INTEGRATED CIRCUITS DATA SHEET TDA5744; TDA5745 Low power mixers/oscillators for hyperband tuners Preliminary specification File under Integrated Circuits, IC02 1998 Mar 09 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 FEATURES APPLICATIONS • Mixers/oscillators for hyperband tuners • Hyperband tuners for Europe using a 2-band mixer/oscillator in a switched concept. • Balanced mixer with a common emitter input for VHF (single input) • Balanced mixer with a common base input for UHF (double input) GENERAL DESCRIPTION The TDA5744 and TDA5745 are 2-band mixers/oscillators intended for VHF/UHF and hyperband tuners (see Fig.1). • 4-pin common emitter oscillator for VHF • 4-pin common emitter oscillator for UHF The Integrated Circuits (ICs) include two double balanced mixers and two oscillators, for the VHF and UHF band, and an IF amplifier. With proper oscillator application and by using a switchable inductor to split the VHF band into two sub-bands (the full VHF/UHF and hyperband) the TV bands can be covered. Two pins are available between the mixer output and the IF amplifier input to enable IF filtering for improved signal handling. Band selection is made by band switch pin BS. • Electronic band switch • IF amplifier with a low output impedance to drive the SAW filter directly (≈2 kΩ load) • Low power, low radiation and small size • Pin compatible single-chip synthesizer mixer/oscillator for Full Scale Tuners (FST) are available: TDA6404, TDA6405 and TDA6405A. QUICK REFERENCE DATA SYMBOL PARAMETER VCC supply voltage ICC CONDITIONS TYP. MAX. UNIT 4.5 5 5.5 V supply current − 58 − mA Tstg IC storage temperature −40 − +150 °C Tamb operating ambient temperature −20 − +85 °C fi(RF) RF input frequency VHF band 45.25 − 399.25 MHz UHF band 407.25 − 855.25 MHz GV operating MIN. voltage gain F noise figure Vo output voltage causing 1% cross modulation in channel VHF band − 27 − dB UHF band − 38 − dB VHF band − 8 − dB UHF band − 8.5 − dB VHF band − 119 − dBµV UHF band − 118 − dBµV ORDERING INFORMATION TYPE NUMBER TDA5744TS; TDA5745TS 1998 Mar 09 PACKAGE NAME SSOP24 DESCRIPTION plastic shrink small outline package; 24 leads; body width 5.3 mm 2 VERSION SOT340-1 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 BLOCK DIAGRAM handbook, full pagewidth n.c. n.c. n.c. n.c. n.c. IFFIL2 IFFIL1 RFGND 12 (13) 11 (14) DC STABILIZER TDA5744 (TDA5745) 10 (15) 8 (17) (12) 13 7 (18 ) (11) 14 6 (19) IF AMPLIFIER 5 (20) (10) 15 (9) 16 4 (21) (4) 21 VHFIN 3 (22) (3) 22 VHF STAGE VHF OSCILLATOR VHF MIXER (2) 23 (1) 24 BS 9 (16) UHFIN1 2 (23) 1 (24) (7) 18 UHF STAGE UHF OSCILLATOR UHF MIXER (6) 19 (5) 20 MGM466 The pin numbers in parenthesis represent the TDA5745. Fig.1 Block diagram. 