TI TL052IP

TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
D
D
D
Direct Upgrades to TL07x and TL08x BiFET
Operational Amplifiers
Faster Slew Rate (20 V/µs Typ) Without
Increased Power Consumption
D
On-Chip Offset Voltage Trimming for
Improved DC Performance and Precision
Grades Are Available (1.5 mV, TL051A)
Available in TSSOP for Small Form-Factor
Designs
description
The TL05x series of JFET-input operational amplifiers offers improved dc and ac characteristics over the TL07x
and TL08x families of BiFET operational amplifiers. On-chip zener trimming of offset voltage yields precision
grades as low as 1.5 mV (TL051A) for greater accuracy in dc-coupled applications. Texas Instruments improved
BiFET process and optimized designs also yield improved bandwidth and slew rate without increased power
consumption. The TL05x devices are pin-compatible with the TL07x and TL08x and can be used to upgrade
existing circuits or for optimal performance in new designs.
BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors, without
sacrificing the output drive associated with bipolar amplifiers. This makes them better suited for interfacing with
high-impedance sensors or very low-level ac signals. They also feature inherently better ac response than
bipolar or CMOS devices having comparable power consumption.
The TL05x family was designed to offer higher precision and better ac response than the TL08x with the low
noise floor of the TL07x. Designers requiring significantly faster ac response or ensured lower noise should
consider the Excalibur TLE208x and TLE207x families of BiFET operational amplifiers.
AVAILABLE OPTIONS
PACKAGED DEVICES
VIOmax
AT 25°C
TA
0°C to 70°C
– 40°C to 85°C
– 55°C to 125°C
SMALL
OUTLINE†
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(N)
PLASTIC
DIP
(P)
800 µV
TL051ACD
TL052ACD
—
—
—
—
TL051ACP
TL052ACP
1.5 mV
TL051CD
TL052CD
TL054ACD
—
—
—
TL054ACN
4 mV
TL054CD
—
—
—
TL054CN
800 µV
TL051AID
TL052AID
—
—
—
1.5 mV
TL051ID
TL052ID
TL054AID
—
—
—
TL054AIN
4 mV
TL054ID
—
—
TL054IN
800 µV
TL051AMD
TL052AMD
TL051AMFK
TL052AMFK
—
TL051AMJG
TL052AMJG
1.5 mV
TL051MD
TL052MD
TL054AMD
TL051MFK
TL052MFK
TL054AMFK
TL054AMJ
TL051MJG
TL052MJG
4 mV
TL054MD
TL054MFK
TL054MJ
—
† The D packages are available taped and reeled. Add R suffix to device type (e.g., TL054CDR).
‡ Chip forms are tested at 25°C.
—
—
TL054AMN
TL054MN
TL051CP
TL052CP
CHIP
FORM‡
(Y)
TL051Y
TL052Y
TL054Y
—
TL051AIP
TL052AIP
TL051IP
TL052IP
—
—
TL051AMP
TL052AMP
TL051MP
TL052MP
—
—
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
description (continued)
Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to
observe common-mode input voltage limits and output swing when operating from a single supply. DC biasing
of the input signal is required and loads should be terminated to a virtual-ground node at midsupply. Texas
Instruments TLE2426 integrated virtual ground generator is useful when operating BiFET amplifiers from single
supplies.
The TL05x are fully specified at ±15 V and ± 5 V. For operation in low-voltage and/or single-supply systems,
Texas Instruments LinCMOS families of operational amplifiers (TLC-prefix) are recommended. When moving
from BiFET to CMOS amplifiers, particular attention should be paid to the slew rate and bandwidth
requirements, and also the output loading.
8
2
7
3
6
4
5
NC
VCC +
OUT
OFFSET N2
1OUT
1IN –
1IN +
VCC –
7
3
6
4
5
5
17
6
16
7
15
8
14
9 10 11 12 13
VCC +
2OUT
2IN –
2IN +
3 2 1 20 19
18
4
5
17
6
16
7
15
8
14
9 10 11 12 13
POST OFFICE BOX 655303
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN –
4IN +
VCC –
3IN +
3IN –
3OUT
TL054
FK PACKAGE
(TOP VIEW)
NC
2OUT
NC
2IN –
NC
NC – No internal connection
2
1OUT
1IN –
1IN +
VCC +
2IN +
2IN –
2OUT
NC
1OUT
NC
VCC +
NC
NC
VCC +
NC
OUT
NC
NC
1IN –
NC
1IN+
NC
NC
VCC –
3 2 1 20 19
18
NC
OFFSET N2
NC
4
NC
VCC –
NC
IN –
NC
IN +
NC
8
2
TL052
FK PACKAGE
(TOP VIEW)
NC
OFFSET N1
NC
NC
NC
TL051
FK PACKAGE
(TOP VIEW)
1
1IN –
1OUT
NC
4OUT
4IN –
1
TL054
D, J, OR N PACKAGE
(TOP VIEW)
NC
2IN +
NC
OFFSET N1
IN –
IN +
VCC –
TL052
D, JG, OR P PACKAGE
(TOP VIEW)
• DALLAS, TEXAS 75265
1IN +
NC
VCC +
NC
2IN +
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
2IN –
2OUT
NC
3OUT
3IN –
TL051
D, JG, OR P PACKAGE
(TOP VIEW)
4IN +
NC
VCC –
NC
3IN +
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
symbol (each amplifier)
IN –
–
OUT
+
IN +
equivalent schematic (each amplifier)
VCC +
Q10
Q2
Q15
Q3
Q16
Q6
Q13
Q11
IN +
R7
Q12
D1
IN –
JF1
JF2
OUT
R8
Q4
Q14
Q17
Q8
Q1
Q9
Q5
OFFSET N1
OFFSET N2
R1
R9
R5
C1
See Note A
JF3
Q7
R2
R10
R4
R3
D2
R6
VCC –
NOTE A: OFFSET N1 and OFFSET N2 are only available on the TL051x.
ACTUAL DEVICE COMPONENT COUNT†
COMPONENT
TL051
TL052
TL054
Transistors
20
34
62
Resistors
10
19
37
Diodes
2
3
5
Capacitors
1
2
4
† These figures include all four amplifiers and all ESD, bias, and trim circuitry.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL051Y chip information
This chip, when properly assembled, displays characteristics similar to the TL051. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(7)
VCC+
(7)
(6)
IN +
IN –
OFFSET N1
OFFSET N2
(3)
(2)
(1)
+
(6)
OUT
–
(4)
VCC –
(5)
(5)
63
(4)
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
(1)
ALL DIMENSIONS ARE IN MILS.
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
(3)
(2)
43
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL052Y chip information
This chip, when properly assembled, displays characteristics similar to the TL052. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(7)
(6)
(5)
1IN +
(3)
(2)
1IN –
2OUT
VCC+
(8)
+
(1)
1OUT
–
+
(7)
–
(5)
(6)
2IN +
2IN –
(4)
VCC –
72
(8)
(4)
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
(1)
(2)
(3)
66
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL054 chip information
This chip, when properly assembled, displays characteristics similar to the TL054C. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. These chips may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(1)
VCC+
(4)
(14)
1IN +
(2)
(13)
(12)
+
–
1IN –
3IN +
+
(7)
–
(10)
+
(5)
(6)
2IN +
2IN –
(8)
3OUT
(9)
–
3IN –
4OUT
(1)
1OUT
(2)
2OUT
(3)
(3)
+
(14)
–
(12)
4IN +
(13)
4IN –
(11)
VCC –
122
(4)
(11)
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
(5)
(10)
ALL DIMENSIONS ARE IN MILS.
PIN (11) IS INTERNALLY CONNECTED
TO BACKSIDE OF THE CHIP.
(6)
(9)
(7)
(6)
(7)
(8)
(8)
(9)
71
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V
Supply voltage, VCC – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 18 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 V
Input voltage range, VI (any input, see Notes 1 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 15 V
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 1 mA
Output current, IO (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 80 mA
Total current into VCC + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA
Total current out of VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA
Duration of short-circuit current at (or below) 25°C (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16inch) from case for 10 seconds: D, N, or P package . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16inch) from case for 60 seconds: J or JG package . . . . . . . . . . . . . . . . 300°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC – .
2. Differential voltages are at IN+ with respect to IN –.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
4. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D–8
725 mW
5.8 mW/°C
464 mW
377 mW
145 mW
D–14
950 mW
7.6 mW/°C
608 mW
494 mW
190 mW
FK
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
J
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
JG
1050 mW
8.4 mW/°C
672 mW
546 mW
210 mW
N
1575 mW
12.6 mW/°C
1008 mW
819 mW
315 mW
P
1000 mW
8.0 mW/°C
640 mW
520 mW
200 mW
recommended operating conditions
Supply voltage, VCC ±
Common mode input voltage,
Common-mode
voltage VIC
VCC ± = ± 5 V
VCC ± = ± 15 V
Operating free-air temperature, TA
POST OFFICE BOX 655303
C SUFFIX
I SUFFIX
M SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
±5
± 15
±5
± 15
±5
± 15
–1
4
–1
4
–1
4
– 11
11
– 11
11
– 11
11
0
70
– 40
85
– 55
125
• DALLAS, TEXAS 75265
UNIT
V
V
°C
7
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL051C and TL051AC electrical characteristics at specified free-air temperature
TL051C, TL051AC
PARAMETER
TEST CONDITIONS
TL051C
VIO
Input offset voltage
TL051AC
αVIO
Temperature coefficient
of input offset voltage‡
VO = 0
0,
VIC = 0,
RS = 50 Ω
IIB
VICR
VOM +
25°C
0.75
0.59
4.5
25°C
0.55
Full range
0.8
mV
1.8
8
8
TL051AC
25°C to
70°C
8
8
0.04
0.04
µ V/ ° C
25°C
25
µV/mo
Input offset current
VO = 0,
VIC = 0,
See Figure 5
25°C
4
100
5
100
pA
70°C
0.02
1
0.025
1
nA
Input bias current
VO = 0,
VIC = 0,
See Figure 5
25°C
20
200
30
200
pA
70° C
0.15
4
0.2
4
nA
25°C
–1
to
4
Full range
–1
to
4
Common-mode input
voltage range
Maximum positive peak
output voltage swing
RL = 10 kΩ
Maximum negative
peak
g
output voltage swing
Large-signal
Large
signal differential
amplification
voltage am
lification¶
25°C
3
Full range
3
25°C
Full range
RL = 10 kΩ
2.5
– 2.5
Full range
– 2.5
25°C
– 2.3
Full range
– 2.3
4.2
– 12
– 3.2
– 13.2
– 11
V
– 12
– 11
25°C
25
59
50
105
0°C
30
65
60
129
70°C
20
30
85
1012
Ω
12
pF
CMRR
Common-mode
Common
mode
rejection ratio
No load
V
12.7
– 12
10
VO = 0,
13.9
11.5
25°C
Supplyy current
11.5
– 3.5
25°C
RS = 50 Ω
13
3.8
Input capacitance
VO = 0,
V
13
Input resistance
Supply voltage rejection
Supply-voltage
ratio (∆VCC ± /∆VIO)
– 12.3
to
15.6
– 11
to
11
ci
VIC = VICRmin,
min
VO = 0
0,
RS = 50 Ω
– 11
to
11
2.5
25°C
RL = 2 kΩ
– 2.3
to
5.6
ri
ICC
0.35
UNIT
1.5
2.5
2.8
3.8
46
1012
kSVR
3.5
TL051C
RL = 2 kΩ
AVD
VCC ± = ± 15 V
MIN
TYP
MAX
25°C to
70°C
RL = 2 kΩ
VOM –
VCC ± = ± 5 V
MIN
TYP
MAX
Full range
Input offset voltage
long-term drift§
IIO
TA†
25°C
65
85
75
93
0°C
65
84
75
92
70°C
65
84
75
91
25°C
75
99
75
99
0°C
75
98
75
98
70°C
75
97
75
97
V/mV
dB
dB
25°C
2.6
3.2
2.7
3.2
0°C
2.7
3.2
2.8
3.2
70°C
2.6
3.2
2.7
3.2
mA
† Full range is 0°C to 70°C.
‡ This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
§ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
¶ For VCC ± = ± 5 V, VO = ± 2.3 V, or for VCC ± = ± 15 V, VO = ±10 V.
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL051C and TL051AC operating characteristics at specified free-air temperature
TL051C, TL051AC
PARAMETER
SR +
TEST CONDITIONS
Positive
Positi
e slew
sle rate
at unity gain‡
RL = 2 kΩ,,
See Figure 1
SR –
Negative
Negati
e slew
sle rate
at unity gain‡
tr
Rise time
tf
Fall time
CL = 100 pF,,
VI(PP) = ±10 mV,
kΩ
RL = 2 kΩ,
CL = 100 pF
F,
See Figures
1 and 2
g
Overshoot factor
25°C
16
13
20
Full
range
16.4
11
22.6
25°C
15
13
18
Full
range
16
11
19.3
25°C
55
56
0°C
54
55
70°C
63
63
25°C
55
57
0°C
54
56
70°C
62
64
25°C
24%
19%
0°C
24%
19%
24%
19%
25°C
75
75
f = 1 kHz
25°C
18
18
f = 10 Hz to
10 kHz
25°C
4
4
25°C
0.01
0.01
25°C
0.003%
0.003%
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
Equivalent input
noise current
f = 1 kHz
THD
Total harmonic distortion¶
RS = 1 kΩ,
f = 1 kHz
RL = 2 kΩ,
B1
Unity-gain bandwidth
V
VI = 10 mV,
CL = 25 pF
F,
kΩ
RL = 2 kΩ,
See Figure 4
VI = 10 mV,
V
CL = 25 pF
F,
RL = 2 kΩ,
kΩ
See Figure 4
Phase margin
Ph
i att unity
it
gain
VCC ± = ± 15 V
MIN
TYP
MAX
70°C
Vn
φm
VCC ± = ± 5 V
MIN
TYP
MAX
f = 10 Hz
Equivalent
input noise
q
voltage§
RS = 20 Ω,
See Figure 3
TA†
25°C
3
3.1
0°C
3.2
3.3
70°C
2.7
2.8
25°C
59°
62°
0°C
58°
62°
70°C
59°
UNIT
V/ µs
ns
30
nV/√Hz
µV
pA/√Hz
MHz
62°
† Full range is 0°C to 70°C.
