STMICROELECTRONICS STA518

STA518
40V 3.5A quad power half bridge
Feature
■
Multipower BCD technology
■
Minimum input output pulse width distortion
■
200mΩ RdsON complementary dmos output
stage
■
CMOS compatible logic inputs
■
Thermal protection
■
Thermal warning output
■
Under voltage protection
■
Short circuit protection
PSSO36 (slug up)
Description
STA518 is a monolithic quad half bridge stage in
Multipower BCD Technology. The device can be
used also as dual bridge or reconfigured, by
connecting CONFIG pin to Vdd pin, as single
bridge with double current capability.
The device is particularly designed to make the
output stage of a stereo All-Digital High Efficiency
(DDX™) amplifier capable to deliver an output
power of 24W x 4 channels @ THD = 10% at Vcc
30V on 4W load in single ended configuration.
It can also deliver 50 + 50W @ THD = 10% at Vcc
29V as output power on 8W load in BTL
configuration and 70W @ THD = 10% at Vcc 34V
on 8W in single paralleled BTL configuration.
The input pins have threshold proportional to VL
pin voltage.
Order codes
Part number
Temp range, °C
Package
Packing
STA518
-40 to 90
PowerSSO36 (slug up)
Tube
STA51813TR
-40 to 90
PowerSSO36 (slug up)
Tape & reel
May 2006
Rev 3
1/19
www.st.com
1
Contents
STA518
Contents
1
Audio application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4
Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5
Electrical characteristcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Technical information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1
Logic interface and decode: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2
Power outputs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3
Parallel output / high current operation: . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4
Additional informations: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2/19
STA518
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Functional Pin Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical Characteristcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VLOW, VHIGH variation with Ibias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Logic Truth Table (see Figure 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3/19
List of figures
STA518
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
4/19
Audio application circuit ( Quad single ended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Low current dead time for Single End application: test circuit. . . . . . . . . . . . . . . . . . . . . . . 11
High current dead time for Bridge application: block diagram . . . . . . . . . . . . . . . . . . . . . . 11
High current dead time for Bridge application: test circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 11
STA518 Block Diagram Full-Bridge DDX® or Binary Modes . . . . . . . . . . . . . . . . . . . . . . . 12
STA518 Block Diagram Binary Half-Bridge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Typical Stereo Full Bridge Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Typical Single BTL Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Power Dissipation vs Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power Derating Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
THD+N vs Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Output Power vs Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
THD vs Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Output Power vs Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
THD+N vs Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Power Dissipation vs Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
THD+N vs Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
PSSO36 (Slug Up) Mechanical Data & Package Dimensions . . . . . . . . . . . . . . . . . . . . . . 17
R57
10K
C58
100nF
TH_WAR
+3.3V
C60
100nF
33
34
VSS
VSS
GND-Reg
GNDSUB
IN2B
1
32
19
20
M14
M16
5
2
3
4
6
9
8
7
13
10
11
D03AU1474
PGND2N
OUTNR
OUTNR
C52
1µF
VCC2N
PGND2P
OUTPR
OUTPR
VCC2P
PGND1N
OUTNL
OUTNL
C51
1µF
VCC1N
PGND1P
OUTPL
OUTPL
C44
330pF
R44
20
C62
100nF
C43
330pF
R43
20
C42
330pF
R42
20
C61
100nF
C41
330pF
R41
20
R54
6
C74
100nF
L14 22µH
R53
6
C73
100nF
L13 22µH
R52
6
C72
100nF
L12 22µH
R51
6
C71
100nF
L11 22µH
C84
100nF
C83
100nF
C82
100nF
C81
100nF
R68
5K
R67
5K
R66
5K
R65
5K
R64
5K
R63
5K
R62
5K
R61
5K
C94
1µF
C34 820µF
C93
1µF
C33 820µF
C92
1µF
C32 820µF
C91
1µF
C31 820µF
4Ω
4Ω
4Ω
4Ω
C21
2200µF
Audio application circuit ( Quad single ended)
GND-Clean
M15
M17
M4
M5
12
14
16
17
Figure 1.