1998 Mar 09 IFOUT1 IFOUT2 GND VHFOSCIB1 VHFOSCOC1 VHFOSCOC2 VHFOSCIB2 ELECTRONIC BAND SWITCH (8) 17 UHFIN2 VCC 3 UHFOSCIB1 UHFOSCOC1 UHFOSCOC2 UHFOSCIB2 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 PINNING PIN SYMBOL DESCRIPTION TDA5744 TDA5745 UHFIN1 1 24 UHF input 1 UHFIN2 2 23 UHF input 2 VHFIN 3 22 VHF input RFGND 4 21 RF ground IFFIL1 5 20 IF filter output 1 IFFIL2 6 19 IF filter output 2 n.c. 7 18 not connected n.c. 8 17 not connected BS 9 16 electronic band switch n.c. 10 15 not connected n.c. 11 14 not connected n.c. 12 13 not connected VCC 13 12 supply voltage IFOUT1 14 11 IF amplifier output 1 IFOUT2 15 10 IF amplifier output 2 GND 16 9 ground UHFOSCIB1 17 8 UHF oscillator base input 1 UHFOSCOC1 18 7 UHF oscillator collector output 1 UHFOSCOC2 19 6 UHF oscillator collector output 2 UHFOSCIB2 20 5 UHF oscillator base input 2 VHFOSCIB1 21 4 VHF oscillator base input 1 VHFOSCOC1 22 3 VHF oscillator collector output 1 VHFOSCOC2 23 2 VHF oscillator collector output 2 VHFOSCIB2 24 1 VHF oscillator base input 2 1998 Mar 09 4 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 handbook, halfpage handbook, halfpage UHFIN1 1 24 VHFOSCIB2 VHFOSCIB2 1 24 UHFIN1 UHFIN2 2 23 VHFOSCOC2 VHFOSCOC2 2 23 UHFIN2 VHFIN 3 22 VHFOSCOC1 VHFOSCOC1 3 22 VHFIN RFGND 4 21 VHFOSCIB1 VHFOSCIB1 4 21 RFGND IFFIL1 5 20 UHFOSCIB2 UHFOSCIB2 5 20 IFFIL1 19 UHFOSCOC2 UHFOSCOC2 6 IFFIL2 6 TDA5744TS UHFOSCOC1 7 18 n.c. UHFOSCIB1 8 17 n.c. GND 9 16 BS 15 IFOUT2 IFOUT2 10 15 n.c. n.c. 11 14 IFOUT1 IFOUT1 11 14 n.c. n.c. 12 13 VCC VCC 12 13 n.c. n.c. 7 18 UHFOSCOC1 n.c. 8 17 UHFOSCIB1 BS 9 16 GND n.c. 10 MGM464 MGM465 Fig.2 Pin configuration for TDA5744TS. 1998 Mar 09 19 IFFIL2 TDA5745TS Fig.3 Pin configuration for TDA5745TS. 5 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL IO(n) PARAMETER MIN. MAX. UNIT output current of each pin to ground: for TDA5744; pins 1 to 6, 9 and 13 to 24 − −10 mA for TDA5745; pins 1 to 12, 16 and 19 to 24 − −10 mA tsc(max) maximum short-circuit time (all pins to VCC and all pins to GND and RFGND) − 10 s Tstg IC storage temperature −40 +150 °C Tamb operating ambient temperature −20 +85 °C Tj junction temperature − 150 °C THERMAL CHARACTERISTICS SYMBOL Rth(j-a) PARAMETER CONDITIONS thermal resistance from junction to ambient VALUE UNIT 119 K/W in free air CHARACTERISTICS VCC = 5 V; Tamb = 25 °C; unless otherwise specified; measured in Fig.11. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Supplies VCC supply voltage 4.5 5 5.5 V ICC supply current − 58 65 mA Vsw(VHF) VHF band switching voltage 0 − 2 V Vsw(UHF) UHF band switching voltage 3 − VCC V Isw(VHF) VHF band switching current − − 2 µA Isw(UHF) UHF band switching current Vsw(UHF) = 5 V − 4.5 10 µA magnitude − −12.5 − dB phase − 1.4 − deg IF amplifier S22 output reflection coefficient Rs real part of Zo = Rs + jωLs − 81 − Ω Ls imaginary part of Zo = Rs + jωLs − 9.5 − nH picture carrier frequency 45.25 − 399.25 MHz VHF mixer (including IF amplifier) fi(RF) RF input frequency F noise figure gos 1998 Mar 09 fRF = 50 MHz; see Figs 8 and 9 − 7 9 dB fRF = 