PHILIPS TDA5745

INTEGRATED CIRCUITS
DATA SHEET
TDA5744; TDA5745
Low power mixers/oscillators for
hyperband tuners
Preliminary specification
File under Integrated Circuits, IC02
1998 Mar 09
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
FEATURES
APPLICATIONS
• Mixers/oscillators for hyperband tuners
• Hyperband tuners for Europe using a 2-band
mixer/oscillator in a switched concept.
• Balanced mixer with a common emitter input for VHF
(single input)
• Balanced mixer with a common base input for UHF
(double input)
GENERAL DESCRIPTION
The TDA5744 and TDA5745 are 2-band mixers/oscillators
intended for VHF/UHF and hyperband tuners (see Fig.1).
• 4-pin common emitter oscillator for VHF
• 4-pin common emitter oscillator for UHF
The Integrated Circuits (ICs) include two double balanced
mixers and two oscillators, for the VHF and UHF band, and
an IF amplifier. With proper oscillator application and by
using a switchable inductor to split the VHF band into two
sub-bands (the full VHF/UHF and hyperband) the TV
bands can be covered. Two pins are available between
the mixer output and the IF amplifier input to enable IF
filtering for improved signal handling. Band selection is
made by band switch pin BS.
• Electronic band switch
• IF amplifier with a low output impedance to drive the
SAW filter directly (≈2 kΩ load)
• Low power, low radiation and small size
• Pin compatible single-chip synthesizer mixer/oscillator
for Full Scale Tuners (FST) are available: TDA6404,
TDA6405 and TDA6405A.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
VCC
supply voltage
ICC
CONDITIONS
TYP.
MAX.
UNIT
4.5
5
5.5
V
supply current
−
58
−
mA
Tstg
IC storage temperature
−40
−
+150
°C
Tamb
operating ambient temperature
−20
−
+85
°C
fi(RF)
RF input frequency
VHF band
45.25
−
399.25 MHz
UHF band
407.25 −
855.25 MHz
GV
operating
MIN.
voltage gain
F
noise figure
Vo
output voltage causing 1% cross
modulation in channel
VHF band
−
27
−
dB
UHF band
−
38
−
dB
VHF band
−
8
−
dB
UHF band
−
8.5
−
dB
VHF band
−
119
−
dBµV
UHF band
−
118
−
dBµV
ORDERING INFORMATION
TYPE
NUMBER
TDA5744TS;
TDA5745TS
1998 Mar 09
PACKAGE
NAME
SSOP24
DESCRIPTION
plastic shrink small outline package; 24 leads; body width 5.3 mm
2
VERSION
SOT340-1
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
BLOCK DIAGRAM
handbook, full pagewidth
n.c.
n.c.
n.c.
n.c.
n.c.
IFFIL2
IFFIL1
RFGND
12 (13)
11 (14)
DC
STABILIZER
TDA5744
(TDA5745)
10 (15)
8 (17)
(12) 13
7 (18 )
(11) 14
6 (19)
IF
AMPLIFIER
5 (20)
(10) 15
(9) 16
4 (21)
(4) 21
VHFIN
3 (22)
(3) 22
VHF
STAGE
VHF
OSCILLATOR
VHF
MIXER
(2) 23
(1) 24
BS
9 (16)
UHFIN1
2 (23)
1 (24)
(7) 18
UHF
STAGE
UHF
OSCILLATOR
UHF
MIXER
(6) 19
(5) 20
MGM466
The pin numbers in parenthesis represent the TDA5745.
Fig.1 Block diagram.
1998 Mar 09
IFOUT1
IFOUT2
GND
VHFOSCIB1
VHFOSCOC1
VHFOSCOC2
VHFOSCIB2
ELECTRONIC
BAND
SWITCH
(8) 17
UHFIN2
VCC
3
UHFOSCIB1
UHFOSCOC1
UHFOSCOC2
UHFOSCIB2
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
PINNING
PIN
SYMBOL
DESCRIPTION
TDA5744
TDA5745
UHFIN1
1
24
UHF input 1
UHFIN2
2
23
UHF input 2
VHFIN
3
22
VHF input
RFGND
4
21
RF ground
IFFIL1
5
20
IF filter output 1
IFFIL2
6
19
IF filter output 2
n.c.