31
36
REGULATORS
PROTECTIONS
&
LOGIC
M2
M3
+VCC
Audio application circuit
IN2A
VCCSIGN
35
22
VDD
VCCSIGN
21
30
IN1B
VDD
28
TH_WAR
26
27
FAULT
TRI-STATE
25
24
PWRDN
23
VL
29
CONFIG
IN1A
VCC1P
1
IN2B
IN2A
C53
100nF
IN1B
C58
100nF
R59
10K
PWRDN
IN1A
15
STA518
Audio application circuit
5/19
Pins description
2
STA518
Pins description
Figure 2.
Pin Connection (top view)
VCCSign
36
1
GND-SUB
VCCSign
35
2
OUT2B
VSS
34
3
OUT2B
VSS
33
4
VCC2B
IN2B
32
5
GND2B
IN2A
31
6
GND2A
IN1B
30
7
VCC2A
IN1A
29
8
OUT2A
TH_WAR
28
9
OUT2A
FAULT
27
10
OUT1B
TRI-STATE
26
11
OUT1B
PWRDN
25
12
VCC1B
CONFIG
24
13
GND1B
VL
23
14
GND1A
VDD
22
15
VCC1A
VDD
21
16
OUT1A
GND-Reg
20
17
OUT1A
GND-Clean
19
18
N.C.
D01AU1273
Table 1.
6/19
Pin Function
N°
Pin
Description
1
GND-SUB
2;3
OUT2B
Output half bridge 2B
4
Vcc2B
Positive supply
5
GND2B
Negative Supply
6
GND2A
Negative Supply
7
Vcc2A
Positive supply
8;9
OUT2A
Output half bridge 2A
10 ; 11
OUT1B
Output half bridge 1B
12
Vcc1B
Positive supply
13
GND1B
Negative Supply
14
GND1A
Negative Supply
15
Vcc1A
Positive supply
16 ; 17
OUT1A
Output half bridge 1A
35 ; 36
Vcc Sign
Signal Positive supply
Substrate ground
STA518
Pins description
Table 1.
Pin Function (continued)
N°
Pin
18
NC
Not connected
19
GND-clean
Logical ground
20
GND-Reg
Ground for regulator Vdd
21 ; 22
Vdd
5V Regulator referred to ground
23
VL
Logic Reference Voltage
24
CONFIG
Configuration pin
25
PWRDN
Stand-by pin
26
TRI-STATE
27
FAULT
28
TH-WAR
29
IN1A
Input of half bridge 1A
30
IN1B
Input of half bridge 1B
31
IN2A
Input of half bridge 2A
32
IN2B
Input of half bridge 2B
33 ; 34
Vss
5V Regulator referred to +Vcc
35 ; 36
Vcc Sign
Table 2.
Description
Hi-Z pin
Fault pin advisor
Thermal warning advisor
Signal Positive supply
Functional Pin Status
Pin Name
Pin N.
Logical value
FAULT
27
0
Fault detected (Short circuit,
or Thermal.)
FAULT *
27
1
Normal Operation
TRI-STATE
26
0
All powers in Hi-Z state
TRI-STATE
26
1
Normal operation
PWRDN
25
0
Low consumption
PWRDN
25
1
Normal operation
THWAR
28
0
Temperature of the IC =130C
28
1
Normal operation
CONFIG
24
0
Normal Operation
CONFIG(2)
24
1
OUT1A=OUT1B ;
OUT2A=OUT2B
(IF IN1A = IN1B; IN2A = IN2B)
(1)
THWAR
IC - STATUS
1. The pin is open collector. To have the high logic value, it needs to be pulled up by a resistor.
2. To put CONFIG = 1 means connect Pin 24 (CONFIG) to Pins 21, 22 (Vdd) to implemented single BTL
(MONO MODE) operation for high current.