150 MHz; see Figs 8 and 9 − 8 10 dB fRF = 300 MHz − 9 11 dB optimum source fRF = 50 MHz conductance for noise figure fRF = 150 MHz − 0.7 − mS − 0.9 − mS fRF = 300 MHz − 1.5 − mS 6 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners SYMBOL PARAMETER TDA5744; TDA5745 CONDITIONS MIN. TYP. MAX. UNIT fRF = 45.25 MHz − 0.25 − mS fRF = 399.25 MHz − 0.5 − mS fRF = 45.25 to 399.25 MHz − 2 − pF output voltage causing 1% fRF = 45.25 MHz; see Fig.6 cross modulation in channel fRF = 399.25 MHz; see Fig.6 116 119 − dBµV 116 119 − dBµV Vi input voltage causing pulling fRF = 399.25 MHz; note 1 in channel (750 Hz) − 88 − dBµV GV voltage gain fRF = 45.25 MHz; see Fig.4 24.5 27 29.5 dB fRF = 399.25 MHz; see Fig.4 24.5 27 29.5 dB 84.15 − 438.15 MHz gi input conductance Ci input capacitance Vo VHF oscillator fosc oscillator frequency ∆fosc(V) oscillator frequency shift with supply voltage ∆VCC = 5%; note 2 − 100 200 kHz ∆VCC = 10%; worst case in the frequency range; note 2 − 200 − kHz ∆fosc(T) oscillator frequency drift with temperature ∆T = 25 °C without compensation: NP0 capacitors; worst case in the frequency range; note 3 − 1300 tbf kHz ∆fosc(t) oscillator frequency drift with time worst case in the frequency range; note 4 − 600 tbf kHz Φosc phase noise, carrier-to-noise sideband ±100 kHz frequency offset; worst case in the frequency range − 106 − dBc/Hz RSC(p-p) ripple susceptibility of VCC (peak-to-peak value) VCC = 5 V; worst case in the frequency 15 range; ripple frequency 500 kHz; note 5 40 − mV UHF mixer (including IF amplifier) fi(RF) RF input frequency picture carrier frequency 407.25 − 855.25 MHz F noise figure fRF = 407.25 MHz; see Fig.10 − 8 10 dB fRF = 855.25 MHz; not corrected for image; see Fig.10 − 9 11 dB fRF = 407.25 MHz − 30 − Ω fRF = 855.25 MHz − 38 − Ω fRF = 407.25 MHz − 9 − nH fRF = 855.25 MHz − 6 − nH − dBµV Rs Ls real part of Zi = Rs + jωLs imaginary part of Zi = Rs + jωLs Vo output voltage causing 1% fRF = 407.25 MHz; see Fig.7 cross modulation in channel fRF = 855.25 MHz; see Fig.7 116 119 114 117 − dBµV Vi input voltage causing pulling fRF = 855.25 MHz; note 1 in channel (750 Hz) − 78 − dBµV GV voltage gain fRF = 407.25 MHz; see Fig.4 35 38 41 dB fRF = 855.25 MHz; see Fig.4 35 38 41 dB 1998 Mar 09 7 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners SYMBOL PARAMETER TDA5744; TDA5745 CONDITIONS MIN. TYP. MAX. UNIT UHF oscillator fosc oscillator frequency 446.15 − 894.15 MHz ∆fosc(V) oscillator frequency shift with supply voltage ∆VCC = 5%; note 2 − 30 80 kHz ∆VCC = 10%; worst case in the frequency range; note 2 − 80 tbf kHz ∆fosc(T) oscillator frequency drift with temperature ∆T = 25 °C; with compensation; worst case in the frequency range; note 3 − 600 tbf kHz ∆fosc(t) oscillator frequency drift with time worst case in the frequency range; note 4 − 200 tbf kHz Φosc phase noise, carrier-to-noise sideband ±100 kHz frequency