiR Value = t * fCPU -5 PRESC Where: t = Signal or pulse period (in seconds) fCPU = CPU clock frequency (in hertz) PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 17 Clock Control Bits) If the timer clock is an external clock the formula is: OCiR = t * fEXT -5 Where: t = Signal or pulse period (in seconds) fEXT = External timer clock frequency (in hertz) The Output Compare 2 event causes the counter to be initialized to FFFCh (See Figure 52) Notes: 1. After a write instruction to the OCiHR register, the output compare function is inhibited until the OCiLR register is also written. 2. The OCF1 and OCF2 bits cannot be set by hardware in PWM mode therefore the Output Compare interrupt is inhibited. 3. The ICF1 bit is set by hardware when the counter reaches the OC2R value and can produce a timer interrupt if the ICIE bit is set and the I bit is cleared. 4. In PWM mode the ICAP1 pin can not be used to perform input capture because it is disconnected to the timer. The ICAP2 pin can be used to perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take care that the counter is reset each period and ICF1 can also generates interrupt if ICIE is set. 5. When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the PWM mode is the only active one. ICF1 bit is set 81/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) 10.4.4 Low Power Modes Mode WAIT HALT Description No effect on 16-bit Timer. Timer interrupts cause the device to exit from WAIT mode. 16-bit Timer registers are frozen. In HALT mode, the counter stops counting until Halt mode is exited. Counting resumes from the previous count when the MCU is woken up by an interrupt with “exit from HALT mode” capability or from the counter reset value when the MCU is woken up by a RESET. If an input capture event occurs on the ICAPi pin, the input capture detection circuitry is armed. Consequently, when the MCU is woken up by an interrupt with “exit from HALT mode” capability, the ICFi bit is set, and the counter value present when exiting from HALT mode is captured into the ICiR register. 10.4.5 Interrupts Event Flag Interrupt Event Input Capture 1 event/Counter reset in PWM mode Input Capture 2 event Output Compare 1 event (not available in PWM mode) Output Compare 2 event (not available in PWM mode) Timer Overflow event ICF1 ICF2 OCF1 OCF2 TOF Enable Control Bit ICIE OCIE TOIE Exit from Wait Yes Yes Yes Yes Yes Exit from Halt No No No No No Note: The 16-bit Timer interrupt events are connected to the same interrupt vector (see Interrupts chapter). These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction). 10.4.6 Summary of Timer modes MODES Input Capture (1 and/or 2) Output Compare (1 and/or 2) One Pulse Mode PWM Mode Input Capture 1 Yes Yes No No TIMER RESOURCES Input Capture 2 Output Compare 1 Output Compare 2 Yes Yes Yes Yes Yes Yes 1) No Partially 2) Not Recommended 3) Not Recommended No No 1) See note 4 in Section 10.4.3.5 One Pulse Mode 2) See note 5 in Section 10.4.3.5 One Pulse Mode 3) See note 4 in Section 10.4.3.6 Pulse Width Modulation Mode 82/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) 10.4.7 Register Description Each Timer is associated with three control and status registers, and with six pairs of data registers (16-bit values) relating to the two input captures, the two output compares, the counter and the alternate counter. CONTROL REGISTER 1 (CR1) Read/Write Reset Value: 0000 0000 (00h) 7 0 Bit 4 = FOLV2 Forced Output Compare 2. This bit is set and cleared by software. 0: No effect on the OCMP2 pin. 1: Forces the OLVL2 bit to be copied to the OCMP2 pin, if the OC2E bit is set and even if there is no successful comparison. Bit 3 = FOLV1 Forced Output Compare 1. This bit is set and cleared by software. 0: No effect on the OCMP1 pin. 1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if there is no successful comparison. ICIE OCIE TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1 Bit 7 = ICIE Input Capture Interrupt Enable. 0: Interrupt is inhibited. 1: A timer interrupt is generated whenever the ICF1 or ICF2 bit of the SR register is set. Bit 6 = OCIE Output Compare Interrupt Enable. 0: Interrupt is inhibited. 1: A timer interrupt is generated whenever the OCF1 or OCF2 bit of the SR register is set. Bit 5 = TOIE Timer Overflow Interrupt Enable. 0: Interrupt is inhibited. 1: A timer interrupt is enabled whenever the TOF bit of the SR register is set. Bit 2 = OLVL2 Output Level 2. This bit is copied to the OCMP2 pin whenever a successful comparison occurs with the OC2R register and OCxE is set in the CR2 register. This value is copied to the OCMP1 pin in One Pulse Mode and Pulse Width Modulation mode. Bit 1 = IEDG1 Input Edge 1. This bit determines which type of level transition on the ICAP1 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture. Bit 0 = OLVL1 Output Level 1. The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison occurs with the OC1R register and the OC1E bit is set in the CR2 register. 83/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) CONTROL REGISTER 2 (CR2) Read/Write Reset Value: 0000 0000 (00h) 7 0 OC1E OC2E OPM PWM CC1 CC0 IEDG2 EXEDG Bit 7 = OC1E Output Compare 1 Pin Enable. This bit is used only to output the signal from the timer on the OCMP1 pin (OLV1 in Output Compare mode, both OLV1 and OLV2 in PWM and one-pulse mode). Whatever the value of the OC1E bit, the Output Compare 1 function of the timer remains active. 0: OCMP1 pin alternate function disabled (I/O pin free for general-purpose I/O). 1: OCMP1 pin alternate function enabled. Bit 6 = OC2E Output Compare 2 Pin Enable. This bit is used only to output the signal from the timer on the OCMP2 pin (OLV2 in Output Compare mode). Whatever the value of the OC2E bit, the Output Compare 2 function of the timer remains active. 0: OCMP2 pin alternate function disabled (I/O pin free for general-purpose I/O). 1: OCMP2 pin alternate function enabled. Bit 5 = OPM One Pulse Mode. 0: One Pulse Mode is not active. 1: One Pulse Mode is active, the ICAP1 pin can be used to trigger one pulse on the OCMP1 pin; the active transition is given by the IEDG1 bit. The length of the generated pulse depends on the contents of the OC1R register. 84/199 Bit 4 = PWM Pulse Width Modulation. 0: PWM mode is not active. 1: PWM mode is active, the OCMP1 pin outputs a programmable cyclic signal; the length of the pulse depends on the value of OC1R register; the period depends on the value of OC2R register. Bit 3, 2 = CC[1:0] Clock Control. The timer clock mode depends on these bits: Table 17. Clock Control Bits Timer Clock fCPU / 4 fCPU / 2 fCPU / 8 External Clock (where available) CC1 0 0 1 CC0 0 1 0 1 1 Note: If the external clock pin is not available, programming the external clock configuration stops the counter. Bit 1 = IEDG2 Input Edge 2. This bit determines which type of level transition on the ICAP2 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture. Bit 0 = EXEDG External Clock Edge. This bit determines which type of level transition on the external clock pin EXTCLK will trigger the counter register. 0: A falling edge triggers the counter register. 1: A rising edge triggers the counter register. ST72521M/R/AR 16-BIT TIMER (Cont’d) CONTROL/STATUS REGISTER (CSR) Read Only (except bit 2 R/W) Reset Value: xxxx x0xx (xxh) Note: Reading or writing the ACLR register does not clear TOF. 7 ICF1 0 OCF1 TOF ICF2 OCF2 TIMD 0 0 Bit 7 = ICF1 Input Capture Flag 1. 0: No input capture (reset value). 1: An input capture has occurred on the ICAP1 pin or the counter has reached the OC2R value in PWM mode. To clear this bit, first read the SR register, then read or write the low byte of the IC1R (IC1LR) register. Bit 6 = OCF1 Output Compare Flag 1. 0: No match (reset value). 1: The content of the free running counter has matched the content of the OC1R register. To clear this bit, first read the SR register, then read or write the low byte of the OC1R (OC1LR) register. Bit 5 = TOF Timer Overflow Flag. 0: No timer overflow (reset value). 1: The free running counter rolled over from FFFFh to 0000h. To clear this bit, first read the SR register, then read or write the low byte of the CR (CLR) register. Bit 4 = ICF2 Input Capture Flag 2. 0: No input capture (reset value). 1: An input capture has occurred on the ICAP2 pin. To clear this bit, first read the SR register, then read or write the low byte of the IC2R (IC2LR) register. Bit 3 = OCF2 Output Compare Flag 2. 0: No match (reset value). 1: The content of the free running counter has matched the content of the OC2R register. To clear this bit, first read the SR register, then read or write the low byte of the OC2R (OC2LR) register. Bit 2 = TIMD Timer disable. This bit is set and cleared by software. When set, it freezes the timer prescaler and counter and disabled the output functions (OCMP1 and OCMP2 pins) to reduce power consumption. Access to the timer registers is still available, allowing the timer configuration to be changed, or the counter reset, while it is disabled. 0: Timer enabled 1: Timer prescaler, counter and outputs disabled Bits 1:0 = Reserved, must be kept cleared. 85/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) INPUT CAPTURE 1 HIGH REGISTER (IC1HR) Read Only Reset Value: Undefined This is an 8-bit read only register that contains the high part of the counter value (transferred by the input capture 1 event). OUTPUT COMPARE 1 HIGH REGISTER (OC1HR) Read/Write Reset Value: 1000 0000 (80h) This is an 8-bit register that contains the high part of the value to be compared to the CHR register. 7 0 7 0 MSB LSB MSB LSB INPUT CAPTURE 1 LOW REGISTER (IC1LR) Read Only Reset Value: Undefined This is an 8-bit read only register that contains the low part of the counter value (transferred by the input capture 1 event). OUTPUT COMPARE 1 LOW REGISTER (OC1LR) Read/Write Reset Value: 0000 0000 (00h) This is an 8-bit register that contains the low part of the value to be compared to the CLR register. 7 0 7 0 MSB LSB MSB LSB 86/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) OUTPUT COMPARE 2 HIGH REGISTER (OC2HR) Read/Write Reset Value: 1000 0000 (80h) This is an 8-bit register that contains the high part of the value to be compared to the CHR register. ALTERNATE COUNTER HIGH REGISTER (ACHR) Read Only Reset Value: 1111 1111 (FFh) This is an 8-bit register that contains the high part of the counter value. 7 0 7 0 MSB LSB MSB LSB OUTPUT COMPARE 2 LOW REGISTER (OC2LR) Read/Write Reset Value: 0000 0000 (00h) This is an 8-bit register that contains the low part of the value to be compared to the CLR register. 7 0 MSB LSB COUNTER HIGH REGISTER (CHR) Read Only Reset Value: 1111 1111 (FFh) This is an 8-bit register that contains the high part of the counter value. 7 0 MSB LSB COUNTER LOW REGISTER (CLR) Read Only Reset Value: 1111 1100 (FCh) This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after accessing the CSR register clears the TOF bit. 7 0 MSB LSB ALTERNATE COUNTER LOW REGISTER (ACLR) Read Only Reset Value: 1111 1100 (FCh) This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after an access to CSR register does not clear the TOF bit in the CSR register. 7 0 MSB LSB INPUT CAPTURE 2 HIGH REGISTER (IC2HR) Read Only Reset Value: Undefined This is an 8-bit read only register that contains the high part of the counter value (transferred by the Input Capture 2 event). 7 0 MSB LSB INPUT CAPTURE 2 LOW REGISTER (IC2LR) Read Only Reset Value: Undefined This is an 8-bit read only register that contains the low part of the counter value (transferred by the Input Capture 2 event). 7 0 MSB LSB 87/199 ST72521M/R/AR 16-BIT TIMER (Cont’d) Table 18. 16-Bit Timer Register Map and Reset Values Address (Hex.) Register Label 7 6 5 4 3 2 1 0 Timer A: 32 Timer B: 42 Timer A: 31 Timer B: 41 Timer A: 33 Timer B: 43 Timer A: 34 Timer B: 44 Timer A: 35 Timer B: 45 Timer A: 36 Timer B: 46 Timer A: 37 Timer B: 47 Timer A: 3E Timer B: 4E Timer A: 3F Timer B: 4F Timer A: 38 Timer B: 48 Timer A: 39 Timer B: 49 Timer A: 3A Timer B: 4A Timer A: 3B Timer B: 4B Timer A: 3C Timer B: 4C Timer A: 3D Timer B: 4D CR1 Reset Value CR2 Reset Value CSR Reset Value IC1HR Reset Value IC1LR Reset Value OC1HR Reset Value OC1LR Reset Value OC2HR Reset Value OC2LR Reset Value CHR Reset Value CLR Reset Value ACHR Reset Value ACLR Reset Value IC2HR Reset Value IC2LR Reset Value ICIE 0 OC1E 0 ICF1 x MSB MSB MSB MSB MSB MSB MSB 1 MSB 1 MSB 1 MSB 1 MSB MSB - OCIE 0 OC2E 0 OCF1 x TOIE 0 OPM 0 TOF x FOLV2 0 PWM 0 ICF2 x FOLV1 0 CC1 0 OCF2 x OLVL2 0 CC0 0 TIMD 0 IEDG1 0 IEDG2 0 x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 - - - - - - - - - - - - OLVL1 0 EXEDG 0 x LSB LSB LSB LSB LSB LSB LSB 1 LSB 0 LSB 1 LSB 0 LSB LSB - 1These bits are not used in Timer A and must be kept cleared. 88/199 ST72521M/R/AR 10.5 SERIAL PERIPHERAL INTERFACE (SPI) 10.5.1 Introduction The Serial Peripheral Interface (SPI) allows fullduplex, synchronous, serial communication with external devices. An SPI system may consist of a master and one or more slaves however the SPI interface can not be a master in a multi-master system. 10.5.2 Main Features ■ Full duplex synchronous transfers (on 3 lines) ■ Simplex synchronous transfers (on 2 lines) ■ Master or slave operation ■ Six master mode frequencies (fCPU /4 max.) ■ fCPU/2 max. slave mode frequency ■ SS Management by software or hardware ■ Programmable clock polarity and phase ■ End of transfer interrupt flag ■ Write collision, Master Mode Fault and Overrun flags 10.5.3 General Description Figure 53 shows the serial peripheral interface (SPI) block diagram. There are 3 registers: – SPI Control Register (SPICR) – SPI Control/Status Register (SPICSR) – SPI Data Register (SPIDR) The SPI is connected to external devices through 3 pins: – MISO: Master In / Slave Out data – MOSI: Master Out / Slave In data – SCK: Serial Clock out by SPI masters and input by SPI slaves – SS: Slave select: This input signal acts as a ‘chip select’ to let the SPI master communicate with slaves individually and to avoid contention on the data lines. Slave SS inputs can be driven by standard I/O ports on the master MCU. Figure 53. Serial Peripheral Interface Block Diagram Data/Address Bus SPIDR Read Interrupt request Read Buffer MOSI MISO 8-Bit Shift Register SPICSR 7 SPIF WCOL OVR MODF SOD bit 0 SOD SSM 0 SSI Write SS SPI STATE CONTROL SCK 7 SPIE 1 0 SPICR 0 SPE SPR2 MSTR CPOL CPHA SPR1 SPR0 MASTER CONTROL SERIAL CLOCK GENERATOR SS 89/199 ST72521M/R/AR SERIAL PERIPHERAL INTERFACE (Cont’d) 10.5.3.1 Functional Description A basic example of interconnections between a single master and a single slave is illustrated in Figure 54. The MOSI pins are connected together and the MISO pins are connected together. In this way data is transferred serially between master and slave (most significant bit first). The communication is always initiated by the master. When the master device transmits data to a slave device via MOSI pin, the slave device re- sponds by sending data to the master device via the MISO pin. This implies full duplex communication with both data out and data in synchronized with the same clock signal (which is provided by the master device via the SCK pin). To use a single data line, the MISO and MOSI pins must be connected at each node ( in this case only simplex communication is possible). Four possible data/clock timing relationships may be chosen (see Figure 57) but master and slave must be programmed with the same timing mode. Figure 54. Single Master/ Single Slave Application SLAVE MASTER MSBit LSBit 8-BIT SHIFT REGISTER SPI CLOCK GENERATOR MSBit MISO MISO MOSI MOSI SCK SS LSBit 8-BIT SHIFT REGISTER SCK +5V SS Not used if SS is managed by software 90/199 ST72521M/R/AR SERIAL PERIPHERAL INTERFACE (Cont’d) 10.5.3.2 Slave Select Management As an alternative to using the SS pin to control the Slave Select signal, the application can choose to manage the Slave Select signal by software. This is configured by the SSM bit in the SPICSR register (see Figure 56) In software management, the external SS pin is free for other application uses and the internal SS signal level is driven by writing to the SSI bit in the SPICSR register. In Master mode: – SS internal must be held high continuously In Slave Mode: There are two cases depending on the data/clock timing relationship (see Figure 55): If CPHA=1 (data latched on 2nd clock edge): – SS internal must be held low during the entire transmission. This implies that in single slave applications the SS pin either can be tied to VSS, or made free for standard I/O by managing the SS function by software (SSM= 1 and SSI=0 in the in the SPICSR register) If CPHA=0 (data latched on 1st clock edge): – SS internal must be held low during byte transmission and pulled high between each byte to allow the slave to write to the shift register. If SS is not pulled high, a Write Collision error will occur when the slave writes to the shift register (see Section 10.5.5.3). Figure 55. Generic SS Timing Diagram MOSI/MISO Byte 1 Byte 2 Byte 3 Master SS Slave SS (if CPHA=0) Slave SS (if CPHA=1) Figure 56. Hardware/Software Slave Select Management SSM bit SSI bit 1 SS external pin 0 SS internal 91/199 ST72521M/R/AR SERIAL PERIPHERAL INTERFACE (Cont’d) 10.5.3.3 Master Mode Operation In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and phase are configured by software (refer to the description of the SPICSR register). Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0). To operate the SPI in master mode, perform the following two steps in order (if the SPICSR register is not written first, the SPICR register setting may be not taken into account): 1. Write to the SPICSR register: – Select the clock frequency by configuring the SPR[2:0] bits. – Select the clock polarity and clock phase by configuring the CPOL and CPHA bits. Figure 57 shows the four possible configurations. Note: The slave must have the same CPOL and CPHA settings as the master. – Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin high for the complete byte transmit sequence. 2. Write to the SPICR register: – Set the MSTR and SPE bits Note: MSTR and SPE bits remain set only if SS is high). The transmit sequence begins when software writes a byte in the SPIDR register. 10.5.3.4 Master Mode Transmit Sequence When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MOSI pin most significant bit first. When data transfer is complete: – The SPIF bit is set by hardware – An interrupt request is generated if the SPIE bit is set and the interrupt mask in the CCR register is cleared. Clearing the SPIF bit is performed by the following software sequence: 1. An access to the SPICSR register while the SPIF bit is set 2. A read to the SPIDR register. Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. 92/199 10.5.3.5 Slave Mode Operation In slave mode, the serial clock is received on the SCK pin from the master device. To operate the SPI in slave mode: 1. Write to the SPICSR register to perform the following actions: – Select the clock polarity and clock phase by configuring the CPOL and CPHA bits (see Figure 57). Note: The slave must have the same CPOL and CPHA settings as the master. – Manage the SS pin as described in Section 10.5.3.2 and Figure 55. If CPHA=1 SS must be held low continuously. If CPHA=0 SS must be held low during byte transmission and pulled up between each byte to let the slave write in the shift register. 2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI I/O functions. 10.5.3.6 Slave Mode Transmit Sequence When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MISO pin most significant bit first. The transmit sequence begins when the slave device receives the clock signal and the most significant bit of the data on its MOSI pin. When data transfer is complete: – The SPIF bit is set by hardware – An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR register is cleared. Clearing the SPIF bit is performed by the following software sequence: 1. An access to the SPICSR register while the SPIF bit is set. 2. A write or a read to the SPIDR register. Notes: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. The SPIF bit can be cleared during a second transmission; however, it must be cleared before the second SPIF bit in order to prevent an Overrun condition (see Section 10.5.5.2). ST72521M/R/AR SERIAL PERIPHERAL INTERFACE (Cont’d) 10.5.4 Clock Phase and Clock Polarity Four possible timing relationships may be chosen by software, using the CPOL and CPHA bits (See Figure 57). Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0). The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data capture clock edge Figure 57, shows an SPI transfer with the four combinations of the CPHA and CPOL bits. The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the MISO pin, the MOSI pin are directly connected between the master and the slave device. Note: If CPOL is changed at the communication byte boundaries, the SPI must be disabled by resetting the SPE bit. Figure 57. Data Clock Timing Diagram CPHA =1 SCK (CPOL = 1) SCK (CPOL = 0) MISO (from master) MOSI (from slave) MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit SS (to slave) CAPTURE STROBE CPHA =0 SCK (CPOL = 1) SCK (CPOL = 0) MISO (from master) MOSI (from slave) MSBit MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit SS (to slave) CAPTURE STROBE Note: This figure should not be used as a replacement for parametric information. Refer to the Electrical Characteristics chapter. 93/199 ST72521M/R/AR SERIAL PERIPHERAL INTERFACE (Cont’d) 10.5.5 Error Flags 10.5.5.1 Master Mode Fault (MODF) Master mode fault occurs when the master device has its SS pin pulled low. When a Master mode fault occurs: – The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is set. – The SPE bit is reset. This blocks all output from the device and disables the SPI peripheral. – The MSTR bit is reset, thus forcing the device into slave mode. Clearing the MODF bit is done through a software sequence: 1. A read access to the SPICSR register while the MODF bit is set. 2. A write to the SPICR register. Notes: To avoid any conflicts in an application with multiple slaves, the SS pin must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits may be restored to their original state during or after this clearing sequence. Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set except in the MODF bit clearing sequence. 10.5.5.2 Overrun Condition (OVR) An overrun condition occurs, when the master device has sent a data byte and the slave device has not cleared the SPIF bit issued from the previously transmitted byte. When an Overrun occurs: – The OVR bit is set and an interrupt request is generated if the SPIE bit is set. In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A read to the SPIDR register returns this byte. All other bytes are lost. The OVR bit is cleared by reading the SPICSR register. 