7
18
not connected
n.c.
8
17
not connected
BS
9
16
electronic band switch
n.c.
10
15
not connected
n.c.
11
14
not connected
n.c.
12
13
not connected
VCC
13
12
supply voltage
IFOUT1
14
11
IF amplifier output 1
IFOUT2
15
10
IF amplifier output 2
GND
16
9
ground
UHFOSCIB1
17
8
UHF oscillator base input 1
UHFOSCOC1
18
7
UHF oscillator collector output 1
UHFOSCOC2
19
6
UHF oscillator collector output 2
UHFOSCIB2
20
5
UHF oscillator base input 2
VHFOSCIB1
21
4
VHF oscillator base input 1
VHFOSCOC1
22
3
VHF oscillator collector output 1
VHFOSCOC2
23
2
VHF oscillator collector output 2
VHFOSCIB2
24
1
VHF oscillator base input 2
1998 Mar 09
4
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
handbook, halfpage
handbook, halfpage
UHFIN1 1
24 VHFOSCIB2
VHFOSCIB2 1
24 UHFIN1
UHFIN2 2
23 VHFOSCOC2
VHFOSCOC2 2
23 UHFIN2
VHFIN 3
22 VHFOSCOC1
VHFOSCOC1 3
22 VHFIN
RFGND 4
21 VHFOSCIB1
VHFOSCIB1 4
21 RFGND
IFFIL1 5
20 UHFOSCIB2
UHFOSCIB2 5
20 IFFIL1
19 UHFOSCOC2
UHFOSCOC2 6
IFFIL2 6
TDA5744TS
UHFOSCOC1 7
18 n.c.
UHFOSCIB1 8
17 n.c.
GND 9
16 BS
15 IFOUT2
IFOUT2 10
15 n.c.
n.c. 11
14 IFOUT1
IFOUT1 11
14 n.c.
n.c. 12
13 VCC
VCC 12
13 n.c.
n.c. 7
18 UHFOSCOC1
n.c. 8
17 UHFOSCIB1
BS 9
16 GND
n.c. 10
MGM464
MGM465
Fig.2 Pin configuration for TDA5744TS.
1998 Mar 09
19 IFFIL2
TDA5745TS
Fig.3 Pin configuration for TDA5745TS.
5
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
IO(n)
PARAMETER
MIN.
MAX.
UNIT
output current of each pin to ground:
for TDA5744; pins 1 to 6, 9 and 13 to 24
−
−10
mA
for TDA5745; pins 1 to 12, 16 and 19 to 24
−
−10
mA
tsc(max)
maximum short-circuit time (all pins to VCC and all pins to GND and RFGND)
−
10
s
Tstg
IC storage temperature
−40
+150
°C
Tamb
operating ambient temperature
−20
+85
°C
Tj
junction temperature
−
150
°C
THERMAL CHARACTERISTICS
SYMBOL
Rth(j-a)
PARAMETER
CONDITIONS
thermal resistance from junction to ambient
VALUE
UNIT
119
K/W
in free air
CHARACTERISTICS
VCC = 5 V; Tamb = 25 °C; unless otherwise specified; measured in Fig.11.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
VCC
supply voltage
4.5
5
5.5
V
ICC
supply current
−
58
65
mA
Vsw(VHF)
VHF band switching voltage
0
−
2
V
Vsw(UHF)
UHF band switching voltage
3
−
VCC
V
Isw(VHF)
VHF band switching current
−
−
2
µA
Isw(UHF)
UHF band switching current Vsw(UHF) = 5 V
−
4.5
10
µA
magnitude
−
−12.5
−
dB
phase
−
1.4
−
deg
IF amplifier
S22
output reflection coefficient
Rs
real part of Zo = Rs + jωLs
−
81
−
Ω
Ls
imaginary part of
Zo = Rs + jωLs
−
9.5
−
nH
picture carrier frequency
45.25
−
399.25 MHz
VHF mixer (including IF amplifier)
fi(RF)
RF input frequency
F
noise figure
gos
1998 Mar 09
fRF = 50 MHz; see Figs 8 and 9
−
7
9
dB
fRF = 150 MHz; see Figs 8 and 9
−
8
10
dB
fRF = 300 MHz
−
9
11
dB
optimum source
fRF = 50 MHz
conductance for noise figure fRF = 150 MHz
−
0.7
−
mS
−
0.9
−
mS
fRF = 300 MHz
−
1.5
−
mS
6
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
SYMBOL
PARAMETER
TDA5744; TDA5745
CONDITIONS
MIN.