offset; worst case in the frequency range − 106 − dBc/Hz RSC(p-p) ripple susceptibility of VCC (peak-to-peak value) VCC = 5 V; worst case in the frequency 15 range; ripple frequency 500 kHz; note 5 20 − mV Rejection at the IF amplifier output INTCHX channel x beat note 6 60 − − dBc INTS02 S02 beat note 7 66 − − dBc Notes 1. This is the level of the RF signal (100% amplitude modulated with 11.89 kHz) that causes a 750 Hz frequency deviation on the oscillator signal; it produces sidebands 30 dB below the level of the oscillator signal. 2. The frequency shift is defined as the change of the oscillator frequency when the supply voltage varies from VCC = 5 to 4.5 V or from VCC = 5 to 5.25 V. The oscillator is free-running during this measurement. 3. The frequency drift is defined as the change of the oscillator frequency when the ambient temperature varies from Tamb = 25 to 0 °C or from Tamb = 25 to 50 °C. The oscillator is free-running during this measurement. 4. The switching on drift is defined as the change of the oscillator frequency between 5 seconds and 15 minutes after switching on. The oscillator is free-running during this measurement. 5. The ripple susceptibility is measured for a 500 kHz ripple at the IF amplifier output using the measurement circuit; the level of the ripple signal is increased until a difference of 53.5 dB between the IF carrier set at 100 dBµV and the sideband components is reached. 6. Channel x beat: picture carrier frequency (fpc) and sound carrier frequency (fsc) both at 80 dBµV. The rejection of the interfering product fpc(RF) + fsc(RF) − fosc at 35.35 MHz should be >60 dB. 7. Channel S02: fpc is 76.25 MHz at 70 dBµV; fosc = 115.15 MHz. The rejection of fosc − 2 × fIF = 37.35 MHz should be >66 dB. 1998 Mar 09 8 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 TEST AND APPLICATION INFORMATION handbook, full pagewidth 50 Ω signal source VHFIN e Vmeas V 50 Ω Vo D.U.T. Vi T IFOUT1 spectrum analyzer (1) (2) N1 N2 C V'meas 50 Ω IFOUT2 RMS voltmeter MGK828 (1) N1 is 2 × 5 turns. (2) N2 is 2 turns. The gain is defined as the transducer gain plus the voltage transformation ratio (Tloss) of the transformer. Zi >> 50 Ω ⇒ Vi = 2 × Vmeas; Vi = 80 dBµV. Vo N1 Vo = V’meas + 16 dB (transformer ratio -------- = 5 and transformer loss); GV = 20 log -----Vi N2 Fig.4 Voltage gain (GV) measurement in the VHF band. handbook, full pagewidth 50 Ω e signal source A Vmeas V 50 Ω Vi C UHFIN1 HYBRID B D D.U.T. UHFIN2 T IFOUT1 Vo (1) (2) N1 N2 C spectrum analyzer V'meas IFOUT2 RMS 50 Ω voltmeter MGK829 (1) N1 is 2 × 5 turns. (2) N2 is 2 turns. The gain is defined as the transducer gain plus the voltage transformation ratio (Tloss) of the transformer. Vi = Vmeas; Vi = 70 dBµV. Vo N1 Vo = V’meas + 16 dB (transformer ratio -------- = 5 and transformer loss); Gv = 20 log ------ + 1 dB (1 dB = correction for hybrid loss). Vi N2 Fig.5 Voltage