‡ For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
§ This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
¶ For VCC ± = ± 5 V, VOrms = 1 V; for VCC ± = ± 15 V, VOrms = 6 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL051I and TL051AI electrical characteristics at specified free-air temperature
TL051I, TL051AI
PARAMETER
TEST CONDITIONS
TL051I
VIO
Input offset voltage
TL051AI
αVIO
Temperature coefficient of
input offset voltage‡
VO = 0
0,
VIC = 0,
RS = 50 Ω
IIB
VICR
VOM +
25°C
0.75
0.59
3.5
5.3
25°C
0.55
Full range
0.35
4.6
7
8
TL051AI
25°C to
85°C
8
8
mV
0.04
0.04
µV/ °C
25°C
25
µV/mo
Input offset current
VO = 0,
VIC = 0,
See Figure 5
25°C
4
100
5
100
pA
85°C
0.06
10
0.07
10
nA
Input bias current
VO = 0,
VIC = 0,
See Figure 5
25°C
20
200
30
200
pA
85°C
0.6
20
0.7
20
nA
25°C
–1
to
4
Full range
–1
to
4
Common-mode input
voltage range
Maximum positive peak
output voltage swing
RL = 10 kΩ
Maximum negative
g
peak
output voltage swing
Large-signal
Large
signal differential
amplification
voltage am
lification¶
25°C
3
Full range
3
25°C
Full range
RL = 10 kΩ
2.5
– 11
to
11
– 2.5
Full range
– 2.5
25°C
– 2.3
Full range
– 2.3
– 12.3
to
15.6
4.2
13
13.9
13
3.8
11.5
V
12.7
11.5
– 3.5
– 12
– 13.2
– 12
– 3.2
– 11
V
– 12
– 11
25°C
25
59
50
105
– 40°C
30
74
60
145
85°C
20
30
76
1012
Ω
12
pF
Input resistance
25°C
ci
Input capacitance
25°C
10
65
85
75
93
Common
mode
Common-mode
rejection ratio
VIC = VICRmin,
VO = 0,
RS = 50 Ω
25°C
CMRR
– 40°C
65
83
75
90
85°C
65
84
75
93
25°C
75
99
75
99
Supply-voltage
Supply
voltage rejection
ratio (∆VCC± /∆VIO)
VO = 0
0,
RS = 50 Ω
– 40°C
75
98
75
98
85°C
75
99
75
99
Supply current
VO = 0,
No load
V
– 11
to
11
2.5
25°C
RL = 2 kΩ
– 2.3
to
5.6
ri
ICC
0.8
2.6
43
1012
kSVR
UNIT
1.5
3.3
2.8
TL051I
RL = 2 kΩ
AVD
VCC ± = ± 15 V
MIN
TYP
MAX
25°C to
85°C
RL = 2 kΩ
VOM –
VCC ± = ± 5 V
MIN
TYP
MAX
Full range
Input offset voltage
long-term drift§
IIO
TA†
V/mV
dB
dB
25°C
2.6
3.2
2.7
3.2
– 40°C
2.4
3.2
2.6
3.2
mA
85°C
2.5
3.2
2.6
3.2
† Full range is – 40°C to 85°C
‡ This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
§ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
¶ For VCC ± = ± 5 V, VO = ± 2.3 V, or for VCC ± = ± 15 V, VO = ±10 V.
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL051I and TL051AI operating characteristics at specified free-air temperature
TL051I, TL051AI
PARAMETER
SR +
TEST CONDITIONS
Positive
Positi
e slew
sle rate
at unity gain‡
RL = 2 kΩ,,
See Figure 1
SR –
Negative
Negati
e slew
sle rate
at unity gain‡
tr
Rise time
tf
Fall time
CL = 100 pF,,
25°C
16
Full
range
VI(PP)
( ) = ±10 mV,
RL = 2 kΩ,
kΩ
CL = 100 pF
F,
See Figures
1 and 2
g
13
15
13
11
25°C
55
56
– 40°C
52
53
85°C
64
65
25°C
55
57
– 40°C
51
53
85°C
64
65
25°C
24%
19%
– 40°C
24%
19%
24%
19%
25°C
75
75
f = 1 kHz
25°C
18
18
f = 10 Hz to
10 kHz
25°C
4
4
25°C
0.01
0.01
25°C
0.003%
0.003%
Peak-to-peak equivalent
input noise voltage
In
Equivalent input
noise current
f = 1 kHz
THD
Total harmonic distortion¶
RS = 1 kΩ,
f = 1 kHz
RL = 2 kΩ,
B1
Unity-gain bandwidth
V
VI = 10 mV,
CL = 25 pF
F,
kΩ
RL = 2 kΩ,
See Figure 4
VI = 10 mV,
V
CL = 25 pF
F,
RL = 2 kΩ,
kΩ
See Figure 4
V/ µs
18
85°C
VN(PP)
UNIT
20
f = 10 Hz
Vn
RS = 20 Ω,
See Figure 3
VCC ± = ± 15 V
MIN TYP
MAX
11
Full
range
Equivalent
input noise
q
voltage§
Phase margin
Ph
i att unity
it
gain
VCC ± = ± 5 V
MIN
TYP
MAX
25°C
Overshoot factor
φm
TA†
25°C
3
3.1
– 40°C
3.5
3.6
85°C
2.6
2.7
25°C
59°
62°
– 40°C
58°
61°
85°C
59°
ns
30
nV/√Hz
µV
pA/√Hz
MHz
62°
† Full range is – 40°C to 85°C.
‡ For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
§ This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
¶ For VCC ± = ± 5 V, VOrms = 1 V; for VCC ± = ± 15 V, VOrms = 6 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL051M and TL051AM electrical characteristics at specified free-air temperature
TL051M, TL051AM
PARAMETER
TL051M
VIO
Input offset voltage
TL051AM
αVIO
Temperature coefficient of
input offset voltage
TA†
TEST CONDITIONS
VO = 0
0,
VIC = 0,
RS = 50 Ω
IIB
Full range
25°C to
125°C
8
8
25°C
0.04
0.04
Input bias current
100
5
100
pA
1
20
2
20
nA
25°C
20
200
30
200
pA
125°C
10
50
20
50
nA
25°C
Full range
25°C
Full range
25°C
Full range
–1
to
4
– 2.3
to
5.6
3
4.2
3.8
– 3.2
– 11
59
50
105
– 55°C
30
76
60
149
125°C
10
15
49
1012
Ω
12
pF
CMRR
Common-mode
Common
mode
rejection ratio
No load
V
– 12
25
10
VO = 0,
– 11
– 2.3
25°C
Supply
y current
– 13.2
25°C
25°C
ICC
V
12.7
– 12
Input capacitance
RS = 50 Ω
– 12
– 2.5
– 2.3
13.9
11.5
– 3.5
Input resistance
VO = 0,
11.5
2.5
– 2.5
V
13
ci
Supply-voltage
Supply
voltage rejection
ratio (∆VCC± /∆VIO)
13
3
2.5
– 12.3
to
15.6
– 11
to
11
ri
kSVR
– 11
to
11
–1
to
4
32
1012
VIC = VICRmin,
VO = 0,
RS = 50 Ω
µV/mo
4
25°C
RL = 2 kΩ
µV/° C
25°C
Full range
RL = 10 kΩ
mV
125°C
Common-mode input
voltage range
RL = 10 kΩ
0.8
3.8
TL051AM
VO = 0, VIC = 0,
See Figure 5
Large-signal
Large
signal differential
amplification
voltage am
lification§
5.8
8
RL = 2 kΩ
AVD
0.35
UNIT
1.5
4.5
2.8
8
VO = 0,
VIC = 0,
See Figure 5
Maximum negative
g
peak
output voltage swing
0.55
TL051M
RL = 2 kΩ
VOM –
6.5
25°C
Full range
VOM +
0.59
3.5
25°C to
125°C
Input offset current
Maximum positive peak
output voltage swing
0.75
25 C
25°C
VICR
VCC ± = ± 15 V
MIN
TYP
MAX
Full range
Input offset voltage
long-term drift‡
IIO
VCC ± = ± 5 V
MIN
TYP
MAX
25°C
65
85
75
93
– 55°C
65
83
75
92
125°C
65
84
75
94
99
25°C
75
99
75
– 55°C
75
98
75
98
125°C
75
100
75
100
V/mV
dB
dB
25°C
2.6
3.2
2.7
3.2
– 55°C
2.3
3.2
2.4
3.2
125°C
2.4
3.2
2.5
3.2
mA
† Full range is – 55°C to 125°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ For VCC ± = ± 5 V, VO = ± 2.3 V, or for VCC ± = ± 15 V, VO = ± 10 V.
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL051M and TL051AM operating characteristics at specified free-air temperature
TL051M, TL051AM
PARAMETER
SR +
SR –
tr
tf
Positive slew rate
at unity gain†
Negative
slew rate
g
at unity gain†
TA
VCC ± = ± 5 V
MIN TYP
MAX
25°C
16
13
25°C
15
13
25°C
55
56
– 55°C
51
52
125°C
68
68
25°C
55
57
– 55°C
51
52
125°C
68
69
25°C
24%
19%
– 55°C
25%
19%
125°C
25%
19%
f = 10 Hz
25°C
75
75
f = 1 kHz
25°C
18
19
f = 10 Hz to
10 kHz
25°C
4
4
25°C
0.01
0.01
25°C
0.003%
0.003%
25°C
3
3.1
– 55°C
3.6
3.7
125°C
2.3
2.4
25°C
59°
62°
– 55°C
57°
61°
125°C
59°
TEST CONDITIONS
RL = 2 kΩ,,
See Figure 1
VI(PP)
( ) = ± 10 mV,
kΩ
RL = 2 kΩ,
CL = 100 pF
F,
See Figures
g
1 and 2
Overshoot factor
Vn
Equivalent
q
input noise
voltage‡
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
Equivalent input noise
current
f = 1 kHz
THD
Total harmonic distortion§
RS = 1 kΩ,
f = 1 kHz
RL = 2kΩ,
Unity-gain bandwidth
VI = 10 mV,
V
CL = 25 pF
F,
RL = 2 kΩ,
kΩ
See Figure 4
VI = 10 mV,
V
CL = 25 pF
F,
RL = 2 kΩ,
kΩ
See Figure 4
B1
φm
Phase margin
Ph
i att unity
it
gain
RS = 20 Ω,
See Figure 3
UNIT
20
CL = 100 pF,,
Rise time
Fall time
VCC ± = ± 15 V
MIN TYP
MAX
V/µ s
ns
nV/√Hz
µV
pA/√Hz
MHz
62°
† For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
‡ This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
§ For VCC ± = ± 5 V, VOrms = 1 V; for VCC ± = ± 15 V, VOrms = 6 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL051Y electrical characteristics, TA = 25°C
TL051Y
PARAMETER
TEST CONDITIONS
VCC ± = ± 5 V
MIN
TYP
MAX
VCC ± = ± 15 V
MIN
TYP
MAX
UNIT
VIO
Input offset voltage
VO = 0,,
RS = 50 Ω
VIC = 0,,
0 75
0.75
0 59
0.59
mV
IIO
Input offset current
VO = 0,,
VIC = 0,,
See Figure 5
4
5
pA
IIB
Input bias current
VO = 0,,
VIC = 0,,
See Figure 5
20
30
pA
VICR
Common-mode input voltage range
– 2.3
to
5.6
– 12.3
to
15.6
V
VOM +
Maximum positive peak output voltage
g
swing
RL = 10 kΩ
4.2
13.9
RL = 2 kΩ
3.8
12.7
– 3.5
– 13.2
– 3.2
– 12
59
105
1012
1012
Ω
10
12
pF
V
Maximum negative
g
peak output voltage
g
VOM –
swing
RL = 10 kΩ
RL = 2 kΩ
AVD
Large-signal differential voltage
amplification†
RL = 2 kΩ
ri
Input resistance
ci
Input capacitance
CMRR
Common-mode rejection ratio
VIC = VICRmin,
VO = 0,
RS = 50 Ω
85
93
dB
kSVR
Supply-voltage rejection ratio
(∆VCC ± /∆ VIO)
VO = 0,
RS = 50 Ω
99
99
dB
2.6
2.7
mA
ICC
Supply current
VO = 0,
No load
† For VCC ± = ± 5 V, VO = ± 2.3 V, or for VCC ± = ± 15 V, VO = ± 10 V.
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V
V/mV
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL051Y operating characteristics, TA = 25°C
TL051Y
PARAMETER
SR +
Positive slew rate at unity gain†
SR –
Negative slew rate at unity gain†
tr
Rise time
tf
Fall time
Overshoot factor
TEST CONDITIONS
RL = 2 kΩ,,
See Figure 1
VCC ± = ± 5 V
MIN TYP
MAX
VCC ± = ± 15 V
MIN TYP
MAX
16
20
15
18
55
56
55
57
CL = 100 pF,,
VI(PP)
( ) = ±10 mV,
RL = 2 kΩ,
kΩ
CL = 100 pF,
F,
See Figures 1 and 2
24%
19%
f = 10 Hz
75
75
f = 1 kHz
18
18
4
4
0.01
0.01
0.003%
0.003%
Vn
Eq i alent input
Equivalent
inp t noise voltage
oltage‡
VN(PP)
Peak-to-peak equivalent input
noise voltage
In
Equivalent input noise current
f = 1 kHz
THD
Total harmonic distortion§
RS = 1 kΩ,
f = 1 kHz
RL = 2 kΩ,
B1
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
RL = 2 kΩ,
See Figure 4
3
3.1
φm
Phase margin at unity gain
VI = 10 mV,
CL = 25 pF,
RL = 2 kΩ,
See Figure 4
59°
62°
RS = 20 Ω,
See Figure 3
f = 10 Hz to
10 kHz
UNIT
V/ µs
ns
nV/√Hz
µV
pA/√Hz
MHz
† For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
‡ This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
§ For VCC ± = ± 5 V, VOrms = 1 V; for VCC ± = ± 15 V, VOrms = 6 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL052C and TL052AC electrical characteristics at specified free-air temperature
TL052C, TL052AC
PARAMETER
TEST CONDITIONS
TL052C
VIO
Input offset voltage
TL052AC
VO = 0,
0
VIC = 0
0,
RS = 50 Ω
αVIO
IIO
IIB
VICR
VOM +
Temperature coefficient
of input offset voltage‡
0.73
0.65
25°C
Full range
2.8
0.4
3.8
6
25°C
0.04
0.04
25°C
4
70°C
25°C
70°C
VIC = 0
0,
VIC = 0
0,
RL = 10 kΩ
–1
to
4
Full range
–1
to
4
25°C
3
Full range
3
25°C
Full range
RL = 10 kΩ
2.5
100
5
0.02
1
20
200
0.15
4
–2.3
to
5.6
– 2.5
Full range
– 2.5
25°C
– 2.3
Full range
– 2.3
– 11
to
11
4.2
13
11.5
µV/mo
pA
0.025
1
nA
30
200
pA
0.2
4
nA
– 12.3
to
15.6
V
13.9
13
3.8
25
100
– 11
to
11
2.5
25°C
RL = 2 kΩ
mV
µV/°C
25°C
Common-mode input
voltage range
0.8
1.8
8
VO = 0,,
See Figure 5
Large-signal
L
i
l diff
differential
ti l
voltage am
lification¶
amplification
0.51
UNIT
1.5
2.5
25°C to
70°C
Input offset current
Maximum negative
g
peak
output voltage swing
4.5
TL052AC
VIC = 0,
Maximum positive peak
output voltage swing
3.5
8
RL = 2 kΩ
AVD
25°C
Full range
8
RL = 2 kΩ
VOM –
VCC± = ± 15 V
MIN
TYP
MAX
25°C to
70°C
VO = 0,
RS = 50 Ω
VO = 0,,
See Figure 5
VCC± = ± 5 V
MIN
TYP
MAX
TL052C
Input offset voltage longterm drift§
Input bias current
TA†
12.7
V
11.5
– 3.5
– 12
– 13.2
– 12
– 3.2
– 11
– 12
V
– 11
25°C
25
59
50
105
0°C
30
65
60
129
70°C
20
46
30
85
V/mV
ri
Input resistance
25°C
1012
1012
Ω
ci
Input capacitance
25°C
10
12
pF
CMRR
Common
mode
Common-mode
rejection ratio
VIC = VICRmin,
min
VO = 0,
RS = 50 Ω
25°C
65
85
75
93
0°C
65
84
75
92
70°C
65
84
75
91
dB
† Full range is 0°C to 70°C.