TYP.
MAX.
UNIT
fRF = 45.25 MHz
−
0.25
−
mS
fRF = 399.25 MHz
−
0.5
−
mS
fRF = 45.25 to 399.25 MHz
−
2
−
pF
output voltage causing 1%
fRF = 45.25 MHz; see Fig.6
cross modulation in channel fRF = 399.25 MHz; see Fig.6
116
119
−
dBµV
116
119
−
dBµV
Vi
input voltage causing pulling fRF = 399.25 MHz; note 1
in channel (750 Hz)
−
88
−
dBµV
GV
voltage gain
fRF = 45.25 MHz; see Fig.4
24.5
27
29.5
dB
fRF = 399.25 MHz; see Fig.4
24.5
27
29.5
dB
84.15
−
438.15 MHz
gi
input conductance
Ci
input capacitance
Vo
VHF oscillator
fosc
oscillator frequency
∆fosc(V)
oscillator frequency shift
with supply voltage
∆VCC = 5%; note 2
−
100
200
kHz
∆VCC = 10%; worst case in the
frequency range; note 2
−
200
−
kHz
∆fosc(T)
oscillator frequency drift
with temperature
∆T = 25 °C without compensation: NP0
capacitors; worst case in the frequency
range; note 3
−
1300
tbf
kHz
∆fosc(t)
oscillator frequency drift
with time
worst case in the frequency range;
note 4
−
600
tbf
kHz
Φosc
phase noise,
carrier-to-noise sideband
±100 kHz frequency offset; worst case
in the frequency range
−
106
−
dBc/Hz
RSC(p-p)
ripple susceptibility of VCC
(peak-to-peak value)
VCC = 5 V; worst case in the frequency 15
range; ripple frequency 500 kHz; note 5
40
−
mV
UHF mixer (including IF amplifier)
fi(RF)
RF input frequency
picture carrier frequency
407.25 −
855.25 MHz
F
noise figure
fRF = 407.25 MHz; see Fig.10
−
8
10
dB
fRF = 855.25 MHz; not corrected for
image; see Fig.10
−
9
11
dB
fRF = 407.25 MHz
−
30
−
Ω
fRF = 855.25 MHz
−
38
−
Ω
fRF = 407.25 MHz
−
9
−
nH
fRF = 855.25 MHz
−
6
−
nH
−
dBµV
Rs
Ls
real part of Zi = Rs + jωLs
imaginary part of
Zi = Rs + jωLs
Vo
output voltage causing 1%
fRF = 407.25 MHz; see Fig.7
cross modulation in channel fRF = 855.25 MHz; see Fig.7
116
119
114
117
−
dBµV
Vi
input voltage causing pulling fRF = 855.25 MHz; note 1
in channel (750 Hz)
−
78
−
dBµV
GV
voltage gain
fRF = 407.25 MHz; see Fig.4
35
38
41
dB
fRF = 855.25 MHz; see Fig.4
35
38
41
dB
1998 Mar 09
7
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
SYMBOL
PARAMETER
TDA5744; TDA5745
CONDITIONS
MIN.
TYP.
MAX.
UNIT
UHF oscillator
fosc
oscillator frequency
446.15 −
894.15 MHz
∆fosc(V)
oscillator frequency shift
with supply voltage
∆VCC = 5%; note 2
−
30
80
kHz
∆VCC = 10%; worst case in the
frequency range; note 2
−
80
tbf
kHz
∆fosc(T)
oscillator frequency drift
with temperature
∆T = 25 °C; with compensation; worst
case in the frequency range; note 3
−
600
tbf
kHz
∆fosc(t)
oscillator frequency drift
with time
worst case in the frequency range;
note 4
−
200
tbf
kHz
Φosc
phase noise,
carrier-to-noise sideband
±100 kHz frequency offset; worst case
in the frequency range
−
106
−
dBc/Hz
RSC(p-p)
ripple susceptibility of VCC
(peak-to-peak value)
VCC = 5 V; worst case in the frequency 15
range; ripple frequency 500 kHz; note 5
20
−
mV
Rejection at the IF amplifier output
INTCHX
channel x beat
note 6
60
−
−
dBc
INTS02
S02 beat
note 7
66
−
−
dBc
Notes
1. This is the level of the RF signal (100% amplitude modulated with 11.89 kHz) that causes a 750 Hz frequency
deviation on the oscillator signal; it produces sidebands 30 dB below the level of the oscillator signal.