gain (GV) measurement in the UHF band. 1998 Mar 09 50 Ω 9 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 handbook, full pagewidth Vmeas 50 Ω V RMS voltmeter unwanted signal 50 Ω source A C Vo B D.U.T. Vi (2) N1 N2 C modulation analyzer 50 Ω V V'meas MGL275 IFOUT2 D wanted signal source ew 38.9 MHz (1) HYBRID 50 Ω T VHFIN IFOUT1 AM = 30% eu FILTER 18 dB attenuator RMS voltmeter 50 Ω (1) N1 is 2 × 5 turns. (2) N2 is 2 turns. N1 Zi >> 50 Ω ⇒ Vi = 2 × Vmeas; V’meas = Vo − 16 dB (transformer ratio -------- = 5 and transformer loss). N2 Wanted input signal Vi = 80 dBµV at wanted fRF = 45.25 MHz (399.25 MHz). Measured level of the unwanted output signal Vou causing 1% AM modulation in the wanted output signal; unwanted fRF = 50.75 MHz (404.75 MHz); Vou = V’meas + 16 dB. Fig.6 Cross modulation measurement in the VHF band. handbook, full pagewidth Vmeas 50 Ω V RMS voltmeter unwanted signal 50 Ω source A C A C FILTER T UHFIN1 IFOUT1 AM = 30% eu HYBRID 50 Ω ew B wanted signal source HYBRID Vi D B 50 Ω D D.U.T. 18 dB attenuator Vo (1) (2) N1 N2 C 38.9 MHz V RMS voltmeter (1) N1 is 2 × 5 turns. (2) N2 is 2 turns. N1 Vi = Vmeas; V’meas = Vo − 16 dB (transformer ratio -------- = 5 and transformer loss). N2 Wanted input signal Vi = 70 dBµV at fRF = 407.25 MHz (855.25 MHz). Measured level of the unwanted output signal Vou causing 1% AM modulation in the wanted output signal; unwanted fRF = 412.75 MHz (860.75 MHz); Vou = V’meas + 16 dB. Fig.7 Cross modulation measurement in the UHF band. 1998 Mar 09 10 50 Ω MGL276 UHFIN2 IFOUT2 50 Ω modulation analyzer Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners I1 handbook, full pagewidth TDA5744; TDA5745 I3 PCB C1 BNC L1 BNC plug C2 PCB C3 plug I2 RIM-RIM RIM-RIM C4 (a) (b) (a) For fRF = 50 MHz: VHF mixer frequency response measured = 57 MHz; loss = 0 dB. Image suppression = 16 dB. C1 = 1 nF; C2 = 2.2 pF. L1 = 7 turns (∅ 5.5 mm; wire ∅ = 0.5 mm). I1 = semi rigid cable (RIM): 5 cm long. (semi rigid cable (RIM); 33 dB/100 m; 50 Ω; 96 pF/m). MBE286 - 1 (b) For fRF = 150 MHz: VHF mixer frequency response measured = 150.3 MHz; loss = 1.3 dB. Image suppression = 13 dB. C3 = 1 nF; C4 = 2.2 pF. I2 = semi rigid cable (RIM): 30 cm long. I3 = semi rigid cable (RIM): 5 cm long. (semi rigid cable (RIM); 33 dB/100 m; 50 Ω; 96 pF/m). Fig.8 Input circuit for optimum noise figure in the VHF band. handbook, full pagewidth NOISE SOURCE BNC RIM INPUT CIRCUIT T VHFIN IFOUT1 D.U.T. NOISE FIGURE METER C IFOUT2 MGL277 F = Fmeas − loss (of input circuit) (dB). Fig.9 Noise figure (F) measurement in the VHF band. 1998 Mar 09 11 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 handbook, full pagewidth NOISE SOURCE A C HYBRID B D T UHFIN1 IFOUT1 D.U.T. C UHFIN2 IFOUT2 MGL278 50 Ω Loss (in hybrid) = 1 dB; F = Fmeas − loss (in hybrid). Fig.10 Noise figure (F) measurement in the UHF band. 1998 Mar 09 NOISE FIGURE METER 12 