7/19
Electrical specifications
STA518
3
Electrical specifications
3.1
Absolute maximum ratings
Table 3.
Absolute maximum ratings
Symbol
3.2
Parameter
Value
Unit
VCC
DC Supply Voltage (Pin 4,7,12,15)
40
V
Vmax
Maximum Voltage on pins 23 to 32
5.5
V
-40 to 90
°C
Top
Operating Temperature Range
Ptot
Power Dissipation (Tcase = 70°C)
21
W
Tstg, Tj
Storage and Junction Temperature
-40 to 150
°C
Recommended operating conditions
Table 4.
Recommended operating conditions (*)
Symbol
VCC
Parameter
Min.
DC Supply Voltage
10
VL
Input Logic Reference
2.7
Tamb
Ambient Temperature
0
Typ.
3.3
Max.
Unit
36.0
V
5.0
V
70
°C
Max.
Unit
1.5
°C/W
(*) performances not guaranteed beyond recommended operating conditions
3.3
Thermal data
Table 5.
Thermal data (*)
Symbol
Tj-case
Parameter
Min.
Typ.
Thermal Resistance Junction to Case (thermal pad)
TjSD
Thermal shut-down junction temperature
150
°C
Twarn
Thermal warning temperature
130
°C
thSD
Thermal shut-down hysteresis
25
°C
(*) see Thermal information
3.4
Thermal information
The power dissipated within the device depends primarly on the supply voltage, load
impedance and output modulation level. The PSSO36 Package of the STA518 includes an
exposed thermal slug on the top of the device to provide a direct thermal path from the IC to
the heatsink. For the Quad single ended application the Dissipated Power vs Ouptut Power
is shown in Figure 10.
8/19
STA518
Electrical specifications
Considering that for the STA518 the Thermal resistance Junction to slug is 1.5°C/W and the
extimated Thermal resistance due to the grease placed between slug and heat sink is
2.3°C/W ( the use of thermal pads for this package is not recommended), the suitable Heat
Sink Rth to be used can be drawn from the following graph Figure 11, where is shown the
Derating Power vs.Tambient for different heatsinkers.
3.5
Electrical characteristcs
Table 6.
Electrical Characteristcs
Refer to circuit in Figure 3 (VL = 3.3V; VCC = 30V; RL = 8Ω; fsw = 384KHz;
Tamb = 25°C unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
200
270
mΩ
50
µA
RdsON
Power Pchannel/Nchannel
MOSFET RdsON
Id = 1A
Idss
Power Pchannel/Nchannel
leakage Idss
VCC = 35V
gN
Power Pchannel RdsON
Matching
Id = 1A
95
%
gP
Power Nchannel RdsON
Matching
Id = 1A
95
%
Dt_s
Low current Dead Time (static)
see test circuit Figure 3
Dt_d
High current Dead Time
(dinamic)
td ON
td OFF
20
ns
L = 22µH; C = 470nF; RL = 8 Ω
Id = 3A; seeFigure 5
50
ns
Turn-on delay time
Resistive load; VCC = 30V
100
ns
Turn-off delay time
Resistive load; VCC = 30V
100
ns
25
ns
25
ns
36
V
VL/2
+300mV
V
tr
Rise time
tf
Fall time
10
Resistive load; as Figure 3
VCC
Supply voltage operating voltage
VIN-H
High level input voltage
VIN-L
Low level input voltage
IIN-H
Hi level Input current
Pin voltage = VL
1
µA
IIN-L
Low level input current
Pin voltage = 0.3V
1
µA
35
µA
IPWRDNH
10
VL/2 300mV
Hi level PWRDN pin input current VL = 3.3V
VLOW
Low logical state voltage VLow
(pin PWRDN, TRISTATE) (1)
VL = 3.3V
VHIGH
High logical state voltage VHigh
(pin PWRDN, TRISTATE) (1)
VL = 3.3V
IVCCPWRDN
Supply current from Vcc in Power
PWRDN = 0
Down
V
0.8
V
1.7
V
3
mA
9/19
Electrical specifications
Table 6.