2. The frequency shift is defined as the change of the oscillator frequency when the supply voltage varies from
VCC = 5 to 4.5 V or from VCC = 5 to 5.25 V. The oscillator is free-running during this measurement.
3. The frequency drift is defined as the change of the oscillator frequency when the ambient temperature varies from
Tamb = 25 to 0 °C or from Tamb = 25 to 50 °C. The oscillator is free-running during this measurement.
4. The switching on drift is defined as the change of the oscillator frequency between 5 seconds and 15 minutes after
switching on. The oscillator is free-running during this measurement.
5. The ripple susceptibility is measured for a 500 kHz ripple at the IF amplifier output using the measurement circuit;
the level of the ripple signal is increased until a difference of 53.5 dB between the IF carrier set at 100 dBµV and the
sideband components is reached.
6. Channel x beat: picture carrier frequency (fpc) and sound carrier frequency (fsc) both at 80 dBµV.
The rejection of the interfering product fpc(RF) + fsc(RF) − fosc at 35.35 MHz should be >60 dB.
7. Channel S02: fpc is 76.25 MHz at 70 dBµV; fosc = 115.15 MHz.
The rejection of fosc − 2 × fIF = 37.35 MHz should be >66 dB.
1998 Mar 09
8
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
TEST AND APPLICATION INFORMATION
handbook, full pagewidth
50 Ω
signal
source
VHFIN
e
Vmeas V
50 Ω
Vo
D.U.T.
Vi
T
IFOUT1
spectrum
analyzer
(1)
(2)
N1
N2
C
V'meas
50 Ω
IFOUT2
RMS
voltmeter
MGK828
(1) N1 is 2 × 5 turns.
(2) N2 is 2 turns.
The gain is defined as the transducer gain plus the voltage transformation ratio (Tloss) of the transformer.
Zi >> 50 Ω ⇒ Vi = 2 × Vmeas; Vi = 80 dBµV.
Vo
N1
Vo = V’meas + 16 dB (transformer ratio -------- = 5 and transformer loss); GV = 20 log -----Vi
N2
Fig.4 Voltage gain (GV) measurement in the VHF band.
handbook, full pagewidth
50 Ω
e
signal
source
A
Vmeas V
50 Ω
Vi
C
UHFIN1
HYBRID
B
D
D.U.T.
UHFIN2
T
IFOUT1
Vo
(1)
(2)
N1
N2
C
spectrum
analyzer
V'meas
IFOUT2
RMS 50 Ω
voltmeter
MGK829
(1) N1 is 2 × 5 turns.
(2) N2 is 2 turns.
The gain is defined as the transducer gain plus the voltage transformation ratio (Tloss) of the transformer.
Vi = Vmeas; Vi = 70 dBµV.
Vo
N1
Vo = V’meas + 16 dB (transformer ratio -------- = 5 and transformer loss); Gv = 20 log ------ + 1 dB (1 dB = correction for hybrid loss).
Vi
N2
Fig.5 Voltage gain (GV) measurement in the UHF band.
1998 Mar 09
50 Ω
9
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
handbook, full pagewidth
Vmeas
50 Ω
V
RMS
voltmeter
unwanted
signal
50 Ω source
A
C
Vo
B
D.U.T.
Vi
(2)
N1
N2
C
modulation
analyzer
50 Ω
V V'meas
MGL275
IFOUT2
D
wanted
signal
source
ew
38.9 MHz
(1)
HYBRID
50 Ω
T
VHFIN IFOUT1
AM = 30%
eu
FILTER
18 dB
attenuator
RMS
voltmeter
50 Ω
(1) N1 is 2 × 5 turns.