10.5.5.3 Write Collision Error (WCOL) A write collision occurs when the software tries to write to the SPIDR register while a data transfer is taking place with an external device. When this happens, the transfer continues uninterrupted; and the software write will be unsuccessful. Write collisions can occur both in master and slave mode. See also Section 10.5.3.2 Slave Select Management. Note: a "read collision" will never occur since the received data byte is placed in a buffer in which access is always synchronous with the MCU operation. The WCOL bit in the SPICSR register is set if a write collision occurs. No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only). Clearing the WCOL bit is done through a software sequence (see Figure 58). Figure 58. Clearing the WCOL bit (Write Collision Flag) Software Sequence Clearing sequence after SPIF = 1 (end of a data byte transfer) 1st Step Read SPICSR RESULT 2nd Step Read SPIDR SPIF =0 WCOL=0 Clearing sequence before SPIF = 1 (during a data byte transfer) 1st Step Read SPICSR RESULT 2nd Step 94/199 Read SPIDR WCOL=0 Note: Writing to the SPIDR register instead of reading it does not reset the WCOL bit ST72521M/R/AR SERIAL PERIPHERAL INTERFACE (Cont’d) 10.5.5.4 Single Master Systems A typical single master system may be configured, using an MCU as the master and four MCUs as slaves (see Figure 59). The master device selects the individual slave devices by using four pins of a parallel port to control the four SS pins of the slave devices. The SS pins are pulled high during reset since the master device ports will be forced to be inputs at that time, thus disabling the slave devices. Note: To prevent a bus conflict on the MISO line the master allows only one active slave device during a transmission. For more security, the slave device may respond to the master with the received data byte. Then the master will receive the previous byte back from the slave device if all MISO and MOSI pins are connected and the slave has not written to its SPIDR register. Other transmission security methods can use ports for handshake lines or data bytes with command fields. Figure 59. Single Master / Multiple Slave Configuration SS SCK SS SS SCK Slave MCU Slave MCU MOSI MISO MOSI MISO SS SCK Slave MCU SCK Slave MCU MOSI MISO MOSI MISO SCK Master MCU 5V Ports MOSI MISO SS 95/199 ST72521M/R/AR SERIAL PERIPHERAL INTERFACE (Cont’d) 10.5.6 Low Power Modes Mode WAIT HALT Description No effect on SPI. SPI interrupt events cause the device to exit from WAIT mode. SPI registers are frozen. In HALT mode, the SPI is inactive. SPI operation resumes when the MCU is woken up by an interrupt with “exit from HALT mode” capability. The data received is subsequently read from the SPIDR register when the software is running (interrupt vector fetching). If several data are received before the wakeup event, then an overrun error is generated. This error can be detected after the fetch of the interrupt routine that woke up the device. Note: When waking up from Halt mode, if the SPI remains in Slave mode, it is recommended to perform an extra communications cycle to bring the SPI from Halt mode state to normal state. If the SPI exits from Slave mode, it returns to normal state immediately. Caution: The SPI can wake up the ST7 from Halt mode only if the Slave Select signal (external SS pin or the SSI bit in the SPICSR register) is low when the ST7 enters Halt mode. So if Slave selection is configured as external (see Section 10.5.3.2), make sure the master drives a low level on the SS pin when the slave enters Halt mode. 10.5.7 Interrupts Interrupt Event 10.5.6.1 Using the SPI to wakeup the MCU from Halt mode In slave configuration, the SPI is able to wakeup the ST7 device from HALT mode through a SPIF interrupt. The data received is subsequently read from the SPIDR register when the software is running (interrupt vector fetch). If multiple data transfers have been performed before software clears the SPIF bit, then the OVR bit is set by hardware. 96/199 SPI End of Transfer Event Master Mode Fault Event Overrun Error Event Flag Enable Control Bit SPIF MODF OVR SPIE Exit from Wait Exit from Halt Yes Yes Yes No Yes No Note: The SPI interrupt events are connected to the same interrupt vector (see Interrupts chapter). They generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in ST72521M/R/AR SERIAL PERIPHERAL INTERFACE (Cont’d) 10.5.8 Register Description CONTROL REGISTER (SPICR) Read/Write Reset Value: 0000 xxxx (0xh) 7 SPIE 0 SPE SPR2 MSTR CPOL CPHA SPR1 SPR0 Bit 7 = SPIE Serial Peripheral Interrupt Enable. This bit is set and cleared by software. 0: Interrupt is inhibited 1: An SPI interrupt is generated whenever SPIF=1, MODF=1 or OVR=1 in the SPICSR register Bit 6 = SPE Serial Peripheral Output Enable. This bit is set and cleared by software. It is also cleared by hardware when, in master mode, SS=0 (see Section 10.5.5.1 Master Mode Fault (MODF)). The SPE bit is cleared by reset, so the SPI peripheral is not initially connected to the external pins. 0: I/O pins free for general purpose I/O 1: SPI I/O pin alternate functions enabled Bit 5 = SPR2 Divider Enable. This bit is set and cleared by software and is cleared by reset. It is used with the SPR[1:0] bits to set the baud rate. Refer to Table 19 SPI Master mode SCK Frequency. 0: Divider by 2 enabled 1: Divider by 2 disabled Note: This bit has no effect in slave mode. Bit 4 = MSTR Master Mode. This bit is set and cleared by software. It is also cleared by hardware when, in master mode, SS=0 (see Section 10.5.5.1 Master Mode Fault (MODF)). 0: Slave mode 1: Master mode. The function of the SCK pin changes from an input to an output and the functions of the MISO and MOSI pins are reversed. Bit 3 = CPOL Clock Polarity. This bit is set and cleared by software. This bit determines the idle state of the serial Clock. The CPOL bit affects both the master and slave modes. 0: SCK pin has a low level idle state 1: SCK pin has a high level idle state Note: If CPOL is changed at the communication byte boundaries, the SPI must be disabled by resetting the SPE bit. Bit 2 = CPHA Clock Phase. This bit is set and cleared by software. 0: The first clock transition is the first data capture edge. 1: The second clock transition is the first capture edge. Note: The slave must have the same CPOL and CPHA settings as the master. Bits 1:0 = SPR[1:0] Serial Clock Frequency. These bits are set and cleared by software. Used with the SPR2 bit, they select the baud rate of the SPI serial clock SCK output by the SPI in master mode. Note: These 2 bits have no effect in slave mode. Table 19. SPI Master mode SCK Frequency Serial Clock SPR2 SPR1 SPR0 fCPU/4 1 0 0 fCPU/8 0 0 0 fCPU/16 0 0 1 fCPU/32 1 1 0 fCPU/64 0 1 0 fCPU/128 0 1 1 97/199 ST72521M/R/AR SERIAL PERIPHERAL INTERFACE (Cont’d) CONTROL/STATUS REGISTER (SPICSR) Read/Write (some bits Read Only) Reset Value: 0000 0000 (00h) 7 SPIF Bit 3 = Reserved, must be kept cleared. 0 WCOL OVR MODF - SOD SSM SSI Bit 7 = SPIF Serial Peripheral Data Transfer Flag (Read only). This bit is set by hardware when a transfer has been completed. An interrupt is generated if SPIE=1 in the SPICR register. It is cleared by a software sequence (an access to the SPICSR register followed by a write or a read to the SPIDR register). 0: Data transfer is in progress or the flag has been cleared. 1: Data transfer between the device and an external device has been completed. Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. Bit 6 = WCOL Write Collision status (Read only). This bit is set by hardware when a write to the SPIDR register is done during a transmit sequence. It is cleared by a software sequence (see Figure 58). 0: No write collision occurred 1: A write collision has been detected Bit 2 = SOD SPI Output Disable. This bit is set and cleared by software. When set, it disables the alternate function of the SPI output (MOSI in master mode / MISO in slave mode) 0: SPI output enabled (if SPE=1) 1: SPI output disabled Bit 1 = SSM SS Management. This bit is set and cleared by software. When set, it disables the alternate function of the SPI SS pin and uses the SSI bit value instead. See Section 10.5.3.2 Slave Select Management. 0: Hardware management (SS managed by external pin) 1: Software management (internal SS signal controlled by SSI bit. External SS pin free for general-purpose I/O) Bit 0 = SSI SS Internal Mode. This bit is set and cleared by software. It acts as a ‘chip select’ by controlling the level of the SS slave select signal when the SSM bit is set. 0 : Slave selected 1 : Slave deselected DATA I/O REGISTER (SPIDR) Read/Write Reset Value: Undefined 7 Bit 5 = OVR S PI Overrun error (Read only). This bit is set by hardware when the byte currently being received in the shift register is ready to be transferred into the SPIDR register while SPIF = 1 (See Section 10.5.5.2). An interrupt is generated if SPIE = 1 in SPICSR register. The OVR bit is cleared by software reading the SPICSR register. 0: No overrun error 1: Overrun error detected Bit 4 = MODF Mode Fault flag (Read only). This bit is set by hardware when the SS pin is pulled low in master mode (see Section 10.5.5.1 Master Mode Fault (MODF)). An SPI interrupt can be generated if SPIE=1 in the SPICSR register. This bit is cleared by a software sequence (An access to the SPICSR register while MODF=1 followed by a write to the SPICR register). 0: No master mode fault detected 1: A fault in master mode has been detected 98/199 D7 0 D6 D5 D4 D3 D2 D1 D0 The SPIDR register is used to transmit and receive data on the serial bus. In a master device, a write to this register will initiate transmission/reception of another byte. Notes: During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift register is moved to a buffer. When the user reads the serial peripheral data I/O register, the buffer is actually being read. While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. Warning: A write to the SPIDR register places data directly into the shift register for transmission. A read to the SPIDR register returns the value located in the buffer and not the content of the shift register (see Figure 53). ST72521M/R/AR SERIAL PERIPHERAL INTERFACE (Cont’d) Table 20. SPI Register Map and Reset Values Address (Hex.) 0021h 0022h 0023h Register Label 7 6 5 4 3 2 1 0 SPIDR Reset Value SPICR Reset Value SPICSR Reset Value MSB x SPIE 0 SPIF 0 x SPE 0 WCOL 0 x SPR2 0 OR 0 x MSTR 0 MODF 0 x CPOL x x CPHA x SOD 0 x SPR1 x SSM 0 LSB x SPR0 x SSI 0 0 99/199 ST72521M/R/AR 10.6 SERIAL COMMUNICATIONS INTERFACE (SCI) 10.6.1 Introduction The Serial Communications Interface (SCI) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The SCI offers a very wide range of baud rates using two baud rate generator systems. 10.6.2 Main Features ■ Full duplex, asynchronous communications ■ NRZ standard format (Mark/Space) ■ Dual baud rate generator systems ■ Independently programmable transmit and receive baud rates up to 500K baud. ■ Programmable data word length (8 or 9 bits) ■ Receive buffer full, Transmit buffer empty and End of Transmission flags ■ Two receiver wake-up modes: – Address bit (MSB) – Idle line ■ Muting function for multiprocessor configurations ■ Separate enable bits for Transmitter and Receiver ■ Four error detection flags: – Overrun error – Noise error – Frame error – Parity error ■ Five interrupt sources with flags: – Transmit data register empty – Transmission complete – Receive data register full – Idle line received – Overrun error detected ■ Parity control: – Transmits parity bit – Checks parity of received data byte ■ Reduced power consumption mode 100/199 10.6.3 General Description The interface is externally connected to another device by two pins (see Figure 61): – TDO: Transmit Data Output. When the transmitter and the receiver are disabled, the output pin returns to its I/O port configuration. When the transmitter and/or the receiver are enabled and nothing is to be transmitted, the TDO pin is at high level. – RDI: Receive Data Input is the serial data input. Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. Through these pins, serial data is transmitted and received as frames comprising: – An Idle Line prior to transmission or reception – A start bit – A data word (8 or 9 bits) least significant bit first – A Stop bit indicating that the frame is complete. This interface uses two types of baud rate generator: – A conventional type for commonly-used baud rates, – An extended type with a prescaler offering a very wide range of baud rates even with non-standard oscillator frequencies. ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) Figure 60. SCI Block Diagram Write Read (DATA REGISTER) DR Received Data Register (RDR) Transmit Data Register (TDR) TDO Received Shift Register Transmit Shift Register RDI CR1 R8 TRANSMIT WAKE UP CONTROL UNIT T8 SCID M WAKE PCE PS PIE RECEIVER CLOCK RECEIVER CONTROL CR2 SR TIE TCIE RIE ILIE TE RE RWU SBK TDRE TC RDRF IDLE OR NF FE PE SCI INTERRUPT CONTROL TRANSMITTER CLOCK TRANSMITTER RATE fCPU CONTROL /16 /PR BRR SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1SCR0 RECEIVER RATE CONTROL CONVENTIONAL BAUD RATE GENERATOR 101/199 ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) 10.6.4 Functional Description The block diagram of the Serial Control Interface, is shown in Figure 60. It contains 6 dedicated registers: – Two control registers (SCICR1 & SCICR2) – A status register (SCISR) – A baud rate register (SCIBRR) – An extended prescaler receiver register (SCIERPR) – An extended prescaler transmitter register (SCIETPR) Refer to the register descriptions in Section 10.6.7for the definitions of each bit. 10.6.4.1 Serial Data Format Word length may be selected as being either 8 or 9 bits by programming the M bit in the SCICR1 register (see Figure 60). The TDO pin is in low state during the start bit. The TDO pin is in high state during the stop bit. An Idle character is interpreted as an entire frame of “1”s followed by the start bit of the next frame which contains data. A Break character is interpreted on receiving “0”s for some multiple of the frame period. At the end of the last break frame the transmitter inserts an extra “1” bit to acknowledge the start bit. Transmission and reception are driven by their own baud rate generator. Figure 61. Word Length Programming 9-bit Word length (M bit is set) Possible Parity Bit Data Frame Start Bit Bit0 Bit2 Bit1 Bit3 Bit4 Bit5 Bit6 Start Bit Break Frame Extra ’1’ Possible Parity Bit Data Frame 102/199 Bit0 Bit8 Next Stop Start Bit Bit Idle Frame 8-bit Word length (M bit is reset) Start Bit Bit7 Next Data Frame Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Start Bit Next Data Frame Stop Bit Next Start Bit Idle Frame Start Bit Break Frame Extra Start Bit ’1’ ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) 10.6.4.2 Transmitter The transmitter can send data words of either 8 or 9 bits depending on the M bit status. When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the T8 bit in the SCICR1 register. Character Transmission During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see Figure 60). Procedure – Select the M bit to define the word length. – Select the desired baud rate using the SCIBRR and the SCIETPR registers. – Set the TE bit to assign the TDO pin to the alternate function and to send a idle frame as first transmission. – Access the SCISR register and write the data to send in the SCIDR register (this sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted. Clearing the TDRE bit is always performed by the following software sequence: 1. An access to the SCISR register 2. A write to the SCIDR register The TDRE bit is set by hardware and it indicates: – The TDR register is empty. – The data transfer is beginning. – The next data can be written in the SCIDR register without overwriting the previous data. This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR register. When a transmission is taking place, a write instruction to the SCIDR register stores the data in the TDR register and which is copied in the shift register at the end of the current transmission. When no transmission is taking place, a write instruction to the SCIDR register places the data directly in the shift register, the data transmission starts, and the TDRE bit is immediately set. When a frame transmission is complete (after the stop bit or after the break frame) the TC bit is set and an interrupt is generated if the TCIE is set and the I bit is cleared in the CCR register. Clearing the TC bit is performed by the following software sequence: 1. An access to the SCISR register 2. A write to the SCIDR register Note: The TDRE and TC bits are cleared by the same software sequence. Break Characters Setting the SBK bit loads the shift register with a break character. The break frame length depends on the M bit (see Figure 61). As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the recognition of the start bit of the next frame. Idle Characters Setting the TE bit drives the SCI to send an idle frame before the first data frame. Clearing and then setting the TE bit during a transmission sends an idle frame after the current word. Note: Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the best time to toggle the TE bit is when the TDRE bit is set i.e. before writing the next byte in the SCIDR. 103/199 ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) 10.6.4.3 Receiver The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9 bits and the MSB is stored in the R8 bit in the SCICR1 register. Character reception During a SCI reception, data shifts in least significant bit first through the RDI pin. In this mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the received shift register (see Figure 60). Procedure – Select the M bit to define the word length. – Select the desired baud rate using the SCIBRR and the SCIERPR registers. – Set the RE bit, this enables the receiver which begins searching for a start bit. When a character is received: – The RDRF bit is set. It indicates that the content of the shift register is transferred to the RDR. – An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register. – The error flags can be set if a frame error, noise or an overrun error has been detected during reception. Clearing the RDRF bit is performed by the following software sequence done by: 1. An access to the SCISR register 2. A read to the SCIDR register. The RDRF bit must be cleared before the end of the reception of the next character to avoid an overrun error. Break Character When a break character is received, the SPI handles it as a framing error. Idle Character When a idle frame is detected, there is the same procedure as a data received character plus an interrupt if the ILIE bit is set and the I bit is cleared in the CCR register. 104/199 Overrun Error An overrun error occurs when a character is received when RDRF has not been reset. Data can not be transferred from the shift register to the RDR register as long as the RDRF bit is not cleared. When a overrun error occurs: – The OR bit is set. – The RDR content will not be lost. – The shift register will be overwritten. – An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register. The OR bit is reset by an access to the SCISR register followed by a SCIDR register read operation. Noise Error Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. When noise is detected in a frame: – The NF is set at the rising edge of the RDRF bit. – Data is transferred from the Shift register to the SCIDR register. – No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt. The NF bit is reset by a SCISR register read operation followed by a SCIDR register read operation. Framing Error A framing error is detected when: – The stop bit is not recognized on reception at the expected time, following either a de-synchronization or excessive noise. – A break is received. When the framing error is detected: – the FE bit is set by hardware – Data is transferred from the Shift register to the SCIDR register. – No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt. The FE bit is reset by a SCISR register read operation followed by a SCIDR register read operation. ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) Figure 62. SCI Baud Rate and Extended Prescaler Block Diagram TRANSMITTER CLOCK EXTENDED PRESCALER TRANSMITTER RATE CONTROL SCIETPR EXTENDED TRANSMITTER PRESCALER REGISTER SCIERPR EXTENDED RECEIVER PRESCALER REGISTER RECEIVER CLOCK EXTENDED PRESCALER RECEIVER RATE CONTROL EXTENDED PRESCALER fCPU TRANSMITTER RATE CONTROL /16 /PR SCIBRR SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1SCR0 RECEIVER RATE CONTROL CONVENTIONAL BAUD RATE GENERATOR 105/199 ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) 10.6.4.4 Conventional Baud Rate Generation with: The baud rate for the receiver and transmitter (Rx ETPR = 1,..,255 (see SCIETPR register) and Tx) are set independently and calculated as ERPR = 1,.. 255 (see SCIERPR register) follows: 10.6.4.6 Receiver Muting and Wake-up Feature fCPU fCPU In multiprocessor configurations it is often desiraRx = Tx = ble that only the intended message recipient (16*PR)*RR (16*PR)*TR should actively receive the full message contents, with: thus reducing redundant SCI service overhead for all non addressed receivers. PR = 1, 3, 4 or 13 (see SCP[1:0] bits) The non addressed devices may be placed in TR = 1, 2, 4, 8, 16, 32, 64,128 sleep mode by means of the muting function. (see SCT[2:0] bits) Setting the RWU bit by software puts the SCI in RR = 1, 2, 4, 8, 16, 32, 64,128 sleep mode: (see SCR[2:0] bits) All the reception status bits can not be set. All these bits are in the SCIBRR register. All the receive interrupts are inhibited. Example: If fCPU is 8 MHz (normal mode) and if A muted receiver may be awakened by one of the PR=13 and TR=RR=1, the transmit and receive following two ways: baud rates are 38400 baud. – by Idle Line detection if the WAKE bit is reset, Note: the baud rate registers MUST NOT be – by Address Mark detection if the WAKE bit is set. changed while the transmitter or the receiver is enabled. Receiver wakes-up by Idle Line detection when the Receive line has recognised an Idle Frame. 10.6.4.5 Extended Baud Rate Generation Then the RWU bit is reset by hardware but the The extended prescaler option gives a very fine IDLE bit is not set. tuning on the baud rate, using a 255 value prescalReceiver wakes-up by Address Mark detection er, whereas the conventional Baud Rate Generawhen it received a “1” as the most significant bit of tor retains industry standard software compatibilia word, thus indicating that the message is an adty. dress. The reception of this particular word wakes The extended baud rate generator block diagram up the receiver, resets the RWU bit and sets the is described in the Figure 62. RDRF bit, which allows the receiver to receive this word normally and to use it as an address word. The output clock rate sent to the transmitter or to the receiver will be the output from the 16 divider Caution: In Mute mode, do not write to the divided by a factor ranging from 1 to 255 set in the SCICR2 register. If the SCI is in Mute mode during SCIERPR or the SCIETPR register. the read operation (RWU=1) and a address mark wake up event occurs (RWU is reset) before the Note: the extended prescaler is activated by setwrite operation, the RWU bit will be set again by ting the SCIETPR or SCIERPR register to a value this write operation. Consequently the address other than zero. The baud rates are calculated as byte is lost and the SCI is not woken up from Mute follows: mode. fCPU fCPU Rx = Tx = 16*ERPR*(PR*RR) 16*ETPR*(PR*TR) 106/199 ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) 10.6.4.7 Parity Control Parity control (generation of parity bit in trasmission and and parity chencking in reception) can be enabled by setting the PCE bit in the SCICR1 register. Depending on the frame length defined by the M bit, the possible SCI frame formats are as listed in Table 21. Table 21. Frame Formats M bit 0 0 1 1 PCE bit 0 1 0 1 SCI frame | SB | 8 bit data | STB | | SB | 7-bit data | PB | STB | | SB | 9-bit data | STB | | SB | 8-bit data PB | STB | Legend: SB = Start Bit, STB = Stop Bit, PB = Parity Bit Note: In case of wake up by an address mark, the MSB bit of the data is taken into account and not the parity bit Even parity: the parity bit is calculated to obtain an even number of “1s” inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit. Ex: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit = 0). Odd parity: the parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit. Ex: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit = 1). Transmission mode: If the PCE bit is set then the MSB bit of the data written in the data register is not transmitted but is changed by the parity bit. Reception mode: If the PCE bit is set then the interface checks if the received data byte has an even number of “1s” if even parity is selected (PS=0) or an odd number of “1s” if odd parity is selected (PS=1). If the parity check fails, the PE flag is set in the SCISR register and an interrupt is generated if PIE is set in the SCICR1 register. 10.6.5 Low Power Modes Mode Description No effect on SCI. WAIT SCI interrupts cause the device to exit from Wait mode. SCI registers are frozen. HALT In Halt mode, the SCI stops transmitting/receiving until Halt mode is exited. 10.6.6 Interrupts Interrupt Event Enable Exit Event Control from Flag Wait Bit Transmit Data Register TDRE Empty Transmission ComTC plete Received Data Ready RDRF to be Read Overrun Error Detected OR Idle Line Detected IDLE Parity Error PE Exit from Halt TIE Yes No TCIE Yes No Yes No Yes Yes Yes No No No RIE ILIE PIE The SCI interrupt events are connected to the same interrupt vector. These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction). 107/199 ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) Note: The IDLE bit will not be set again until the 10.6.7 Register Description RDRF bit has been set itself (i.e. a new idle line ocSTATUS REGISTER (SCISR) curs). Read Only Reset Value: 1100 0000 (C0h) Bit 3 = OR Overrun error. 