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 handbook, full pagewidth P1 C1 UHFIN1 UHF1 1 (24) (1) 24 C2 VHFOSCIB2 L1 BB149 1 µH 150 pF 1 nF D1 P2 C3 UHFIN2 UHF2 2 (23) (2) 23 VHFOSCOC2 2.2 pF R21 C5 C6 C7 22 kΩ 4.7 nF VHFIN VHF 3 (22) (3) 22 VHFOSCOC1 L3 TOKO 7 km L value/C value 3 4 8 D5 RFGND IFFIL1 C11 LED-3R D6 C13 IFFIL2 n.c. 330 Ω LED-3Y D7 n.c. 330 Ω LED-3G BS 330 Ω J1 J2 J3 5 (20) (5) 20 UHFOSCIB2 6 (19) (6) 19 TDA5744 (TDA5745) 7 (18) (7) 18 UHFOSCOC2 UHFOSCOC1 8 (17) (8) 17 UHFOSCIB1 9 (16) (9) 16 R3 22 kΩ D3 R4 1.5 kΩ BA792 C10 R5 2.7 kΩ VHFH VHFL 4.7 nF C12 R7 22 kΩ R6 22 kΩ D4 BB149 C14 L5 16 nH 1 pF C15 C16 47 pF L6 30 nH C18 10 pF R9 4.7 kΩ C17 GND for test purpose only J4 n.c. 10 (15) (10) 15 IFOUT2 PLL VHFL UHF VHFH for test purpose only n.c. 11 (14) (11) 14 IFOUT1 VCC VCC J5 C8 L4 80 nH 1 pF R11 UHF VHFOSCIB1 1 pF R10 VHFH (4) 21 R1 1.5 kΩ 1 pF 15 pF R8 VHFL 4 (21) R2 22 kΩ 2.2 pF 1 15 pF 2 C9 100 pF 2.2 pF 1 nF 6 L2 30 nH D2 BB152 1 nF P3 7 C4 n.c. +VCC 12 (13) (12) 13 VCC C19 L9 1 nF 80 nH C20 L8 1 nF 80 nH 7 1 6 P4 IF OUT 2 C21 18 pF 3 4 L7 8 C22 C24 10 nF tuning voltage P6 TR1 BC847B 10 nF R18 R16 22 kΩ 1.2 kΩ C27 10 µF (16 V) C28 10 µF (16 V) +VCC R22 50 Ω 1 P9 Vripple AGND 2 Fig.11 Measurement circuit. 13 3 4 P8 +VCC +33 V The pin numbers in parenthesis represent the TDA5745. 1998 Mar 09 R14 22 kΩ +5 V MGM467 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 Component values for measurement circuit Table 1 Capacitors (all SMD and NP0 unless otherwise specified) COMPONENT COMPONENT VALUE VALUE C1 1 nF R10 330 Ω C2 150 pF R11 330 Ω C3 1 nF R14 22 kΩ C4 2.2 pF (N750) R16 22 kΩ C5 4.7 nF R18 1.2 kΩ C6 1 nF R21 22 kΩ C7 2.2 pF (N750) R22 50 Ω C8 2.2 pF (N750) C9 100 pF (N750) C10 4.7 nF C11 15 pF D1 BB149 C12 1 pF (N750) D2 BB152 C13 15 pF D3 BA792 C14 1 pF (N750) D4 BB149 C15 47 pF D5 LED-3R C16 1 pF (N750) D6 LED-3Y C17 1 pF (N750) D7 LED-3G C18 10 pF (N750) IC TDA5744; TDA5745 C19 1 nF C20 1 nF C21 18 pF C22 10 nF L1 1 µH (inductor) C24 10 nF L2 30 nH C27 10 µF (16 V; electrolytic) L4 80 nH C28 10 µF (16 V; electrolytic) L5 16 nH L6 30 nH L8 80 nH L9 80 nH Table 2 Table 3 COMPONENT Table 4 VALUE Coils COMPONENT Resistors (all SMD) COMPONENT Diodes and ICs VALUE VALUE R1 1.5 kΩ R2 22 kΩ R3 22 kΩ R4 1.5 kΩ L3 23 turns (TOKO, wire 0.07 mm) R5 2.7 kΩ L7 R6 22 kΩ N1 = 2 × 5 turns; N2 = 2 turns (TOKO, wire 0.09 mm) R7 22 kΩ R8 330 Ω R9 4.7 kΩ Table 5 COMPONENT Table 6 VALUE Transistors COMPONENT TR1 1998 Mar 09 Transformer 14 VALUE BC847B Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 INTERNAL PIN CONFIGURATION PIN CONFIGURATION(1) SYMBOL TDA5744 TDA5745 UHFIN1 1 24 UHFIN2 2 23 AVERAGE DC VOLTAGE (V) VHF UHF note 2 1.0 1.9 note 2 0.0 0.0 3.4 3.4 not connected note 2 note 2 1 2 (24) (23) MGM468 VHFIN 3 22 3 (22) MGM469 RFGND 4 21 4 (21) MGM470 IFFIL1 5 20 IFFIL2 6 19 (20) 5 6 (19) MGM471 n.c. 7 18 8 17 10 15 11 