(2) N2 is 2 turns.
N1
Zi >> 50 Ω ⇒ Vi = 2 × Vmeas; V’meas = Vo − 16 dB (transformer ratio -------- = 5 and transformer loss).
N2
Wanted input signal Vi = 80 dBµV at wanted fRF = 45.25 MHz (399.25 MHz).
Measured level of the unwanted output signal Vou causing 1% AM modulation in the wanted output signal;
unwanted fRF = 50.75 MHz (404.75 MHz); Vou = V’meas + 16 dB.
Fig.6 Cross modulation measurement in the VHF band.
handbook, full pagewidth
Vmeas
50 Ω
V
RMS
voltmeter
unwanted
signal
50 Ω source
A
C
A
C
FILTER
T
UHFIN1 IFOUT1
AM = 30%
eu
HYBRID
50 Ω
ew
B
wanted
signal
source
HYBRID
Vi
D
B
50
Ω
D
D.U.T.
18 dB
attenuator
Vo
(1)
(2)
N1
N2
C
38.9 MHz
V
RMS
voltmeter
(1) N1 is 2 × 5 turns.
(2) N2 is 2 turns.
N1
Vi = Vmeas; V’meas = Vo − 16 dB (transformer ratio -------- = 5 and transformer loss).
N2
Wanted input signal Vi = 70 dBµV at fRF = 407.25 MHz (855.25 MHz).
Measured level of the unwanted output signal Vou causing 1% AM modulation in the wanted output signal;
unwanted fRF = 412.75 MHz (860.75 MHz); Vou = V’meas + 16 dB.
Fig.7 Cross modulation measurement in the UHF band.
1998 Mar 09
10
50 Ω
MGL276
UHFIN2 IFOUT2
50
Ω
modulation
analyzer
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
I1
handbook, full pagewidth
TDA5744; TDA5745
I3
PCB
C1
BNC
L1
BNC
plug
C2
PCB
C3
plug
I2
RIM-RIM
RIM-RIM
C4
(a)
(b)
(a) For fRF = 50 MHz:
VHF mixer frequency response measured = 57 MHz;
loss = 0 dB.
Image suppression = 16 dB.
C1 = 1 nF; C2 = 2.2 pF.
L1 = 7 turns (∅ 5.5 mm; wire ∅ = 0.5 mm).
I1 = semi rigid cable (RIM): 5 cm long.
(semi rigid cable (RIM); 33 dB/100 m; 50 Ω; 96 pF/m).
MBE286 - 1
(b) For fRF = 150 MHz:
VHF mixer frequency response measured = 150.3 MHz;
loss = 1.3 dB.
Image suppression = 13 dB.
C3 = 1 nF; C4 = 2.2 pF.
I2 = semi rigid cable (RIM): 30 cm long.
I3 = semi rigid cable (RIM): 5 cm long.
(semi rigid cable (RIM); 33 dB/100 m; 50 Ω; 96 pF/m).
Fig.8 Input circuit for optimum noise figure in the VHF band.
handbook, full pagewidth
NOISE
SOURCE
BNC
RIM
INPUT
CIRCUIT
T
VHFIN IFOUT1
D.U.T.
NOISE
FIGURE
METER
C
IFOUT2
MGL277
F = Fmeas − loss (of input circuit) (dB).
Fig.9 Noise figure (F) measurement in the VHF band.
1998 Mar 09
11
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
handbook, full pagewidth
NOISE
SOURCE
A
C
HYBRID
B
D
T
UHFIN1 IFOUT1
D.U.T.
C
UHFIN2 IFOUT2
MGL278
50 Ω
Loss (in hybrid) = 1 dB; F = Fmeas − loss (in hybrid).
Fig.10 Noise figure (F) measurement in the UHF band.
1998 Mar 09
NOISE
FIGURE
METER
12
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
handbook, full pagewidth
P1
C1
UHFIN1
UHF1
1 (24)
(1) 24
C2
VHFOSCIB2
L1
BB149
1 µH
150 pF
1 nF
D1
P2
C3
UHFIN2
UHF2
2 (23)
(2) 23
VHFOSCOC2
2.2 pF
R21
C5
C6
C7
22 kΩ
4.7 nF
VHFIN
VHF
3 (22)
(3) 22
VHFOSCOC1
L3
TOKO 7 km
L value/C value
3
4
8
D5
RFGND
IFFIL1
C11
LED-3R
D6
C13 IFFIL2
n.c.