Electrical Characteristcs (continued)
Refer to circuit in Figure 3 (VL = 3.3V; VCC = 30V; RL = 8Ω; fsw = 384KHz;
Tamb = 25°C unless otherwise specified)
Symbol
IFAULT
IVCC-hiz
IVCC
IVCC-q
VUV
tpw_min
STA518
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Output Current pins
FAULT -TH-WARN when
FAULT CONDITIONS
Vpin = 3.3V
1
mA
Supply current from Vcc in Tristate
VCC = 30V; Tri-state = 0
22
mA
Supply current from VCC in
operation
(both channel switching)
VCC = 30V;
Input pulse width = 50% Duty;
Switching Frequency = 384kHz;
No LC filters;
50
mA
Isc (short circuit current limit) (2)
VCC = 30V
6
A
7
V
3.5
Undervoltage protection
threshold
Output minimum pulse width
No Load
70
150
ns
1. The Table 7 explains the VLOW, VHIGH variation with Ibias.
2. See relevant Application Note AN1994
Table 7.
VLOW, VHIGH variation with Ibias
VL
VLow min
VHigh max
Unit
2.7
0.7
1.5
V
3.3
0.8
1.7
V
5
0.85
1.85
V
Table 8.
Logic Truth Table (see Figure 4)
TRI-STATE
INxA
INxB
Q1
Q2
Q3
Q4
OUTPUT
MODE
0
x
x
OFF
OFF
OFF
OFF
Hi-Z
1
0
0
OFF
OFF
ON
ON
DUMP
1
0
1
OFF
ON
ON
OFF
NEGATIVE
1
1
0
ON
OFF
OFF
ON
POSITIVE
1
1
1
ON
ON
OFF
OFF
Not used
10/19
STA518
Electrical specifications
Figure 3.
Low current dead time for Single End application: test circuit.
OUTxY
Vcc
(3/4)Vcc
Low current dead time = MAX(DTr,DTf)
(1/2)Vcc
(1/4)Vcc
+Vcc
t
DTr
Duty cycle = 50%
DTf
M58
OUTxY
INxY
R 8Ω
M57
+
-
gnd
Figure 4.
V67 =
vdc = Vcc/2
D03AU1458
High current dead time for Bridge application: block diagram
+VCC
Q1
Q2
OUTxA
INxA
OUTxB
Q3
INxB
Q4
GND
Figure 5.
D00AU1134
High current dead time for Bridge application: test circuit
High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B))
+VCC
Duty cycle=A
Duty cycle=B
DTout(A)
M58
DTin(A)
Q1
Q2
Rload=8Ω
OUTA
INA
Iout=4A
M57
Q3
DTout(B)
L67 22µ
C69
470nF
L68 22µ
C71 470nF
C70
470nF
M64
DTin(B)
OUTB
INB
Iout=4A
Q4
Duty cycle A and B: Fixed to have DC output current of 4A in the direction shown in figure
M63
D03AU1517
11/19
Technical information
4
STA518
Technical information
The STA518 is a dual channel H-Bridge that is able to deliver 50W per channel (@
THD=10% RL = 8Ω,
VCC = 29V) of audio output power in high efficiency.
The STA518 converts both DDX and binary-controlled PWM signals into audio power at the
load. It includes a logic interface , integrated bridge drivers, high efficiency MOSFET outputs
and thermal and short circuit protection circuitry.
In DDX mode, two logic level signals per channel are used to control high-speed MOSFET
switches to connect the speaker load to the input supply or to ground in a Bridge
configuration, according to the damped ternary Modulation operation.