7 0 This bit is set by hardware when the word currently being received in the shift register is ready to be TDRE TC RDRF IDLE OR NF FE PE transferred into the RDR register while RDRF=1. An interrupt is generated if RIE=1 in the SCICR2 register. It is cleared by a software sequence (an Bit 7 = TDRE Transmit data register empty. access to the SCISR register followed by a read to This bit is set by hardware when the content of the the SCIDR register). TDR register has been transferred into the shift 0: No Overrun error register. An interrupt is generated if the TIE bit=1 1: Overrun error is detected in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register folNote: When this bit is set RDR register content will lowed by a write to the SCIDR register). not be lost but the shift register will be overwritten. 0: Data is not transferred to the shift register 1: Data is transferred to the shift register Bit 2 = NF Noise flag. Note: Data will not be transferred to the shift regThis bit is set by hardware when noise is detected ister unless the TDRE bit is cleared. on a received frame. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register). Bit 6 = TC Transmission complete. 0: No noise is detected This bit is set by hardware when transmission of a 1: Noise is detected frame containing Data, a Preamble or a Break is complete. An interrupt is generated if TCIE=1 in Note: This bit does not generate interrupt as it apthe SCICR2 register. It is cleared by a software sepears at the same time as the RDRF bit which itquence (an access to the SCISR register followed self generates an interrupt. by a write to the SCIDR register). 0: Transmission is not complete 1: Transmission is complete Bit 1 = FE Framing error. This bit is set by hardware when a de-synchronizaNote: TC is not set after the transmission of a Pretion, excessive noise or a break character is deamble or a Break. tected. It is cleared by a software sequence (an access to the SCISR register followed by a read to Bit 5 = RDRF Received data ready flag. the SCIDR register). This bit is set by hardware when the content of the 0: No Framing error is detected RDR register has been transferred to the SCIDR 1: Framing error or break character is detected register. An interrupt is generated if RIE=1 in the Note: This bit does not generate interrupt as it apSCICR2 register. It is cleared by a software sepears at the same time as the RDRF bit which itquence (an access to the SCISR register followed self generates an interrupt. If the word currently by a read to the SCIDR register). being transferred causes both frame error and 0: Data is not received overrun error, it will be transferred and only the OR 1: Received data is ready to be read bit will be set. Bit 4 = IDLE Idle line detect. This bit is set by hardware when a Idle Line is detected. An interrupt is generated if the ILIE=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register). 0: No Idle Line is detected 1: Idle Line is detected 108/199 Bit 0 = PE Parity error. This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software sequence (a read to the status register followed by an access to the SCIDR data register). An interrupt is generated if PIE=1 in the SCICR1 register. 0: No parity error 1: Parity error ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) CONTROL REGISTER 1 (SCICR1) Bit 3 = WAKE Wake-Up method. Read/Write This bit determines the SCI Wake-Up method, it is Reset Value: x000 0000 (x0h) set or cleared by software. 0: Idle Line 7 0 1: Address Mark R8 T8 SCID M WAKE PCE PS PIE Bit 7 = R8 Receive data bit 8. This bit is used to store the 9th bit of the received word when M=1. Bit 6 = T8 Transmit data bit 8. This bit is used to store the 9th bit of the transmitted word when M=1. Bit 5 = SCID Disabled for low power consumption When this bit is set the SCI prescalers and outputs are stopped and the end of the current byte transfer in order to reduce power consumption.This bit is set and cleared by software. 0: SCI enabled 1: SCI prescaler and outputs disabled Bit 4 = M Word length. This bit determines the word length. It is set or cleared by software. 0: 1 Start bit, 8 Data bits, 1 Stop bit 1: 1 Start bit, 9 Data bits, 1 Stop bit Note: The M bit must not be modified during a data transfer (both transmission and reception). Bit 2 = PCE Parity control enable. This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). 0: Parity control disabled 1: Parity control enabled Bit 1 = PS Parity selection. This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity will be selected after the current byte. 0: Even parity 1: Odd parity Bit 0 = PIE Parity interrupt enable. This bit enables the interrupt capability of the hardware parity control when a parity error is detected (PE bit set). It is set and cleared by software. 0: Parity error interrupt disabled 1: Parity error interrupt enabled. 109/199 ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) Notes: CONTROL REGISTER 2 (SCICR2) – During transmission, a “0” pulse on the TE bit Read/Write (“0” followed by “1”) sends a preamble (idle line) Reset Value: 0000 0000 (00 h) after the current word. 7 0 – When TE is set there is a 1 bit-time delay before the transmission starts. TIE TCIE RIE ILIE TE RE RWU SBK Caution: The TDO pin is free for general purpose I/O only when the TE and RE bits are both cleared (or if TE is never set). Bit 7 = TIE Transmitter interrupt enable. This bit is set and cleared by software. 0: Interrupt is inhibited Bit 2 = RE Receiver enable. 1: An SCI interrupt is generated whenever This bit enables the receiver. It is set and cleared TDRE=1 in the SCISR register by software. 0: Receiver is disabled Bit 6 = TCIE Transmission complete interrupt ena1: Receiver is enabled and begins searching for a ble start bit This bit is set and cleared by software. 0: Interrupt is inhibited Bit 1 = RWU Receiver wake-up. 1: An SCI interrupt is generated whenever TC=1 in This bit determines if the SCI is in mute mode or the SCISR register not. It is set and cleared by software and can be cleared by hardware when a wake-up sequence is Bit 5 = RIE Receiver interrupt enable. recognized. This bit is set and cleared by software. 0: Receiver in Active mode 0: Interrupt is inhibited 1: Receiver in Mute mode 1: An SCI interrupt is generated whenever OR=1 Note: Before selecting Mute mode (setting the or RDRF=1 in the SCISR register RWU bit), the SCI must receive some data first, otherwise it cannot function in Mute mode with Bit 4 = ILIE Idle line interrupt enable. wakeup by idle line detection. This bit is set and cleared by software. 0: Interrupt is inhibited Bit 0 = SBK Send break. 1: An SCI interrupt is generated whenever IDLE=1 This bit set is used to send break characters. It is in the SCISR register. set and cleared by software. 0: No break character is transmitted Bit 3 = TE Transmitter enable. 1: Break characters are transmitted This bit enables the transmitter. It is set and Note: If the SBK bit is set to “1” and then to “0”, the cleared by software. transmitter will send a BREAK word at the end of 0: Transmitter is disabled the current word. 1: Transmitter is enabled 110/199 ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) DATA REGISTER (SCIDR) Read/Write Reset Value: Undefined Contains the Received or Transmitted data character, depending on whether it is read from or written to. 7 0 DR7 DR6 DR5 DR4 DR3 DR2 DR1 DR0 The Data register performs a double function (read and write) since it is composed of two registers, one for transmission (TDR) and one for reception (RDR). The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 60). The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure 60). BAUD RATE REGISTER (SCIBRR) Read/Write Reset Value: 00 xx xxxx (xxh) 7 0 SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1 SCR0 Bits 7:6= SCP[1:0] First SCI Prescaler These 2 prescaling bits allow several standard clock division ranges: PR Prescaling factor SCP1 SCP0 1 0 0 3 0 1 4 1 0 13 1 1 Bits 5:3 = SCT[2:0] SCI Transmitter rate divisor These 3 bits, in conjunction with the SCP1 & SCP0 bits define the total division applied to the bus clock to yield the transmit rate clock in conventional Baud Rate Generator mode. TR dividing factor SCT2 SCT1 SCT0 1 0 0 0 2 0 0 1 4 0 1 0 8 0 1 1 16 1 0 0 32 1 0 1 64 1 1 0 128 1 1 1 Bits 2:0 = SCR[2:0] SCI Receiver rate divisor. These 3 bits, in conjunction with the SCP[1:0] bits define the total division applied to the bus clock to yield the receive rate clock in conventional Baud Rate Generator mode. RR Dividing factor SCR2 SCR1 SCR0 1 0 0 0 2 0 0 1 4 0 1 0 8 0 1 1 16 1 0 0 32 1 0 1 64 1 1 0 128 1 1 1 111/199 ST72521M/R/AR SERIAL COMMUNICATIONS INTERFACE (Cont’d) EXTENDED RECEIVE PRESCALER DIVISION REGISTER (SCIERPR) Read/Write Reset Value: 0000 0000 (00 h) Allows setting of the Extended Prescaler rate division factor for the receive circuit. 7 0 EXTENDED TRANSMIT PRESCALER DIVISION REGISTER (SCIETPR) Read/Write Reset Value:0000 0000 (00h) Allows setting of the External Prescaler rate division factor for the transmit circuit. 7 ERPR ERPR ERPR ERPR ERPR ERPR ERPR ERPR 7 6 5 4 3 2 1 0 ETPR 7 Bits 7:0 = ERPR[7:0] 8-bit Extended Receive Prescaler Register. The extended Baud Rate Generator is activated when a value different from 00h is stored in this register. Therefore the clock frequency issued from the 16 divider (see Figure 62) is divided by the binary factor set in the SCIERPR register (in the range 1 to 255). The extended baud rate generator is not used after a reset. 0 ETPR 6 ETPR 5 ETPR 4 ETPR 3 ETPR 2 ETPR ETPR 1 0 Bits 7:0 = ETPR[7:0] 8-bit Extended Transmit Prescaler Register. The extended Baud Rate Generator is activated when a value different from 00h is stored in this register. Therefore the clock frequency issued from the 16 divider (see Figure 62) is divided by the binary factor set in the SCIETPR register (in the range 1 to 255). The extended baud rate generator is not used after a reset. Table 22. Baudrate Selection Conditions Symbol Parameter fCPU Accuracy vs. Standard ~0.16% fTx fRx Communication frequency 8MHz ~0.79% 112/199 Prescaler Conventional Mode TR (or RR)=128, PR=13 TR (or RR)= 32, PR=13 TR (or RR)= 16, PR=13 TR (or RR)= 8, PR=13 TR (or RR)= 4, PR=13 TR (or RR)= 16, PR= 3 TR (or RR)= 2, PR=13 TR (or RR)= 1, PR=13 Extended Mode ETPR (or ERPR) = 35, TR (or RR)= 1, PR=1 Standard Baud Rate ~300.48 300 1200 ~1201.92 2400 ~2403.84 4800 ~4807.69 9600 ~9615.38 10400 ~10416.67 19200 ~19230.77 38400 ~38461.54 14400 ~14285.71 Unit Hz ST72521M/R/AR SERIAL COMMUNICATION INTERFACE (Cont’d) Table 23. SCI Register Map and Reset Values Address (Hex.) 0050h 0051h 0052h 0053h 0054h 0055h 0057h Register Label 7 6 5 4 3 2 1 0 SCISR Reset Value SCIDR Reset Value SCIBRR Reset Value SCICR1 Reset Value SCICR2 Reset Value SCIERPR Reset Value SCIPETPR Reset Value TDRE 1 MSB x SCP1 0 R8 x TIE 0 MSB 0 MSB 0 TC 1 RDRF 0 IDLE 0 OR 0 NF 0 FE 0 x SCP0 0 T8 x TCIE 0 x SCT2 x SCID 0 RIE 0 x SCT1 x M x ILIE 0 x SCT0 x WAKE x TE 0 x SCR2 x PCE 0 RE 0 x SCR1 x PS 0 RWU 0 0 0 0 0 0 0 0 0 0 0 0 0 PE 0 LSB x SCR0 x PIE 0 SBK 0 LSB 0 LSB 0 113/199 ST72521M/R/AR 10.7 I2C BUS INTERFACE (I2C) 10.7.1 Introduction The I 2C Bus Interface serves as an interface between the microcontroller and the serial I2C bus. It provides both multimaster and slave functions, and controls all I 2C bus-specific sequencing, protocol, arbitration and timing. It supports fast I2C mode (400kHz). 10.7.2 Main Features 2 ■ Parallel-bus/I C protocol converter ■ Multi-master capability ■ 7-bit/10-bit Addressing ■ Transmitter/Receiver flag ■ End-of-byte transmission flag ■ Transfer problem detection I2C Master Features: ■ Clock generation 2 ■ I C bus busy flag ■ Arbitration Lost Flag ■ End of byte transmission flag ■ Transmitter/Receiver Flag ■ Start bit detection flag ■ Start and Stop generation I2C Slave Features: ■ Stop bit detection 2 ■ I C bus busy flag ■ Detection of misplaced start or stop condition 2 ■ Programmable I C Address detection ■ Transfer problem detection ■ End-of-byte transmission flag ■ Transmitter/Receiver flag 10.7.3 General Description In addition to receiving and transmitting data, this interface converts it from serial to parallel format and vice versa, using either an interrupt or polled handshake. The interrupts are enabled or disabled by software. The interface is connected to the I2C bus by a data pin (SDAI) and by a clock pin (SCLI). It can be connected both with a standard I2C bus and a Fast I2C bus. This selection is made by software. Mode Selection The interface can operate in the four following modes: – Slave transmitter/receiver – Master transmitter/receiver By default, it operates in slave mode. The interface automatically switches from slave to master after it generates a START condition and from master to slave in case of arbitration loss or a STOP generation, allowing then Multi-Master capability. Communication Flow In Master mode, it initiates a data transfer and generates the clock signal. A serial data transfer always begins with a start condition and ends with a stop condition. Both start and stop conditions are generated in master mode by software. In Slave mode, the interface is capable of recognising its own address (7 or 10-bit), and the General Call address. The General Call address detection may be enabled or disabled by software. Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is always transmitted in Master mode. A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must send an acknowledge bit to the transmitter. Refer to Figure 63. Figure 63. I2C BUS Protocol SDA ACK MSB SCL 1 START CONDITION 2 8 9 STOP CONDITION VR02119B 114/199 ST72521M/R/AR I2C BUS INTERFACE (Cont’d) Acknowledge may be enabled and disabled by software. The I2C interface address and/or general call address can be selected by software. The speed of the I2C interface may be selected between Standard (0-100KHz) and Fast I 2C (100400KHz). SDA/SCL Line Control Transmitter mode: the interface holds the clock line low before transmission to wait for the microcontroller to write the byte in the Data Register. Receiver mode: the interface holds the clock line low after reception to wait for the microcontroller to read the byte in the Data Register. The SCL frequency (Fscl) is controlled by a programmable clock divider which depends on the I2C bus mode. When the I2C cell is enabled, the SDA and SCL ports must be configured as floating inputs. In this case, the value of the external pull-up resistor used depends on the application. When the I2C cell is disabled, the SDA and SCL ports revert to being standard I/O port pins. Figure 64. I2C Interface Block Diagram DATA REGISTER (DR) SDA or SDAI DATA CONTROL DATA SHIFT REGISTER COMPARATOR OWN ADDRESS REGISTER 1 (OAR1) OWN ADDRESS REGISTER 2 (OAR2) SCL or SCLI CLOCK CONTROL CLOCK CONTROL REGISTER (CCR) CONTROL REGISTER (CR) STATUS REGISTER 1 (SR1) CONTROL LOGIC STATUS REGISTER 2 (SR2) INTERRUPT 115/199 ST72521M/R/AR I2C BUS INTERFACE (Cont’d) 10.7.4 Functional Description Refer to the CR, SR1 and SR2 registers in Section 10.7.7. for the bit definitions. By default the I2C interface operates in Slave mode (M/SL bit is cleared) except when it initiates a transmit or receive sequence. First the interface frequency must be configured using the FRi bits in the OAR2 register. 10.7.4.1 Slave Mode As soon as a start condition is detected, the address is received from the SDA line and sent to the shift register; then it is compared with the address of the interface or the General Call address (if selected by software). Note: In 10-bit addressing mode, the comparision includes the header sequence (11110xx0) and the two most significant bits of the address. Header matched (10-bit mode only): the interface generates an acknowledge pulse if the ACK bit is set. Address not matched: the interface ignores it and waits for another Start condition. Address matched: the interface generates in sequence: – Acknowledge pulse if the ACK bit is set. – EVF and ADSL bits are set with an interrupt if the ITE bit is set. Then the interface waits for a read of the SR1 register, holding the SCL line low (see Figure 65 Transfer sequencing EV1). Next, in 7-bit mode read the DR register to determine from the least significant bit (Data Direction Bit) if the slave must enter Receiver or Transmitter mode. In 10-bit mode, after receiving the address sequence the slave is always in receive mode. It will enter transmit mode on receiving a repeated Start condition followed by the header sequence with matching address bits and the least significant bit set (11110xx1) . Slave Receiver Following the address reception and after SR1 register has been read, the slave receives bytes from the SDA line into the DR register via the internal shift register. After each byte the interface generates in sequence: – Acknowledge pulse if the ACK bit is set 116/199 – EVF and BTF bits are set with an interrupt if the ITE bit is set. Then the interface waits for a read of the SR1 register followed by a read of the DR register, holding the SCL line low (see Figure 65 Transfer sequencing EV2). Slave Transmitter Following the address reception and after SR1 register has been read, the slave sends bytes from the DR register to the SDA line via the internal shift register. The slave waits for a read of the SR1 register followed by a write in the DR register, holding the SCL line low (see Figure 65 Transfer sequencing EV3). When the acknowledge pulse is received: – The EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set. Closing slave communication After the last data byte is transferred a Stop Condition is generated by the master. The interface detects this condition and sets: – EVF and STOPF bits with an interrupt if the ITE bit is set. Then the interface waits for a read of the SR2 register (see Figure 65 Transfer sequencing EV4). Error Cases – BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the EVF and the BERR bits are set with an interrupt if the ITE bit is set. If it is a Stop then the interface discards the data, released the lines and waits for another Start condition. If it is a Start then the interface discards the data and waits for the next slave address on the bus. – AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set with an interrupt if the ITE bit is set. Note: In both cases, SCL line is not held low; however, SDA line can remain low due to possible «0» bits transmitted last. It is then necessary to release both lines by software. ST72521M/R/AR I2C BUS INTERFACE (Cont’d) How to release the SDA / SCL lines Set and subsequently clear the STOP bit while BTF is set. The SDA/SCL lines are released after the transfer of the current byte. 10.7.4.2 Master Mode To switch from default Slave mode to Master mode a Start condition generation is needed. Start condition Setting the START bit while the BUSY bit is cleared causes the interface to switch to Master mode (M/SL bit set) and generates a Start condition. Once the Start condition is sent: – The EVF and SB bits are set by hardware with an interrupt if the ITE bit is set. Then the master waits for a read of the SR1 register followed by a write in the DR register with the Slave address, holding the SCL line low (see Figure 65 Transfer sequencing EV5). Slave address transmission Then the slave address is sent to the SDA line via the internal shift register. In 7-bit addressing mode, one address byte is sent. In 10-bit addressing mode, sending the first byte including the header sequence causes the following event: – The EVF bit is set by hardware with interrupt generation if the ITE bit is set. Then the master waits for a read of the SR1 register followed by a write in the DR register, holding the SCL line low (see Figure 65 Transfer sequencing EV9). Then the second address byte is sent by the interface. After completion of this transfer (and acknowledge from the slave if the ACK bit is set): – The EVF bit is set by hardware with interrupt generation if the ITE bit is set. Then the master waits for a read of the SR1 register followed by a write in the CR register (for example set PE bit), holding the SCL line low (see Figure 65 Transfer sequencing EV6). Next the master must enter Receiver or Transmitter mode. Note: In 10-bit addressing mode, to switch the master to Receiver mode, software must generate a repeated Start condition and resend the header sequence with the least significant bit set (11110xx1). Master Receiver Following the address transmission and after SR1 and CR registers have been accessed, the master receives bytes from the SDA line into the DR register via the internal shift register. After each byte the interface generates in sequence: – Acknowledge pulse if if the ACK bit is set – EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set. Then the interface waits for a read of the SR1 register followed by a read of the DR register, holding the SCL line low (see Figure 65 Transfer sequencing EV7). To close the communication: before reading the last byte from the DR register, set the STOP bit to generate the Stop condition. The interface goes automatically back to slave mode (M/SL bit cleared). Note: In order to generate the non-acknowledge pulse after the last received data byte, the ACK bit must be cleared just before reading the second last data byte. 117/199 ST72521M/R/AR I2C BUS INTERFACE (Cont’d) Master Transmitter Following the address transmission and after SR1 register has been read, the master sends bytes from the DR register to the SDA line via the internal shift register. The master waits for a read of the SR1 register followed by a write in the DR register, holding the SCL line low (see Figure 65 Transfer sequencing EV8). When the acknowledge bit is received, the interface sets: – EVF and BTF bits with an interrupt if the ITE bit is set. To close the communication: after writing the last byte to the DR register, set the STOP bit to generate the Stop condition. The interface goes automatically back to slave mode (M/SL bit cleared). Error Cases – BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the EVF and 118/199 BERR bits are set by hardware with an interrupt if ITE is set. – AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set by hardware with an interrupt if the ITE bit is set. To resume, set the START or STOP bit. – ARLO: Detection of an arbitration lost condition. In this case the ARLO bit is set by hardware (with an interrupt if the ITE bit is set and the interface goes automatically back to slave mode (the M/SL bit is cleared). Note: In all these cases, the SCL line is not held low; however, the SDA line can remain low due to possible «0» bits transmitted last. It is then necessary to release both lines by software. ST72521M/R/AR I2C BUS INTERFACE (Cont’d) Figure 65. Transfer Sequencing 7-bit Slave receiver: S Address A Data1 A Data2 EV1 A EV2 EV2 ..... DataN A P EV2 EV4 7-bit Slave transmitter: S Address A Data1 A EV1 EV3 Data2 A EV3 EV3 ..... DataN NA P EV3-1 EV4 7-bit Master receiver: S Address A EV5 Data1 A EV6 Data2 A EV7 EV7 DataN ..... NA P EV7 7-bit Master transmitter: S Address A EV5 Data1 A EV6 EV8 Data2 A EV8 EV8 DataN ..... A P EV8 10-bit Slave receiver: S Header A Address A Data1 A EV1 ..... EV2 DataN A P EV2 EV4 10-bit Slave transmitter: Sr Header A Data1 A EV1 EV3 .... DataN EV3 . A P EV3-1 EV4 10-bit Master transmitter S Header EV5 A Address EV9 A Data1 A EV6 EV8 EV8 DataN ..... A P EV8 10-bit Master receiver: Sr Header EV5 A Data1 EV6 A EV7 ..... DataN A P EV7 Legend: S=Start, Sr = Repeated Start, P=Stop, A=Acknowledge, NA=Non-acknowledge, EVx=Event (with interrupt if ITE=1) EV1: EVF=1, ADSL=1, cleared by reading SR1 register. EV2: EVF=1, BTF=1, cleared by reading SR1 register followed by reading DR register. EV3: EVF=1, BTF=1, cleared by reading SR1 register followed by writing DR register. EV3-1: EVF=1, AF=1, BTF=1; AF is cleared by reading SR1 register. BTF is cleared by releasing the lines (STOP=1, STOP=0) or by writing DR register (DR=FFh). Note: If lines are released by STOP=1, STOP=0, the subsequent EV4 is not seen. EV4: EVF=1, STOPF=1, cleared by reading SR2 register. EV5: EVF=1, SB=1, cleared by reading SR1 register followed by writing DR register. EV6: EVF=1, cleared by reading SR1 register followed by writing CR register (for example PE=1). EV7: EVF=1, BTF=1, cleared by reading SR1 register followed by reading DR register. EV8: EVF=1, BTF=1, cleared by reading SR1 register followed by writing DR register. EV9: EVF=1, ADD10=1, cleared by reading SR1 register followed by writing DR register. 119/199 ST72521M/R/AR I2C BUS INTERFACE (Cont’d) 10.7.5 Low Power Modes Mode WAIT HALT Description No effect on I2C interface. I2C interrupts cause the device to exit from WAIT mode. I2C registers are frozen. In HALT mode, the I2C interface is inactive and does not acknowledge data on the bus. The I2C interface resumes operation when the MCU is woken up by an interrupt with “exit from HALT mode” capability. 