‡ This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
§ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
¶ For VCC ± = ± 5 V, VO = ± 2.3 V; at VCC ± = ± 15 V, VO = ± 10 V.
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL052C and TL052AC electrical characteristics at specified free-air temperature (continued)
TL052C, TL052AC
PARAMETER
kSVR
ICC
Supply-voltage
S
l
lt
rejection
j ti
ratio (∆VCC ± /∆VIO)
S
l currentt
Supply
(two amplifiers)
am lifiers)
VO1/ VO2 Crosstalk attenuation
TEST CONDITIONS
TA
RS = 50 Ω
VO = 0,
VO = 0,
No load
AVD = 100
VCC± = ± 5 V
MIN
TYP
MAX
VCC± = ± 15 V
MIN
TYP
MAX
25°C
75
99
75
99
0°C
75
98
75
98
70°C
75
97
75
UNIT
dB
97
25°C
4.6
5.6
4.8
5.6
0°C
4.7
6.4
4.8
6.4
70°C
4.4
6.4
4.6
6.4
25°C
120
mA
120
dB
VCC ± = ± 15 V
MIN
TYP
MAX
UNIT
TL052C and TL052AC operating characteristics at specified free-air temperature
TL052C, TL052AC
PARAMETER
SR +
Slew rate at unity gain
SR –
Negative
g
slew rate
at unity gain‡
tr
tf
TEST CONDITIONS
RL = 2 kΩ,
CL = 100 pF,
See Figure 1
Equivalent
q
input noise
voltage§
Peak-to-peak equivalent
VN(PP)
input noise current
VI(PP)
( ) = ± 10 mV,
RL = 2 kΩ,
kΩ
CL = 100 pF
F,
See Figures
g
1 and 2
RS = 20 Ω,
See Figure 3
20.7
8
15.4
9
8
25°C
55
56
0°C
54
55
70°C
63
63
25°C
55
57
56
0°C
54
70°C
62
64
25°C
24%
19%
0°C
24%
19%
70°C
24%
19%
25°C
71
71
f=
1 kHz
25°C
19
19
f=
10 Hz t
10 kHz
25°C
4
4
25°C
0.01
0.01
25°C
0.003%
0.003%
25°C
3
3
THD
Total harmonic distortion¶
RS = 1 kΩ,
f = 1 kHz
RL = 2 kΩ,
Unity-gain bandwidth
VI = 10 mV,
V
CL = 25 pF
F,
RL = 2 kΩ,
kΩ
See Figure 4
mV
VI = 10 mV,
CL = 25 pF,
F,
kΩ
RL = 2 kΩ,
See Figure 4
V/µs
17.8
10 Hz
f = 1 kHz
φm
9
f=
Equivalent input
noise current
Phase margin at unity
gain
17.8
Full range
In
B1
25°C
25°C
Overshoot factor
Vn
VCC ± = ± 5 V
MIN
TYP
MAX
Full range
Rise time
Fall time
TA†
0°C
3.2
3.2
70°C
2.6
2.7
25°C
60°
63°
0°C
59°
63°
70°C
60°
ns
30
nV/√Hz
µV
pA/√Hz
MHz
63°
† Full range is 0°C to 70°C.
‡ For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
§ This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
¶ For VCC ± = ± 5 V, VO(RMS) = 1 V; for VCC ± = ± 15 V, VO(RMS) = 6 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL052I and TL052AI electrical characteristics at specified free-air temperature
TL052I, TL052AI
PARAMETER
TL052I
VIO
Input offset voltage
TL052AI
VO = 0,
0
VIC = 0,
RS = 50 Ω
αVIO
TA†
TEST CONDITIONS
VCC± = ± 5 V
MIN
TYP
MAX
VCC± = ± 15 V
MIN
TYP
MAX
0.73
0.65
25°C
Full range
3.5
5.3
25°C
0.51
Full range
0.4
4.6
0.8
mV
2.6
TL052I
25°C to
85°C
7
6
TL052AI
25°C to
85°C
6
6
0.04
0.04
Temperat re coefficient‡
Temperature
1.5
3.3
2.8
UNIT
µV/°C
25
Input offset voltage longterm drift§
VO = 0,
RS = 50 Ω
VIC = 0,
25°C
IIO
Input offset current
VO = 0,,
See Figure 5
VIC = 0,,
25°C
4
100
5
100
pA
85°C
0.06
10
0.07
10
nA
IIB
Input bias current
VO = 0,,
See Figure 5
VIC = 0,,
25°C
20
200
30
200
pA
85°C
0.6
20
0.7
20
nA
25°C
VICR
Common-mode input
voltage range
Full range
Maximum positive peak
VOM +
output voltage swing
RL = 10 kΩ
25°C
RL = 2 kΩ
VOM –
Maximum negative
g
peak
output voltage swing
25°C
Full range
Full range
RL = 10 kΩ
25°C
Full range
25°C
RL = 2 kΩ
Full range
–1
to
4
–2.3
to
5.6
–1
to
4
3
4.2
3.8
– 3.5
– 3.2
12.7
V
– 12
– 13.2
– 2.3
– 11
– 12
V
– 11
25°C
25
59
50
105
– 40°C
30
74
60
145
85°C
20
30
76
1012
Ω
12
pF
Large-signal
L
i
l diff
differential
ti l
voltage am
lification¶
amplification
ri
Input resistance
25°C
43
1012
ci
Input capacitance
25°C
10
CMRR
Common-mode
Common
mode
rejection ratio
VIC = VICRmin,
min
RS = 50 Ω
VO = 0,
13.9
– 12
AVD
RL = 2 kΩ
11.5
V
11.5
– 2.5
– 2.3
13
13
2.5
– 2.5
– 12.3
to
15.6
– 11
to
11
3
2.5
– 11
to
11
µV/mo
25°C
65
85
75
93
– 40°C
65
83
75
90
85°C
65
84
75
93
V/mV
dB
† Full range is – 40°C to 85°C.
‡ This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters
§ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25 °C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
¶ At VCC ± = ± 5 V, VO = ± 2.3 V; at VCC ± = ± 15 V, VO = ± 10 V.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL052I and TL052AI electrical characteristics at specified free-air temperature (continued)
TL052I, TL052AI
PARAMETER
kSVR
ICC
Supply-voltage
S
l
lt
rejection
j ti
ratio (∆VCC± /∆VIO)
S
l currentt
Supply
(two amplifiers)
am lifiers)
VO1/ VO2 Crosstalk attenuation
TEST CONDITIONS
TA
RS = 50 Ω
VO = 0,
VO = 0,
No load
AVD = 100
VCC± = ± 5 V
MIN
TYP
MAX
VCC± = ± 15 V
MIN
TYP
MAX
25°C
75
99
75
99
– 40°C
75
98
75
98
85°C
75
99
75
UNIT
dB
99
25°C
4.6
5.6
4.8
5.6
– 40°C
4.5
6.4
4.7
6.4
85°C
4.4
6.4
4.6
6.4
25°C
120
mA
120
dB
VCC ± = ± 15 V
MIN
TYP
MAX
UNIT
TL052I and TL052AI operating characteristics at specified free-air temperature
TL052I, TL052AI
PARAMETER
SR +
Sle rate at unity
Slew
nit gain‡
SR –
Negative
g
slew rate at
unity gain‡
tr
tf
TA†
TEST CONDITIONS
25°C
RL = 2 kΩ,,
See Figure 1
CL = 100 pF,,
Equivalent
q
input noise
voltage§
Peak-to-peak equivalent
VN(PP)
input noise current
RS = 20 Ω,
See Figure 3
8
25°C
55
56
– 40°C
52
53
85°C
64
65
25°C
55
57
– 40°C
51
53
85°C
64
65
25°C
24%
19%
– 40°C
24%
19%
85°C
24%
19%
71
71
f=
1 kHz
25°C
19
19
f=
10 Hz to
10 kHz
25°C
4
4
25°C
0.01
0.01
25°C
0.003%
0.003%
25°C
3
3
– 40°C
3.5
3.6
85°C
2.5
2.6
25°C
60°
63°
– 40°C
58°
61°
85°C
60°
THD
Total harmonic distortion¶
RS = 1 kΩ,
f = 1 kHz
RL = 2 kΩ,
Unity-gain bandwidth
VI = 10 mV,
V
CL = 25 pF
F,
RL = 2 kΩ,
kΩ
See Figure 4
mV
VI = 10 mV,
CL = 25 pF,
F,
kΩ
RL = 2 kΩ,
See Figure 4
V/µs
17.8
25°C
f = 1 kHz
φm
9
10 Hz
Equivalent input noise
current
Phase margin at unity
gain
20.7
f=
In
B1
15.4
Full range
VI(PP) = ± 10 mV,
RL = 2 kΩ,
CL = 100 pF,
See Figures 1 and 2
9
8
25°C
Overshoot factor
Vn
17.8
Full range
Rise time
Fall time
VCC ± = ± 5 V
MIN
TYP
MAX
ns
30
µV
pA/√Hz
MHz
63°
† Full range is – 40°C to 85°C.
‡ For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
§ This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
¶ For VCC ± = ± 5 V, VO(RMS) = 1 V; for VCC ± = ± 15 V, VO(RMS) = 6 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL052M and TL052AM electrical characteristics at specified free-air temperature
TL052M, TL052AM
PARAMETER
TA†
TEST CONDITIONS
αVIO
IIO
IIB
Temperature coefficient
of input offset voltage
TL052AM
9
TL052AM
25°C to
125°C
9
8
25°C
0.04
0.04
VIC = 0,
Input offset current
VO = 0,
See Figure 5
VIC = 0,
Input bias current
VO = 0,
See Figure 5
VIC = 0,
100
5
100
pA
1
20
2
20
nA
25°C
20
200
30
200
pA
125°C
10
50
20
50
nA
25°C
Full range
25°C
Full range
25°C
Full range
–1
to
4
–2.3
to
5.6
3
4.2
3.8
– 3.2
– 11
59
50
105
– 55°C
30
76
60
149
125°C
10
15
49
1012
Ω
12
pF
25°C
10
CMRR
Common-mode
Common
mode
rejection ratio
VO = 0,
No load
V
– 12
25
Input capacitance
Supply current
(two am
lifiers)
amplifiers)
– 11
– 2.3
ci
ICC
– 13.2
25°C
32
1012
RS = 50 Ω
V
12.7
– 12
25°C
VO = 0,
– 12
– 2.5
– 2.3
13.9
11.5
– 3.5
Input resistance
Supply-voltage
Supply
voltage rejection
ratio (∆VCC± /∆VIO)
11.5
2.5
– 2.5
V
13
ri
kSVR
13
3
2.5
– 12.3
to
15.6
– 11
to
11
Large-signal
Large
signal differential
amplification
voltage am
lification§
VIC = VICRmin,
VO = 0,
RS = 50 Ω
– 11
to
11
–1
to
4
AVD
RL = 2 kΩ
µV/mo
4
25°C
RL = 2 kΩ
µV/°C
25°C
Full range
RL = 10 kΩ
mV
125°C
Common-mode input
voltage range
RL = 10 kΩ
0.8
3.8
10
RL = 2 kΩ
VOM –
5.8
25°C to
125°C
VO = 0,
RS = 50 Ω
Maximum negative
peak
g
output voltage swing
0.4
UNIT
1.5
4.5
2.8
TL052M
Input offset voltage longterm drift‡
Maximum positive peak
output voltage swing
0.51
Full range
Full range
VOM +
0.65
3.5
6.5
25°C
25°C
VICR
0.73
Full range
Input offset voltage
0
VO = 0,
VIC = 0
0,
RS = 50 Ω
VCC ± = ± 15 V
MIN
TYP MAX
25°C
TL052M
VIO
VCC ± = ± 5 V
MIN TYP MAX
25°C
65
85
75
93
– 55°C
65
83
75
92
125°C
65
84
75
94
25°C
75
99
75
99
– 55°C
75
98
75
98
125°C
75
100
75
100
V/mV
dB
dB
25°C
4.6
5.6
4.8
5.6
– 55°C
4.4
6.4
4.5
6.4
125°C
4.2
6.4
4.4
6.4
mA
VO1/ VO2 Crosstalk attenuation
AVD = 100
25°C
120
120
dB
† Full range is – 55°C to 125°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ For VCC ± = ± 5 V, VO = ± 2.3 V; at VCC ± = ± 15 V, VO = ± 10 V.