In Binary Mode operation , both Full Bridge and Half Bridge Modes are supported. The
STA518 includes over-current and thermal protection as well as an under-voltage
Lockout with automatic recovery. A thermal warning status is also provided.
Figure 6.
STA518 Block Diagram Full-Bridge DDX® or Binary Modes
INL[1:2]
INR[1:2]
VL
PWRDN
OUTPL
Logic I/F
and Decode
Left
H-Bridge
OUTNL
TRI-STATE
Protection
Circuitry
FAULT
TWARN
OUTPR
Right
H-Bridge
Regulators
Figure 7.
STA518 Block Diagram Binary Half-Bridge Mode
LeftA
‰-Bridge
OUTPL
LeftB
‰-Bridge
OUTNL
Protection
Circuitry
RightA
‰-Bridge
OUTPR
Regulators
RightB
‰-Bridge
OUTNR
INL[1:2]
INR[1:2]
VL
Logic I/F
and Decode
PWRDN
TRI-STATE
FAULT
TWARN
4.1
OUTNR
Logic interface and decode:
The STA518 power outputs are controlled using one or two logic level timing signals. In
order to provide a proper logic interface, the Vbias input must operate at the dame voltage
as the DDX control logic supply.
Protection circuitry:
12/19
STA518
Technical information
The STA518 includes protection circuitry for over-current and thermal overload conditions. A
thermal warning pin (pin.28) is activated low (open drain MOSFET) when the IC
temperature exceeds 130°C, in advance of the thermal shutdown protection. When a fault
condition is detected , an internal fault signal acts to immediately disable the output power
MOSFETs, placing both H-Bridges in high impedance state. At the same time an open-drain
MOSFET connected to the fault pin (pin.27) is switched on.
There are two possible modes subsequent to activating a fault:
4.2
1.
SHUTDOWN mode: with FAULT (pull-up resistor) and TRI-STATE pins independent,
an activated fault will disable the device, signaling low at the FAULT output.
The device may subsequently be reset to normal operation by toggling the TRI-STATE
pin from High to Low to High using an external logic signal.
2.
AUTOMATIC recovery mode: This is shown in the Audio Application Circuit of Quad
single Ended). The FAULT and TRI-STATE pins are shorted together and connected to
a time constant circuit comprising R59 and C58.
An activated FAULT will force a reset on the TRI-STATE pin causing normal operation to
resume following a delay determined by the time constant of the circuit.
If the fault condition is still present , the circuit operation will continue repeating until the
fault condition is removed .
An increase in the time constant of the circuit will produce a longer recovery interval.
Care must be taken in the overall system design as not to exceed the protection
thesholds under normal operation.
Power outputs:
The STA518 power and output pins are duplicated to provide a low impedance path for the
device's bridged outputs. All duplicate power, ground and output pins must be connected for
proper operation.
The PWRDN or TRI-STATE pins should be used to set all MOSFETS to the Hi-Z state
during power-up until the logic power supply, VL , is settled.
4.3
Parallel output / high current operation:
When using DDX Mode output , the STA518 outputs can be connected in parallel in order to
increase the output current capability to a load. In this configuration the STA518 can provide
70W into 8 ohm.
This mode of operation is enabled with the CONFIG pin (pin.24) connected to VREG1 and
the inputs combined INLA=INLB, INRA=INRB and the outputs combined OUTLA=OTLB,
OUTRA=OUTRB.
4.4
Additional informations:
Output Filter: A passive 2nd-order passive filter is used on the STA518 power outputs to
reconstruct an analog Audio Signal . System performance can be significantly affected by
the output filter design and choice of passive components. A filter design for 6ohm/8ohm
loads is shown in the Typical Application circuit of Figure 9.
Quad Single ended circuit (Figure 1) shows a filter for ½ bridge mode, 4 ohm loads.
13/19
Technical information
STA518
Figure 8.