10.7.6 Interrupts Figure 66. Event Flags and Interrupt Generation ADD10 BTF ADSL SB AF STOPF ARLO BERR ITE INTERRUPT EVF * * EVF can also be set by EV6 or an error from the SR2 register. Interrupt Event 10-bit Address Sent Event (Master mode) End of Byte Transfer Event Address Matched Event (Slave mode) Start Bit Generation Event (Master mode) Acknowledge Failure Event Stop Detection Event (Slave mode) Arbitration Lost Event (Multimaster configuration) Bus Error Event Note: The I2C interrupt events are connected to the same interrupt vector (see Interrupts chapter). They generate an interrupt if the corresponding Enable Control Bit is set and the I-bit in the CC register is reset (RIM instruction). 120/199 Event Flag Enable Control Bit ADD10 BTF ADSEL SB AF STOPF ARLO BERR ITE Exit from Wait Yes Yes Yes Yes Yes Yes Yes Yes Exit from Halt No No No No No No No No ST72521M/R/AR I2C BUS INTERFACE (Cont’d) 10.7.7 Register Description I2C CONTROL REGISTER (CR) Read / Write Reset Value: 0000 0000 (00h) 7 0 0 0 PE ENGC START ACK STOP ITE Bit 7:6 = Reserved. Forced to 0 by hardware. Bit 5 = PE Peripheral enable. This bit is set and cleared by software. 0: Peripheral disabled 1: Master/Slave capability Notes: – When PE=0, all the bits of the CR register and the SR register except the Stop bit are reset. All outputs are released while PE=0 – When PE=1, the corresponding I/O pins are selected by hardware as alternate functions. – To enable the I2C interface, write the CR register TWICE with PE=1 as the first write only activates the interface (only PE is set). Bit 4 = ENGC Enable General Call. This bit is set and cleared by software. It is also cleared by hardware when the interface is disabled (PE=0). The 00h General Call address is acknowledged (01h ignored). 0: General Call disabled 1: General Call enabled Bit 3 = START Generation of a Start condition . This bit is set and cleared by software. It is also cleared by hardware when the interface is disabled (PE=0) or when the Start condition is sent (with interrupt generation if ITE=1). – In master mode: 0: No start generation 1: Repeated start generation – In slave mode: 0: No start generation 1: Start generation when the bus is free Bit 2 = ACK Acknowledge enable. This bit is set and cleared by software. It is also cleared by hardware when the interface is disabled (PE=0). 0: No acknowledge returned 1: Acknowledge returned after an address byte or a data byte is received Bit 1 = STOP Generation of a Stop condition. This bit is set and cleared by software. It is also cleared by hardware in master mode. Note: This bit is not cleared when the interface is disabled (PE=0). – In master mode: 0: No stop generation 1: Stop generation after the current byte transfer or after the current Start condition is sent. The STOP bit is cleared by hardware when the Stop condition is sent. – In slave mode: 0: No stop generation 1: Release the SCL and SDA lines after the current byte transfer (BTF=1). In this mode the STOP bit has to be cleared by software. Bit 0 = ITE Interrupt enable. This bit is set and cleared by software and cleared by hardware when the interface is disabled (PE=0). 0: Interrupts disabled 1: Interrupts enabled Refer to Figure 66 for the relationship between the events and the interrupt. SCL is held low when the ADD10, SB, BTF or ADSL flags or an EV6 event (See Figure 65) is detected. 121/199 ST72521M/R/AR I2C BUS INTERFACE (Cont’d) I2C STATUS REGISTER 1 (SR1) Read Only Reset Value: 0000 0000 (00h) arbitration (ARLO=1) or when the interface is disabled (PE=0). 0: Data byte received (if BTF=1) 1: Data byte transmitted 7 EVF 0 ADD10 TRA BUSY BTF ADSL M/SL SB Bit 7 = EVF Event flag. This bit is set by hardware as soon as an event occurs. It is cleared by software reading SR2 register in case of error event or as described in Figure 65. It is also cleared by hardware when the interface is disabled (PE=0). 0: No event 1: One of the following events has occurred: – BTF=1 (Byte received or transmitted) – ADSL=1 (Address matched in Slave mode while ACK=1) – SB=1 (Start condition generated in Master mode) – AF=1 (No acknowledge received after byte transmission) – STOPF=1 (Stop condition detected in Slave mode) – ARLO=1 (Arbitration lost in Master mode) – BERR=1 (Bus error, misplaced Start or Stop condition detected) – ADD10=1 (Master has sent header byte) – Address byte successfully transmitted in Master mode. Bit 6 = ADD10 10-bit addressing in Master mode . This bit is set by hardware when the master has sent the first byte in 10-bit address mode. It is cleared by software reading SR2 register followed by a write in the DR register of the second address byte. It is also cleared by hardware when the peripheral is disabled (PE=0). 0: No ADD10 event occurred. 1: Master has sent first address byte (header) Bit 5 = TRA Transmitter/Receiver. When BTF is set, TRA=1 if a data byte has been transmitted. It is cleared automatically when BTF is cleared. It is also cleared by hardware after detection of Stop condition (STOPF=1), loss of bus 122/199 Bit 4 = BUSY Bus busy. This bit is set by hardware on detection of a Start condition and cleared by hardware on detection of a Stop condition. It indicates a communication in progress on the bus. This information is still updated when the interface is disabled (PE=0). 0: No communication on the bus 1: Communication ongoing on the bus Bit 3 = BTF Byte transfer finished. This bit is set by hardware as soon as a byte is correctly received or transmitted with interrupt generation if ITE=1. It is cleared by software reading SR1 register followed by a read or write of DR register. It is also cleared by hardware when the interface is disabled (PE=0). – Following a byte transmission, this bit is set after reception of the acknowledge clock pulse. In case an address byte is sent, this bit is set only after the EV6 event (See Figure 65). BTF is cleared by reading SR1 register followed by writing the next byte in DR register. – Following a byte reception, this bit is set after transmission of the acknowledge clock pulse if ACK=1. BTF is cleared by reading SR1 register followed by reading the byte from DR register. The SCL line is held low while BTF=1. 0: Byte transfer not done 1: Byte transfer succeeded Bit 2 = ADSL Address matched (Slave mode). This bit is set by hardware as soon as the received slave address matched with the OAR register content or a general call is recognized. An interrupt is generated if ITE=1. It is cleared by software reading SR1 register or by hardware when the interface is disabled (PE=0). The SCL line is held low while ADSL=1. 0: Address mismatched or not received 1: Received address matched ST72521M/R/AR I2C BUS INTERFACE (Cont’d) Bit 1 = M/SL Master/Slave. This bit is set by hardware as soon as the interface is in Master mode (writing START=1). It is cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration (ARLO=1). It is also cleared when the interface is disabled (PE=0). 0: Slave mode 1: Master mode Bit 0 = SB Start bit (Master mode). This bit is set by hardware as soon as the Start condition is generated (following a write START=1). An interrupt is generated if ITE=1. It is cleared by software reading SR1 register followed by writing the address byte in DR register. It is also cleared by hardware when the interface is disabled (PE=0). 0: No Start condition 1: Start condition generated I2C STATUS REGISTER 2 (SR2) Read Only Reset Value: 0000 0000 (00h) 7 0 Bit 2 = ARLO Arbitration lost. This bit is set by hardware when the interface loses the arbitration of the bus to another master. An interrupt is generated if ITE=1. It is cleared by software reading SR2 register or by hardware when the interface is disabled (PE=0). After an ARLO event the interface switches back automatically to Slave mode (M/SL=0). The SCL line is not held low while ARLO=1. 0: No arbitration lost detected 1: Arbitration lost detected Bit 1 = BERR Bus error. This bit is set by hardware when the interface detects a misplaced Start or Stop condition. An interrupt is generated if ITE=1. It is cleared by software reading SR2 register or by hardware when the interface is disabled (PE=0). The SCL line is not held low while BERR=1. 0: No misplaced Start or Stop condition 1: Misplaced Start or Stop condition 0 0 0 AF STOPF ARLO BERR GCAL Bit 7:5 = Reserved. Forced to 0 by hardware. Bit 4 = AF Acknowledge failure. This bit is set by hardware when no acknowledge is returned. An interrupt is generated if ITE=1. It is cleared by software reading SR2 register or by hardware when the interface is disabled (PE=0). The SCL line is not held low while AF=1. 0: No acknowledge failure 1: Acknowledge failure Bit 0 = GCAL General Call (Slave mode). This bit is set by hardware when a general call address is detected on the bus while ENGC=1. It is cleared by hardware detecting a Stop condition (STOPF=1) or when the interface is disabled (PE=0). 0: No general call address detected on bus 1: general call address detected on bus Bit 3 = STOPF Stop detection (Slave mode). This bit is set by hardware when a Stop condition is detected on the bus after an acknowledge (if ACK=1). An interrupt is generated if ITE=1. It is cleared by software reading SR2 register or by hardware when the interface is disabled (PE=0). The SCL line is not held low while STOPF=1. 0: No Stop condition detected 1: Stop condition detected 123/199 ST72521M/R/AR I2C BUS INTERFACE (Cont’d) I2C CLOCK CONTROL REGISTER (CCR) Read / Write Reset Value: 0000 0000 (00h) 7 0 I2C DATA REGISTER (DR) Read / Write Reset Value: 0000 0000 (00h) 7 FM/SM CC6 CC5 CC4 CC3 CC2 CC1 D7 Bit 7 = FM/SM Fast/Standard I2C mode. This bit is set and cleared by software. It is not cleared when the interface is disabled (PE=0). 0: Standard I2C mode 1: Fast I2C mode Bit 6:0 = CC[6:0] 7-bit clock divider. These bits select the speed of the bus (FSCL) depending on the I2C mode. They are not cleared when the interface is disabled (PE=0). – Standard mode (FM/SM=0): FSCL <= 100kHz FSCL = FCPU/(2x([CC6..CC0]+2)) – Fast mode (FM/SM=1): FSCL > 100kHz FSCL = FCPU/(3x([CC6..CC0]+2)) Note: The programmed FSCL assumes no load on SCL and SDA lines. 124/199 0 CC0 D6 D5 D4 D3 D2 D1 D0 Bit 7:0 = D[7:0] 8-bit Data Register. These bits contain the byte to be received or transmitted on the bus. – Transmitter mode: Byte transmission start automatically when the software writes in the DR register. – Receiver mode: the first data byte is received automatically in the DR register using the least significant bit of the address. Then, the following data bytes are received one by one after reading the DR register. ST72521M/R/AR I2C BUS INTERFACE (Cont’d) I2C OWN ADDRESS REGISTER (OAR1) Read / Write Reset Value: 0000 0000 (00h) 7 ADD7 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 I2C OWN ADDRESS REGISTER (OAR2) Read / Write Reset Value: 0100 0000 (40h) 0 7 ADD0 FR1 7-bit Addressing Mode Bit 7:1 = ADD[7:1] Interface address. These bits define the I2C bus address of the interface. They are not cleared when the interface is disabled (PE=0). 0 FR0 0 0 0 ADD9 ADD8 0 Bit 7:6 = FR[1:0] Frequency bits. These bits are set by software only when the interface is disabled (PE=0). To configure the interface to I2C specifed delays select the value corresponding to the microcontroller frequency FCPU. fCPU < 6 MHz 6 to 8 MHz FR1 0 0 FR0 0 1 Bit 0 = ADD0 Address direction bit. This bit is don’t care, the interface acknowledges either 0 or 1. It is not cleared when the interface is disabled (PE=0). Note: Address 01h is always ignored. Bit 5:3 = Reserved 10-bit Addressing Mode Bit 7:0 = ADD[7:0] Interface address. These are the least significant bits of the I2C bus address of the interface. They are not cleared when the interface is disabled (PE=0). Bit 2:1 = ADD[9:8] Interface address. These are the most significant bits of the I2C bus address of the interface (10-bit mode only). They are not cleared when the interface is disabled (PE=0). Bit 0 = Reserved. 125/199 ST72521M/R/AR I²C BUS INTERFACE (Cont’d) Table 24. I2C Register Map and Reset Values Address (Hex.) Register Label 7 6 5 4 3 2 1 0 0018h I2CCR Reset Value 0 0 PE 0 ENGC 0 START 0 ACK 0 STOP 0 ITE 0 0019h I2CSR1 Reset Value EVF 0 ADD10 0 TRA 0 BUSY 0 BTF 0 ADSL 0 M/SL 0 SB 0 001Ah I2CSR2 Reset Value 0 0 0 AF 0 STOPF 0 ARLO 0 BERR 0 GCAL 0 001Bh I2CCCR Reset Value FM/SM 0 CC6 0 CC5 0 CC4 0 CC3 0 CC2 0 CC1 0 CC0 0 001Ch I2COAR1 Reset Value ADD7 0 ADD6 0 ADD5 0 ADD4 0 ADD3 0 ADD2 0 ADD1 0 ADD0 0 001Dh I2COAR2 Reset Value FR1 0 FR0 1 0 0 0 ADD9 0 ADD8 0 0 001Eh I2CDR Reset Value MSB 0 0 0 0 0 0 0 LSB 0 126/199 ST72521M/R/AR 10.8 CONTROLLER AREA NETWORK (CAN) 10.8.1 Introduction This peripheral is designed to support serial data exchanges using a multi-master contention based priority scheme as described in CAN specification Rev. 2.0 part A. It can also be connected to a 2.0 B network without problems, since extended frames are checked for correctness and acknowledged accordingly although such frames cannot be transmitted nor received. The same applies to overload frames which are recognized but never initiated. Figure 67. CAN Block Diagram ST7 Internal Bus ST7 Interface TX/RX Buffer 1 TX/RX Buffer 2 TX/RX Buffer 3 ID Filter 0 ID Filter 1 10 Bytes 10 Bytes 10 Bytes 4 Bytes 4 Bytes PSR BRPR BTR RX BTL ICR SHREG BCDL ISR TX EML CRC CSR CAN 2.0B passive Core TECR RECR 127/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) 10.8.2 Main Features – Support of CAN specification 2.0A and 2.0B passive – Three prioritized 10-byte Transmit/Receive message buffers – Two programmable global 12-bit message acceptance filters – Programmable baud rates up to 1 MBit/s – Buffer flip-flopping capability in transmission – Maskable interrupts for transmit, receive (one per buffer), error and wake-up – Automatic low-power mode after 20 recessive bits or on demand (standby mode) – Interrupt-driven wake-up from standby mode upon reception of dominant pulse – Optional dominant pulse transmission on leaving standby mode – Automatic message queuing for transmission upon writing of data byte 7 – Programmable loop-back mode for self-test operation – Advanced error detection and diagnosis functions – Software-efficient buffer mapping at a unique address space – Scalable architecture. 10.8.3 Functional Description 10.8.3.1 Frame Formats A summary of all the CAN frame formats is given in Figure 68 for reference. It covers only the standard frame format since the extended one is only acknowledged. A message begins with a start bit called Start Of Frame (SOF). This bit is followed by the arbitration field which contains the 11-bit identifier (ID) and the Remote Transmission Request bit (RTR). The RTR bit indicates whether it is a data frame or a remote request frame. A remote request frame does not have any data byte. The control field contains the Identifier Extension bit (IDE), which indicates standard or extended format, a reserved bit (ro) and, in the last four bits, a count of the data bytes (DLC). The data field ranges from zero to eight bytes and is followed by the Cyclic Redundancy Check (CRC) used as a frame integrity check for detecting bit errors. 128/199 The acknowledgement (ACK) field comprises the ACK slot and the ACK delimiter. The bit in the ACK slot is placed on the bus by the transmitter as a recessive bit (logical 1). It is overwritten as a dominant bit (logical 0) by those receivers which have at this time received the data correctly. In this way, the transmitting node can be assured that at least one receiver has correctly received its message. Note that messages are acknowledged by the receivers regardless of the outcome of the acceptance test. The end of the message is indicated by the End Of Frame (EOF). The intermission field defines the minimum number of bit periods separating consecutive messages. If there is no subsequent bus access by any station, the bus remains idle. 10.8.3.2 Hardware Blocks The CAN controller contains the following functional blocks (refer to Figure 67): – ST7 Interface: buffering of the ST7 internal bus and address decoding of the CAN registers. – TX/RX Buffers: three 10-byte buffers for transmission and reception of maximum length messages. – ID Filters: two 12-bit compare and don’t care masks for message acceptance filtering. – PSR: page selection register (see memory map). – BRPR: clock divider for different data rates. – BTR: bit timing register. – ICR: interrupt control register. – ISR: interrupt status register. – CSR: general purpose control/status register. – TECR: transmit error counter register. – RECR: receive error counter register. – BTL: bit timing logic providing programmable bit sampling and bit clock generation for synchronization of the controller. – BCDL: bit coding logic generating a NRZ-coded datastream with stuff bits. – SHREG: 8-bit shift register for serialization of data to be transmitted and parallelisation of received data. – CRC: 15-bit CRC calculator and checker. – EML: error detection and management logic. – CAN Core: CAN 2.0B passive protocol controller. ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) Figure 68. CAN Frames Inter-Frame Space Inter-Frame Space or Overload Frame Data Frame 44 + 8 * N Arbitration Field Control Field Data Field 8*N 6 12 ID Ack Field 2 CRC Field 16 CRC EOF ACK SOF RTR IDE r0 DLC 7 Inter-Frame Space or Overload Frame Remote Frame Inter-Frame Space 44 Arbitration Field Control Field CRC Field 6 12 ID 16 End Of Frame 7 CRC ACK RTR IDE r0 DLC SOF Data Frame or Remote Frame Ack Field 2 Inter-Frame Space or Overload Frame Error Frame Error Flag Flag Echo Error Delimiter 6 ≤6 8 Inter-Frame Space Any Frame Data Frame or Remote Frame Notes: •0 <= N <= 8 • SOF = Start Of Frame Suspend Intermission 3 Transmission 8 Bus Idle • ID = Identifier • RTR = Remote Transmission Request • IDE = Identifier Extension Bit • r0 = Reserved Bit End Of Frame or Error Delimiter or Overload Delimiter • DLC = Data Length Code Overload Frame Inter-Frame Space or Error Frame • CRC = Cyclic Redundancy Code • Error flag: 6 dominant bits if node is error active else 6 recessive bits. Overload Flag Overload Delimiter 6 8 • Suspend transmission: applies to error passive nodes only. • EOF = End of Frame • ACK = Acknowledge bit 129/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) 10.8.3.3 Modes of Operation The CAN Core unit assumes one of the seven states described below: – STANDBY. Standby mode is entered either on a chip reset or on resetting the RUN bit in the Control/Status Register (CSR). Any on-going transmission or reception operation is not interrupted and completes normally before the Bit Time Logic and the clock prescaler are turned off for minimum power consumption. This state is signalled by the RUN bit being read-back as 0. Once in standby, the only event monitored is the reception of a dominant bit which causes a wakeup interrupt if the SCIE bit of the Interrupt Control Register (ICR) is set. The STANDBY mode is left by setting the RUN bit. If the WKPS bit is set in the CSR register, then the controller passes through WAKE-UP otherwise it enters RESYNC directly. It is important to note that the wake-up mechanism is software-driven and therefore carries a significant time overhead. All messages received after the wake-up bit and before the controller is set to run and has completed synchronization are ignored. – WAKE-UP. The CAN bus line is forced to dominant for one bit time signalling the wake-up condition to all other bus members. Figure 69. CAN Controller State Diagram ARESET RUN & WKPS STANDBY RUN RUN & WKPS WAKE-UP RESYNC FSYN & BOFF & 11 Recessive bits | (FSYN | BOFF) & 128 * 11 Recessive bits RUN IDLE Write to DATA7 | TX Error & NRTX Start Of Frame TX OK RX OK Arbitration lost TRANSMISSION RECEPTION RX Error TX Error BOFF ERROR BOFF n 130/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) – RESYNC. The resynchronization mode is used to find the correct entry point for starting transmission or reception after the node has gone asynchronous either by going into the STANDBY or bus-off states. Resynchronization is achieved when 128 sequences of 11 recessive bits have been monitored unless the node is not bus-off and the FSYN bit in the CSR register is set in which case a single sequence of 11 recessive bits needs to be monitored. – IDLE. The CAN controller looks for one of the following events: the RUN bit is reset, a Start Of Frame appears on the CAN bus or the DATA7 register of the currently active page is written to. – TRANSMISSION. Once the LOCK bit of a Buffer Control/Status Register (BCSRx) has been set and read back as such, a transmit job can be submitted by writing to the DATA7 register. The message with the highest priority will be transmitted as soon as the CAN bus becomes idle. Among those messages with a pending transmission request, the highest priority is given to Buffer 3 then 2 and 1. If the transmission fails due to a lost arbitration or to an error while the NRTX bit of the CSR register is reset, then a new transmission attempt is performed . This goes on until the transmission ends successfully or until the job is cancelled by unlocking the buffer, by setting the NRTX bit or if the node ever enters busoff or if a higher priority message becomes pending. The RDY bit in the BCSRx register, which was set since the job was submitted, gets reset. When a transmission is in progress, the BUSY bit in the BCSRx register is set. If it ends successfully then the TXIF bit in the Interrupt Status Register (ISR) is set, else the TEIF bit is set. An interrupt is generated in either case provided the TXIE and TEIE bits of the ICR register are set. The ETX bit in the same register is used to get an early transmit interrupt and to automatically unlock the transmitting buffer upon successful completion of its job. This enables the CPU to get a new transmit job pending by the end of the current transmission while always leaving two buffers available for reception. An uninterrupted stream of messages may be transmitted in this way at no overrun risk. Note 1: Setting the SRTE bit of the CSR register allows transmitted messages to be simultaneously received when they pass the acceptance filtering. This is particularly useful for checking the integrity of the communication path. Note 2: When the ETX bit is reset, the buffer with the highest priority and with a pending transmission request is always transmitted. When the ETX bit is set, once a buffer participates in the arbitration phase, it is sent until it wins the arbitration even if another transmission is requested from a buffer with a higher priority. – RECEPTION. Once the CAN controller has synchronized itself onto the bus activity, it is ready for reception of new messages. Every incoming message gets its identifier compared to the acceptance filters. If the bitwise comparison of the selected bits ends up with a match for at least one of the filters then that message is elected for reception and a target buffer is searched for. This buffer will be the first one - order is 1 to 3 - that has the LOCK and RDY bits of its BCSRx register reset. – When no such buffer exists then an overrun interrupt is generated if the ORIE bit of the ICR register has been set. In this case the identifier of the last message is made available in the Last Identifier Register (LIDHR and LIDLR) at least until it gets overwritten by a new identifier picked-up from the bus. – When a buffer does exist, the accepted message gets written into it, the ACC bit in the BCSRx register gets the number of the matching filter, the RDY and RXIF bits get set and an interrupt is generated if the RXIE bit in the ISR register is set. Up to three messages can be automatically received without intervention from the CPU because each buffer has its own set of status bits, greatly reducing the reactiveness requirements in the processing of the receive interrupts. 