330 Ω
LED-3Y
D7
n.c.
330 Ω
LED-3G
BS
330 Ω
J1
J2
J3
5 (20)
(5) 20
UHFOSCIB2
6 (19)
(6) 19
TDA5744
(TDA5745)
7 (18)
(7) 18
UHFOSCOC2
UHFOSCOC1
8 (17)
(8) 17
UHFOSCIB1
9 (16)
(9) 16
R3 22 kΩ
D3
R4
1.5 kΩ
BA792
C10
R5 2.7 kΩ
VHFH
VHFL
4.7 nF
C12
R7
22 kΩ
R6
22 kΩ
D4
BB149
C14
L5
16 nH
1 pF
C15
C16
47 pF
L6
30 nH
C18
10 pF
R9
4.7 kΩ
C17
GND
for test purpose only
J4
n.c.
10 (15)
(10) 15
IFOUT2
PLL
VHFL
UHF
VHFH
for test purpose only
n.c.
11 (14)
(11) 14
IFOUT1
VCC
VCC
J5
C8
L4
80 nH
1 pF
R11
UHF
VHFOSCIB1
1 pF
R10
VHFH
(4) 21
R1 1.5 kΩ
1 pF
15 pF
R8
VHFL
4 (21)
R2
22
kΩ
2.2 pF
1 15 pF
2
C9
100
pF
2.2 pF
1 nF
6
L2
30 nH
D2
BB152
1 nF
P3
7
C4
n.c.
+VCC
12 (13)
(12) 13
VCC
C19
L9
1 nF
80 nH
C20
L8
1 nF
80 nH
7
1
6
P4
IF
OUT
2
C21
18 pF
3
4
L7
8
C22
C24
10 nF
tuning
voltage
P6
TR1
BC847B
10 nF
R18
R16
22 kΩ
1.2 kΩ
C27
10 µF
(16 V)
C28
10 µF
(16 V)
+VCC
R22
50 Ω
1
P9
Vripple
AGND
2
Fig.11 Measurement circuit.
13
3
4
P8
+VCC
+33 V
The pin numbers in parenthesis represent the TDA5745.
1998 Mar 09
R14
22 kΩ
+5 V
MGM467
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
Component values for measurement circuit
Table 1
Capacitors (all SMD and NP0 unless otherwise
specified)
COMPONENT
COMPONENT
VALUE
VALUE
C1
1 nF
R10
330 Ω
C2
150 pF
R11
330 Ω
C3
1 nF
R14
22 kΩ
C4
2.2 pF (N750)
R16
22 kΩ
C5
4.7 nF
R18
1.2 kΩ
C6
1 nF
R21
22 kΩ
C7
2.2 pF (N750)
R22
50 Ω
C8
2.2 pF (N750)
C9
100 pF (N750)
C10
4.7 nF
C11
15 pF
D1
BB149
C12
1 pF (N750)
D2
BB152
C13
15 pF
D3
BA792
C14
1 pF (N750)
D4
BB149
C15
47 pF
D5
LED-3R
C16
1 pF (N750)
D6
LED-3Y
C17
1 pF (N750)
D7
LED-3G
C18
10 pF (N750)
IC
TDA5744; TDA5745
C19
1 nF
C20
1 nF
C21
18 pF
C22
10 nF
L1
1 µH (inductor)
C24
10 nF
L2
30 nH
C27
10 µF (16 V; electrolytic)
L4
80 nH
C28
10 µF (16 V; electrolytic)
L5
16 nH
L6
30 nH
L8
80 nH
L9
80 nH
Table 2
Table 3
COMPONENT
Table 4
VALUE
Coils
COMPONENT
Resistors (all SMD)
COMPONENT
Diodes and ICs
VALUE
VALUE
R1
1.5 kΩ
R2
22 kΩ
R3
22 kΩ
R4
1.5 kΩ
L3
23 turns (TOKO, wire 0.07 mm)
R5
2.7 kΩ
L7
R6
22 kΩ
N1 = 2 × 5 turns; N2 = 2 turns
(TOKO, wire 0.09 mm)
R7
22 kΩ
R8
330 Ω
R9
4.7 kΩ
Table 5
COMPONENT
Table 6
VALUE
Transistors
COMPONENT
TR1
1998 Mar 09
Transformer
14
VALUE
BC847B
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
INTERNAL PIN CONFIGURATION
PIN
CONFIGURATION(1)
SYMBOL
TDA5744
TDA5745
UHFIN1
1
24
UHFIN2
2
23
AVERAGE DC VOLTAGE
(V)
VHF
UHF
note 2
1.0
1.9
note 2
0.0
0.0
3.4
3.4
not connected
note 2
note 2
1
2
(24)
(23)
MGM468
VHFIN
3
22
3
(22)
MGM469
RFGND
4
21
4
(21)
MGM470
IFFIL1
5
20
IFFIL2
6
19
(20) 5
6 (19)
MGM471
n.c.