Typical Stereo Full Bridge Configuration to Obtain 50+50W @ THD = 10%,
RL = 8Ω, VCC =29V
+VCC
VCC1A
IN1A
29
VL
23
CONFIG
24
M3
IN1A
+3.3V
PWRDN
R57
10K
PWRDN
25
FAULT
27
R59
10K
26
16
M2
PROTECTIONS
&
LOGIC
TH_WAR
M5
TH_WAR
28
IN1B
30
VDD
21
VDD
22
VSS
33
VSS
34
OUT1A
14
GND1A
12
VCC1B
C31
1µF
11
REGULATORS
VCCSIGN
13
GND1B
7
VCC2A
C60
100nF
VCCSIGN
IN2A
IN2A
GND-Reg
GND-Clean
IN2B
IN2B
GNDSUB
9
36
M15
31
20
19
M16
4
VCC2B
C33
1µF
3
2
32
OUT2B
OUT2B
M14
1
5
8Ω
C21
100nF
C110
100nF
C109
330pF R103
6
OUT2A
GND2A
R100
6
L113 22µH
OUT2A
6
C99
100nF
C23
470nF
C101
100nF
R98
6
L19 22µH
C32
1µF
8
35
R63
20
OUT1B
M17
C53
100nF
C20
100nF
C52
330pF
OUT1B
M4
C55
1000µF
L18 22µH
OUT1A
10
IN1B
C58
100nF
C30
1µF
17
TRI-STATE
C58
100nF
15
R104
20
C107
100nF
C108
470nF
C106
100nF
R102
6
8Ω
C111
100nF
L112 22µH
GND2B
D00AU1148B
Figure 9.
Typical Single BTL Configuration to Obtain 70W @ THD 10%, RL = 8Ω,
VCC = 34V (note 1))
VL
+3.3V
GND-Clean
GND-Reg
10K
23
18
N.C.
22µH
100nF
100nF
X7R
VDD
VDD
CONFIG
TH_WAR
TH_WAR
PWRDN
nPWRDN
10K
FAULT
IN1A
IN1B
IN1A
IN2A
IN2B
IN1B
VSS
VSS
100nF
X7R
20
21
22
24
28
25
27
TRI-STATE
100nF
19
VCCSIGN
100nF
X7R
VCCSIGN
Add.
GNDSUB
26
29
17
16
11
10
OUT1B
OUT1B
OUT2A
8
34
22Ω
1/2W
6.2
1/2W
330pF
6.2
1/2W
OUT2B
3
2
15
12
7
4
100nF
X7R
470nF
FILM
100nF
X7R
100nF
FILM
OUT2B
22µH
VCC1A
VCC1B
32V
1µF
X7R
VCC2A
32
33
100nF
FILM
OUT1A
OUT2A
9
30
31
OUT1A
VCC2B
2200µF
63V
32V
1µF
X7R
GND1A
14
GND1B
35
13
36
6
1
5
GND2A
GND2B
D04AU1549
Note:
14/19
1
"A PWM modulator as driver is needed . In particular, this result is performed using the
STA308+STA518+STA50X demo board". Peak Power for t ≤1sec
8Ω
STA518
5
Characterization curves
Characterization curves
The following characterization are obtained using the quad single ended configuration (Figure 1) with
STA308A controller
Figure 10. Power Dissipation vs Output Power Figure 11. Power Derating Curve
Pd(W)
Pd (W)16
25
1
14
Vcc=30V
Rl=4ohm
F =1Kz
12
10
20
1)Infinite
2) 1.5 C/W
3
2
3) 3 C/W
4
15
4) 4.5 C/W
8
5) 6 C/W
6
5
10
4
5
2
0
0
4
8
12
16
20
24
20
0
40
60
80
100 120 140 160
Tambient(C)
4 x Pout (W)
Figure 12. THD+N vs Output Power
Figure 13. Output Power vs Supply Voltage
Pout(W)
THD(%) 10
30
27.5
Vcc = 26V
5
25
Rl = 4 ohm
22.5
F = 1KHz
2
Rl=4 ohm
F=1KHz
Single Ended
20
Single Ended
17.5
1
15
THD=10%
12.5
0.5
10
THD=1%
7.5
0.2
5
0.1
100m
200m
500m
1
2
Pout(W)
5
10
20 30
2.5
+10
+12
+14
+16
+18
+20
+22
+24
+26
+28
+30
Vdc
Figure 14. THD vs Frequency
THD(%)
1
0.5
0.2
Rl=4 ohm
0.1
Pout=1W
Single Ended
0.05
0.02
0.01
20
50
100
200
500
1k
Freq(Hz)
2k
5k
10k
20k
15/19
Characterization curves
STA518
The following characterizations are obtained using the stereo full bridge configuration (Figure 8) with
STA308A controller.