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL052M and TL052AM operating characteristics at specified free-air temperature
TL052M, TL052AM
PARAMETER
SR +
Positive slew rate
at unity gain‡
SR –
Negative
g
slew rate
at unity gain‡
tr
Rise time
tf
Fall time
TA†
TEST CONDITIONS
25°C
RL = 2 kΩ,
CL = 100 pF,
pF
See Figure 1
15.4
Full range
VI(PP)
( ) = ± 10 mV,
RL = 2 kΩ,
kΩ
CL = 100 pF
F,
See Figures
g
1 and 2
9
17.8
25°C
55
56
– 55°C
51
52
125°C
68
68
25°C
55
57
– 55°C
51
52
125°C
68
69
25°C
24%
19%
– 55°C
25%
19%
125°C
25%
19%
25°C
71
71
1 kHz
25°C
19
19
f=
10 Hz
to
10 kHz
25°C
4
4
25°C
0.01
0.01
25°C
0.003%
0.003%
In
Equivalent input
noise current
f = 1 kHz
THD
Total harmonic
distortion¶
RS = 1 kΩ,
f = 1 kHz
RL = 2 kΩ,
B1
Unity-gain bandwidth
VI = 10 mV,
V
CL = 25 pF
F,
RL = 2 kΩ,
kΩ
See Figure 4
RL = 2 kΩ,
kΩ
See Figure 4
V/µs
8
10 Hz
Peak-to-peak
equivalent input noise
current
UNIT
20.7
f=
VN(PP)
VI = 10 mV,
V
CL = 25 pF
F,
9
f=
Equivalent
input noise
q
voltage§
RS = 20 Ω
Ω,
See Figure 3
VCC ± = ± 15 V
MIN
TYP
MAX
8
25°C
Vn
Phase margin
Ph
i att unity
it
gain
17.8
Full range
Overshoot factor
φm
VCC ± = ± 5 V
MIN
TYP
MAX
25°C
3
3
– 55°C
3.6
3.7
125°C
2.3
2.4
25°C
60°
63°
– 55°C
57°
61°
ns
nV/√Hz
µV
pA/√Hz
MHz
125°C
60°
63°
† Full range is – 55°C to 125°C.
‡ For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
§ This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
¶ For VCC ± = ± 5 V, VO(RMS) = 1 V; for VCC ± = ± 15 V, VO(RMS) = 6 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL052Y electrical characteristics, TA = 25°C
TL052Y
PARAMETER
VIO
Input offset voltage
Input offset voltage long-term
drift
TEST CONDITIONS
VO = 0
0,
RS = 50 Ω
VIC = 0,
VCC ± = ± 5 V
MIN
TYP
MAX
VCC ± = ± 15 V
MIN
TYP
MAX
UNIT
0.73
0.65
mV
0.04
0.04
µV/mo
IIO
Input offset current
VO = 0,
See Figure 5
VIC = 0,
4
5
pA
IIB
Input bias current
VO = 0,
See Figure 5
VIC = 0,
20
30
pA
VICR
Common-mode input voltage
range
–2.3
to
5.6
– 12.3
to
15.6
V
VOM +
Maximum positive peak
output voltage swing
RL = 10 kΩ
4.2
13.9
RL = 2 kΩ
3.8
12.7
VOM –
Maximum negative
g
peak output
voltage swing
RL = 10 kΩ
– 3.5
– 13.2
RL = 2 kΩ
– 3.2
– 12
AVD
Large-signal differential
voltage amplification†
RL = 2 kΩ
59
105
ri
Input resistance
1012
1012
Ω
ci
Input capacitance
10
12
pF
CMRR
Common-mode rejection ratio
VIC = VICRmin,
VO = 0,
RS = 50 Ω
85
93
dB
kSVR
Supply-voltage rejection ratio
(∆VCC± /∆VIO)
VO = 0,
RS = 50 Ω
99
99
dB
Supply current (two amplifiers)
VO = 0,
No load
4.6
4.8
mA
Crosstalk attenuation
AVD = 100
120
120
dB
ICC
VO1/ VO2
† For VCC ± = ± 5 V, VO = ± 2.3 V; at VCC ± = ± 15 V, VO = ± 10 V.
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V
V/mV
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL052Y operating characteristics, TA = 25°C
TL052Y
PARAMETER
SR +
SR –
tr
tf
Positive slew rate at
unity gain†
Negative slew rate at
unity gain†
Rise time
Fall time
Overshoot factor
Vn
Equivalent
q
input noise
voltage‡
Peak-to-peak equivalent input
VN(PP)
noise current
VCC± = ± 5 V
MIN
TYP
MAX
VCC± = ± 15 V
MIN
TYP
MAX
17.8
20.7
15.4
17.8
55
56
55
57
24%
19%
f = 10 Hz
71
71
f = 1 kHz
19
19
4
4
0.01
0.01
0.003%
0.003%
3
3
TEST CONDITIONS
RL = 2 kΩ,,
See Figure 1
CL = 100 pF,,
V/µs
VI(PP) = ± 10 mV,
RL = 2 kΩ,
CL = 100 pF,
See Figures 1 and 2
RS = 20 Ω,
See Figure 3
f = 10 Hz to 10 kHz
In
Equivalent input noise
current
f = 1 kHz
THD
Total harmonic distortion§
RS = 1 kΩ,
f = 1 kHz
RL = 2 kΩ,
B1
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
RL = 2 kΩ,
See Figure 4
UNIT
ns
nV/√Hz
V/√H
µV
pA/√Hz
MHz
VI = 10 mV,
RL = 2 kΩ,
60°
63°
CL = 25 pF,
See Figure 4
† This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
‡ For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
§ For VCC ± = ± 5 V, VO(RMS) = 1 V; for VCC ± = ± 15 V, VO(RMS) = 6 V.
φm
Phase margin at unity gain
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL054C and TL054AC electrical characteristics at specified free-air temperature
TL054C, TL054AC
PARAMETER
TEST CONDITIONS
TL054C
VIO
Input offset voltage
TL054AC
αVIO
Temperature coefficient
of input offset voltage
VO = 0
0,
VIC = 0,
RS = 50 Ω
IIB
VICR
VOM +
25°C
0.64
0.56
Full range
3.5
0.5
5.7
UNIT
4
6.2
1.5
mV
3.7
23
TL054AC
25°C to
70°C
24
23
0.04
0.04
µ V/ ° C
25°C
µV/mo
Input offset current
VO = 0,
VIC = 0,
See Figure 5
25°C
4
100
5
100
pA
70°C
0.02
1
0.025
1
nA
Input bias current
VO = 0,
VIC = 0,
See Figure 5
25°C
20
200
30
200
pA
70° C
0.15
4
0.2
4
nA
25°C
–1
to
4
Full range
–1
to
4
Common-mode input
voltage range
Maximum positive peak
output voltage swing
RL = 10 kΩ
Maximum negative
g
peak
output voltage swing
Large-signal
Large
signal differential
voltage am
lification§
amplification
25°C
3
Full range
3
25°C
Full range
RL = 10 kΩ
RL = 2 kΩ
Full range
– 2.5
25°C
– 2.3
Full range
– 2.3
VCC ± = ± 5 V to ± 15 V,
V
VO = 0
0,
RS = 50 Ω
Supply current
(four am
lifiers)
amplifiers)
VO = 0,
No load
– 12.3
to
15.6
V
– 11
to
11
4.2
13
13.9
13
3.8
11.5
V
12.7
11.5
– 3.5
– 12
– 13.2
– 12
– 3.2
– 11
V
– 12
– 11
25
72
50
133
0°C
30
88
60
173
V/mV
70°C
20
57
1012
30
85
1012
Ω
12
pF
25°C
Supply-voltage
Supply
voltage rejection
ratio (∆VCC ± /∆ VIO)
– 11
to
11
25°C
Input capacitance
VIC = VICRmin,
min
VO = 0
0,
RS = 50 Ω
– 2.3
to
5.6
2.5
– 2.5
ci
Common-mode
Common
mode
rejection ratio
2.5
25°C
25°C
ICC
0.57
Full range
Input resistance
kSVR
7.7
25°C
ri
CMRR
5.5
25
RL = 2 kΩ
AVD
VCC ± = ± 15 V
MIN
TYP
MAX
TL054C
RL = 2 kΩ
VOM –
VCC ± = ± 5 V
MIN
TYP
MAX
25°C to
70°C
Input offset voltage
long-term drift‡
IIO
TA†
10
25°C
65
84
75
92
0°C
65
84
75
92
70°C
65
84
75
93
25°C
75
99
75
99
0°C
75
99
75
99
70°C
75
99
75
99
dB
dB
25°C
8.1
11.2
8.4
11.2
0°C
8.2
12.8
8.5
12.8
70°C
7.9
11.2
8.2
11.2
mA
VO1 / VO2 Crosstalk attenuation
AVD = 100
25°C
120
120
dB
† Full range is 0°C to 70°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ For VCC ± = ± 5 V, VO = ± 2.3 V, at VCC ± = ± 15 V, VO = ±10 V.B
24
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL054C and TL054AC operating characteristics at specified free-air temperature
TL054C, TL054C
PARAMETER
SR +
SR –
tr
tf
TEST CONDITIONS
Positive slew rate
at unity gain
Negative
g
slew rate at
unity gain‡
RL = 2 kΩ,
CL = 100 pF,
See Figure 1 and Note 7
Rise time
Fall time
VI(PP) = ±10 mV,
RL = 2 kΩ
kΩ,
CL = 100 pF
F,
See Figures 1 and 2
Overshoot factor
25°C
15.4
10
17.8
0°C
15.7
8
17.9
70°C
14.4
8
17.5
25°C
13.9
10
15.9
0°C
14.3
8
16.1
70°C
13.3
8
15.5
25°C
55
56
0°C
54
55
70°C
63
63
25°C
55
57
56
0°C
54
70°C
62
64
25°C
24%
19%
24%
19%
24%
19%
f = 10 Hz
25°C
75
75
f = 1 kHz
25°C
21
21
f = 10 Hz to
10 kHz
25°C
4
4
25°C
0.01
0.01
25°C
0.003%
0.003%
25°C
2.7
2.7
0°C
3
3
70°C
2.4
2.4
25°C
61°
64°
0°C
60°
64°
70°C
61°
63°
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
Equivalent input
noise current
f = 1 kHz
THD
Total harmonic
distortion¶
RS = 1 kΩ,
f = 1 kHz
B1
Unity-gain bandwidth
VI = 10 mV,
mV
CL = 25 pF
F,
RL = 2 kΩ,
kΩ
See Figure 4
VI = 10 mV
mV,
CL = 25 pF,
F,
RL = 2 kΩ
kΩ,
See Figure 4
Phase margin at
unity gain
VCC ± = ± 15 V
MIN
TYP
MAX
0°C
Equivalent
q
input noise
voltage§
φm
VCC ± = ± 5 V
MIN
TYP
MAX
70°C
Vn
RS = 20 Ω,
See Figure 3
TA†
RL = 2 kΩ,
UNIT
V/ µs
ns
45
nV/√Hz
µV
pA /√Hz
MHz
† Full range is 0°C to 70°C.
‡ For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
§ This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
¶ For VCC ± = ± 5 V, Vo(rms) = 1 V; for VCC ± = ± 15 V, Vo(rms) = 6 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL054I and TL054AI electrical characteristics at specified free-air temperature
TL054I, TL054AI
PARAMETER
TEST CONDITIONS
TL054I
VIO
Input
In
ut offset voltage
TL054AI
αVIO
Temperature coefficient of
input offset voltage
VO = 0
0,
VIC = 0,
RS = 50 Ω
IIB
VICR
VOM +
25°C
0.64
0.56
Full range
3.5
0.5
6.8
UNIT
4
7.3
1.5
mV
4.8
24
TL054AI
25°C to
85°C
25
23
0.04
0.04
µV/ °C
25°C
µV/mo
Input offset current
VO = 0,
VIC = 0,
See Figure 5
25°C
4
100
5
100
pA
85°C
0.06
10
0.07
10
nA
Input bias current
VO = 0,
VIC = 0,
See Figure 5
25°C
20
200
30
200
pA
85°C
0.6
20
0.7
20
nA
25°C
–1
to
4
Full range
–1
to
4
Common-mode input
voltage range
Maximum positive peak
output voltage swing
RL = 10 kΩ
Maximum negative
g
peak
output voltage swing
Large-signal
Large
signal differential
voltage am
lification§
amplification
25°C
3
Full range
3
25°C
Full range
RL = 10 kΩ
RL = 2 kΩ
2.5
– 2.3
to
5.6
– 11
to
11
– 2.5
Full range
– 2.5
25°C
– 2.3
Full range
– 2.3
– 12.3
to
15.6
V
– 11
to
11
4.2
13
13.9
13
3.8
11.5
2.5
25°C
V
12.7
11.5
– 3.5
– 12
– 13.2
– 12
– 3.2
– 11
V
– 12
– 11
25°C
25
72
50
133
– 40°C
30
101
60
212
V/mV
85°C
20
50
1012
30
70
12
10
Ω
12
pF
25°C
ci
Input capacitance
25°C
ICC
0.57
Full range
Input resistance
kSVR
8.8
25°C
ri
CMRR
5.5
25
RL = 2 kΩ
AVD
VCC ± = ± 15 V
MIN
TYP
MAX
TL054I
RL = 2 kΩ
VOM –
VCC ± = ± 5 V
MIN
TYP
MAX
25°C to
85°C
Input offset voltage
long-term drift‡
IIO
TA†
10
25°C
65
84
75
92
Common mode
Common-mode
rejection ratio
min
VIC = VICRmin,
VO = 0
0,
RS = 50 Ω
– 40°C
65
83
75
92
85°C
65
84
75
93
VCC ± = ± 5 V to ± 15 V
V,
VO = 0
0,
RS = 50 Ω
25°C
75
99
75
99
Supply-voltage
Supply
voltage rejection
ratio (∆VCC± /∆VIO)
– 40°C
75
98
75
99
85°C
75
99
75
99
25°C
8.1
11.2
8.4
11.2
Supply current
(four am
lifiers)
amplifiers)
VO = 0,
– 40°C
7.9
12.8
8.2
12.8
85°C
7.6
11.2
7.9
11.2
No load
dB
dB
mA
VO1 / VO2 Crosstalk attenuation
AVD = 100
25°C
120
120
dB
† Full range is – 40°C to 85°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ For VCC ± = ± 5 V, VO = ± 2.3 V, at VCC ± = ± 15 V, VO = ±10 V.