14 12 13 BS 9 16 electronic band switch 0.0 5.0 VCC 13 12 supply voltage 5.0 5.0 1998 Mar 09 15 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners PIN CONFIGURATION(1) SYMBOL TDA5744 TDA5745 IFOUT1 14 11 IFOUT2 15 10 GND 16 TDA5744; TDA5745 AVERAGE DC VOLTAGE (V) VHF 14 15 (11) (10) UHF 2.2 2.2 0.0 0.0 MGM472 9 16 (9) MGM473 UHFOSCIB1 17 8 UHFOSCOC1 18 7 UHFOSCOC2 19 6 UHFOSCIB2 20 5 note 2 (7) (6) 18 19 17 20 (8) (5) 1.9 2.5 2.5 1.9 MGM474 VHFOSCIB1 21 4 VHFOSCOC1 22 3 VHFOSCOC2 23 2 VHFOSCIB2 24 1 2.0 (3) (2) 22 23 21 24 (4) (1) 2.7 2.0 MGM475 Notes 1. The pin numbers in parenthesis represent the TDA5745. 2. Not applicable. 1998 Mar 09 2.7 16 note 2 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 PACKAGE OUTLINE SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm D SOT340-1 E A X c HE y v M A Z 24 13 Q A2 A (A 3) A1 pin 1 index θ Lp L 1 12 bp e detail X w M 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HE L Lp Q v w y Z (1) θ mm 2.0 0.21 0.05 1.80 1.65 0.25 0.38 0.25 0.20 0.09 8.4 8.0 5.4 5.2 0.65 7.9 7.6 1.25 1.03 0.63 0.9 0.7 0.2 0.13 0.1 0.8 0.4 8 0o Note 1. Plastic or metal protrusions of 0.20 mm maximum per side are not included. OUTLINE VERSION SOT340-1 1998 Mar 09 REFERENCES IEC JEDEC EIAJ EUROPEAN PROJECTION ISSUE DATE 93-09-08 95-02-04 MO-150AG 17 o Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 If wave soldering cannot be avoided, the following conditions must be observed: SOLDERING Introduction • A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. • The longitudinal axis of the package footprint must be parallel to the solder flow and must incorporate solder thieves at the downstream end. Even with these conditions, only consider wave soldering SSOP packages that have a body width of 4.4 mm, that is SSOP16 (SOT369-1) or SSOP20 (SOT266-1). This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 9398 652 90011). During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Reflow soldering Reflow soldering techniques are suitable for all SSOP packages. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. Repairing soldered joints Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C. Wave soldering Wave soldering is not recommended for SSOP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices. 1998 Mar 09 18 Philips Semiconductors Preliminary specification Low power mixers/oscillators for hyperband tuners TDA5744; TDA5745 DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 1998 Mar 09 19 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 160 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 0044 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777 For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com © Philips Electronics N.V. 1998 SCA57 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 545104/1200/01/pp20 Date of release: 1998 Mar 09 Document order number: 9397 750 02946