Figure 15. Output Power vs Supply Voltage
o(W)
Figure 16. THD+N vs Output Power
THD(%)
10
90
5
80
Rl=8ohm
70
2
F=1KHz
1
60
THD=10%
0.5
50
Stereo Full
BTL
Vcc=29V
Rl=8ohm
F=1KHz
Double BTL
0.2
40
0.1
30
Single
Parallel BTL
THD=1%
0.05
20
0.02
10
0
+10
+12
+14
+16
+18
+20
+22
+24
+26
+28
+30
+32
0.01
100m
+34 +36
200m
500m
Vsupply(V)
1
2
Pout(W)
5
10
20
60
Figure 17. Power Dissipation vs Output Power
Pd (W)
12
Vcc=29V
10
Rl=8ohm
8
F=1KHz
6
4
2
0
0
10
20
30
2 X Pout (W)
40
50
The following characterizations are obtained using the single BTL configuration (Figure 9) with STA308A
controller.
Figure 18. THD+N vs Output Power
THD(%)
10
5
2
1
0.5
Vcc=34V
Rl=8ohm
F=1KHz
Single BTL
0.2
0.1
0.05
0.02
0.01
100m
16/19
200m
500m
1
2
5
Pout(W)
10
20
50 80
STA518
6
Package information
Package information
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second Level Interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
Figure 19. PSSO36 (Slug Up) Mechanical Data & Package Dimensions
DIM.
A
A2
a1
b
c
D (1)
E (1)
e
e3
F
G
G1
H
h
L
M
N
O
Q
S
T
U
X
Y
MIN.
2.15
2.15
0
0.18
0.23
10.10
mm
TYP.
7.4
MAX.
2.47
2.40
0.075
0.36
0.32
10.50
MIN.
0.084
0.084
0
0.007
0.009
0.398
7.6
0.291
0.50
8.50
2.3
0.55
MAX.
0.097
0.094
0.003
0.014
0.012
0.413
OUTLINE AND
MECHANICAL DATA
0.299
0.020
0.035
0.090
0.10
0.06
10.50
0.40
0.85
10.10
inch
TYP.
0.004
0.002
0.413
0.016
0.033
0.398
0.022
4.3
0.169
10˚ (max)
1.2
0.8
2.9
3.65
1.0
4.10
6.50
0.047
0.031
0.114
0.144
0.039
4.70
7.10
0.161
0.256
0.185
0.279
(1) “D and E” do not include mold flash or protusions.
Mold flash or protusions shall not exceed 0.15mm (0.006”)
(2) No intrusion allowed inwards the leads.
(3) Flash or bleeds on exposed die pad shall not exceed 0.4 mm
per side
PowerSSO-36
(slug-up)
7618147 A
17/19
Revision history
7
STA518
Revision history
Table 9.
18/19
Document revision history
Date
Revision
Changes
19-Aug-2004
1
Initial release.
11-Nov-2004
2
Changed symbol in “Electrical Characteristics”.
18-May-2006
3
Changed operating temperature range value to -40 to 90°C
(seeTable 3).
STA518
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
19/19