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL054I and TL054AI operating characteristics at specified free-air temperature
TL054I, TL054AI
PARAMETER
SR +
Positive slew rate
at unity gain
SR –
Negative
g
slew rate at
unity gain‡
tr
tf
TEST CONDITIONS
RL = 2 kΩ,
See Figure 1
VCC ± = ± 5 V
MIN
TYP
MAX
VCC ± = ± 15 V
MIN
TYP
MAX
25°C
15.4
10
17.8
– 40°C
16.4
8
18
85°C
14
8
17.3
25°C
13.9
10
15.9
– 40°C
14.7
8
16.1
85°C
13
8
15.3
25°C
55
56
– 40°C
52
53
85°C
64
65
25°C
55
57
– 40°C
51
53
85°C
64
65
25°C
24%
19%
– 40°C
24%
19%
85°C
24%
19%
f = 10 Hz
25°C
75
75
f = 1 kHz
25°C
21
21
f = 10 Hz to
10 kHz
25°C
4
4
25°C
0.01
0.01
25°C
0.003%
0.003%
CL = 100 pF,
Rise time
Fall time
TA†
VI(PP) = ±10 mV, RL = 2 kΩ,
CL = 100 pF,
See Figures 1 and 2
Overshoot factor
Vn
Equivalent
q
input noise
voltage§
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
Equivalent input
noise current
f = 1 kHz
THD
Total harmonic distortion¶
RS = 1 kΩ,
f = 1 kHz
25°C
2.7
2.7
B1
Unity-gain bandwidth
mV
VI = 10 mV,
CL = 25 pF
F,
kΩ
RL = 2 kΩ,
See Figure 4
– 40°C
3.3
3.3
85°C
2.3
2.4
VI = 10 mV
mV,
CL = 25 pF,
F,
RL = 2 kΩ
kΩ,
See Figure 4
25°C
61°
64°
– 40°C
59°
62°
85°C
61°
φm
Phase margin at
unity gain
RS = 20 Ω,
See Figure 3
RL = 2 kΩ,
UNIT
V/ µs
ns
45
nV/√Hz
µV
pA /√Hz
MHz
64°
† Full range is – 40°C to 85°C.
‡ For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
§ This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
¶ For VCC ± = ± 5 V, Vo(rms) = 1 V; for VCC ± = ± 15 V, Vo(rms) = 6 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL054M and TL054AM electrical characteristics at specified free-air temperature
TL054M, TL054AM
PARAMETER
TEST CONDITIONS
TL054M
VIO
Input offset voltage
TL054AM
αVIO
Temperature coefficient of
input offset voltage
VO = 0
0,
VIC = 0,
RS = 50 Ω
IIB
VICR
VOM +
25°C
0.64
0.56
25°C
Full range
0.5
8.5
25°C to
85°C
21
20
25°C
0.04
0.04
25°C
4
Input bias current
µV/°C
5
100
pA
1
20
2
20
nA
20
200
30
200
pA
125°C
10
50
20
50
nA
25°C
–1
to
4
Full range
–1
to
4
25°C
3
Full range
3
Full range
2.5
– 2.3
to
5.6
– 11
to
11
– 2.5
Full range
– 2.5
25°C
– 2.3
Full range
– 2.3
– 12.3
to
15.6
V
– 11
to
11
4.2
13
13.9
13
3.8
11.5
2.5
25°C
RL = 2 kΩ
100
µV/mo
25°C
25°C
RL = 10 kΩ
V
12.7
11.5
– 3.5
– 12
– 13.2
– 12
– 3.2
– 11
V
– 12
– 11
25°C
25
72
50
133
– 55°C
30
99
60
209
125°C
10
15
35
1012
Ω
12
pF
V/mV
ri
Input resistance
25°C
35
1012
ci
Input capacitance
25°C
10
65
84
75
92
Common
mode
Common-mode
rejection ratio
VIC = VICRmin,,
VO = 0,
RS = 50 Ω
25°C
CMRR
– 55°C
65
83
75
92
125°C
65
84
75
93
VCC ± = ± 5 V to ± 15 V,,
VO = 0,
RS = 50 Ω
25°C
75
99
75
99
Supply-voltage
Supply
voltage rejection
ratio (∆VCC± /∆VIO)
– 40°C
75
98
75
98
85°C
75
100
75
100
25°C
8.1
11.2
8.4
11.2
Supply current
(four am
lifiers)
amplifiers)
VO = 0,
– 55°C
7.8
12.8
8.1
12.8
125°C
7.1
11.2
7.5
11.2
kSVR
ICC
No load
mV
125°C
Common-mode input
voltage range
RL = 10 kΩ
1.5
6.5
TL054AM
VO = 0,
VIC = 0,
See Figure 5
Large-signal
Large
signal differential
voltage am
lification§
amplification
3.5
20
VO = 0,
VIC = 0,
See Figure 5
Maximum negative
g
peak
output voltage swing
0.57
UNIT
4
9
21
Input offset current
Maximum positive peak
output voltage swing
5.5
10.5
TL054M
RL = 2 kΩ
AVD
VCC ± = ± 15 V
MIN
TYP
MAX
25°C to
85°C
RL = 2 kΩ
VOM –
VCC ± = ± 5 V
MIN
TYP
MAX
Full range
Input offset voltage
long-term drift‡
IIO
TA†
dB
dB
mA
VO1 / VO2 Crosstalk attenuation
AVD = 100
25°C
120
120
dB
† Full range is – 55°C to 125°C.
‡ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
§ For VCC ± = ± 5 V, VO = ± 2.3 V, at VCC ± = ± 15 V, VO = ±10 V.
28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL054M and TL054AM operating characteristics at specified free-air temperature
TL054M, TL054AM
PARAMETER
SR +
SR –
tr
tf
TEST CONDITIONS
RL = 2 kΩ,
See Figure 1
VCC ± = ± 15 V
MIN
TYP
MAX
25°C
15.4
16.7
125°C
12.9
25°C
13.9
– 55°C
14.7
16.3
125°C
12.2
14.5
25°C
55
56
– 55°C
51
52
125°C
68
68
25°C
55
57
– 55°C
51
52
125°C
68
69
25°C
24%
19%
– 55°C
25%
19%
125°C
25%
19%
f = 10 Hz
25°C
75
75
f = 1 kHz
25°C
21
21
f = 10 Hz to
10 kHz
25°C
4
4
25°C
0.01
0.01
25°C
0.003%
0.003%
CL = 100 pF,
Rise time
Fall time
VCC ± = ± 5 V
MIN
TYP
MAX
– 55°C
Positive slew rate
at unity gain
N
ti slew
l
t att
Negative
rate
unity gain‡
TA†
VI(PP) = ±10 mV,
RL = 2 kΩ
kΩ,
CL = 100 pF
F,
See Figures 1 and 2
Overshoot factor
10
17.8
18.3
16.7
10
Equivalent
q
input noise
voltage§
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
Equivalent input
noise current
f = 1 kHz
THD
Total harmonic distortion¶
RS = 1 kΩ,
f = 1 kHz
RL = 2 kΩ,
25°C
2.7
2.7
B1
Unity-gain bandwidth
mV
VI = 10 mV,
CL = 25 pF
F,
kΩ
RL = 2 kΩ,
See Figure 4
– 55°C
3.4
3.4
125°C
2.1
2.1
VI = 10 mV
mV,
CL = 25 pF,
F,
RL = 2 kΩ
kΩ,
See Figure 4
25°C
61°
64°
– 55°C
58°
62°
125°C
60°
φm
Phase margin at
unity gain
V/ µs
15.9
Vn
RS = 20 Ω,
See Figure 3
UNIT
ns
45
nV/√Hz
µV
pA /√Hz
MHz
64°
† Full range is – 55°C to 125°C.
‡ For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
§ This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
¶ For VCC ± = ± 5 V, Vorms = 1 V; for VCC ± = ± 15 V, Vorms = 6 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL054Y electrical characteristics, TA = 25°C
TL054Y
PARAMETER
TEST CONDITIONS
VCC ± = ± 5 V
MIN
TYP
MAX
VCC ± = ± 15 V
MIN
TYP
MAX
UNIT
0.64
0.56
mV
4
5
pA
20
30
pA
– 2.3
to
5.6
– 12.3
to
15.6
V
VO = 0,
VIC = 0,
RS = 50 Ω
VO = 0,
VIC = 0,
See Figure 5
VIO
Input offset voltage
IIO
Input offset current
IIB
Input bias current
VICR
Common-mode input voltage range
VOM +
Maximum positive peak
output voltage swing
RL = 10 kΩ
4.2
13.9
RL = 2 kΩ
3.8
12.7
VOM –
Maximum negative
peak
g
output voltage swing
RL = 10 kΩ
– 3.5
– 13.2
RL = 2 kΩ
– 3.2
– 12
AVD
Large-signal differential
voltage amplification†
RL = 2 kΩ,
72
133
ri
Input resistance
1012
1012
Ω
ci
Input capacitance
10
12
pF
CMRR
Common-mode
rejection ratio
84
92
dB
kSVR
Supply-voltage rejection
ratio (∆VCC ± /∆ VIO)
VIC = VICRmin,
VO = 0,
RS = 50 Ω
VCC ± = ± 5 V to ± 15 V,
VO = 0,
RS = 50 Ω
99
99
dB
ICC
Supply current
(four amplifiers)
VO = 0,
8.1
8.4
mA
120
120
dB
VO = 0,
VIC = 0,
See Figure 5
No load
VO1 / VO2 Crosstalk attenuation
AVD = 100
† For VCC ± = ± 5 V, VO = ± 2.3 V, at VCC ± = ± 15 V, VO = ±10 V.
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V
V
V/mV
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TL054Y operating characteristics, TA = 25°C
TL054Y
PARAMETER
SR +
Positive slew rate at unity
gain†
SR –
Negative slew rate at unity
gain
tr
Rise time
tf
Fall time
Overshoot factor
TEST CONDITIONS
RL = 2 kΩ,
See Figure 1
VCC ± = ± 5 V
MIN
TYP
MAX
VCC ± = ± 15 V
MIN
TYP
MAX
15.4
17.8
13.9
15.9
55
56
55
57
CL = 100 pF,
V/ µs
VI(PP)
( ) = ±10 mV,
RL = 2 kΩ,
k
CL = 100 pF
F,
See Figures 1 and 2
24%
19%
f = 10 Hz
75
75
f = 1 kHz
21
21
4
4
0.01
0.01
0.003%
0.003%
Vn
Equivalent
q
input noise
voltage‡
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
Equivalent input
noise current
f = 1 kHz
THD
Total harmonic distortion§
RS = 1 kΩ,
f = 1 kHz
RL = 2 kΩ,
B1
Unity-gain bandwidth
VI = 10 mV,
CL = 25 pF,
RL = 2 kΩ,
See Figure 4
2.7
2.7
φm
Phase margin at
unity gain
VI = 10 mV,
CL = 25 pF,
RL = 2 kΩ,
See Figure 4
61°
64°
RS = 20 Ω,
See Figure 3
UNIT
f = 10 Hz to 10 kHz
ns
nV/√Hz
µV
pA /√Hz
MHz
† For VCC ± = ± 5 V, VI(PP) = ± 1 V; for VCC ± = ± 15 V, VI(PP) = ± 5 V.
‡ This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing
or nontesting of other parameters.
§ For VCC ± = ± 5 V, Vo(rms) = 1 V; for VCC ± = ± 15 V, Vo(rms) = 6 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
PARAMETER MEASUREMENT INFORMATION
VCC +
Overshoot
–
+
VI
VO
VCC –
CL
(see Note A)
90%
RL
10%
tr
NOTE A: CL includes fixture capacitance.
Figure 1 . Slew Rate, Rise/Fall Time,
and Overshoot Test Circuit
Figure 2 . Rise Time and Overshoot
Waveform
10 k Ω
2 kΩ
VCC +
100 Ω
–
–
+
RS
VI
VO
VO
+
VCC+
VCC –
VCC –
RS
CL
(see Note A)
RL
NOTE A: CL includes fixture capacitance.
Figure 3 . Noise-Voltage Test Circuit
Figure 4 . Unity-Gain Bandwidth and
Phase-Margin Test Circuit
typical values
Ground Shield
VCC +
+
–
Typical values as presented in this data sheet
represent the median (50% point) of device
parametric performance.
pA
pA
VCC –
input bias and offset current
At the picoamp-bias-current level typical of the
TL05x and TL05xA, accurate measurement of the
Figure 5. Input-Bias and Offset-Current Test Circuit
bias current becomes difficult. Not only does this
measurement require a picoammeter, but test
socket leakages can easily exceed the actualdevice bias currents. To accurately measure these small currents,
Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias
voltages applied but with no device in the socket. The device is then inserted in the socket, and a second test
that measures both the socket leakage and the device input bias current is performed. The two measurements
are then subtracted algebraically to determine the bias current of the device.
noise
Because of the increasing emphasis on low noise levels in many of today’s applications, the input noise voltage
density is sample tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet
specific application requirements. Please contact the factory for details.