131/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) – ERROR. The error management as described in the CAN protocol is completely handled by hardware using 2 error counters which get incremented or decremented according to the error condition. Both of them may be read by the appli- cation to determine the stability of the network. Moreover, as one of the node status bits (EPSV or BOFF of the CSR register) changes, an interrupt is generated if the SCIE bit is set in the ICR Register. Refer to Figure 70. Figure 70. CAN Error State Diagram When TECR or RECR > 127, the EPSV bit gets set ERROR ACTIVE ERROR PASSIVE When TECR and RECR < 128, the EPSV bit gets cleared When 128 * 11 recessive bits occur: - the BOFF bit gets cleared - the TECR register gets cleared - the RECR register gets cleared When TECR > 255 the BOFF bit gets set and the EPSV bit gets cleared BUS OFF 132/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) 10.8.3.4 Bit Timing Logic The bit timing logic monitors the serial bus-line and performs sampling and adjustment of the sample point by synchronizing on the start-bit edge and resynchronizing on following edges. Its operation may be explained simply when the nominal bit time is divided into three segments as follows: – Synchronisation segment (SYNC_SEG): a bit change is expected to lie within this time segment. It has a fixed length of one time quanta (1 x tCAN). – Bit segment 1 (BS1): defines the location of the sample point. It includes the PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration is programmable between 1 and 16 time quanta but may be automatically lengthened to compensate for positive phase drifts due to differences in the frequency of the various nodes of the network. – Bit segment 2 (BS2): defines the location of the transmit point. It represents the PHASE_SEG2 of the CAN standard. Its duration is programmable between 1 and 8 time quanta but may also be automatically shortened to compensate for negative phase drifts. – Resynchronization Jump Width (RJW): defines an upper bound to the amount of lengthening or shortening of the bit segments. It is programmable between 1 and 4 time quanta. To guarantee the correct behaviour of the CAN controller, SYNC_SEG + BS1 + BS2 must be greater than or equal to 5 time quanta. For a detailed description of the CAN resynchronization mechanism and other bit timing configuration constraints, please refer to the Bosch CAN standard 2.0. As a safeguard against programming errors, the configuration of the Bit Timing Register (BTR) is only possible while the device is in STANDBY mode. Figure 71. Bit Timing NOMINAL BIT TIME SYNC_SEG 1 x tCAN BIT SEGMENT 1 (BS1) BIT SEGMENT 2 (BS2) tBS1 tBS2 SAMPLE POINT TRANSMIT POINT 133/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) 10.8.4 Register Description The CAN registers are organized as 6 general purpose registers plus 5 pages of 16 registers spanning the same address space and primarily used for message and filter storage. The page actually selected is defined by the content of the Page Selection Register. Refer to Figure 72. 10.8.4.1 General Purpose Registers INTERRUPT STATUS REGISTER (ISR) Read/Write Reset Value: 00h 7 RXIF3 RXIF2 RXIF1 0 TXIF SCIF ORIF TEIF EPND Bit 7 = RXIF3 Receive Interrupt Flag for Buffer 3 − Read/Clear Set by hardware to signal that a new error-free message is available in buffer 3. Cleared by software to release buffer 3. Also cleared by resetting bit RDY of BCSR3. Bit 6 = RXIF2 Receive Interrupt Flag for Buffer 2 − Read/Clear Set by hardware to signal that a new error-free message is available in buffer 2. Cleared by software to release buffer 2. Also cleared by resetting bit RDY of BCSR2. Bit 5 = RXIF1 Receive Interrupt Flag for Buffer 1 − Read/Clear Set by hardware to signal that a new error-free message is available in buffer 1. Cleared by software to release buffer 1. Also cleared by resetting bit RDY of BCSR1. 134/199 Bit 4 = TXIF Transmit Interrupt Flag − Read/Clear Set by hardware to signal that the highest priority message queued for transmission has been successfully transmitted (ETX = 0) or that it has passed successfully the arbitration (ETX = 1). Cleared by software. Bit 3 = SCIF Status Change Interrupt Flag − Read/Clear Set by hardware to signal the reception of a dominant bit while in standby or a change from error active to error passive and bus-off while in run. Also signals any receive error when ESCI = 1. Cleared by software. Bit 2 = ORIF Overrun Interrupt Flag − Read/Clear Set by hardware to signal that a message could not be stored because no receive buffer was available. Cleared by software. Bit 1 = TEIF Transmit Error Interrupt Flag − Read/Clear Set by hardware to signal that an error occurred during the transmission of the highest priority message queued for transmission. Cleared by software. Bit 0 = EPND Error Interrupt Pending − Read Only Set by hardware when at least one of the three error interrupt flags SCIF, ORIF or TEIF is set. Reset by hardware when all error interrupt flags have been cleared. Caution; Interrupt flags are reset by writing a "0" to the corresponding bit position. The appropriate way consists in writing an immediate mask or the one’s complement of the register content initially read by the interrupt handler. Bit manipulation instruction BRES should never be used due to its read-modifywrite nature. ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) INTERRUPT CONTROL REGISTER (ICR) Read/Write Reset Value: 00h 7 0 0 ESCI RXIE TXIE SCIE ORIE TEIE ETX Bit 6 = ESCI Extended Status Change Interrupt − Read/Set/Clear Set by software to specify that SCIF is to be set on receive errors also. Cleared by software to set SCIF only on status changes and wake-up but not on all receive errors. Bit 5 = RXIE Receive Interrupt Enable − Read/Set/Clear Set by software to enable an interrupt request whenever a message has been received free of errors. Cleared by software to disable receive interrupt requests. Bit 4 = TXIE Transmit Interrupt Enable − Read/Set/Clear Set by software to enable an interrupt request whenever a message has been successfully transmitted. Cleared by software to disable transmit interrupt requests. Bit 3 = SCIE Status Change Interrupt Enable − Read/Set/Clear Set by software to enable an interrupt request whenever the node’s status changes in run mode or whenever a dominant pulse is received in standby mode. Cleared by software to disable status change interrupt requests. Bit 2 = ORIE Overrun Interrupt Enable − Read/Set/Clear Set by software to enable an interrupt request whenever a message should be stored and no receive buffer is avalaible. Cleared by software to disable overrun interrupt requests. Bit 1 = TEIE Transmit Error Interrupt Enable − Read/Set/Clear Set by software to enable an interrupt whenever an error has been detected during transmission of a message. Cleared by software to disable transmit error interrupts. Bit 0 = ETX Early Transmit Interrupt − Read/Set/Clear Set by software to request the transmit interrupt to occur as soon as the arbitration phase has been passed successfully. Cleared by software to request the transmit interrupt to occur at the completion of the transfer. 135/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) Bit 3 = NRTX No Retransmission − Read/Set/Clear CONTROL/STATUS REGISTER (CSR) Read/Write Reset Value: 00h 7 0 0 BOFF EPSV SRTE NRTX FSYN WKPS RUN Bit 6 = BOFF Bus-Off State − Read Only Set by hardware to indicate that the node is in busoff state, i.e. the Transmit Error Counter exceeds 255. Reset by hardware to indicate that the node is involved in bus activities. Bit 5 = EPSV Error Passive State − Read Only Set by hardware to indicate that the node is error passive. Reset by hardware to indicate that the node is either error active (BOFF = 0) or bus-off. Bit 4 = SRTE Simultaneous Receive/Transmit Enable − Read/Set/Clear Set by software to enable simultaneous transmission and reception of a message passing the acceptance filtering. Allows to check the integrity of the communication path. Reset by software to discard all messages transmitted by the node. Allows remote and data frames to share the same identifier. 136/199 Set by software to disable the retransmission of unsuccessful messages. Cleared by software to enable retransmission of messages until success is met. Bit 2 = FSYN Fast Synchronization − Read/Set/Clear Set by software to enable a fast resynchronization when leaving standby mode, i.e. wait for only 11 recessive bits in a row. Cleared by software to enable the standard resynchronization when leaving standby mode, i.e. wait for 128 sequences of 11 recessive bits. Bit 1 = WKPS Wake-up Pulse − Read/Set/Clear Set by software to generate a dominant pulse when leaving standby mode. Cleared by software for no dominant wake-up pulse. Bit 0 = RUN CAN Enable − Read/Set/Clear Set by software to leave standby mode after 128 sequences of 11 recessive bits or just 11 recessive bits if FSYN is set. Cleared by software to request a switch to the standby or low-power mode as soon as any on-going transfer is complete. Read-back as 1 in the meantime to enable proper signalling of the standby state. The CPU clock may therefore be safely switched OFF whenever RUN is read as 0. ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) BAUD RATE PRESCALER REGISTER (BRPR) Read/Write in Standby mode Reset Value: 00h 7 RJW1 RJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BIT TIMING REGISTER (BTR) Read/Write in Standby mode Reset Value: 23h 0 7 BRP0 0 RJW[1:0] determine the maximum number of time quanta by which a bit period may be shortened or lengthened to achieve resynchronization. tRJW = t CAN * (RJW + 1) BRP[5:0] determine the CAN system clock cycle time or time quanta which is used to build up the individual bit timing. tCAN = tCPU * (BRP + 1) Where tCPU = time period of the CPU clock. The resulting baud rate can be computed by the formula: 0 BS22 BS21 BS20 BS13 BS12 BS11 BS10 BS2[2:0] determine the length of Bit Segment 2. tBS2 = tCAN * (BS2 + 1) BS1[3:0] determine the length of Bit Segment 1. tBS1 = tCAN * (BS1 + 1) Note: Writing to this register is allowed only in Standby mode to prevent any accidental CAN protocol violation through programming errors. PAGE SELECTION REGISTER (PSR) Read/Write Reset Value: 00h 7 1 BR = -----------------------------------------------------------------------------------------------t CPU × ( BR P + 1 ) × ( BS1 + BS2 + 3 ) 0 0 0 0 0 PAGE PAGE PAGE 2 1 0 0 PAGE[2:0] determine which buffer or filter page is mapped at addresses 0010h to 001Fh. Note: Writing to this register is allowed only in Standby mode to prevent any accidental CAN protocol violation through programming errors. PAGE2 PAGE1 PAGE0 Page Title 0 0 0 Diagnosis 0 0 1 Buffer 1 0 1 0 Buffer 2 0 1 1 Buffer 3 1 0 0 Filters 1 0 1 Reserved 1 1 0 Reserved 1 1 1 Reserved 137/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) 10.8.4.2 Paged Registers LAST IDENTIFIER HIGH REGISTER (LIDHR) Read/Write Reset Value: Undefined 7 LID10 0 LID9 LID8 LID7 LID6 LID5 LID4 LAST IDENTIFIER LOW REGISTER (LIDLR) Read/Write Reset Value: Undefined LID2 0 LID1 LID0 LRTR LDLC 3 LDLC 2 LDLC 1 7 TEC7 0 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TEC0 LID3 LID[10:3] are the most significant 8 bits of the last Identifier read on the CAN bus. 7 TRANSMIT ERROR COUNTER REG. (TECR) Read Only Reset Value: 00h LDLC 0 TEC[7:0] is the least significant byte of the 9-bit Transmit Error Counter implementing part of the fault confinement mechanism of the CAN protocol. In case of an error during transmission, this counter is incremented by 8. It is decremented by 1 after every successful transmission. When the counter value exceeds 127, the CAN controller enters the error passive state. When a value of 256 is reached, the CAN controller is disconnected from the bus. RECEIVE ERROR COUNTER REG. (RECR) Page: 00h — Read Only Reset Value: 00h 7 LID[2:0] are the least significant 3 bits of the last Identifier read on the CAN bus. LRTR is the last Remote Transmission Request bit read on the CAN bus. LDLC[3:0] is the last Data Length Code read on the CAN bus. REC7 0 REC6 REC5 REC4 REC3 REC2 REC1 REC0 REC[7:0] is the Receive Error Counter implementing part of the fault confinement mechanism of the CAN protocol. In case of an error during reception, this counter is incremented by 1 or by 8 depending on the error condition as defined by the CAN standard. After every successful reception the counter is decremented by 1 or reset to 120 if its value was higher than 128. When the counter value exceeds 127, the CAN controller enters the error passive state. IDENTIFIER HIGH REGISTERS (IDHRx) Read/Write Reset Value: Undefined 7 ID10 0 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID[10:3] are the most significant 8 bits of the 11-bit message identifier.The identifier acts as the message’s name, used for bus access arbitration and acceptance filtering. 138/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) BUFFER CONTROL/STATUS REGs. (BCSRx) Read/Write Reset Value: 00h IDENTIFIER LOW REGISTERS (IDLRx) Read/Write Reset Value: Undefined 7 ID2 ID1 ID0 RTR DLC3 DLC2 DLC1 0 7 DLC0 0 ID[2:0] are the least significant 3 bits of the 11-bit message identifier. RTR is the Remote Transmission Request bit. It is set to indicate a remote frame and reset to indicate a data frame. DLC[3:0] is the Data Length Code. It gives the number of bytes in the data field of the message.The valid range is 0 to 8. DATA REGISTERS (DATA0-7x) Read/Write Reset Value: Undefined 7 DATA 7 0 DATA 6 DATA 5 DATA 4 DATA 3 DATA 2 DATA 1 DATA 0 DATA[7:0] is a message data byte. Up to eight such bytes may be part of a message. Writing to byte DATA7 initiates a transmit request and should always be done even when DATA7 is not part of the message. 0 0 0 0 ACC RDY BUSY LOCK Bit 3 = ACC Acceptance Code − Read Only Set by hardware with the id of the highest priority filter which accepted the message stored in the buffer. ACC = 0: Match for Filter/Mask0. Possible match for Filter/Mask1. ACC = 1: No match for Filter/Mask0 and match for Filter/Mask1. Reset by hardware when either RDY or RXIF gets reset. Bit 2 = RDY Message Ready − Read/Clear Set by hardware to signal that a new error-free message is available (LOCK = 0) or that a transmission request is pending (LOCK = 1). Cleared by software when LOCK = 0 to release the buffer and to clear the corresponding RXIF bit in the Interrupt Status Register. Cleared by hardware when LOCK = 1 to indicate that the transmission request has been serviced or cancelled. Bit 1 = BUSY Busy Buffer − Read Only Set by hardware when the buffer is being filled (LOCK = 0) or emptied (LOCK = 1). Reset by hardware when the buffer is not accessed by the CAN core for transmission nor reception purposes. Bit 0 = LOCK Lock Buffer − Read/Set/Clear Set by software to lock a buffer. No more message can be received into the buffer thus preserving its content and making it available for transmission. Cleared by software to make the buffer available for reception. Cancels any pending transmission request. Cleared by hardware once a message has been successfully transmitted provided the early transmit interrupt mode is on. Left untouched otherwise. Note that in order to prevent any message corruption or loss of context, LOCK cannot be set nor reset while BUSY is set. Trying to do so will result in LOCK not changing state. 139/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) FILTER HIGH REGISTERS (FHRx) Read/Write Reset Value: Undefined MASK HIGH REGISTERS (MHRx) Read/Write Reset Value: Undefined 7 FIL11 0 FIL10 FIL9 FIL8 FIL7 FIL6 FIL5 FlL4 FIL[11:3] are the most significant 8 bits of a 12-bit message filter. The acceptance filter is compared bit by bit with the identifier and the RTR bit of the incoming message. If there is a match for the set of bits specified by the acceptance mask then the message is stored in a receive buffer. FILTER LOW REGISTERS (FLRx) Read/Write Reset Value: Undefined 7 FIL3 0 FIL2 FIL1 FIL0 0 0 0 0 7 0 MSK1 MSK1 MSK9 MSK8 MSK7 MSK6 MSK5 MSK4 1 0 MSK[11:3] are the most significant 8 bits of a 12bit message mask. The acceptance mask defines which bits of the acceptance filter should match the identifier and the RTR bit of the incoming message. MSKi = 0: don’t care. MSKi = 1: match required. MASK LOW REGISTERS (MLRx) Read/Write Reset Value: Undefined 7 MSK3 MSK2 MSK1 MSK0 0 0 0 0 0 FIL[3:0] are the least significant 4 bits of a 12-bit message filter. MSK[3:0] are the least significant 4 bits of a 12-bit message mask. 140/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) Figure 72. CAN Register Map 5Ah Interrupt Status 5Bh Interrupt Control 5Ch Control/Status 5Dh Baud Rate Prescaler 5Eh Bit Timing 5Fh Page Selection 60h 6Fh Paged Reg1 Paged Reg1 Paged Paged Reg1Reg0 Paged Reg2 Paged Paged Reg2Reg1 Paged Paged Reg2Reg1 Paged Reg3 Paged Paged Reg3Reg2 Paged Paged Reg3Reg2 Paged Reg4 Paged Paged Reg4Reg3 Paged Paged Paged Reg5Reg4Reg3 Paged Paged Reg5Reg4 Paged Paged Reg5Reg4 Paged Reg6 Paged Paged Reg6Reg5 Paged Paged Reg6Reg5 Paged Reg7 Paged Paged Reg7Reg6 Paged Paged Reg7Reg6 Paged Reg8 Paged Paged Reg8Reg7 Paged Paged Reg8Reg7 Paged Reg9 Paged Paged Reg9Reg8 Paged Paged Reg9Reg8 Paged Reg10 Paged Reg9 Paged Reg10 Paged Reg9 Paged Reg10 Paged Reg11 Paged Reg10 Paged Reg11 Paged Reg10 Paged Reg11 Paged Reg12 Paged Reg11 Paged Reg12 Paged Reg11 Paged Reg12 Paged Reg13 Paged Reg12 Paged Reg13 Paged Reg12 Paged Reg13 Paged Reg14 Paged Reg13 Paged Reg14 Paged Reg13 Paged Reg14 Paged Reg15 Paged Reg14 Paged Reg15 Paged Reg14 Paged Reg15 Paged Reg15 Paged Reg15 141/199 ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) Figure 73. Page Maps PAGE 0 PAGE 1 PAGE 2 PAGE 3 PAGE 4 60h LIDHR IDHR1 IDHR2 IDHR3 FHR0 61h LIDLR IDLR1 IDLR2 IDLR3 FLR0 62h DATA01 DATA02 DATA03 MHR0 63h DATA11 DATA12 DATA13 MLR0 64h DATA21 DATA22 DATA23 FHR1 65h DATA31 DATA32 DATA33 FLR1 66h DATA41 DATA42 DATA43 MHR1 DATA51 DATA52 DATA53 MLR1 68h DATA61 DATA62 DATA63 69h DATA71 DATA72 DATA73 Reserved Reserved Reserved 67h Reserved 6Ah 6Bh Reserved 6Ch 6Dh 6Eh TECR 6Fh RECR BCSR1 BCSR2 BCSR3 Diagnosis Buffer 1 Buffer 2 Buffer 3 142/199 Acceptance Filters ST72521M/R/AR CONTROLLER AREA NETWORK (Cont’d) Table 25. CAN Register Map and Reset Values Address (Hex.) Page 5A 5B 5C 5D 5E 5F 0 60 1 to 3 60, 64 4 0 61 1 to 3 61, 65 4 62 to 69 1 to 3 62, 66 4 63, 67 4 6E 0 6F 1 to 3 Register Label CANISR Reset Value CANICR Reset Value CANCSR Reset Value CANBRPR Reset Value CANBTR Reset Value CANPSR Reset Value CANLIDHR Reset Value CANIDHRx Reset Value CANFHRx Reset Value CANLIDLR Reset Value CANIDLRx Reset Value CANFLRx Reset Value CANDRx Reset Value CANMHRx Reset Value CANMLRx Reset Value CANTECR Reset Value CANRECR Reset Value CANBCSRx Reset Value 7 6 5 4 3 2 1 0 RXIF3 0 RXIF2 0 ESCI 0 BOFF 0 RJW0 0 BS22 0 RXIF1 0 RXIE 0 EPSV 0 BRP5 0 BS21 1 TXIF 0 TXIE 0 SRTE 0 BRP4 0 BS20 0 SCIF 0 SCIE 0 NRTX 0 BRP3 0 BS13 0 0 LID9 x ID9 x FIL10 x LID1 x ID1 x FIL2 x 0 LID8 x ID8 x FIL9 x LID0 x ID0 x FIL1 x 0 LID7 x ID7 x FIL8 x LRTR x RTR x FIL0 x 0 LID6 x ID6 x FIL7 x LDLC3 x DLC3 x ORIF 0 ORIE 0 FSYN 0 BRP2 0 BS12 0 PAGE2 0 LID5 x ID5 x FIL6 x LDLC2 x DLC2 x TEIF 0 TEIE 0 WKPS 0 BRP1 0 BS11 1 PAGE1 0 LID4 x ID4 x FIL5 x LDLC1 x DLC1 x EPND 0 ETX 0 RUN 0 BRP0 0 BS10 1 PAGE0 0 LID3 x ID3 x FIL4 x LDLC0 x DLC0 x 0 0 0 x MSK10 x MSK2 x x MSK9 x MSK1 x x MSK8 x MSK0 x x MSK7 x x MSK6 x x MSK5 x 0 LSB x MSK4 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ACC 0 0 RDY 0 0 BUSY 0 0 0 RJW1 0 0 0 LID10 x ID10 x FIL11 x LID2 x ID2 x FIL3 x MSB x MSK11 x MSK3 x MSB 0 MSB 0 0 0 LSB 0 LSB 0 LOCK 0 143/199 ST72521M/R/AR 10.9 10-BIT A/D CONVERTER (ADC) 10.9.1 Introduction The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive approximation converter with internal sample and hold circuitry. This peripheral has up to 16 multiplexed analog input channels (refer to device pin out description) that allow the peripheral to convert the analog voltage levels from up to 16 different sources. The result of the conversion is stored in a 10-bit Data Register. The A/D converter is controlled through a Control/Status Register. 10.9.2 Main Features 10-bit conversion ■ Up to 16 channels with multiplexed input ■ Linear successive approximation ■ Data register (DR) which contains the results ■ Conversion complete status flag ■ On/off bit (to reduce consumption) The block diagram is shown in Figure 74. ■ Figure 74. ADC Block Diagram fCPU DIV 4 0 DIV 2 fADC 1 EOC SPEED ADON 0 CH3 CH2 CH1 CH0 ADCCSR 4 AIN0 AIN1 ANALOG TO DIGITAL ANALOG MUX CONVERTER AINx ADCDRH D9 D8 ADCDRL 144/199 D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 D0 ST72521M/R/AR 10-BIT A/D CONVERTER (ADC) (Cont’d) 10.9.3 Functional Description The conversion is monotonic, meaning that the result never decreases if the analog input does not and never increases if the analog input does not. If the input voltage (V AIN) is greater than V AREF (high-level voltage reference) then the conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without overflow indication). If the input voltage (VAIN) is lower than VSSA (lowlevel voltage reference) then the conversion result in the ADCDRH and ADCDRL registers is 00 00h. The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH and ADCDRL registers. The accuracy of the conversion is described in the Electrical Characteristics Section. RAIN is the maximum recommended impedance for an analog input signal. If the impedance is too high, this will result in a loss of accuracy due to leakage and sampling not being completed in the alloted time. 10.9.3.1 A/D Converter Configuration The analog input ports must be configured as input, no pull-up, no interrupt. Refer to the «I/O ports» chapter. Using these pins as analog inputs does not affect the ability of the port to be read as a logic input. In the ADCCSR register: – Select the CS[3:0] bits to assign the analog channel to convert. 10.9.3.2 Starting the Conversion In the ADCCSR register: – Set the ADON bit to enable the A/D converter and to start the conversion. From this time on, the ADC performs a continuous conversion of the selected channel. When a conversion is complete: – The EOC bit is set by hardware. – The result is in the ADCDR registers. A read to the ADCDRH resets the EOC bit. To read the 10 bits, perform the following steps: 1. Poll the EOC bit 2. Read the ADCDRL register 3. Read the ADCDRH register. This clears EOC automatically. Note: The data is not latched, so both the low and the high data register must be read before the next conversion is complete, so it is recommended to disable interrupts while reading the conversion result. To read only 8 bits, perform the following steps: 1. Poll the EOC bit 2. Read the ADCDRH register. This clears EOC automatically. 10.9.3.3 Changing the conversion channel The application can change channels during conversion. When software modifies the CH[3:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is cleared, and the A/D converter starts converting the newly selected channel. 10.9.4 Low Power Modes Note: The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced power consumption when no conversion is needed and between single shot conversions. Mode WAIT HALT Description No effect on A/D Converter A/D Converter disabled. After wakeup from Halt mode, the A/D Converter requires a stabilization time tSTAB (see Electrical Characteristics) before accurate conversions can be performed. 10.9.5 Interrupts None. 145/199 ST72521M/R/AR 10-BIT A/D CONVERTER (ADC) (Cont’d) 10.9.6 Register Description Bit 3:0 = CH[3:0] Channel Selection These bits are set and cleared by software. They select the analog input to convert. CONTROL/STATUS REGISTER (ADCCSR) Read /Write (Except bit 7 read only) Reset Value: 0000 0000 (00h) 7 EOC SPEED ADON 0 0 CH3 CH2 CH1 CH0 Bit 7 = EOC End of Conversion This bit is set by hardware. It is cleared by hardware when software reads the ADCDRH register or writes to any bit of the ADCCSR register. 0: Conversion is not complete 1: Conversion complete Bit 6 = SPEED ADC clock selection This bit is set and cleared by software. 0: fADC = f CPU/4 1: fADC = f CPU/2 Bit 5 = ADON A/D Converter on This bit is set and cleared by software. 