7
18
8
17
10
15
11
14
12
13
BS
9
16
electronic band switch
0.0
5.0
VCC
13
12
supply voltage
5.0
5.0
1998 Mar 09
15
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
PIN
CONFIGURATION(1)
SYMBOL
TDA5744
TDA5745
IFOUT1
14
11
IFOUT2
15
10
GND
16
TDA5744; TDA5745
AVERAGE DC VOLTAGE
(V)
VHF
14
15
(11)
(10)
UHF
2.2
2.2
0.0
0.0
MGM472
9
16
(9)
MGM473
UHFOSCIB1
17
8
UHFOSCOC1
18
7
UHFOSCOC2
19
6
UHFOSCIB2
20
5
note 2
(7)
(6)
18
19
17
20
(8)
(5)
1.9
2.5
2.5
1.9
MGM474
VHFOSCIB1
21
4
VHFOSCOC1
22
3
VHFOSCOC2
23
2
VHFOSCIB2
24
1
2.0
(3)
(2)
22
23
21
24
(4)
(1)
2.7
2.0
MGM475
Notes
1. The pin numbers in parenthesis represent the TDA5745.
2. Not applicable.
1998 Mar 09
2.7
16
note 2
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
PACKAGE OUTLINE
SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm
D
SOT340-1
E
A
X
c
HE
y
v M A
Z
24
13
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
L
1
12
bp
e
detail X
w M
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
Z (1)
θ
mm
2.0
0.21
0.05
1.80
1.65
0.25
0.38
0.25
0.20
0.09
8.4
8.0
5.4
5.2
0.65
7.9
7.6
1.25
1.03
0.63
0.9
0.7
0.2
0.13
0.1
0.8
0.4
8
0o
Note
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.
OUTLINE
VERSION
SOT340-1
1998 Mar 09
REFERENCES
IEC
JEDEC
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
93-09-08
95-02-04
MO-150AG
17
o
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
If wave soldering cannot be avoided, the following
conditions must be observed:
SOLDERING
Introduction
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave)
soldering technique should be used.
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
• The longitudinal axis of the package footprint must
be parallel to the solder flow and must incorporate
solder thieves at the downstream end.
Even with these conditions, only consider wave
soldering SSOP packages that have a body width of
4.4 mm, that is SSOP16 (SOT369-1) or
SSOP20 (SOT266-1).
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “IC Package Databook” (order code 9398 652 90011).
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Reflow soldering
Reflow soldering techniques are suitable for all SSOP
packages.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Repairing soldered joints
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
Wave soldering
Wave soldering is not recommended for SSOP packages.
This is because of the likelihood of solder bridging due to
closely-spaced leads and the possibility of incomplete
solder penetration in multi-lead devices.
1998 Mar 09
18
Philips Semiconductors
Preliminary specification
Low power mixers/oscillators for
hyperband tuners
TDA5744; TDA5745
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1998 Mar 09
19
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,
Fax. +43 160 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 0044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2686, Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
© Philips Electronics N.V. 1998
SCA57
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
545104/1200/01/pp20
Date of release: 1998 Mar 09
Document order number:
9397 750 02946