32
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
αVIO
Input offset voltage
Distribution
6 – 11
Temperature coefficient of input offset voltage
Distribution
12, 13, 14
IIB
Input bias current
vs Common-mode input voltage
vs Free-air temperature
15
16
IIO
Input offset current
vs Free-air temperature
16
VIC
Common-mode input voltage range limits
vs Supply voltage
vs Free-air temperature
17
18
VO
Output voltage
vs Differential input voltage
19, 20
VOM
Maximum peak output voltage
vs Supply voltage
vs Output current
vs Free-air temperature
21
25, 26
27, 28
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
22, 23, 24
AVD
Large-signal differential voltage amplification
vs Load resistance
vs Frequency
vs Free-air temperature
29
30
31, 32, 33
CMRR
Common-mode rejection ratio
vs Frequency
vs Free-air temperature
34, 35
36
zo
Output impedance
vs Frequency
37
kSVR
Supply-voltage rejection ratio
vs Free-air temperature
38
IOS
Short-circuit output current
vs Supply voltage
vs Time
vs Free-air temperature
39
40
41
ICC
Supply current
vs Supply voltage
vs Free-air temperature
42, 43, 44
45, 46, 47
SR
Slew rate
vs Load resistance
vs Free-air temperature
48 – 53
54 –59
Overshoot factor
vs Load capacitance
Equivalent input noise voltage
vs Frequency
Total harmonic distortion
vs Frequency
B1
Unity-gain bandwidth
vs Supply voltage
vs Free-air temperature
64, 65, 66
67, 68, 69
φm
Phase margin
vs Supply voltage
vs Load capacitance
vs Free-air temperature
70, 71, 72
73, 74, 75
76, 77, 78
Phase shift
vs Frequency
30
Voltage-follower small-signal pulse response
vs Time
79
Voltage-follower large-signal pulse response
vs Time
80
Vn
THD
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
60
61, 62
63
33
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TL051A
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TL051
INPUT OFFSET VOLTAGE
12
20
433 Units Tested From 1 Wafer Lot
VCC ± = ± 15 V
TA = 25°C
P Package
16
Percentage of Units – %
Percentage of Units – %
16
8
4
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
393 Units Tested From 1 Wafer Lot
VCC ± = ± 15 V
TA = 25°C
P Package
12
8
4
0
– 1.5 – 1.1 – 0.9 – 0.6 – 0.3
0 0.3
0.6 0.9 1.1
0
– 900
1.5
– 600
300
600
900
Figure 7
Figure 6
DISTRIBUTION OF TL052
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TL052A
INPUT OFFSET VOLTAGE
20
476 Amplifiers Tested From 1 Wafer Lot
VCC ± = ± 15 V
TA = 25°C
P Package
9
6
Percentage of Amplifiers – %
15
Percentage of Amplifiers – %
0
VIO – Input Offset Voltage – µV
VIO – Input Offset Voltage – mV
12
– 300
15
403 Amplifiers Tested From 1 Wafer Lot
VCC ± = ± 15 V
TA = 25°C
P Package
10
5
3
0
–1.5 –1.2 – 0.9 – 0.6 – 0.3
0
0.3
0.6 0.9 1.2 1.5
0
– 900
– 600
0
Figure 8
Figure 9
POST OFFICE BOX 655303
300
VIO – Input Offset Voltage – µV
VIO – Input Offset Voltage – mV
34
– 300
• DALLAS, TEXAS 75265
600
900
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TL054A
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TL054
INPUT OFFSET VOLTAGE
30
15
Percentage of Amplifiers – %
25
Percentage of Amplifiers – %
1140 Amplifiers Tested From 3 Wafer Lots
VCC ± = ± 15 V
TA = 25°C
N Package
20
15
10
5
0
–4
–3
–2
–1
0
1
2
3
1048 Amplifiers Tested From 3 Wafer Lots
VCC ± = ± 15 V
TA = 25°C
N Package
12
9
6
3
0
– 1.8
4
– 1.2
VIO – Input Offset Voltage – mV
20
Percentage of Amplifiers – %
Percentage of Units – %
ÎÎÎÎÎÎÎÎÎÎ
12
8
4
0
1.2
1.8
DISTRIBUTION OF TL052
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
120 Units Tested From 2 Wafer Lots
VCC ± = ± 15 V
TA = 25°C to 125°C
P Package
0
–25 –20 –15 –10 – 5
0.6
Figure 11
DISTRIBUTION OF TL051
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
16
0
VIO – Input Offset Voltage – mV
Figure 10
20
– 0.6
5
10
15
20
25
αVIO – Temperature Coefficient – µ V/ °C
15
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
172 Amplifiers Tested From 2 Wafer Lots
VCC ± = ± 15 V
TA = 25°C to 125°C
P Package
Outlier: One Unit at – 34.6 µV/°C
10
5
0
– 30
– 20
– 10
0
10
20
αVIO – Temperature Coefficient – µV/°C
Figure 12
30
Figure 13
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
DISTRIBUTION OF TL054
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
50
Percentage of Amplifiers – %
40
10
VCC ± = ± 15 V
TA = 25°C
IB – Input Bias Current – nA
324 Amplifiers Tested From 3 Wafer Lots
VCC ± = ± 15 V
TA = 25°C to 125°C
N Package
30
20
I
10
0
–60
–40
–20
0
20
40
5
0
–5
–10
–15
60
αVIO – Temperature Coefficient – µ V/ ° C
–10
Figure 14
0
5
10
15
Figure 15
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT†
vs
FREE-AIR TEMPERATURE
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
SUPPLY VOLTAGE
16
100
VCC ± = ± 15 V
VO = 0
VIC = 0
TA = 25°C
VIC – Common-Mode Input Voltage – V
I
IB and IO – Input Bias and Offset Currents – nA
–5
VIC – Common-Mode Input Voltage – V
10
IIB
1
IIO
0.1
0.01
12
ÎÎÎÎÎ
ÎÎÎÎÎ
8
Positive Limit
4
0
Negative Limit
–4
–8
– 12
I
0.001
– 16
25
45
65
85
105
TA – Free-Air Temperature – ° C
125
0
2
4
6
8
10
12
| VCC ± | – Supply Voltage – V
14
Figure 17
Figure 16
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
36
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
16
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS†
vs
FREE-AIR TEMPERATURE
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
5
20
4
15
Positive Limit
3
10
VO – Output Voltage – V
VIC – Common-Mode Input Voltage – V
VCC ± = ± 15 V
5
0
ÎÎÎÎÎ
ÎÎÎÎÎ
–5
Negative Limit
– 10
– 15
– 20
– 75
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
VCC ± = ± 5 V
TA = 25°C
2
1
0
–1
–2
–3
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
RL = 600 Ω
RL = 1 kΩ
125
–5
– 200
– 100
16
VOM +
TA = 25°C
5
ÁÁÁÁÁ
ÎÎÎÎ
ÁÁÁÁÁ
ÎÎÎÎ
ÁÁÁÁÁ
ÎÎÎÎ
ÁÁÁÁÁ
0
RL = 600 Ω
RL = 1 kΩ
RL = 2 kΩ
RL = 10 kΩ
–5
– 10
0
200
400
VOM – Maximum Peak Output Voltage – V
VO – Output Voltage – V
200
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
VCC ± = ± 15 V
TA = 25°C
– 200
100
Figure 19
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
– 15
– 400
0
VID – Differential Input Voltage – µV
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
10
RL = 2 kΩ
RL = 10 kΩ
–4
Figure 18
15
ÎÎÎÎ
ÎÎÎÎ
12
RL = 10 kΩ
8
RL = 2 kΩ
4
0
–4
RL = 2 kΩ
–8
RL = 10 kΩ
– 12
VOM –
– 16
0
2
VID – Differential Input Voltage – µV
Figure 20
4
6
8
10
12
| VCC ± | – Supply Voltage – V
14
16
Figure 21
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
37
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
30
RL = 2 kΩ
VCC ± = ± 15 V
25
20
15
TA = 125°C
10
TA = – 55°C
VCC ± = ± 5 V
5
0
10 k
100 k
1M
f – Frequency – Hz
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE†
vs
FREQUENCY
10 M
30
ÁÁÁÁÁ
ÁÁÁÁÁ
25
15
ÁÁÁÁÁ
ÁÁÁÁÁ
10
VCC ± = ± 5 V
5
0
10 k
100 k
15
ÁÁÁÁÁ
VCC ± = ± 5 V
5
0
10 k
100 k
1M
10 M
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
5
|VOM| – Maximum Peak Output Voltage – V
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ± 15 V
10
10 M
Figure 23
RL = 10 kΩ
TA = 25°C
20
1M
f – Frequency – Hz
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
25
RL = 2 kΩ
TA = 25°C
20
Figure 22
30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
VCC ± = ± 15 V
VCC ± = ± 5 V
RL = 10 kΩ
TA = 25°C
4
3
VOM +
2
VOM –
1
0
0
2
f – Frequency – Hz
4
6
8
10
12
14 16
18
| IO | – Output Current – mA
Figure 24
Figure 25
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
38
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
20
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
MAXIMUM PEAK OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
5
14
12
VOM +
10
8
VOM –
6
4
2
5
10
15 20 25 30
35 40
| IO | – Output Current – mA
4
RL = 2 kΩ
3
2
1
VCC ± = ± 5 V
0
ÁÁÁ
ÁÁÁ
–1
–2
VOM –
–3
50 50
RL = 10 kΩ
– 50
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
Figure 26
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
LOAD RESISTANCE
ÁÁÁÁ
ÁÁÁÁ
VOM +
8
250
RL = 10 kΩ
A VD – Differential Voltage Amplification – V/mV
V OM – Maximum Peak Output Voltage – V
12
RL = 2 kΩ
4
VCC ± = ± 15 V
0
–4
–8
– 12
ÁÁÁ
ÁÁÁ
– 16
– 75
VOM –
RL = 2 kΩ
RL = 10 kΩ
– 50
125
Figure 27
MAXIMUM PEAK OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
16
RL = 2 kΩ
–4
–5
– 75
0
0
RL = 10 kΩ
VOM +
VCC ± = ± 15 V
RL = 10 kΩ
TA = 25°C
V OM – Maximum Peak Output Voltage – V
|VOM| – Maximum Peak Output Voltage – V
16
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
125
VO = ± 1 V
TA = 25°C
200
VCC ± = ± 15 V
150
VCC ± = ± 5 V
100
50
0
0.4
1
4
10
RL – Load Resistance – kΩ
40
100
Figure 29
Figure 28
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
VCC ± = ± 15 V
RL = 2 kΩ
CL = 25 pF
TA = 25°C
105
104
0°
30°
AVD
103
φ m – Phase Shift
A VD – Differential Voltage Amplification – V/mV
106
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
60°
90°
102
Phase Shift
101
120°
1
150°
0.1
10
100
1k
10 k
100 k
f – Frequency – Hz
1M
180°
10 M
Figure 30
TL051 AND TL052
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
TL054
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
1000
VCC ± = ± 5 V
VO = ± 2.3 V
A VD – Differential Voltage Amplification – V/mV
A VD – Differential Voltage Amplification – V/mV
1000
400
RL = 10 kΩ
100
RL = 2 kΩ
40
10
– 75
– 50
– 25
0
25
50
75
100
125
TA – Free-Air Temperature – °C
VCC ± = ± 5 V
VO = ± 2.3 V
400
RL = 10 kΩ
100
RL = 2 kΩ
40
10
– 75
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
Figure 32
Figure 31
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
40
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
ÁÁÁÁÁ
ÁÁÁÁÁ
100
VCC ± = ± 15 V
VO = 10 V
RL = 10 kΩ
400
100
CMRR – Common-Mode Rejection Ratio – dB
A VD – Differential Voltage Amplification – V/mV
1000
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
RL = 2 kΩ
40
10
– 75
VCC ± = ± 5 V
TA = 25°C
90
80
70
60
50
40
30
20
10
0
– 50
– 25
0
25
50
75
100
125
10
100
1k
TA – Free-Air Temperature – °C
Figure 33
100 k
1M
10 M
Figure 34
COMMON-MODE REJECTION RATIO†
vs
FREE-AIR TEMPERATURE
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
100
VCC ± = ± 15 V
TA = 25°C
90
80
70
60
50
40
30
20
10
0
10
100
1k
10 k
100 k
1M
10 M
CMRR – Common-Mode Rejection Ratio – dB
100
CMRR – Common-Mode Rejection Ratio – dB
10 k
f – Frequency – Hz
VIC = VICRMin
95
VCC ± = ± 15 V
90
85
VCC ± = ± 5 V
80
75
70
– 75
– 50
f – Frequency – Hz
– 25
0
25
50
75
100
125
TA – Free-Air Temperature –°C
Figure 35
Figure 36
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
41
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
SUPPLY-VOLTAGE REJECTION RATIO†
vs
FREE-AIR TEMPERATURE
OUTPUT IMPEDANCE
vs
FREQUENCY
110
AVD = 100
40
z o – Output Impedance – Ω
kkSVR
SVR – Supply-Voltage Rejection Ratio – dB
100
10
AVD = 10
4
1
AVD = 1
0.4
VCC ± = ± 15 V
TA = 25°C
ro (open loop) ≈ 250 Ω
0.1
1k
10 k
100 k
f – Frequency – Hz
1M
VCC ± = ± 5 V to ± 15 V
106
102
98
ÁÁ
ÁÁ
ÁÁ
94
90
– 75
– 50
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
Figure 37
Figure 38
SHORT-CIRCUIT OUTPUT CURRENT
vs
TIME
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
60
VO = 0
TA = 25°C
40
IIOS
OS – Short-Circuit Output Current – mA
IIOS
OS – Short-Circuit Output Current – mA
60
ÁÁ
ÁÁ
VID = 100 mV
20
0
– 20
VID = – 100 mV
– 40
– 60
0
2
4
6
8
10
12
| VCC ± | – Supply Voltage – V
14
16
VID = 100 mV
40
20
– 20
– 40
ÁÁ
ÁÁ
ÁÁ
VID = – 100 mV
– 60
VCC ± = ± 15 V
TA = 25°C
0
0
Figure 39
10
20
30
t – Time – s
40
50
Figure 40
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
42
125
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
60
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TL051
SUPPLY CURRENT†
vs
SUPPLY VOLTAGE
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
40
3
VCC ± = ± 15 V
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
2.5
VID = 100 m V
20
IICC
CC – Supply Current – mA
IIOS
OS – Short-Circuit Output Current – mA
60
VCC ± = ± 5 V
0
– 20
ÁÁ
ÁÁ
VCC ± = ± 5 V
ÎÎÎÎÎÎ
ÁÁ
ÁÁ
ÁÁ
VID = – 100 m V
VCC ± = ± 15 V
– 40
VO = 0
– 60
– 75
TA = 25°C
TA = – 55°C
2
TA = 125°C
1.5
1
0.5
VO = 0
No Load
0
– 50
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
0
125
2
4
8
10
12
14
16
Figure 42
Figure 41
TL052
SUPPLY CURRENT†
vs
SUPPLY VOLTAGE
TL054
SUPPLY CURRENT†
vs
SUPPLY VOLTAGE
5
10
4
8
TA = 25°C
TA = – 55°C
IICC
CC – Supply Current – mA
IICC
CC – Supply Current – mA
6
| VCC ± | – Supply Voltage – V
TA = 125°C
3
ÁÁ
ÁÁ
ÁÁ
2
ÁÁ
ÁÁ
1
VO = 0
No Load
0
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
TA = 25°C
TA = – 55°C
TA = 125°C
6
4
2
VO = 0
No Load
0
0
2
4
6
8
10
12
14
16
0
2
4
6
8
10
12
14
16
| VCC ± | – Supply Voltage – V
| VCC ± | – Supply Voltage – V
Figure 44
Figure 43
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
43
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TL052
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
TL051
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
5
3
ÁÁ
ÁÁ
4
IICC
CC – Supply Current – mA
IICC
CC – Supply Current – mA
2.5
VCC ± = ± 15 V
2
VCC ± = ± 5 V
1.5
1
VCC ± = ± 15 V
VCC ± = ± 5 V
3
ÁÁ
ÁÁ
ÁÁ
2
1
0.5
VO = 0
No Load
0
– 75
0
– 75
– 50
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
VO = 0
No Load
125
– 50
– 25
25
20
SR – Slew Rate – V/ µs
IICC
CC – Supply Current – mA
SR +
VCC ± = ± 5 V
4
SR –
15
10
VCC ± = ± 5 V
CL = 100 pF
TA = 25°C
See Figure 1