0: Disable ADC and stop conversion 1: Enable ADC and start conversion Bit 4 = Reserved. Must be kept cleared. Channel Pin* CH3 CH2 CH1 CH0 AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7 AIN8 AIN9 AIN10 AIN11 AIN12 AIN13 AIN14 AIN15 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 *The number of channels is device dependent. Refer to the device pinout description. DATA REGISTER (ADCDRH) Read Only Reset Value: 0000 0000 (00h) 7 D9 0 D8 D7 D6 D5 D4 D3 D2 Bit 7:0 = D[9:2] MSB of Converted Analog Value DATA REGISTER (ADCDRL) Read Only Reset Value: 0000 0000 (00h) 7 0 0 0 0 0 0 0 D1 D0 Bit 7:2 = Reserved. Forced by hardware to 0. Bit 1:0 = D[1:0] LSB of Converted Analog Value 146/199 ST72521M/R/AR 10-BIT A/D CONVERTER (Cont’d) Table 26. ADC Register Map and Reset Values Address (Hex.) Register Label 7 6 5 4 3 2 1 0 0070h ADCCSR Reset Value EOC 0 SPEED 0 ADON 0 0 CH3 0 CH2 0 CH1 0 CH0 0 0071h ADCDRH Reset Value D9 0 D8 0 D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 0072h ADCDRL Reset Value 0 0 0 0 0 0 D1 0 D0 0 147/199 ST72521M/R/AR 11 INSTRUCTION SET 11.1 ST7 ADDRESSING MODES The ST7 Core features 17 different addressing modes which can be classified in 7 main groups: Addressing Mode Example Inherent nop Immediate ld A,#$55 Direct ld A,$55 Indexed ld A,($55,X) Indirect ld A,([$55],X) Relative jrne loop Bit operation bset byte,#5 The ST7 Instruction set is designed to minimize the number of bytes required per instruction: To do so, most of the addressing modes may be subdivided in two sub-modes called long and short: – Long addressing mode is more powerful because it can use the full 64 Kbyte address space, however it uses more bytes and more CPU cycles. – Short addressing mode is less powerful because it can generally only access page zero (0000h 00FFh range), but the instruction size is more compact, and faster. All memory to memory instructions use short addressing modes only (CLR, CPL, NEG, BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP) The ST7 Assembler optimizes the use of long and short addressing modes. Table 27. ST7 Addressing Mode Overview Mode Syntax Destination Pointer Address (Hex.) Pointer Size (Hex.) Length (Bytes) Inherent nop +0 Immediate ld A,#$55 +1 Short Direct ld A,$10 00..FF +1 Long Direct ld A,$1000 0000..FFFF +2 No Offset Direct Indexed ld A,(X) 00..FF +0 Short Direct Indexed ld A,($10,X) 00..1FE +1 Long Direct Indexed ld A,($1000,X) 0000..FFFF +2 Short Indirect ld A,[$10] 00..FF 00..FF byte +2 Long Indirect ld A,[$10.w] 0000..FFFF 00..FF word +2 Short Indirect Indexed ld A,([$10],X) 00..1FE 00..FF byte +2 Long Indirect Indexed ld A,([$10.w],X) 0000..FFFF 00..FF word +2 Relative Direct jrne loop PC+/-127 Relative Indirect jrne [$10] PC+/-127 Bit Direct bset $10,#7 00..FF Bit Indirect bset [$10],#7 00..FF Bit Direct Relative btjt $10,#7,skip 00..FF Bit Indirect Relative btjt [$10],#7,skip 00..FF 148/199 +1 00..FF byte +2 +1 00..FF byte +2 +2 00..FF byte +3 ST72521M/R/AR INSTRUCTION SET OVERVIEW (Cont’d) 11.1.1 Inherent All Inherent instructions consist of a single byte. The opcode fully specifies all the required information for the CPU to process the operation. Inherent Instruction Function NOP No operation TRAP S/W Interrupt WFI Wait For Interrupt (Low Power Mode) HALT Halt Oscillator (Lowest Power Mode) RET Sub-routine Return IRET Interrupt Sub-routine Return SIM Set Interrupt Mask (level 3) RIM Reset Interrupt Mask (level 0) SCF Set Carry Flag RCF Reset Carry Flag RSP Reset Stack Pointer LD Load CLR Clear PUSH/POP Push/Pop to/from the stack INC/DEC Increment/Decrement TNZ Test Negative or Zero CPL, NEG 1 or 2 Complement MUL Byte Multiplication SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations SWAP Swap Nibbles 11.1.2 Immediate Immediate instructions have two bytes, the first byte contains the opcode, the second byte contains the operand value. Immediate Instruction Function LD Load CP Compare BCP Bit Compare AND, OR, XOR Logical Operations ADC, ADD, SUB, SBC Arithmetic Operations 11.1.3 Direct In Direct instructions, the operands are referenced by their memory address. The direct addressing mode consists of two submodes: Direct (short) The address is a byte, thus requires only one byte after the opcode, but only allows 00 - FF addressing space. Direct (long) The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after the opcode. 11.1.4 Indexed (No Offset, Short, Long) In this mode, the operand is referenced by its memory address, which is defined by the unsigned addition of an index register (X or Y) with an offset. The indirect addressing mode consists of three sub-modes: Indexed (No Offset) There is no offset, (no extra byte after the opcode), and allows 00 - FF addressing space. Indexed (Short) The offset is a byte, thus requires only one byte after the opcode and allows 00 - 1FE addressing space. Indexed (long) The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the opcode. 11.1.5 Indirect (Short, Long) The required data byte to do the operation is found by its memory address, located in memory (pointer). The pointer address follows the opcode. The indirect addressing mode consists of two sub-modes: Indirect (short) The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing space, and requires 1 byte after the opcode. Indirect (long) The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode. 149/199 ST72521M/R/AR INSTRUCTION SET OVERVIEW (Cont’d) 11.1.6 Indirect Indexed (Short, Long) This is a combination of indirect and short indexed addressing modes. The operand is referenced by its memory address, which is defined by the unsigned addition of an index register value (X or Y) with a pointer value located in memory. The pointer address follows the opcode. The indirect indexed addressing mode consists of two sub-modes: Indirect Indexed (Short) The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE addressing space, and requires 1 byte after the opcode. Indirect Indexed (Long) The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode. Table 28. Instructions Supporting Direct, Indexed, Indirect and Indirect Indexed Addressing Modes Long and Short Instructions Function LD Load CP Compare AND, OR, XOR Logical Operations ADC, ADD, SUB, SBC Arithmetic Additions/Substractions operations BCP Bit Compare Short Instructions Only Function CLR Clear INC, DEC Increment/Decrement TNZ Test Negative or Zero CPL, NEG 1 or 2 Complement BSET, BRES Bit Operations BTJT, BTJF Bit Test and Jump Operations SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations SWAP Swap Nibbles CALL, JP Call or Jump subroutine 150/199 11.1.7 Relative mode (Direct, Indirect) This addressing mode is used to modify the PC register value, by adding an 8-bit signed offset to it. Available Relative Direct/Indirect Instructions Function JRxx Conditional Jump CALLR Call Relative The relative addressing mode consists of two submodes: Relative (Direct) The offset is following the opcode. Relative (Indirect) The offset is defined in memory, which address follows the opcode. ST72521M/R/AR INSTRUCTION SET OVERVIEW (Cont’d) 11.2 INSTRUCTION GROUPS The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions may Load and Transfer LD CLR Stack operation PUSH POP be subdivided into 13 main groups as illustrated in the following table: RSP Increment/Decrement INC DEC Compare and Tests CP TNZ BCP Logical operations AND OR XOR CPL NEG Bit Operation BSET BRES Conditional Bit Test and Branch BTJT BTJF Arithmetic operations ADC ADD SUB SBC MUL Shift and Rotates SLL SRL SRA RLC RRC SWAP SLA Unconditional Jump or Call JRA JRT JRF JP CALL CALLR NOP Conditional Branch JRxx Interruption management TRAP WFI HALT IRET Condition Code Flag modification SIM RIM SCF RCF Using a pre-byte The instructions are described with one to four opcodes. In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede. The whole instruction becomes: PC-2 End of previous instruction PC-1 Prebyte PC opcode PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address RET These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are: PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one. PIX 92 Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruction using the corresponding indirect addressing mode. It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode. PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one. 151/199 ST72521M/R/AR INSTRUCTION SET OVERVIEW (Cont’d) Mnemo Description Function/Example Dst Src I1 H I0 N Z C ADC Add with Carry A=A+M+C A M H N Z C ADD Addition A=A+M A M H N Z C AND Logical And A=A.M A M N Z BCP Bit compare A, Memory tst (A . M) A M N Z BRES Bit Reset bres Byte, #3 M BSET Bit Set bset Byte, #3 M BTJF Jump if bit is false (0) btjf Byte, #3, Jmp1 M C BTJT Jump if bit is true (1) btjt Byte, #3, Jmp1 M C CALL Call subroutine CALLR Call subroutine relative CLR Clear CP Arithmetic Compare tst(Reg - M) reg CPL One Complement A = FFH-A DEC Decrement dec Y HALT Halt IRET Interrupt routine return Pop CC, A, X, PC INC Increment inc X JP Absolute Jump jp [TBL.w] JRA Jump relative always JRT Jump relative JRF Never jump jrf * JRIH Jump if Port B INT pin = 1 (no Port B Interrupts) JRIL Jump if Port B INT pin = 0 (Port B interrupt) JRH Jump if H = 1 H=1? JRNH Jump if H = 0 H=0? JRM Jump if I1:0 = 11 I1:0 = 11 ? JRNM Jump if I1:0 <> 11 I1:0 <> 11 ? JRMI Jump if N = 1 (minus) N=1? JRPL Jump if N = 0 (plus) N=0? JREQ Jump if Z = 1 (equal) Z=1? JRNE Jump if Z = 0 (not equal) Z=0? JRC Jump if C = 1 C=1? JRNC Jump if C = 0 C=0? JRULT Jump if C = 1 Unsigned < JRUGE Jump if C = 0 Jmp if unsigned >= JRUGT Jump if (C + Z = 0) Unsigned > 152/199 reg, M 0 1 N Z C reg, M N Z 1 reg, M N Z N Z N Z M 1 I1 reg, M 0 H I0 C ST72521M/R/AR INSTRUCTION SET OVERVIEW (Cont’d) Mnemo Description Function/Example Dst Src JRULE Jump if (C + Z = 1) Unsigned <= LD Load dst <= src reg, M M, reg MUL Multiply X,A = X * A A, X, Y X, Y, A NEG Negate (2’s compl) neg $10 reg, M NOP No Operation OR OR operation A=A+M A M POP Pop from the Stack pop reg reg M pop CC CC M M reg, CC I1 H I0 N Z N Z 0 I1 H C 0 I0 N Z N Z N Z C C PUSH Push onto the Stack push Y RCF Reset carry flag C=0 RET Subroutine Return RIM Enable Interrupts I1:0 = 10 (level 0) RLC Rotate left true C C <= A <= C reg, M N Z C RRC Rotate right true C C => A => C reg, M N Z C RSP Reset Stack Pointer S = Max allowed SBC Substract with Carry A=A-M-C N Z C SCF Set carry flag C=1 SIM Disable Interrupts I1:0 = 11 (level 3) SLA Shift left Arithmetic C <= A <= 0 reg, M N Z C SLL Shift left Logic C <= A <= 0 reg, M N Z C SRL Shift right Logic 0 => A => C reg, M 0 Z C SRA Shift right Arithmetic A7 => A => C reg, M N Z C SUB Substraction A=A-M A N Z C SWAP SWAP nibbles A7-A4 <=> A3-A0 reg, M N Z TNZ Test for Neg & Zero tnz lbl1 N Z TRAP S/W trap S/W interrupt WFI Wait for Interrupt XOR Exclusive OR N Z A = A XOR M 0 1 A 0 M 1 1 A 1 M M 1 1 1 0 153/199 ST72521M/R/AR 12 ELECTRICAL CHARACTERISTICS 12.1 PARAMETER CONDITIONS Unless otherwise specified, all voltages are referred to V SS. 12.1.1 Minimum and Maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA=25°C and TA=TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 12.1.2 Typical values Unless otherwise specified, typical data are based on TA=25°C, VDD=5V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 12.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 12.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 75. Figure 75. Pin loading conditions ST7 PIN CL 154/199 12.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 76. Figure 76. Pin input voltage ST7 PIN VIN ST72521M/R/AR 12.2 ABSOLUTE MAXIMUM RATINGS Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these condi12.2.1 Voltage Characteristics Symbol tions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Ratings Maximum value VDD - VSS Supply voltage 6.5 VPP - VSS Programming Voltage 13 VIN 1) & 2) Input Voltage on true open drain pin VSS-0.3 to 6.5 |VSSA - VSSx| V VSS-0.3 to VDD+0.3 Input voltage on any other pin |∆VDDx| and |∆VSSx| Unit Variations between different digital power pins 50 Variations between digital and analog ground pins 50 VESD(HBM) Electro-static discharge voltage (Human Body Model) VESD(MM) Electro-static discharge voltage (Machine Model) mV see Section 12.7.3 on page 171 12.2.2 Current Characteristics Symbol Ratings Maximum value IVDD Total current into VDD power lines (source) 3) 150 IVSS Total current out of VSS ground lines (sink) 3) 150 Output current sunk by any standard I/O and control pin 25 Output current sunk by any high sink I/O pin 50 IIO Output current source by any I/Os and control pin IINJ(PIN) 2) & 4) ΣIINJ(PIN) 2) Unit mA - 25 Injected current on VPP pin ±5 Injected current on RESET pin ±5 Injected current on OSC1 and OSC2 pins ±5 Injected current on any other pin 5) & 6) ±5 Total injected current (sum of all I/O and control pins) 5) ± 25 mA Notes: 1. Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7kΩ for RESET, 10kΩ for I/Os). For the same reason, unused I/O pins must not be directly tied to VDD or VSS. 2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. 3. All power (VDD) and ground (VSS) lines must always be connected to the external supply. 4. Negative injection disturbs the analog performance of the device. See note in “ADC Accuracy” on page 186. For best reliability, it is recommended to avoid negative injection of more than 1.6mA. 5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterisation with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device. 6. True open drain I/O port pins do not accept positive injection. 155/199 ST72521M/R/AR 12.2.3 Thermal Characteristics Symbol TSTG TJ Ratings Storage temperature range Value Unit -65 to +150 °C Maximum junction temperature (see Section 13.2 THERMAL CHARACTERISTICS) 12.3 OPERATING CONDITIONS 12.3.1 General Operating Conditions Symbol Parameter Conditions fCPU Internal clock frequency VDD Standard voltage devices (except Flash Write/Erase) Operating Voltage for Flash Write/Erase TA Ambient temperature range Min Max Unit 0 8 MHz 3.8 5.5 4.5 5.5 1 Suffix Version 0 70 5 Suffix Version -10 85 6 or A Suffix Versions -40 85 VPP = 11.4 to 12.6V 7 or B Suffix Versions -40 105 C Suffix Version -40 125 V °C Figure 77. fCPU Max Versus VDD fCPU [MHz] 8 FUNCTIONALITY NOT GUARANTEED IN THIS AREA 6 4 2 1 0 3.5 3.8 4.0 4.5 5.5 FUNCTIONALITY GUARANTEED IN THIS AREA IN STANDARD VOLTAGE DEVICES (UNLESS OTHERWISE SPECIFIED IN THE TABLES OF PARAMETRIC DATA) SUPPLY VOLTAGE [V] Note: Some temperature ranges are only available with a specific package and memory size. Refer to Ordering Information . 156/199 ST72521M/R/AR OPERATING CONDITIONS (Cont’d) 12.3.2 Operating Conditions with Low Voltage Detector (LVD) Subject to general operating conditions for V DD, fCPU, and TA. Symbol Parameter VIT+(LVD) Reset release threshold (VDD rise) VIT-(LVD) Reset generation threshold (VDD fall) Vhys(LVD) LVD voltage threshold hysteresis 1) Conditions Min Typ Max VD level = High in option byte 4.0 1) 4.2 4.5 VD level = Med. in option byte VD level = Low in option byte Not Applicable VD level = High in option byte 3.8 VD level = Med. in option byte VD level = Low in option byte VDD rise time tg(VDD) Filtered glitch delay on VDD 1) 4.0 4.25 1) V Not Applicable VIT+(LVD)-VIT-(LVD) 150 1)2) VtPOR Unit 200 6 Not detected by the LVD 250 mV ∝ µs/V 40 ns Notes: 1. Data based on characterization results, not tested in production. 2. When VtPOR is faster than 100 µs/V, the Reset signal is released after a delay of max. 42µs after VDD crosses the VIT+(LVD) threshold. Figure 78. LVD Startup Behaviour 5V LVD RESET VIT+ VD 1.5V D Window 0.8V t Note: When the LVD is enabled, the MCU reaches its authorized operating voltage from a reset state. However, in some devices, the reset state is released when V DD is approximately between 0.8V and 1.5V. As a consequence, the I/Os may toggle when V DD is within this window. This may be an issue especially for applications where the MCU drives power components. Because Flash write access is impossible within this window, the Flash memory contents will not be corrupted. 157/199 ST72521M/R/AR 12.3.3 Auxiliary Voltage Detector (AVD) Thresholds Subject to general operating condition for VDD, fCPU, and TA. Symbol Parameter Conditions VD level = High in option byte Min Typ Max 4.4 1) 4.6 4.9 Unit VIT+(AVD) 1⇒0 AVDF flag toggle threshold (VDD rise) VIT-(AVD) 0⇒1 AVDF flag toggle threshold (VDD fall) Vhys(AVD) AVD voltage threshold hysteresis VIT+(AVD)-VIT-(AVD) 200 mV ∆VIT- Voltage drop between AVD flag set and LVD reset activated VIT-(AVD)-VIT-(LVD) 450 mV VD level = Med. in option byte VD level = Low in option byte VD level = High in option byte Not Applicable 4.2 VD level = Med. in option byte VD level = Low in option byte 4.4 4.65 1) V Not Applicable 1. Data based on characterization results, not tested in production. 12.3.4 External Voltage Detector (EVD) Thresholds Subject to general operating condition for VDD, fCPU, and TA. Symbol Min Typ Max VIT+(EVD) 1⇒0 AVDF flag toggle threshold (VDD rise)1) Parameter Conditions 1.15 1.26 1.35 VIT-(EVD) 0⇒1 AVDF flag toggle threshold (VDD fall)1) 1.1 1.2 1.3 Vhys(EVD) EVD voltage threshold hysteresis V VIT+(EVD)-VIT-(EVD) 1. Data based on characterization results, not tested in production. 158/199 Unit 200 mV ST72521M/R/AR 12.4 SUPPLY CURRENT CHARACTERISTICS The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total device consumption, the two current values must be added (except for HALT mode for which the clock is stopped). 12.4.1 RUN and SLOW Modes (Flash devices) Symbol Parameter Typ Max 1) Unit fOSC=2MHz, fCPU=1MHz fOSC=4MHz, fCPU=2MHz fOSC=8MHz, fCPU=4MHz fOSC=16MHz, fCPU=8MHz 1.3 2.0 3.6 7.1 3.0 5.0 8.0 15.0 mA fOSC=2MHz, fCPU=62.5kHz fOSC=4MHz, fCPU=125kHz fOSC=8MHz, fCPU=250kHz fOSC=16MHz, fCPU=500kHz 0.6 0.7 0.8 1.1 2.7 3.0 3.6 4.0 mA Conditions 3.8V≤VDD≤5.5V Supply current in RUN mode 2) (see Figure 79) IDD Supply current in SLOW mode 2) (see Figure 80) Figure 79. Typical IDD in RUN vs. fCPU Figure 80. Typical IDD in SLOW vs. fCPU 8MHz 4MHz 2MHz 1MHz 9 8 7 500kHz 250kHz 1.00 125kHz 62.5kHz 0.80 Idd (mA) Idd (mA) 6 1.20 5 4 3 0.60 0.40 2 0.20 1 0 0.00 3.2 3.6 4 4.4 Vdd (V) 4.8 5.2 5.5 3.2 3.6 4 4.4 4.8 5.2 5.5 Vdd (V) Notes: 1. Data based on characterization results, tested in production at VDD max. and fCPU max. 2. Measurements are done in the following conditions: - Progam executed from RAM, CPU running with RAM access. The increase in consumption when executing from Flash is 50%. - All I/O pins in input mode with a static value at VDD or VSS (no load) - All peripherals in reset state. - CSS and LVD disabled. - Clock input (OSC1) driven by external square wave. - In SLOW and SLOW WAIT mode, fCPU is based on fOSC divided by 32. To obtain the total current consumption of the device, add the clock source (Section 12.5.3 and Section 12.5.4) and the peripheral power consumption (Section 12.4.7). 159/199 ST72521M/R/AR SUPPLY CURRENT CHARACTERISTICS (Cont’d) 12.4.2 WAIT and SLOW WAIT Modes (Flash devices) Parameter Conditions Supply current in WAIT mode 2) (see Figure 81) IDD Supply current in SLOW WAIT mode 2) (see Figure 82) 3.8V≤VDD≤5.5V Symbol Figure 81. Typical IDD in WAIT vs. f CPU 5 fOSC=2MHz, fCPU=62.5kHz fOSC=4MHz, fCPU=125kHz fOSC=8MHz, fCPU=250kHz fOSC=16MHz, fCPU=500kHz Unit 1.0 1.5 2.5 4.5 3.0 4.0 5.0 7.0 mA 0.58 0.65 0.77 1.05 1.2 1.3 1.8 2.0 mA Figure 82. Typical IDD in SLOW-WAIT vs. fCPU 500kHz 1.20 250kHz 125kHz 62.5kHz 1.00 4 ) 0.80 3 ( Idd (mA) Max 1) fOSC=2MHz, fCPU=1MHz fOSC=4MHz, fCPU=2MHz fOSC=8MHz, fCPU=4MHz fOSC=16MHz, fCPU=8MHz 8MHz 4MHz 2MHz 1MHz 6 Typ 2 0.60 0.40 1 0.20 0 3.2 3.6 4 4.4 Vdd (V) 4.8 5.2 5.5 0.00 3.2 3.6 4 4.4 4.8 5.2 5.5 Vdd (V) Notes: 1. Data based on characterization results, tested in production at VDD max. and fCPU max. 2. Measurements are done in the following conditions: - Progam executed from RAM, CPU running with RAM access. The increase in consumption when executing from Flash is 50%. - All I/O pins in input mode with a static value at VDD or VSS (no load) - All peripherals in reset state. - CSS and LVD disabled. - Clock input (OSC1) driven by external square wave. - In SLOW and SLOW WAIT mode, fCPU is based on fOSC divided by 32. To obtain the total current consumption of the device, add the clock source (Section 12.5.3 and Section 12.5.4) and the peripheral power consumption (Section 12.4.7). 160/199 ST72521M/R/AR SUPPLY CURRENT CHARACTERISTICS (Cont’d) 12.4.3 RUN and SLOW Modes (ROM devices) Typ Max 1) fOSC=2MHz, fCPU=1MHz fOSC=4MHz, fCPU=2MHz fOSC=8MHz, fCPU=4MHz fOSC=16MHz, fCPU=8MHz 1.3 2.0 3.6 7.1 3.0 5.0 8.0 15.0 fOSC=2MHz, fCPU=62.5kHz fOSC=4MHz, fCPU=125kHz fOSC=8MHz, fCPU=250kHz fOSC=16MHz, fCPU=500kHz 0.6 0.7 0.8 1.1 2.7 3.0 3.6 4.0 Typ Max 1) 1.0 1.5 2.5 4.5 3.0 4.0 5.0 7.0 0.07 0.1 0.2 0.35 1.2 1.3 1.8 2.0 Parameter Supply current in RUN mode 2) IDD Supply current in SLOW mode 2) Conditions 3.8V≤VDD≤5.5V Symbol Unit mA 12.4.4 WAIT and SLOW WAIT Modes (ROM devices) Parameter Supply current in WAIT mode 2) IDD Supply current in SLOW WAIT mode 2) Conditions 3.8V≤VDD≤5.5V Symbol fOSC=2MHz, fCPU=1MHz fOSC=4MHz, fCPU=2MHz fOSC=8MHz, fCPU=4MHz fOSC=16MHz, fCPU=8MHz fOSC=2MHz, fCPU=62.5kHz fOSC=4MHz, fCPU=125kHz fOSC=8MHz, fCPU=250kHz fOSC=16MHz, fCPU=500kHz Unit mA Notes: 1. Data based on characterization results, tested in production at VDD max. and fCPU max. 2. Measurements are done in the following conditions: - Progam executed from RAM, CPU running with RAM access. There is no increase in consumption for if programs are executed in ROM - All I/O pins in input mode with a static value at VDD or VSS (no load) - All peripherals in reset state. - CSS and LVD disabled. - Clock input (OSC1) driven by external square wave. - In SLOW and SLOW WAIT mode, fCPU is based on fOSC divided by 32. To obtain the total current consumption of the device, add the clock source (Section 12.5.3 and Section 12.5.4) and the peripheral power consumption (Section 12.4.7). 161/199 ST72521M/R/AR SUPPLY CURRENT CHARACTERISTICS (Cont’d) 12.4.5 HALT and ACTIVE-HALT Modes Symbol Parameter Conditions Typ -40°C≤TA≤+85°C -40°C≤TA≤+125°C IDD Supply current in HALT mode 1) VDD=5.5V IDD Supply current in ACTIVE-HALT mode 2) fOSC = 16 MHz, VDD= 5V Max Unit 10 µA 50 650 No max. guaranteed µA Notes: 1. All I/O pins in push-pull 0 mode (when applicable) with a static value at VDD or VSS (no load), CSS and LVD disabled. Data based on characterization results, tested in production at VDD max. and fCPU max. 2. Data based on characterisation results, not tested in production. All I/O pins in push-pull 0 mode (when applicable) with a static value at VDD or VSS (no load); clock input (OSC1) driven by external square wave, LVD disabled. To obtain the total current consumption of the device, add the clock source consumption (Section 12.5.3 and Section 12.5.4). 12.4.6 Supply and Clock Managers The previous current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total device consumption, the two current values must be added (except for HALT mode). Symbol Parameter Conditions IDD(RCINT) Supply current of internal RC oscillator IDD(RCEXT) IDD(RES) Typ Max 1) 625 Supply current of external RC oscillator 2) see Section 12.5.4 on page 167 Supply current of resonator oscillator 2) & 3) see Section 12.5.3 on page 165 IDD(PLL) PLL supply current IDD(CSS) IDD(LVD) Unit VDD= 5V 360 Clock security system supply current VDD= 5V 250 LVD supply current HALT mode, VDD= 5V 150 µA 300 Notes: 1. Data based on characterisation results, not tested in production. 2. Data based on characterization results done with the external components specified in Section 12.5.3 and Section 12.5.4, not tested in production. 3. As the oscillator is based on a current source, the consumption does not depend on the voltage. 162/199 ST72521M/R/AR SUPPLY CURRENT CHARACTERISTICS (Cont’d) 12.4.7 On-Chip Peripherals Measured on S72F521R9T3 on TQFP64 generic board T A = 25°C fCPU=4MHz. Symbol Typ Unit IDD(TIM) 16-bit Timer supply current 1) Parameter Conditions VDD=5.0V 50 µA IDD(ART) ART PWM supply current2) VDD=5.0V 75 IDD(SPI) IDD(I2C) SPI supply current 3) VDD=5.0V 400 I2C supply current 4) VDD=5.0V 175 IDD(CAN) CAN supply current 5) VDD=5.0V 400 µA IDD(ADC) ADC supply current when converting 6) VDD=5.0V 400 µA µA Notes: 1. Data based on a differential IDD measurement between reset configuration (timer counter running at fCPU/4) and timer counter stopped (only TIMD bit set). Data valid for one timer. 2. Data based on a differential IDD measurement between reset configuration (timer stopped) and timer counter enabled (only TCE bit set). 3. Data based on a differential IDD measurement between reset configuration (SPI disabled) and a permanent SPI master communicationat maximum speed (data sent equal to 55h).This measurement includes the pad toggling consumption. 4. Data based on a differential IDD measurement between reset configuration (I2C disabled) and a permanent I2C master communication at 100kHz (data sent equal to 55h). This measurement include the pad toggling consumption (27kOhm external pull-up on clock and data lines). 5. Data based on a differential IDD measurement between reset configuration (CAN disabled) and a permanent CAN data transmit sequence with RX and TX connected together. This measurement include the pad toggling consumption. 6. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions. 163/199 ST72521M/R/AR 12.5 CLOCK AND TIMING CHARACTERISTICS Subject to general operating conditions for V DD, fCPU, and TA. 12.5.1 General Timings Symbol tc(INST) tv(IT) Parameter Conditions Instruction cycle time Interrupt reaction time tv(IT) = ∆tc(INST) + 10 fCPU=8MHz 2) fCPU=8MHz Min Typ 1) Max Unit 2 3 12 tCPU 250 375 1500 ns 10 22 tCPU 1.25 2.75 µs Max Unit 12.5.2 External Clock Source Symbol Parameter Conditions Min Typ VOSC1H OSC1 input pin high level voltage VDD-1 VDD VOSC1L OSC1 input pin low level voltage VSS VSS+1 tw(OSC1H) tw(OSC1L) OSC1 high or low time 3) tr(OSC1) tf(OSC1) IL OSC1 rise or fall time 3) see Figure 83 V 5 ns 15 VSS≤VIN≤VDD OSCx Input leakage current ±1 µA Figure 83. Typical Application with an External Clock Source 90% VOSC1H 10% VOSC1L tr(OSC1) tf(OSC1) tw(OSC1H) tw(OSC1L) OSC2 Not connected internally fOSC EXTERNAL CLOCK SOURCE OSC1 IL ST72XXX Notes: 1. Data based on typical application software. 2. Time measured between interrupt event and interrupt vector fetch. ∆tc(INST) is the number of tCPU cycles needed to finish the current instruction execution. 3. Data based on design simulation and/or technology characteristics, not tested in production. 164/199 ST72521M/R/AR CLOCK AND TIMING CHARACTERISTICS (Cont’d) 12.5.3 Crystal and Ceramic Resonator Oscillators The ST7 internal clock can be supplied with four different Crystal/Ceramic resonator oscillators. All the information given in this paragraph are based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as Symbol Parameter fOSC Oscillator Frequency 1) RF Feedback resistor CL1 CL2 Conditions Recommended load capacitance versus equivalent serial resistance of the crystal or ceramic resonator (RS) Symbol i2 close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator manufacturer for more details (frequency, package, accuracy...). Min Max Unit LP: Low power oscillator MP: Medium power oscillator MS: Medium speed oscillator HS: High speed oscillator 1 >2 >4 >8 2 4 8 16 MHz 20 22 22 18 15 40 56 46 33 33 kΩ RS=200Ω RS=200Ω RS=200Ω RS=100Ω Typ Max Unit 80 160 310 610 150 250 460 910 µA Parameter LP oscillator MP oscillator MS oscillator HS oscillator Conditions VDD=5V VIN=VSS OSC2 driving current LP oscillator MP oscillator MS oscillator HS oscillator pF Figure 84. Typical Application with a Crystal or Ceramic Resonator WHEN RESONATOR WITH INTEGRATED CAPACITORS i2 fOSC CL1 OSC1 RESONATOR CL2 RF OSC2 ST72XXX Notes: 1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value. Refer to crystal/ceramic resonator manufacturer for more details. 165/199 ST72521M/R/AR CLOCK AND TIMING CHARACTERISTICS (Cont’d) Typical Crystal or Ceramic Resonators LP MP MS HS Reference3) MURATA Ceramic Oscil. CSA2.00MG CSA4.00MG CSA8.00MTZ CSA16.00MXZ040 Freq. Characteristic 1) CL1 CL2 tSU(osc) 2) [pF] [pF] [ms] 2MHz ∆fOSC=[±0.5%tolerance,±0.3%∆Ta,±0.3%aging,±x.x%correl] 22 4MHz ∆fOSC=[±0.5%tolerance,±0.3%∆Ta,±0.3%aging,±x.x%correl] 22 8MHz ∆fOSC=[±0.5%tolerance,±0.5%∆Ta,±0.3%aging,±x.x%correl] 33 22 4 22 2 33 1 16MHz ∆fOSC=[±0.5%tolerance,±0.3%∆Ta,±0.3%aging,±x.x%correl] 33 33 0.7 Notes: 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. tSU(OSC) is the typical oscillator start-up time measured between VDD=2.8V and the fetch of the first instruction (with a quick VDD ramp-up from 0 to 5V (<50µs). 3. Contact the supplier for updated product information. 166/199 ST72521M/R/AR CLOCK CHARACTERISTICS (Cont’d) 12.5.4 RC Oscillators The ST7 internal clock can be supplied with an RC oscillator. This oscillator can be used with internal Symbol fOSC (RCINT) Parameter or external components (selectable by option byte). Conditions Internal RC oscillator frequency See Figure 86 and Figure 87 TA=25°C, VDD=5V Min Typ Max 2 3.5 5.6 Unit MHz fOSC(RCEXT) REX External RC oscillator frequency 1) Oscillator external resistor 2) 56 100 CEX Oscillator external capacitor 22 470 pF |iCEX| Capacitor load current 3) 350 µA 5 / (REX.CEX) OSC1 = VSS or 1.5V 290 KΩ Figure 85. Typical Application with RC oscillator ST72XXX VDD INTERNAL RC Current copy EXTERNAL RC RIN REX CEX CIN VREF OSC1 iCEX OSC2 + - fOSC Voltage generator CEX discharge Notes: 1. Data based on design simulation. 2. REX must have a positive temperature coefficient (ppm/°C), carbon resistors should therefore not be used. 3. iCEX is the current needed to load the CEX capacitor while OSC1 is forced to VSS or 1.5V (RC oscillation voltage range). Figure 86. Typical fOSC(RCINT) vs VDD Figure 87. Typical fOSC(RCINT) vs TA 4.5 4 3 2.5 2 TA=-45C 1.5 TA=25C 1 TA=130C 0.5 0 fOSC(RCINT) (MHz) fOSC(RCINT) (MHz) 3.5 4 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3 Vdd = 2.4V Vdd = 5V -45 2.35 5 5.5 0 25 70 130 TA(°C) VDD(V) 167/199 ST72521M/R/AR CLOCK CHARACTERISTICS (Cont’d) 12.5.5 Clock Security System (CSS) Symbol Parameter Conditions Min Typ Safe Oscillator Frequency 1) fSFOSC Max 3 Unit MHz Note: 1. Data based on characterization results. 12.5.6 PLL Characteristics Operating conditions: V DD 3.8 to 5.5V @ TA 0 to 70°C1) or VDD 4.5 to 5.5V @ TA -40 to 125°C Symbol Parameter VDD(PLL) PLL Operating Range fOSC PLL input frequency range fCPU/∆ fCPU Instantaneous PLL jitter 1) Conditions Min Typ Max TA 0 to 70°C 3.8 5.5 TA -40 to +125°C 4.5 5.5 2 Unit V fOSC = 4 MHz. 1.0 4 2.5 MHz % fOSC = 2 MHz. 2.5 4.0 % Note: 1. Data characterized but not tested. Figure 88. PLL Jitter vs. Signal frequency1 0.8 +/-Jitter (%) 0.7 0.6 PLL ON 0.5 PLL OFF 0.4 0.3 0.2 0.1 0 2000 The user must take the PLL jitter into account in the application (for example in serial communication or sampling of high frequency signals). The PLL jitter is a periodic effect, which is integrated over several CPU cycles. Therefore the longer the period of the application signal, the less it will be impacted by the PLL jitter. Figure 88 shows the PLL jitter integrated on application signals in the range 125kHz to 2MHz. At frequencies of less than 125KHz, the jitter is negligible. 1000 500 250 125 Application Signal Frequency (KHz) Note 1: Measurement conditions: fCPU = 4MHz, TA= 25°C 168/199 ST72521M/R/AR 12.6 MEMORY CHARACTERISTICS 12.6.1 RAM and Hardware Registers Symbol VRM Parameter Data retention mode 1) Conditions HALT mode (or RESET) Min Typ Max 1.6 Unit V 12.6.2 FLASH Memory DUAL VOLTAGE HDFLASH MEMORY Symbol Parameter fCPU Operating frequency VPP Programming voltage 3) IDD Supply current4) IPP tVPP tRET NRW TPROG TERASE VPP current4) Internal VPP stabilization time Data retention Write erase cycles Programming or erasing temperature range Conditions Read mode Write / Erase mode 4.5V ≤ VDD ≤ 5.5V RUN mode (fCPU = 4MHz) Write / Erase Power down mode / HALT Read (VPP=12V) Write / Erase Min 2) 0 1 11.4 Typ 0 1 Max 2) 8 8 12.6 3 10 200 30 10 TA=55°C TA=25°C 20 100 -40 25 85 Unit MHz V mA µA mA µs years cycles °C Notes: 1. Minimum VDD supply voltage without losing data stored in RAM (in HALT mode or under RESET) or in hardware registers (only in HALT mode). Not tested in production. 2. Data based on characterization results, not tested in production. 3. VPP must be applied only during the programming or erasing operation and not permanently for reliability reasons. 4. Data based on simulation results, not tested in production. 169/199 ST72521M/R/AR 12.7 EMC CHARACTERISTICS Susceptibility tests are performed on a sample basis during product characterization. 12.7.1 Functional EMS (Electro Magnetic Susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electro magnetic events until a failure occurs (indicated by the LEDs). ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard. ■ FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V DD and VSS through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-44 standard. A device reset allows normal operations to be resumed. ■ Symbol Parameter Conditions Neg 1) Pos 1) VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD=5V, TA=+25°C, fOSC=8MHz conforms to IEC 1000-4-2 -1 1.5 VFFTB Fast transient voltage burst limits to be apVDD=5V, TA=+25°C, fOSC=8MHz plied through 100pF on VDD and VDD pins conforms to IEC 1000-4-4 to induce a functional disturbance -1.5 1.5 Unit kV 12.7.2 Electro Magnetic Interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin. Symbol SEMI Parameter Peak level Conditions 0.1MHz to 30MHz 30MHz to 130MHz VDD=5V, TA=+25°C, TQFP64 14x14 package conforming to SAE J 1752/3 130MHz to 1GHz SAE EMI Level Notes: 1. Data based on characterization results, not tested in production. 170/199 Monitored Frequency Band Max vs. [fOSC/fCPU] 8/4MHz 16/8MHz 13 19 13 24 7 13 2.0 2.5 Unit dBµV - ST72521M/R/AR EMC CHARACTERISTICS (Cont’d) 12.7.3 Absolute Electrical Sensitivity Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the AN1181 ST7 application note. 12.7.3.1 Electro-Static Discharge (ESD) Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends of the number of supply pins of the device (3 parts*(n+1) supply pin). Two models are usually simulated: Human Body Model and Machine Model. This test conforms to the JESD22-A114A/A115A standard. See Figure 89 and the following test sequences. Machine Model Test Sequence – CL is loaded through S1 by the HV pulse generator. – S1 switches position from generator to ST7. – A discharge from CL to the ST7 occurs. – S2 must be closed 10 to 100ms after the pulse delivery period to ensure the ST7 is not left in charge state. S2 must be opened at least 10ms prior to the delivery of the next pulse. – R (machine resistance), in series with S2, ensures a slow discharge of the ST7. Human Body Model Test Sequence – C L is loaded through S1 by the HV pulse generator. – S1 switches position from generator to R. – A discharge from CL through R (body resistance) to the ST7 occurs. – S2 must be closed 10 to 100ms after the pulse delivery period to ensure the ST7 is not left in charge state. S2 must be opened at least 10ms prior to the delivery of the next pulse. Absolute Maximum Ratings Symbol Ratings Maximum value 1) Unit Conditions VESD(HBM) Electro-static discharge voltage (Human Body Model) TA=+25°C 2000 VESD(MM) Electro-static discharge voltage (Machine Model) TA=+25°C 200 V Figure 89. Typical Equivalent ESD Circuits S1 CL=100pF ST7 S2 HIGH VOLTAGE PULSE GENERATOR R=10k~10MΩ HIGH VOLTAGE PULSE GENERATOR S1 R=1500Ω ST7 CL=200pF HUMAN BODY MODEL S2 MACHINE MODEL Notes: 1. Data based on characterization results, not tested in production. 171/199 ST72521M/R/AR EMC CHARACTERISTICS (Cont’d) 12.7.3.2 Static and Dynamic Latch-Up ■ LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the AN1181 ST7 application note. ■ DLU: Electro-Static Discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards and is described in Figure 90. For more details, refer to the AN1181 ST7 application note. 12.7.3.3 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations: The software flowchart must include the management of runaway conditions such as: – Corrupted program counter – Unexpected reset – Critical Data corruption (control registers...) Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behaviour is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electrical Sensitivities Symbol LU DLU Parameter Class 1) Conditions Static latch-up class TA=+25°C TA=+85°C TA=+125°C A A A Dynamic latch-up class VDD=5.5V, fOSC=4MHz, TA=+25°C A Figure 90. Simplified Diagram of the ESD Generator for DLU RCH=50MΩ RD=330Ω DISCHARGE TIP VDD VSS CS=150pF ESD GENERATOR 2) HV RELAY ST7 DISCHARGE RETURN CONNECTION Notes: 1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard). 2. Schaffner NSG435 with a pointed test finger. 172/199 ST72521M/R/AR EMC CHARACTERISTICS (Cont’d) 12.7.4 ESD Pin Protection Strategy To protect an integrated circuit against ElectroStatic Discharge the stress must be controlled to prevent degradation or destruction of the circuit elements. The stress generally affects the circuit elements which are connected to the pads but can also affect the internal devices when the supply pads receive the stress. The elements to be protected must not receive excessive current, voltage or heating within their structure. An ESD network combines the different input and output ESD protections. This network works, by allowing safe discharge paths for the pins subjected to ESD stress. Two critical ESD stress cases are presented in Figure 91 and Figure 92 for standard pins and in Figure 93 and Figure 94 for true open drain pins. Standard Pin Protection To protect the output structure the following elements are added: – A diode to VDD (3a) and a diode from VSS (3b) – A protection device between VDD and V SS (4) To protect the input structure the following elements are added: – A resistor in series with the pad (1) – A diode to VDD (2a) and a diode from VSS (2b) – A protection device between VDD and V SS (4) Figure 91. Positive Stress on a Standard Pad vs. VSS VDD VDD (3a) (2a) (1) OUT (4) IN Main path (3b) Path to avoid (2b) VSS VSS Figure 92. Negative Stress on a Standard Pad vs. VDD VDD VDD (3a) (2a) (1) OUT (4) IN Main path (3b) VSS (2b) VSS 173/199 ST72521M/R/AR EMC CHARACTERISTICS (Cont’d) True Open Drain Pin Protection The centralized protection (4) is not involved in the discharge of the ESD stresses applied to true open drain pads due to the fact that a P-Buffer and diode to V DD are not implemented. An additional local protection between the pad and V SS (5a & 5b) is implemented to completely absorb the positive ESD discharge. Multisupply Configuration When several types of ground (VSS, V SSA, ...) and power supply (VDD, VAREF, ...) are available for any reason (better noise immunity...), the structure shown in Figure 95 is implemented to protect the device against ESD. Figure 93. Positive Stress on a True Open Drain Pad vs. VSS VDD VDD Main path (1) Path to avoid OUT (5a) (4) IN (3b) (5b) (2b) VSS VSS Figure 94. Negative Stress on a True Open Drain Pad vs. VDD VDD VDD Main path (1) OUT (3b) (4) IN (3b) (2b) (3b) VSS VSS Figure 95. Multisupply Configuration VDD VAREF VAREF VSS BACK TO BACK DIODE BETWEEN GROUNDS VSSA 174/199 VSSA ST72521M/R/AR 12.8 I/O PORT PIN CHARACTERISTICS 12.8.1 General Characteristics Subject to general operating conditions for V DD, fOSC, and TA unless otherwise specified. Symbol Parameter Conditions Min Typ 1) Max 0.3xVDD VIL Input low level voltage VIH Input high level voltage 1) Vhys Schmitt trigger voltage hysteresis 2) CMOS ports VIL Input low level voltage 1) VIH Input high level voltage 1) Vhys Schmitt trigger voltage hysteresis 2) 0.7xVDD 0.7 V 0.8 TTL ports 2 1 IINJ(PIN)3) Injected Current on an I/O pin ±4 Total injected current (sum of all I/O VDD=5V ΣIINJ(PIN) 3) and control pins) ± 25 IL Input leakage current VSS≤VIN≤VDD ±1 IS Static current consumption Floating input mode4) 200 RPU Weak pull-up equivalent resistor 5) VIN=VSS CIO I/O pin capacitance tf(IO)out Unit VDD=5V 50 120 mA µA 250 kΩ 5 Output high to low level fall time 1) tr(IO)out CL=50pF Output low to high level rise time 1) Between 10% and 90% tw(IT)in External interrupt pulse time 6) Figure 96. Connecting Unused I/O Pins pF 25 ns 25 1 tCPU Figure 97. Typical IPU vs. VDD with VIN=VSS 90 VDD ST72XXX Ta=1 40°C 80 Ta=9 5°C 10kΩ 70 UNUSED I/O PORT Ta=2 5°C Ta=-45 °C Ip u(uA) 60 50 40 30 10kΩ UNUSED I/O PORT 20 10 ST72XXX 0 2 2.5 3 3 .5 4 4.5 Vdd (V) 5 5.5 6 Notes: 1. Data based on characterization results, not tested in production. 2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 3. When the current limitation is not possible, the VIN maximum must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. Refer to Section 12.2.2 on page 155 for more details. 4. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor (see Figure 96). Data based on design simulation and/or technology characteristics, not tested in production. 5. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current characteristics described in Figure 97). 6. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external interrupt source. 175/199 ST72521M/R/AR I/O PORT PIN CHARACTERISTICS (Cont’d) 12.8.2 Output Driving Current Subject to general operating conditions for V DD, fCPU, and TA unless otherwise specified. Symbol Parameter Conditions VOL 1) Output low level voltage for a high sink I/O pin when 4 pins are sunk at same time (see Figure 99 and Figure 101) Output high level voltage for an I/O pin when 4 pins are sourced at same time (see Figure 100 and Figure 103) VOH 2) Figure 98. Typical VOL at VDD=5V (standard) IIO=+2mA 0.5 IIO=+20mA,TA≤85°C TA≥85°C 1.3 1.5 IIO=+8mA 0.6 IIO=-2mA Vdd-Vo h (V) at Vd d=5V Ta =14 0°C " Ta =95 °C VDD-0.7 4.5 4 3.5 V dd= 5V 1 40°C m in 3 V dd= 5v 95°C m in V dd= 5v 25°C m in Ta =25 °C 0.2 V Figure 100. Typical VOH at VDD=5V 5 0.4 Unit IIO=-5mA, TA≤85°C VDD-1.4 TA≥85°C VDD-1.6 1.2 0.6 Max 1.2 5.5 0.8 Min IIO=+5mA 1.4 1 V ol (V ) at Vdd=5V VDD=5V Output low level voltage for a standard I/O pin when 8 pins are sunk at same time (see Figure 98) 2.5 V dd= 5v -4 5°C m in Ta =-45 °C 2 0 0 0 .005 0.01 0.015 Iio(A ) -0.01 -0.008 -0.006 -0.004 -0.002 0 Iio (A) Figure 99. Typical VOL at VDD=5V (high-sink) 1 0.9 Vol(V ) at V dd=5V 0.8 0.7 0.6 0.5 0.4 Ta= 140 °C 0.3 Ta= 95 °C 0.2 Ta= 25 °C 0.1 Ta= -45°C 0 0 0.01 0.02 0.03 Iio(A) Notes: 1. The IIO current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. True open drain I/O pins do not have VOH. 176/199 ST72521M/R/AR I/O PORT PIN CHARACTERISTICS (Cont’d) Figure 101. Typical VOL vs. VDD (standard) 1 0.45 Ta= -4 5°C 0.9 0.8 Ta=2 5°C Ta= 95°C Ta=9 5°C 0.35 Ta= 140 °C 0.7 Ta=1 40°C Vo l(V ) a t Iio=2 mA Vol(V ) at Iio =5m A Ta=-4 5°C 0.4 Ta= 25°C 0.6 0.5 0.4 0.3 0.3 0.25 0.2 0.15 0.2 0.1 0.1 0.05 0 2 2.5 3 3.5 4 4.5 5 5.5 0 6 2 Vd d(V ) 2 .5 3 3.5 4 4.5 5 5.5 6 Vd d(V ) Figure 102. Typical VOL vs. VDD (high-sink) 1 .6 0 .6 Ta= 140 °C 1 .4 0 .5 Ta=95 °C 1 .2 Ta=25 °C Ta=-45°C Vol(V) at Iio=20m A Vol(V ) at Iio=8m A 0 .4 0 .3 0 .2 1 0 .8 0 .6 Ta= 14 0°C 0 .4 Ta=9 5°C 0 .1 Ta=2 5°C 0 .2 Ta=-45 °C 0 0 2 2.5 3 3.5 4 4.5 5 5.5 2 6 2.5 3 3.5 4 4.5 5 5.5 6 V dd(V ) Vdd (V ) Figure 103. Typical VDD-VOH vs. VDD 5.5 6 Ta= -4 5°C 5 Vdd-Voh(V) at Iio=-5m A Vdd-Voh(V ) at Iio =-2m A 5 4.5 4 3.5 Ta= -4 5°C 3 Ta= 25°C Ta= 25°C Ta= 95°C Ta= 140°C 4 3 2 Ta= 95°C 2.5 1 Ta= 140°C 2 0 2 2.5 3 3.5 4 Vdd(V) 4.5 5 5.5 6 2 2.5 3 3.5 4 4.5 5 5.5 6 Vdd(V) 177/199 ST72521M/R/AR 12.9 CONTROL PIN CHARACTERISTICS 12.9.1 Asynchronous RESET Pin Subject to general operating conditions for V DD, fCPU, and TA unless otherwise specified. Symbol Parameter Conditions VIL Input low level voltage VIH Input high level voltage 1) Vhys Schmitt trigger voltage hysteresis 2) VOL IIO RON Min Typ 1) Output low level voltage Max Unit 0.16xVDD 0.85xVDD 3) 2.5 VDD=5V 0.5 IIO=+2mA 0.2 0.5 2 TBD mA 30 120 kΩ 9) µs 429) µs Input current on RESET pin Weak pull-up equivalent resistor tw(RSTL)out Generated reset pulse duration th(RSTL)in External reset pulse hold time tg(RSTL)in Filtered glitch duration 5) V IIO=+5mA 20 External pin 0 Internal reset sources 20 4) 1.2 42 30 µs 2.5 200 ns Figure 104. Typical Application with RESET pin 6)7)8) Recommended if LVD is disabled VDD USER EXTERNAL RESET CIRCUIT 5) VDD ST72XXX VDD 0.01µF 4.7kΩ RON INTERNAL RESET Filter 0.01µF PULSE GENERATOR WATCHDOG LVD RESET Required if LVD is disabled Notes: 1. Data based on characterization results, not tested in production. 2. Hysteresis voltage between Schmitt trigger switching levels. 3. The IIO current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 4. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses applied on the RESET pin with a duration below th(RSTL)in can be ignored. 5. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in noisy environments. 6. The output of the external reset circuit must have an open-drain output to drive the ST7 reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset (LVD or watchdog). 7. Whatever the reset source is (internal or external), the user must ensure that the level on the RESET pin can go below the VIL max. level specified in Section 12.9.1 . Otherwise the reset will not be taken into account internally. 8. Because the reset circuit is designed to allow the internal RESET to be output in the RESET pin, the user must ensure that the current sunk on the RESET pin (by an external pull-up for example) is less than the absolute maximum value specified for IINJ(RESET) in Section 12.2.2 on page 155. 9. Data guaranteed by design, not tested in production. 178/199 ST72521M/R/AR CONTROL PIN CHARACTERISTICS (Cont’d) 12.9.2 ICCSEL/V PP Pin Subject to general operating conditions for V DD, fCPU, and TA unless otherwise specified. Symbol Parameter VIL Input low level voltage 1) VIH Input high level voltage 1) IL Input leakage current Min Max FLASH versions Conditions VSS 0.2 ROM versions VSS 0.3xVDD FLASH versions VDD-0.1 12.6 ROM versions 0.7xVDD VDD VIN=VSS ±1 Unit V µA Figure 105. Two typical Applications with ICCSEL/VPP Pin 2) ICCSEL/VPP VPP PROGRAMMING TOOL 10kΩ ST72XXX ST72XXX Notes: 1. Data based on design simulation and/or technology characteristics, not tested in production. 2. When ICC mode is not required by the application ICCSEL/VPP pin must be tied to VSS. 12.10 TIMER PERIPHERAL CHARACTERISTICS Subject to general operating conditions for V DD, fOSC, and TA unless otherwise specified. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output...). 12.10.1 8-Bit PWM-ART Auto-Reload Timer Symbol Parameter tres(PWM) PWM resolution time Conditions fCPU=8MHz Min Typ Max tCPU 125 ns fEXT ART external clock frequency 0 fCPU/2 fPWM PWM repetition rate 0 fCPU/2 ResPWM PWM resolution VOS PWM/DAC output step voltage Unit 1 8 VDD=5V, Res=8-bits 20 MHz bit mV 12.10.2 16-Bit Timer Symbol Parameter Conditions tw(ICAP)in Input capture pulse time tres(PWM) PWM resolution time fCPU=8MHz Min Typ Max Unit 1 tCPU 2 tCPU 250 ns fEXT Timer external clock frequency 0 fCPU/4 MHz fPWM PWM repetition rate 0 fCPU/4 MHz 16 bit ResPWM PWM resolution 179/199 ST72521M/R/AR 12.11 COMMUNICATION INTERFACE CHARACTERISTICS 12.11.1 SPI - Serial Peripheral Interface Subject to general operating conditions for V DD, fCPU, and TA unless otherwise specified. Symbol Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SS, SCK, MOSI, MISO). Parameter Conditions Master fSCK 1/tc(SCK) fCPU=8MHz SPI clock frequency Slave fCPU=8MHz Min Max fCPU/128 0.0625 fCPU/4 2 0 fCPU/2 4 tr(SCK) tf(SCK) SPI clock rise and fall time tsu(SS) SS setup time th(SS) tw(SCKH) tw(SCKL) SS hold time Slave 120 SCK high and low time Master Slave 100 90 Data input setup time Master Slave 100 100 Data input hold time Master Slave 100 100 Data output access time Slave 0 Data output disable time Slave tsu(MI) tsu(SI) th(MI) th(SI) ta(SO) tdis(SO) tv(SO) Data output valid time th(SO) tv(MO) Data output hold time th(MO) Data output hold time Unit MHz see I/O port pin description Slave 120 120 240 90 Slave (after enable edge) Data output valid time ns 0 Master (before capture edge) 0.25 tCPU 0.25 Figure 106. SPI Slave Timing Diagram with CPHA=0 3) SS INPUT SCK INPUT tsu(SS) tc(SCK) th(SS) CPHA=0 CPOL=0 CPHA=0 CPOL=1 ta(SO) MISO OUTPUT tw(SCKH) tw(SCKL) MSB OUT see note 2 tsu(SI) MOSI INPUT tv(SO) th(SO) BIT6 OUT tdis(SO) tr(SCK) tf(SCK) LSB OUT see note 2 th(SI) MSB IN BIT1 IN LSB IN Notes: 1. Data based on design simulation and/or characterisation results, not tested in production. 2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends on the I/O port configuration. 3. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD. 180/199 ST72521M/R/AR COMMUNICATION INTERFACE CHARACTERISTICS (Cont’d) Figure 107. SPI Slave Timing Diagram with CPHA=11) SS INPUT SCK INPUT tsu(SS) tc(SCK) th(SS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) ta(SO) MISO OUTPUT see note 2 HZ tv(SO) th(SO) MSB OUT tsu(SI) BIT6 OUT LSB OUT see note 2 th(SI) MSB IN MOSI INPUT tdis(SO) tr(SCK) tf(SCK) Figure 108. SPI Master Timing Diagram BIT1 IN LSB IN 1) SS INPUT tc(SCK) SCK INPUT CPHA=0 CPOL=0 CPHA=0 CPOL=1 CPHA=1 CPOL=0 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) tsu(MI) MISO INPUT MOSI OUTPUT see note 2 th(MI) MSB IN tv(MO) tr(SCK) tf(SCK) BIT6 IN LSB IN th(MO) MSB OUT BIT6 OUT LSB OUT see note 2 Notes: 1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD. 2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends of the I/O port configuration. 181/199 ST72521M/R/AR COMMUNICATIONS INTERFACE CHARACTERISTICS (Cont’d) 12.11.2 CAN - Controller Area Network Interface Subject to general operating condition for VDD, fOSC , and TA unless otherwise specified. Refer to I/O port characteristics for more details on Symbol tp(RX:TX) Parameter CAN controller propagation time Conditions 1) Notes: 1. Data based on simulation results, not tested in production 182/199 the input/output alternate function characteristics (CANTX and CANRX). Min Typ Max Unit 60 ns ST72521M/R/AR COMMUNICATION INTERFACE CHARACTERISTICS (Cont’d) 12.11.3 I2C - Inter IC Control Interface Subject to general operating conditions for V DD, fCPU, and TA unless otherwise specified. Symbol Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDAI and SCLI). The ST7 I2C interface meets the requirements of the Standard I2C communication protocol described in the following table. Standard mode I2C Parameter Min 1) Fast mode I2C Max 1) Min 1) Max 1) tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 3) 0 2) 900 3) 0 µs th(SDA) SDA data hold time tr(SDA) tr(SCL) SDA and SCL rise time 1000 20+0.1Cb 300 tf(SDA) tf(SCL) SDA and SCL fall time 300 20+0.1Cb 300 th(STA) START condition hold time 4.0 0.6 tsu(STA) Repeated START condition setup time 4.7 0.6 tsu(STO) STOP condition setup time 4.0 0.6 tw(STO:STA) STOP to START condition time (bus free) Cb 4.7 Capacitive load for each bus line Unit ns µs ns 1.3 ms 400 400 pF 2 Figure 109. Typical Application with I C Bus and Timing Diagram 4) VDD 4.7kΩ VDD 4.7kΩ I2C BUS 100Ω SDAI 100Ω SCLI ST72XXX REPEATED START START tsu(STA) tw(STO:STA) START SDA tr(SDA) tf(SDA) tsu(SDA) STOP th(SDA) SCK th(STA) tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) tsu(STO) Notes: 1. Data based on standard I2C protocol requirement, not tested in production. 2. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 3. The maximum hold time of the START condition has only to be met if the interface does not stretch the low period of SCL signal. 4. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD. 183/199 ST72521M/R/AR 12.12 10-BIT ADC CHARACTERISTICS Subject to general operating conditions for V DD, fCPU, and TA unless otherwise specified. Symbol Parameter Conditions ADC clock frequency fADC VAREF VAIN Analog reference voltage 2) Conversion voltage range 3) Max Unit 0.4 2 MHz 0.7*VDD 5.5 VSSA VAREF -40°C≤TA≤85°C range Input leakage current for analog input IL Typ 1) Min Other TA ranges RAIN External input impedance CAIN External capacitor on analog input fAIN Variation freq. of analog input signal CADC Internal sample and hold capacitor 12 tSTAB Stabilization time after ADC enable 0 5) Conversion time (Sample+Hold) 7.5 fCPU=8MHz, SPEED=0 - No of sample capacitor loading cycles fADC=2MHz - No. of Hold conversion cycles tADC Figure 110. RAIN max. vs f ADC with CAIN=0pF4) ±250 nA ±1 µA see Figure 110 and Figure 1113)4)5) kΩ pF Hz pF µs 4 11 1/fADC Figure 111. Recommended CAIN & RAIN values.5) 45 1000 40 Cain 10 nF 2 MHz 35 30 1 MHz 25 Cain 22 nF 100 Max. R AIN (Kohm) Max. R AIN (Kohm) V 20 15 10 Cain 47 nF 10 1 5 0 0.1 0 10 30 70 0.01 0.1 CPARASITIC (pF) 1 10 f AIN(KHz) Figure 112. Typical A/D Converter Application VDD RAIN AINx ST72XXX VT 0.6V 2kΩ(max) VAIN CAIN VT 0.6V IL ±1µA 10-Bit A/D Conversion CADC 6pF Notes: 1. Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5V. They are given only as design guidelines and are not tested. 2. When VDDA and VSSA pins are not available on the pinout, the ADC refers to VDD and VSS. 3. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10kΩ). Data based on characterization results, not tested in production. 4. CPARASITIC represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3pF). A high CPARASITIC value will downgrade conversion accuracy. To remedy this, fADC should be reduced. 5. This graph shows that depending on the input signal variation (fAIN), CAIN can be increased for stabilization and to allow the use of a larger serial resistor (RAIN). 184/199 ST72521M/R/AR ADC CHARACTERISTICS (Cont’d) 12.12.0.1 Analog Power Supply and Reference Pins Depending on the MCU pin count, the package may feature separate V AREF and VSSA analog power supply pins. These pins supply power to the A/D converter cell and function as the high and low reference voltages for the conversion. In smaller packages VAREF and VSSA pins are not available and the analog supply and reference pads are internally bonded to the VDD and VSS pins. Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see Section 12.12.0.2 General PCB Design Guidelines). 12.12.0.2 General PCB Design Guidelines To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals. – Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB. – Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1µF and optionally, if needed 10pF capacitors as close as possible to the ST7 power supply pins and a 1 to 10µF capacitor close to the power source (see Figure 113). – The analog and digital power supplies should be connected in a star nework. Do not use a resistor, as VAREF is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy. – Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs on the same I/O port as the A/D input being converted. Figure 113. Power Supply Filtering 10pF (if needed) 0.1µF 1 to 10µF ST7 DIGITAL NOISE FILTERING ST72XXX VSS VDD VDD POWER SUPPLY SOURCE 10pF (if needed) 0.1µF EXTERNAL NOISE FILTERING VAREF VSSA 185/199 ST72521M/R/AR 10-BIT ADC CHARACTERISTICS (Cont’d) 12.12.1 ADC Accuracy Conditions: VDD=5V Symbol |ET| EO EG Parameter Total unadjusted Offset error Gain Error Conditions Typ error1) 3 3.52) -0.5 -22) CPU in run mode @ fADC 2 MHz. 1.5 2) 4.5 CPU in run mode @ fADC 2 MHz. 1.5 4.52) 1) Differential linearity error |EL| Integral linearity error 1) Unit 4 1) |ED| Max 1) LSB Notes: 1. Injecting negative current on any of the analog input pins significantly reduces the accuracy of any conversion being performed on any analog input. Analog pins can be protected against negative injection by adding a Schottky diode (pin to ground). Injecting negative current on digital input pins degrades ADC accuracy especially if performed on a pin close to the analog input pins. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 12.8 does not affect the ADC accuracy. 2. Data based on characterization results, monitored in production. Figure 114. ADC Accuracy Characteristics Digital Result ADCDR EG 1023 1022 1LSB 1021 IDEAL V –V A REF SS A = -------------------------------------------- 1024 (2) ET ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. (3) 7 (1) 6 5 EO 4 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line EL 3 ED 2 1 LSBIDEAL 1 0 1 VSSA 186/199 Vin (LSBIDEAL) 2 3 4 5 6 7 1021 1022 1023 1024 VAREF ST72521M/R/AR 13 PACKAGE CHARACTERISTICS 13.1 PACKAGE MECHANICAL DATA Figure 115. 80-Pin Thin Quad Flat Package Dim. D A D1 mm Min Typ A A2 A1 b inches Max Min Typ Max 1.60 0.063 0.15 0.002 0.006 A1 0.05 A2 1.35 1.40 1.45 0.053 0.055 0.057 b 0.22 0.32 0.38 0.009 0.013 0.015 C 0.09 0.20 0.004 0.008 D 16.00 0.630 D1 14.00 0.551 E 16.00 0.630 E1 14.00 0.551 e 0.65 e E1 E c L1 L θ 0° L 0.45 L1 h 3.5° 0.026 7° 0° 3.5° 7° 0.60 0.75 0.018 0.024 0.030 1.00 0.039 Number of Pins N 80 Figure 116. 64-Pin Thin Quad Flat Package D A D1 A2 Dim. mm Min Typ A A1 b e E1 E L Min Typ Max 1.60 0.063 0.15 0.002 0.006 A1 0.05 A2 1.35 1.40 1.45 0.053 0.055 0.057 b 0.30 0.37 0.45 0.012 0.015 0.018 c 0.09 0.20 0.004 0.008 D 16.00 0.630 D1 14.00 0.551 E 16.00 0.630 E1 14.00 0.551 e 0.80 θ 0° L 0.45 L1 L1 3.5° 0.031 7° 0° 3.5° 7° 0.60 0.75 0.018 0.024 0.030 1.00 0.039 Number of Pins c h inches Max N 64 187/199 ST72521M/R/AR PACKAGE MECHANICAL DATA (Cont’d) Figure 117. 64-Pin Thin Quad Flat Package Dim. D A D1 A1 b E e c L1 h L Typ A A2 E1 mm Min inches Max Min Typ 0.063 0.15 0.002 0.006 A1 0.05 A2 1.35 1.40 1.45 0.053 0.055 0.057 b 0.17 0.22 0.27 0.007 0.009 0.011 c 0.09 0.20 0.004 0.008 D 12.00 0.472 D1 10.00 0.394 E 12.00 0.472 E1 10.00 0.394 e 0.50 θ 0° L 0.45 L1 3.5° 0.020 7° 0° 3.5° N 7° 0.60 0.75 0.018 0.024 0.030 1.00 0.039 Number of Pins 188/199 Max 1.60 64 ST72521M/R/AR 13.2 THERMAL CHARACTERISTICS Symbol RthJA PD TJmax Ratings Value Unit Package thermal resistance (junction to ambient) TQFP80 14x14 TQFP64 14x14 TQFP64 10x10 55 47 50 °C/W Power dissipation 1) 500 mW 150 °C Maximum junction temperature 2) Notes: 1. The power dissipation is obtained from the formula PD=PINT+PPORT where PINT is the chip internal power (IDDxVDD) and PPORT is the port power dissipation determined by the user. 2. The average chip-junction temperature can be obtained from the formula TJ = TA + PD x RthJA. 189/199 ST72521M/R/AR 13.3 SOLDERING AND GLUEABILITY INFORMATION Recommended soldering information given only as design guidelines. Figure 118. Recommended Wave Soldering Profile (with 37% Sn and 63% Pb) 250 150 SOLDERING PHASE 80°C Temp. [°C] 100 50 COOLING PHASE (ROOM TEMPERATURE) 5 sec 200 PREHEATING PHASE Time [sec] 0 20 40 60 80 100 120 140 160 Figure 119. Recommended Reflow Soldering Oven Profile (MID JEDEC) 250 Tmax=235+/-5°C for 25 sec 200 150 90 sec at 125°C 150 sec above 183°C Temp. [°C] 100 50 ramp down natural 2°C/sec max ramp up 2°C/sec for 50sec Time [sec] 0 100 200 300 400 Recommended glue for SMD plastic packages dedicated to molding compound with silicone: ■ Heraeus: PD945, PD955 ■ Loctite: 3615, 3298 190/199 ST72521M/R/AR 14 ST72521M/(A)R DEVICE CONFIGURATION AND ORDERING INFORMATION Each device is available for production in user programmable versions (FLASH) as well as in factory coded versions (ROM). FLASH devices are shipped to customers with a default content, while ROM factory coded parts contain the code sup- plied by the customer. This implies that FLASH devices have to be configured by the customer using the Option Bytes while the ROM devices are factory-configured. 14.1 FLASH OPTION BYTES STATIC OPTION BYTE 0 STATIC OPTION BYTE 1 0 0 1 1 1 1 1 The option bytes allow the hardware configuration of the microcontroller to be selected. They have no address in the memory map and can be accessed only in programming mode (for example using a standard ST7 programming tool). The default content of the FLASH is fixed to FFh. To program the FLASH devices directly using ICP, FLASH devices are shipped to customers with the internal RC clock source. In masked ROM devices, the option bytes are fixed in hardware by the ROM code (see option list). OPTION BYTE 0 OPT7= WDG HALT Watchdog and HALT mode This option bit determines if a RESET is generated when entering HALT mode while the Watchdog is active. 0: No Reset generation when entering Halt mode 1: Reset generation when entering Halt mode OPT6= WDG SW Hardware or software watchdog This option bit selects the watchdog type. 0: Hardware (watchdog always enabled) OSCTYPE OSCRANGE 1 0 2 1 0 PLLOFF 1 0 RSTC 1 1 0 PKG1 1 VD CSS SW Default HALT WDG 7 FMP_R 0 PKG0 7 1 0 1 1 1 1 1: Software (watchdog to be enabled by software) OPT5 = CSS Clock security system on/off This option bit enables or disables the clock security system function (CSS) which includes the clock filter and the backup safe oscillator. 0: CSS enabled 1: CSS disabled OPT4:3= VD[1:0] Voltage detection These option bits enable the voltage detection block (LVD, and AVD) with a selected threshold for the LVD and AVD (EVD+AVD). Selected Low Voltage Detector VD1 VD0 LVD and AVD Off Not Used (Lowest Threshold: (VDD~3V) Not Used (Med. Threshold VDD~3.5V) Highest Voltage Threshold (VDD~4V) 1 1 0 0 1 0 1 0 Note: For details on the AVD and LVD threshold levels refer to Section 12.3.2 on page 157 191/199 ST72521M/R/AR ST72521M/(A)R DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont’d) OPT1= PKG0 Package selection bit 0 This option bit is used to select the package (see table in PKG1 option bit description). OPT5:4 = OSCTYPE[1:0] Oscillator Type These option bits select the ST7 main clock source type. OSCTYPE OPT0= FMP_R Flash memory read-out protection This option indicates if the user flash memory is protected against read-out piracy. This protection is based on a read and write protection of the memory in test modes and ICP mode. Erasing the option bytes when the FMP_R option is selected causes the whole user memory to be erased first. 0: Read-out protection enabled 1: Read-out protection disabled OPTION BYTE 1 OPT7= PKG1 Package selection bit 1 This option bit, with the PKG0 bit, selects the package. Version Selected Package PKG 1 PKG 0 M TQFP80 1 1 (A)R TQFP64 1 0 Note: On the chip, each I/O port has 8 pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption. OPT6 = RSTC RESET clock cycle selection This option bit selects the number of CPU cycles applied during the RESET phase and when exiting HALT mode. For resonator oscillators, it is advised to select 4096 due to the long crystal stabilization time. 0: Reset phase with 4096 CPU cycles 1: Reset phase with 256 CPU cycles Note: When the CSS is enabled, the device starts to count immediately using the backup oscillator. 192/199 Clock Source 1 0 Resonator Oscillator 0 0 External RC Oscillator 0 1 Internal RC Oscillator 1 0 External Source 1 1 OPT3:1 = OSCRANGE[2:0] Oscillator range When the resonator oscillator type is selected, these option bits select the resonator oscillator current source corresponding to the frequency range of the used resonator. Otherwise, these bits are used to select the normal operating frequency range. OSCRANGE Typ. Freq. Range 2 1 0 LP 1~2MHz 0 0 0 MP 2~4MHz 0 0 1 MS 4~8MHz 0 1 0 HS 8~16MHz 0 1 1 OPT0 = PLL OFF PLL activation This option bit activates the PLL which allows multiplication by two of the main input clock frequency. The PLL must not be used with the internal RC oscillator. The PLL is guaranteed only with an input frequency between 2 and 4MHz. 0: PLL x2 enabled 1: PLL x2 disabled CAUTION: the PLL can be enabled only if the “OSC RANGE” (OPT3:1) bits are configured to “MP - 2~4MHz”. Otherwise, the device functionality is not guaranteed. ST72521M/R/AR ST72521M/(A)R DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont’d) 14.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE Customer code is made up of the ROM contents and the list of the selected options (if any). The ROM contents are to be sent on diskette, or by electronic means, with the S19 hexadecimal file generated by the development tool. All unused bytes must be set to FFh. The selected options are communicated to STMicroelectronics using the correctly completed OPTION LIST appended. The STMicroelectronics Sales Organization will be pleased to provide detailed information on contractual points. Figure 120. ROM Factory Coded Device Types TEMP. DEVICE PACKAGE RANGE / XXX Code name (defined by STMicroelectronics) 1= 0 to +70 °C 5= -10 to +85 °C 6= -40 to +85 °C C = -40 to +125 °C T= Plastic Thin Quad Flat Pack ST72521R9, ST72521R7, ST72521R6 ST72521AR9, ST72521AR7, ST72521AR6 ST72521M9, ST72521M7 Table 29. Orderable Flash Device Types Part Number Program Memory (Bytes) ST72F521M9TC Temp. Range Package -40°C +125°C TQFP80 ST72F521M9T6 -40°C +85°C TQFP80 ST72F521R9TC -40°C +125°C TQFP64 14 x 14 ST72F521R9T6 60KB FLASH -40°C +85°C TQFP64 14 x 14 ST72F521AR9TC -40°C +125°C TQFP64 10 x 10 ST72F521AR9T6 -40°C +85°C TQFP64 10 x 10 ST72F521R6TC -40°C +125°C TQFP64 14 x 14 ST72F521R6T6 -40°C +85°C TQFP64 14 x 14 -40°C +125°C TQFP64 10 x 10 -40°C +85°C TQFP64 10 x 10 ST72F521AR6TC ST72F521AR6T6 32KB FLASH 193/199 ST72521M/R/AR ST72521M/(A)R DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont’d) ST72521 MICROCONTROLLER OPTION LIST ................................ ................................ ................................ Contact: ................................ Phone No: ................................ Reference/ROM Code* : . . . . . . . . . . . . . . . . . . . . . . . *The ROM code name is assigned by STMicroelectronics. ROM code must be sent in .S19 format. .Hex extension cannot be processed. Customer: Address: Device Type/Memory Size/Package (check only one option): --------------------------------- | ------------------------------------- ------------------------------------- ----------------------------------|| || 60K ROM DEVICE: 48K 32K --------------------------------- | ------------------------------------- ------------------------------------- ----------------------------------TQFP80: | [ ] ST72521M9 | [ ] ST72521M7 | TQFP64 14x14: | [ ] ST72521R9 | [ ] ST72521R7 | [ ] ST72521R6 TQFP64 10x10: | [ ] ST72521AR9 | [ ] ST72521AR7 | [ ] ST72521AR6 --------------------------------- | -------------------------------------- -------------------------------------- ----------------------------------DIE FORM: 60K 48K 32K || || --------------------------------- | -------------------------------------- -------------------------------------- -----------------------------------80-pin: | [] | [] | 64-pin: | [] | [] | [] Conditioning (check only one option): ------------------------------------------------------------------------ | ----------------------------------------------------Die Product (dice tested at 25°C only) Packaged Product | ---------------------------------------------------------------------------------------------------------------------------[ ] Tape & Reel [ ] Tray | [ ] Tape & Reel | [ ] Inked wafer | [ ] Sawn wafer on sticky foil Temp. Range (do not check for die product: [ ] 0°C to +70°C [ ] -10°C to +85°C [ ] -40°C to +105°C [ ] -40°C to +85°C [ ] -40°C to +125°C Special Marking: [ ] No [ ] Yes "_ _ _ _ _ _ _ _ _ _ " (10 char. max) Authorized characters are letters, digits, ’.’, ’-’, ’/’ and spaces only. Clock Source Selection: [ ] Resonator: [ ] RC Network:1 [ ] LP: Low power resonator (1 to 2 MHz) [ ] MP: Medium power resonator (2 to 4 MHz) [ ] MS: Medium speed resonator (4 to 8 MHz) [ ] HS: High speed resonator (8 to 16 MHz) [ ] Internal [ ] External [ ] External Clock PLL1 [ ] Disabled [ ] Enabled Clock Security System: [ ] Disabled [ ] Enabled LVD Reset [ ] Disabled Reset Delay Watchdog Selection: Halt when Watchdog on: [ ] 256 Cycles [ ] 4096 Cycles [ ] Software Activation [ ] Hardware Activation [ ] Reset [ ] No reset Readout Protection: [ ] Disabled Date Signature 1PLL 194/199 [ ] Enabled: ................................ ................................ must not be enabled if internal RC Network is selected [ ] Highest threshold [ ] Enabled ST72521M/R/AR DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont’d) 14.3 DEVELOPMENT TOOLS STMicroelectronics offers a range of hardware and software development tools for the ST7 microcontroller family. Full details of tools available for the ST7 from third party manufacturers can be obtain from the STMicroelectronics Internet site: ➟ http//mcu.st.com. Tools from these manufacturers include C compliers, emulators and gang programmers. ST Emulators The emulator is delivered with everything (probes, TEB, adapters etc.) needed to start emulating the devices. To configure the emulator to emulate different ST7 subfamily devices, the active probe for the ST7 EMU3 can be changed and the ST7EMU3 probe is designed for easy interchange of TEBs (Target Emulation Board). See Table 30 for more details. 14.3.1 Socket and Emulator Adapter Information For information on the type of socket that is supplied with the emulator, refer to the suggested list of sockets in Table 31. Note: Before designing the board layout, it is recommended to check the overall dimensions of the socket as they may be greater than the dimensions of the device. For footprint and other mechanical information about these sockets and adapters, refer to the manufacturer’s datasheet (www.yamaichi.de for TQFP64 10 x 10 and TQFP80 14 x 14 and www.cabgmbh.com for TQFP64 14 x 14).. Table 30. STMicroelectronics Development Tools Supported Products ST7 Evaluation Board ST7MDT2-TRAIN/ EU ST7MDT2ST72521(A)R, ST72F521(A)R TRAIN/US ST7MDT2-TRAIN/ ST72521M, ST72F521M UK ST7CANDEMO ST7 Emulator Active Probe & T.E.B. ST7MDT20MEMU3 ST7MDT20MTEB ST7 Programming Board ST7MDT20M-EPB/EU ST7MDT20M-EPB/US ST7MDT20M-EPB/UK Note: 1. Flash Programming interface for FLASH devices. Table 31. Suggested List of Socket Types Device Socket (supplied with ST7MDT20MEMU3) Emulator Adapter (supplied with ST7MDT20M-EMU3) TQFP64 14 x14 CAB 3303262 CAB 3303351 TQFP64 10 x10 YAMAICHI IC149-064-*75-*5 YAMAICHI ICP-064-6 TQFP80 14 X 14 YAMAICHI IC149-080-*51-*5 YAMAICHI ICP-080-7 195/199 ST72521M/R/AR 14.4 ST7 APPLICATION NOTES IDENTIFICATION DESCRIPTION EXAMPLE DRIVERS AN 969 SCI COMMUNICATION BETWEEN ST7 AND PC AN 970 SPI COMMUNICATION BETWEEN ST7 AND EEPROM AN 971 I²C COMMUNICATING BETWEEN ST7 AND M24CXX EEPROM AN 972 ST7 SOFTWARE SPI MASTER COMMUNICATION AN 973 SCI SOFTWARE COMMUNICATION WITH A PC USING ST72251 16-BIT TIMER AN 974 REAL TIME CLOCK WITH ST7 TIMER OUTPUT COMPARE AN 976 DRIVING A BUZZER THROUGH ST7 TIMER PWM FUNCTION AN 979 DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC AN 980 ST7 KEYPAD DECODING TECHNIQUES, IMPLEMENTING WAKE-UP ON KEYSTROKE AN1017 USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER AN1041 USING ST7 PWM SIGNAL TO GENERATE ANALOG OUTPUT (SINUSOID) AN1042 ST7 ROUTINE FOR I²C SLAVE MODE MANAGEMENT AN1044 MULTIPLE INTERRUPT SOURCES MANAGEMENT FOR ST7 MCUS AN1045 ST7 S/W IMPLEMENTATION OF I²C BUS MASTER AN1046 UART EMULATION SOFTWARE AN1047 MANAGING RECEPTION ERRORS WITH THE ST7 SCI PERIPHERALS AN1048 ST7 SOFTWARE LCD DRIVER AN1078 PWM DUTY CYCLE SWITCH IMPLEMENTING TRUE 0% & 100% DUTY CYCLE AN1082 DESCRIPTION OF THE ST72141 MOTOR CONTROL PERIPHERAL REGISTERS AN1083 ST72141 BLDC MOTOR CONTROL SOFTWARE AND FLOWCHART EXAMPLE AN1105 ST7 PCAN PERIPHERAL DRIVER AN1129 PERMANENT MAGNET DC MOTOR DRIVE. AN INTRODUCTION TO SENSORLESS BRUSHLESS DC MOTOR DRIVE APPLICATIONS AN1130 WITH THE ST72141 AN1148 USING THE ST7263 FOR DESIGNING A USB MOUSE AN1149 HANDLING SUSPEND MODE ON A USB MOUSE AN1180 USING THE ST7263 KIT TO IMPLEMENT A USB GAME PAD AN1276 BLDC MOTOR START ROUTINE FOR THE ST72141 MICROCONTROLLER AN1321 USING THE ST72141 MOTOR CONTROL MCU IN SENSOR MODE AN1325 USING THE ST7 USB LOW-SPEED FIRMWARE V4.X AN1445 USING THE ST7 SPI TO EMULATE A 16-BIT SLAVE AN1475 DEVELOPING AN ST7265X MASS STORAGE APPLICATION AN1504 STARTING A PWM SIGNAL DIRECTLY AT HIGH LEVEL USING THE ST7 16-BIT TIMER PRODUCT EVALUATION AN 910 PERFORMANCE BENCHMARKING AN 990 ST7 BENEFITS VERSUS INDUSTRY STANDARD AN1077 OVERVIEW OF ENHANCED CAN CONTROLLERS FOR ST7 AND ST9 MCUS AN1086 U435 CAN-DO SOLUTIONS FOR CAR MULTIPLEXING AN1150 BENCHMARK ST72 VS PC16 AN1151 PERFORMANCE COMPARISON BETWEEN ST72254 & PC16F876 AN1278 LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS PRODUCT MIGRATION AN1131 MIGRATING APPLICATIONS FROM ST72511/311/214/124 TO ST72521/321/324 AN1322 MIGRATING AN APPLICATION FROM ST7263 REV.B TO ST7263B AN1365 GUIDELINES FOR MIGRATING ST72C254 APPLICATION TO ST72F264 PRODUCT OPTIMIZATION 196/199 ST72521M/R/AR IDENTIFICATION AN 982 AN1014 AN1015 AN1040 AN1070 AN1324 AN1477 AN1502 AN1529 DESCRIPTION USING ST7 WITH CERAMIC RENATOR HOW TO MINIMIZE THE ST7 POWER CONSUMPTION SOFTWARE TECHNIQUES FOR IMPROVING MICROCONTROLLER EMC PERFORMANCE MONITORING THE VBUS SIGNAL FOR USB SELF-POWERED DEVICES ST7 CHECKSUM SELF-CHECKING CAPABILITY CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS EMULATED DATA EEPROM WITH XFLASH MEMORY EMULATED DATA EEPROM WITH ST7 HDFLASH MEMORY EXTENDING THE CURRENT & VOLTAGE CAPABILITY ON THE ST7265 VDDF SUPPLY ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC OSCILAN1530 LATOR PROGRAMMING AND TOOLS AN 978 KEY FEATURES OF THE STVD7 ST7 VISUAL DEBUG PACKAGE AN 983 KEY FEATURES OF THE COSMIC ST7 C-COMPILER PACKAGE AN 985 EXECUTING CODE IN ST7 RAM AN 986 USING THE INDIRECT ADDRESSING MODE WITH ST7 AN 987 ST7 SERIAL TEST CONTROLLER PROGRAMMING AN 988 STARTING WITH ST7 ASSEMBLY TOOL CHAIN AN 989 GETTING STARTED WITH THE ST7 HIWARE C TOOLCHAIN AN1039 ST7 MATH UTILITY ROUTINES AN1064 WRITING OPTIMIZED HIWARE C LANGUAGE FOR ST7 AN1071 HALF DUPLEX USB-TO-SERIAL BRIDGE USING THE ST72611 USB MICROCONTROLLER AN1106 TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7 PROGRAMMING ST7 FLASH MICROCONTROLLERS IN REMOTE ISP MODE (IN-SITU PROAN1179 GRAMMING) AN1446 USING THE ST72521 EMULATOR TO DEBUG A ST72324 TARGET APPLICATION AN1478 PORTING AN ST7 PANTA PROJECT TO CODEWARRIOR IDE AN1527 DEVELOPING A USB SMARTCARD READER WITH ST7SCR AN1575 ON-BOARD PROGRAMMING METHODS FOR XFLASH AND HDFLASH ST7 MCUS 197/199 ST72521M/R/AR 15 SUMMARY OF CHANGES Revision Main Changes Date Changed ITSPR register names to ISPR in Table 2 on page 15 Modified CSS functional description (Glitch filtering with PLL on) in Section 6.4.3 on page 31 Removed AVD interrupt Exit from Halt capability in Section 6.4.4.1 on page 31 VPP absolute max changed from 14 to 13V in Section 12.2 on page 155. Modified IDD max values in Section 12.4 on page 159 1.6 Removed description of low and medium thresholds. Updated LVD min rise time rate. Added note and figure on LVD startup behaviour in Section 12.3 on page 156 Updated ADC accuracy data and modified note on negative current injection in Section 10.9 on page 144 Updated PLL characteristics Section 12.5.6 on page 168 External Reset stretch min value changed to 0. in Section 12.9 on page 178 Changed presentation of Option bytes: Byte 0 is displayed left of Byte 1. Option byte default value changed (AVD/LVD on) in section Section 14.1 on page 191 198/199 Oct 02 ST72521M/R/AR Notes: Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 2002 STMicroelectronics - All Rights Reserved. Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips. STMicroelectronics Group of Companies Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 199/199