5
2
VO = 0
No Load
0
– 75
– 50
125
25
VCC ± = ± 15 V
ÁÁ
ÁÁ
ÁÁ
100
TL051
SLEW RATE
vs
LOAD RESISTANCE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
6
75
Figure 46
TL054
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
8
50
TA – Free-Air Temperature – °C
Figure 45
10
0
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
125
0
0.4
1
4
10
40
RL – Load Resistance – kΩ
Figure 48
Figure 47
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
44
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
100
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TL052
SLEW RATE
vs
LOAD RESISTANCE
TL054
SLEW RATE
vs
LOAD RESISTANCE
25
25
ÎÎÎ
SR +
SR – Slew Rate – V/ µs
SR – Slew Rate – V/µs
SR +
20
20
SR –
15
10
15
10
VCC ± = ± 5 V
CL = 100 pF
TA = 25°C
See Figure 1
5
0
0.4
1
4
40
10
SR –
VCC ± = ± 5 V
CL = 100 pF
TA = 25°C
See Figure 1
5
0
0.4
100
1
4
100
TL052
SLEW RATE
vs
LOAD RESISTANCE
TL051
SLEW RATE
vs
LOAD RESISTANCE
25
30
SR +
SR +
25
20
SR –
SR –
20
15
10
VCC ± = ± 15 V
CL = 100 pF
TA = 25°C
See Figure 1
5
1
4
10
40
SR – Slew Rate – V/µs
SR – Slew Rate – V/ µs
40
Figure 50
Figure 49
0
0.4
10
RL – Load Resistance – kΩ
RL – Load Resistance – kΩ
100
15
10
VCC ± = ± 15 V
CL = 100 pF
TA = 25°C
See Figure 1
5
0
0.4
1
RL – Load Resistance – kΩ
Figure 51
4
10
RL – Load Resistance – kΩ
40
100
Figure 52
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
45
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TL054
SLEW RATE
vs
LOAD RESISTANCE
TL051
SLEW RATE†
vs
FREE-AIR TEMPERATURE
25
30
SR +
25
SR –
15
10
VCC ± = ± 5 V
CL = 100 pF
TA = 25°C
See Figure 1
5
0
0.4
1
4
10
40
SR – Slew Rate – V/ µs
SR – Slew Rate – V/ µs
20
SR +
20
SR –
15
10
VCC ± = ± 5 V
RL = 2 kΩ
5
0
– 75
100
– 50
– 25
Figure 53
50
75
100
20
SR +
20
15
SR – Slew Rate – V/ µs
SR +
SR –
10
VCC ± = ± 5 V
RL = 2 kΩ
CL = 100 pF
See Figure 1
5
– 50
– 25
0
25
50
75
100
15
SR –
10
VCC ± = ± 5 V
RL = 2 kΩ
CL = 100 pF
See Figure 1
5
125
0
– 75
– 50
TA – Free-Air Temperature – °C
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
Figure 56
Figure 55
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
46
125
TL054
SLEW RATE†
vs
FREE-AIR TEMPERATURE
25
SR – Slew Rate – V/ µs
25
Figure 54
TL052
SLEW RATE†
vs
FREE-AIR TEMPERATURE
0
– 75
0
TA – Free-Air Temperature – °C
RL – Load Resistance – kΩ
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TL051
SLEW RATE†
vs
FREE-AIR TEMPERATURE
TL052
SLEW RATE†
vs
FREE-AIR TEMPERATURE
30
25
SR +
SR +
25
SR – Slew Rate – V/ µs
SR – Slew Rate – V/ µs
20
20
SR –
15
10
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
See Figure 1
5
0
– 75
– 50
– 25
0
25
50
75
100
SR –
15
10
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
See Figure 1
5
0
– 75
125
– 50
TA – Free-Air Temperature – °C
– 25
0
25
50
75
100
125
TA – Free-Air Temperature – °C
Figure 57
Figure 58
TL054
SLEW RATE†
vs
FREE-AIR TEMPERATURE
OVERSHOOT FACTOR
vs
LOAD CAPACITANCE
50
20
SR +
SR –
40
Overshoot Factor – %
SR – Slew Rate – V/ µs
15
10
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
See Figure 1
5
0
– 75
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ± 5 V
30
VCC ± = ± 15 V
20
VI(PP) = ± 10 mV
RL = 2 kΩ
TA = 25°C
See Figure 1
10
0
– 50
– 25
0
25
50
75
100
125
0
50
TA – Free-Air Temperature – °C
100
150
200
250
300
CL – Load Capacitance – pF
Figure 59
Figure 60
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
47
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TL052 AND TL054
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
TL051
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
VCC ± = ± 15 V
RS = 20 Ω
TA = 25°C
See Figure 3
70
50
40
30
20
Vn – Equivalent Input Noise Voltage – nV/ Hz
Vn – Equivalent Input Noise Voltage – nV/ Hz
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
100
100
VCC ± = ± 15 V
RS = 20 Ω
TA = 25°C
See Figure 3
70
50
40
30
20
10
10
10
100
1k
10 k
f – Frequency – Hz
10
100 k
100
Figure 61
TL051
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
3.2
VCC± = ±15 V
AVD = 1
VO(RMS) = 6 V
TA = 25°C
B1 – Unity-Gain Bandwidth – MHz
THD – Total Harmonic Distortion – %
1
0.1
0.04
0.01
0.004
0.001
100
1k
10 k
100 k
3.1
3
2.9
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
TA = 25°C
See Figure 4
2.8
2.7
0
2
f – Frequency – Hz
4
6
8
10
12
| VCC ± | – Supply Voltage – V
Figure 64
Figure 63
48
100 k
10 k
Figure 62
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
0.4
1k
f – Frequency – Hz
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
14
16
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TL054
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
3.2
2.9
3.1
2.8
3
2.9
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
TA = 25°C
See Figure 4
2.8
2.7
4
6
8
10
12
14
B1 – Unity-Gain Bandwidth – MHz
B1 – Unity-Gain Bandwidth – MHz
TL052
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
2.7
ÁÁÁÁÁ
ÎÎÎÎ
ÎÎÎÎÎ
ÁÁÁÁÁ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÁÁÁÁÁ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÁÁÁÁÁ
ÎÎÎÎÎÎ
ÁÁÁÁÁ
2.6
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
TA = 25°C
See Figure 4
2.5
2.4
0
16
4
2
6
8
12
10
| VCC ± | – Supply Voltage – V
| VCC ± | – Supply Voltage – V
Figure 65
Figure 66
TL051
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
14
16
TL052
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
4
4
B1 – Unity-Gain Bandwidth – MHz
B1 – Unity-Gain Bandwidth – MHz
VCC ± = ± 15 V
3
VCC ± = ± 5 V
2
1
0
– 75
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
See Figure 4
– 50
– 25
0
25
50
75
100
125
3
2
1
0
– 75
VCC ± = ± 5 V to ± 15 V
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
TA = 25°C
See Figure 4
– 50
TA – Free-Air Temperature – °C
– 25
0
25
50
75
100
125
TA – Free-Air Temperature – °C
Figure 68
Figure 67
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
49
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TL051
PHASE MARGIN
vs
SUPPLY VOLTAGE
TL054
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
65°
63°
3
φ m – Phase Margin
B1 – Unity-Gain Bandwidth – MHz
4
2
VCC ± = ± 5 V to ± 15 V
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
TA = 25°C
See Figure 4
1
0
– 75
61°
59°
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
TA = 25°C
See Figure 4
57°
55°
– 50
– 25
0
25
50
75
100
0
125
2
4
TA – Free-Air Temperature – °C
6
Figure 69
65°
65°
63°
63°
61°
59°
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
TA = 25°C
See Figure 4
59°
8
10
12
14
16
0
2
| VCC ± | – Supply Voltage – V
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
4
6
8
10
12 14
| VCC ± | – Supply Voltage – V
Figure 71
Figure 72
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
50
16
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
TA = 25°C
See Figure 4
55°
6
14
61°
57°
55°
4
12
TL054
PHASE MARGIN
vs
SUPPLY VOLTAGE
φ m – Phase Margin
φ m – Phase Margin
10
Figure 70
TL052
PHASE MARGIN
vs
SUPPLY VOLTAGE
57°
8
| VCC ± | – Supply Voltage – V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
16
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TL051
PHASE MARGIN†
vs
LOAD CAPACITANCE
TL052
PHASE MARGIN†
vs
LOAD CAPACITANCE
70°
70°
VI = 10 mV
RL = 2 kΩ
TA = 25°C
See Figure 4
65°
φ m – Phase Margin
φ m – Phase Margin
65°
VI = 10 mV
RL = 2 kΩ
TA = 25°C
See Figure 4
60°
VCC ± = ± 15 V
See Note A
55°
VCC ± = ± 5 V
50°
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
60°
VCC ± = ± 15 V
See Note A
VCC ± = ± 5 V
55°
50°
45°
40°
0
10
20 30 40 50 60 70 80
CL – Load Capacitance – pF
45°
90 100
0
10
20 30 40 50 60 70 80
CL – Load Capacitance – pF
90
Figure 74
Figure 73
TL054
PHASE MARGIN†
vs
LOAD CAPACITANCE
70°
VI = 10 mV
RL = 2 kΩ
TA = 25°C
See Figure 4
φ m – Phase Margin
65°
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
60°
VCC ± = ± 15 V
See Note A
VCC ± = ± 5 V
55°
50°
45°
0
10
20 30 40 50 60 70 80
CL – Load Capacitance – pF
90 100
Figure 75
† Values of phase margin below a load capacitance of 25 pF were estimated.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
51
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TL052
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
TL051
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
φ m – Phase Margin
63°
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
See Figure 4
63°
VCC ± = ± 15 V
61°
VCC ± = ± 5 V
59°
VCC ± = ± 15 V
61°
59°
VCC ± = ± 5 V
57°
57°
55°
– 75
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
65°
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
See Figure 4
φ m – Phase Margin
65°
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature –°C
55°
125
– 75
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
125
Figure 77
Figure 76
TL054
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
65°
φ m – Phase Margin
63°
VCC ± = ± 15 V
61°
59°
VCC ± = ± 5 V
VI = 10 mV
RL = 2 kΩ
CL = 25 pF
See Figure 4
57°
55°
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
– 75
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
125
Figure 78
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
52
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
16
8
12
6
8
4
VO – Output Voltage – V
VO – Output Voltage – mV
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
4
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
0
–4
–8
–12
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
2
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
0
–2
–4
–6
–16
0
0.2
0.4
0.6
0.8
1.0
1.2
–8
0
t – Time – µs
1
2
3
4
5
6
t – Time – µs
Figure 79
Figure 80
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
53
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
APPLICATION INFORMATION
output characteristics
All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance.
The TL05x and TL05xA drive higher capacitive loads; however, as the load capacitance increases, the resulting
response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of
the load capacitance at which oscillation occurs varies with production lots. If an application appears to be
sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate
the problem. Capacitive loads of 1000 pF and larger may be driven if enough resistance is added in series with
the output (see Figure 81 and Figure 82).
(a) CL = 100 pF, R = 0
(b) CL = 300 pF, R = 0
(c) CL = 350 pF, R = 0
(d) CL = 1000 pF, R = 0
(e) CL 1000 pF, R = 50 Ω
(f) CL = 1000 pF, R = 2 kΩ
Figure 81. Effect of Capacitive Loads
15 V
–
R
VO
+
5V
–5V
– 15 V
CL
(see Note A)
2 kΩ
NOTE A: CL includes fixture capacitance.
Figure 82. Test Circuit for Output Characteristics
54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
APPLICATION INFORMATION
input characteristics
The TL05x and TL05xA are specified with a minimum and a maximum input voltage that, if exceeded at either
input, could cause the device to malfunction.
Because of the extremely high input impedance and resulting low bias current requirements, the TL05x and
TL05xA are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and
sockets can easily exceed bias current requirements and cause degradation in system performance. It is good
practice to include guard rings around inputs (see Figure 83). These guards should be driven from a
low-impedance source at the same voltage level as the common-mode input.
Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.
+
VI
VO
VO
+
VI
(a) NONINVERTING AMPLIFIER
(b) INVERTING AMPLIFIER
+
VO
–
–
–
VI
(c) UNITY-GAIN AMPLIFIER
Figure 83. Use of Guard Rings
noise performance
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage
differential amplifier. The low input bias current requirements of the TL05x and TL05xA result in a very low
current noise. This feature makes the devices especially favorable over bipolar devices when using values of
circuit impedance greater than 50 kΩ.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
55
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
APPLICATION INFORMATION
phase meter
The phase meter in Figure 84 produces an output voltage of 10 mV per degree of phase delay between the two
input signals VA and VB. The reference signal VA must be the same frequency as VB. The TLC3702 comparators
(U1) convert these two input sine waves into ± 5-V square waves. Then R1 and R4 provide level shifting prior
to the SN74HC109 dual J-K flip flops.
Flip-flop U2B is connected as a toggle flip-flop and generates a square wave at half the frequency of VB.
Flip-flop U2A also produces a square wave at half the input frequency. The pulse duration of U2A varies from
zero to half the period, where zero corresponds to zero phase delay between VA and VB and half the period
corresponds to VB lagging VA by 360 degrees.
The output pulse from U2A causes the TLC4066 (U3) switch to charge the TL05x (U4) integrator capacitors C1
and C2. As the phase delay approaches 360 degrees, the output of U4A approximates a square wave and U2A
has an output of almost 2.5 V. U4B acts as a noninverting amplifier with a gain of 1.44 in order to scale the
0- to 2.5-V integrator output to a 0- to 3.6-V output range.
R8 and R10 provide output gain and zero-level calibration. This circuit operates over a 100-Hz to 10-kHz
frequency range.
+5V
R2
100 kΩ
VA
R1
U1A
100 kΩ
C2
0.016 µF
+5V
S
1J U2A
C1
1K
R
R7
R6
U3
NC
10 kΩ
R5
10 kΩ
10 kΩ
C1
0.016 µF
+
U4A
–
+
U4B
–
VO
R9
20 kΩ
R3
100 kΩ
S
2J
R8
50 kΩ
NC
U2B
C1
R4
100 kΩ
Gain
+5V
2K
R
R10
10 kΩ
Zero
VB
U1B
–5V
NOTE A: U1 = TLC3702; VCC ± = ± 5 V
U2 = SN74HC109
U3 = TLC4066
U4, U5 = TL05x; VCC ± = ± 5 V
Figure 84. Phase Meter
56
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
APPLICATION INFORMATION
precision constant-current source over temperature
A precision current source (see Figure 85) benefits from the high input impedance and stability of Texas
Instruments enhanced-JFET process. A low-current shunt regulator maintains 2.5 V between the inverting input
and the output of the TL05x. The negative feedback then forces 2.5 V across the current setting resistor R;
therefore, the current to the load is simply 2.5 V divided by R.
Possible choices for the shunt regulator include the LT1004, LT1009, and LM385. If the regulator’s cathode
connects to the operational amplifier output, this circuit sources load current. Similarly, if the cathode connects
to the inverting input, the circuit sinks current from the load. To minimize output current change with temperature,
R should be a metal film resistor with a low temperature coefficient. Also, this circuit must be operated with
split-voltage supplies.
150 pF
150 pF
U2
U2
+ 15 V
+ 15 V
100 kΩ
–
–
100 kΩ
U1
U1
+
Load
V = 0 to 10 V
+
IO
II
– 15 V
Load
V = 0 to –10 V
R
(a) SOURCE CURRENT LOAD
– 15 V
R
(b) SINK CURRENT LOAD
NOTE B: U1 = 1/2 TL05x
U2 = LM385, LT1004, or LT1009 voltage reference
I=
2.5 V , R = Low temperature coefficient metal film resistor
R
Figure 85. Precision Constant-Current Source
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
57
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
APPLICATION INFORMATION
instrumentation amplifier with adjustable gain/null
The instrumentation amplifier in Figure 86 benefits greatly from the high input impedance and stable input offset
voltage of the TL05xA. Amplifiers U1A, U1B, and U2A form the actual instrumentation amplifier, while U2B
provides offset null. Potentiometer R1 provides gain adjust. With R1 = 2 kΩ, the circuit gain equals 100, while
with R1 = 200 kΩ, the circuit gain equals two. The following equation shows the instrumentation amplifier gain
as a function of R1:
R2
R3
1
AV
R1
+ )
ǒ
Ǔ
)
Readjusting the offset null is necessary whenever the circuit gain is changed. If U2B is needed for another
application, R7 can be terminated at ground. The low input offset voltage of the TL05xA minimizes the dc error
of the circuit. For best matching, all resistors should be one percent tolerance. The matching between R4, R5,
R6, and R7 controls the CMRR of this application.
The following equation shows the output voltages when the input voltage equals zero. This dc error can be
nulled by adjusting the offset null potentiometer; however, any change in offset voltage over time or temperature
also creates an error. To calculate the error from changes in offset, consider the three offset components in the
equation as delta offsets rather than initial offsets. The improved stability of Texas Instruments enhanced JFETs
minimizes the error resulting from change in input offset voltage with time. Assuming VI equals zero, VO can
be shown as a function of the offset voltage:
V
O
+
V
–V
ƪǒ Ǔ ǒ Ǔ ǒ
ƪ ǒ Ǔǒ Ǔ
)
1
IO2
R3
IO1 R1
VI –
R3
R1
)
R7
R5
)
R7
1
)
R7
R5
R7
+
U1A
–
1
R6
R4
Ǔ ) ǒ Ǔƫ
ǒ ) Ǔƫ )
)
R6
R4
)
R6 1
R4
R4
R6
10 kΩ
10 kΩ
R2 R6
R1 R4
R2
R1
V
IO3
ǒ
1
)
100 kΩ
R2
–
200 kΩ
10 turn
10 MΩ
+
AV = 2 to 100
2 kΩ
10 MΩ
R1
VO
U2A
VCC +
R3
100 kΩ
82 kΩ
–
U1B
R7
U2B
10 kΩ
10 kΩ
Offset Null
+
+
VI +
–
R5
1 kΩ
0.1 µF
NOTE A: U1 and U2 = TL05xA; VCC ± = ± 15 V.
Figure 86. Instrumentation Amplifier
58
POST OFFICE BOX 655303
82 kΩ
VCC –
• DALLAS, TEXAS 75265
Ǔ
R6
R4
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
APPLICATION INFORMATION
high input impedance log amplifier
The low input offset voltage and high input impedance of the TL05xA creates a precision log amplifier (see
Figure 87). IC1 is a 2.5-V, low-current precision, shunt regulator. Transistors Q1 and Q2 must be a closely
matched NPN pair. For best performance over temperature, R4 should be a metal film resistor with a low
temperature coefficient.
In this circuit, U1A serves as a high-impedance unity-gain buffer. Amplifier U1B converts the input voltage to
a current through R1 and Q1. Amplifier U1C, IC1, and R4 form a 1-µA temperature-stable current source that
sets the base-emitter voltage of Q2. U1D amplifies the difference between the base-emitter voltage of Q1 and
Q2 (see Figure 88). The output voltage is given by the following equation:
O
ƪ ƫ ȱȧȲ ǒ
+ – 1 ) R6
R5
kT
q
V
In
R1
I
10 –6
1
Q1
ȳȧ
Ǔȴ
+
where k
1.38
10 –23, q
and T is in degrees kelvin.
+ 1.602
10 –19,
Q2
R4
2.5 MΩ
2N2484
VI
+
U1A
_
+
_U1C
R2
10 kΩ
15 V
R1
+
U1D
_
VO
(see equation above)
C1
+
U1B
_
10 kΩ
R6
150 pF
R3
R5
10 kΩ
270 kΩ
– 15V
10 kΩ
IC1
NOTE A: U1A through U1D = TL05xA. IC1 = LM385, LT1004, or LT1009 voltage reference.
Figure 87. Log Amplifier
– 0.1
AVD – Differential Voltage Amplification – dB
V
– 0.15
– 0.2
– 0.25
– 0.3
ÁÁ
ÁÁ
ÁÁ
– 0.35
– 0.4
0
1
2
3
4
5
6
7
8
9
10
f – Frequency – Hz
Figure 88. Output Voltage vs Input Voltage for Log Amplifier
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
59
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
APPLICATION INFORMATION
analog thermometer
By combining a current source that does not vary over temperature with an instrumentation amplifier, a precise
analog thermometer can be built (see Figure 89). Amplifier U1A and IC1 establish a constant current through
the temperature-sensing diode D1. For this section of the circuit to operate correctly, the TL05x must use split
supplies and R3 must be a metal-film resistor with a low temperature coefficient.
The temperature-sensitive voltage from the diode is compared to a temperature-stable voltage reference set
by IC2. R4 should be adjusted to provide the correct output voltage when the diode is at a known temperature.
Although this potentiometer resistance varies with temperature, the divider ratio of the potentiometer remains
constant.
Amplifiers U1B, U2A, and U2B form the instrumentation amplifier that converts the difference between the diode
and reference voltage to a voltage proportional to the temperature. With switch S1 closed, the amplifier gain
equals 5 and the output voltage is proportional to temperature in degrees Celsius. With S1 open, the amplifier
gain is 9 and the output is proportional to temperature in degrees Fahrenheit. Every time that S1 is changed,
R4 must be recalibrated. By setting S1 correctly, the output voltage equals 10 mV per degree (C or F).
IC1
150 pF
U1A
+
R3
D1
(see Note A)
10 kΩ
10 kΩ
10 kΩ
–
100 kΩ
R12
10 kΩ
(see Note B)
+ 15 V
R7
5 kΩ
R5
5 kΩ
–
R1
R9
S1
(see Note C)
– 15 V
+ 15 V
R2
U2B
+
+
U1B
–
R6
C1
R8
100 kΩ
10 kΩ
R10
–
U2A
NOTES: A.
B.
C.
D.
E.
+
IC2
10 kΩ
R4
50 kΩ
R11
10 kΩ
Temperature-sensing diode ≈ (– 2 mV/°C)
Metal-film resistor (low temperature coefficient)
Switch open for °F and closed for °C
VO α temperature; 10 mV/°C or 10 mV/°F
U1, U2 = TL05x. IC1, IC2 = LM385, LT1004, or LT1009 voltage reference
Figure 89. Analog Thermometer
60
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VO
(see Note D)
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
APPLICATION INFORMATION
voltage-ratio-to-dB converter
The application in Figure 90 measures the amplitude ratio of two signals and then converts the ratio to decibels
(see Figure 91). The output voltage provides a resolution of 100 mV/dB. The two inputs can be either dc or
sinusoidal ac signals. When using ac signals, both signals should be the same frequency or output glitches will
occur. For measuring two input signals of different frequencies, extra filtering should be added after the
rectifiers.
The circuit contains three low-offset TL05xA devices. Two of these devices provide the rectification and
logarithmic conversion of the inputs. The third TL05xA forms an instrumentation amplifier. The stage performing
the logarithmic conversion also requires two well-matched npn transistors.
The input signal first passes through a high impedance unity-gain buffer U1A (U2A). Then U1B (U2B) rectifies
the input signal at a gain of 0.5, and U1C (U2C) provides a noninverting gain of 2 so that the system gain is still
one. U1D (U2D), R6 (R13), and Q1 (Q2) perform the logarithmic conversion of the rectified input signal. The
instrumentation amplifier formed by U3A, U3B, U3D scales the difference of the two logarithmic voltages by a
gain of 33.6. As a result, the output voltage equals 100 mV/dB. The 1-kΩ potentiometer on the input of U3C
calibrates the zero dB reference level. The following equations are used to derive the relationship between the
input voltage ratio expressed in decibels and the output voltage.
X dB
X dB
V
BE(Q1)
ƪƫ
+ 20 log
+ 8.686
+ kTq
ȱȧ ǒ Ǔ ǒ Ǔȳȧ
Ȳ
ȴ
ƪ ǒ Ǔ ǒ Ǔƫ
V
V
A
B
+ 20
ƪ ƫ
In V
A
In V
– V
A
B
In (10)
– In V
V
In
A
R I
V
S
DVBE + VBE(Q1) –VBE(Q2) +
X dB
where
k
+ 8.686
kTńq
+ 1.38
B
ƪ
V
BE(Q1)
10 –23, q
–V
+ 1.602
BE(Q2)
kT
q
BE(Q2)
+ kTq
ƪ ƫ
V
In
R
B
I
ƪ ǒ Ǔ ǒ Ǔƫ
In V
– In V
ƫ+ ƪ
A
336 V
S
B
BE(Q1)
–V
BE(Q2)
ƫ
at 25°C
10 –19, and T is in kelvins.
This would give a resolution of 1 V/dB. Therefore, the gain of the instrumentation amplifier is set at 33.6 to obtain
100 mV/dB.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
61
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
APPLICATION INFORMATION
R2
VA
+
U1A
_
R1
20 kΩ
2N2484
10 kΩ
+
U1B
_
R6
+
U1C
_
D1
10 kΩ
R5
+
U2A
_
20 kΩ
R7
+
U3A
_
10 kΩ
R18
R20
10 kΩ
10 kΩ
R16
+
U3D
_
16.3 kΩ
R9
VB
+
_U1D
10 kΩ
R4
10 kΩ
R3
30 kΩ
R8
Q1
R76
2N2484
10 kΩ
16.3 kΩ
+
U2B
_
+
U2C
_
D2
R13
10 kΩ
R12
+
U2D
_
10 kΩ
R11
10 kΩ
R10
30 kΩ
10 kΩ
R19
+
U3B
_
Q2
R14
10 kΩ
R21
10 kΩ
15 V
82 kΩ
+
U3C
_
1 kΩ
C1
82 kΩ
– 15 V
NOTE A: U1A through U3D = TL05xA, VCC ± = ± 15 V. D1 and D2 = 1N914.
Figure 90. Voltage-Ratio-to-dB Converter
VO – Output Voltage – V
2
1
0
–1
–2
0
1
2
3
4
5
6
7
Ratio – VA / VB
8
9
10
Figure 91. Output Voltage vs the Ratio of the Input Voltages for Voltage-to-dB Converter
62
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VO
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts , the model generation software used
with Microsim PSpice . The Boyle macromodel (see Note 5) and subcircuit Figure 92 are generated using the
TL05x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations
of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers”, IEEE
Journal of Solid-State Circuits, SC-9, 353 (1974).
99
3
VCC +
9
RSS
92
FB
+
10
J1
DP
VC
J2
IN +
11
RD1
VAD
DC
12
C1
R2
–
53
HLIM
–
C2
6
–
–
–
+
VLN
+
GCM
GA
VLIM
8
–
RD2
54
4
91
+
VLP
7
60
+
–
+ DLP
90
RO2
VB
IN –
VCC –
–
+
ISS
RP
2
3
DLN
EGND +
–
RO1
DE
5
+
VE
OUT
.SUBCKT TL05x 1 2 3 4 5
C1
11
12
3.988E–12
C2
6
7
15.00E–12
DC
5
53
DX
DE
54
5
DX
DLP
90
91
DX
DLN
92
90
DX
DP
4
3
DX
EGND
99
0
POLY (2) (3,0) (4,0) 0 .5 .5
FB
7
99
POLY (5) VB VC VE VLP
+ VLN 0 2.875E6 –3E6 3E6 3E6 –3E6
GA
6
0
11
12 292.2E–6
GCM
0
6
10
99 6.542E–9
ISS
3
10
DC 300.0E–6
HLIM
90
0
VLIM 1K
J1
11
2
10 JX
J2
12
1
10 JX
R2
6
9
100.0E3
RD1
4
11
3.422E3
RD2
4
12
3.422E3
R01
8
5
125
R02
7
99
125
RP
3
4
11.11E3
RSS
10
99
666.7E6
VB
9
0
DC 0
VC
3
53
DC 3
VE
54
4
DC 3.7
VLIM
7
8
DC 0
VLP
91
0
DC 28
VLN
0
92
DC 28
.MODEL DX D (IS=800.0E–18)
.MODEL JX PJF (IS=15.00E–12 BETA=185.2E–6
+ VTO= –.1)
.ENDS
Figure 92. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
Macromodels, simulation models, or other models provided by TI,
directly or indirectly, are not warranted by TI as fully representing all
of the specification and operating characteristics of the
semiconductor product to which the model relates.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
63
TL05x, TL05xA, TL05xY
ENHANCED-JFET LOW-OFFSET
OPERATIONAL AMPLIFIERS
SLOS178 – FEBRUARY 1997
64
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated