TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 D D D D D D Supply Current . . . 230 µA Max High Unity-Gain Bandwidth . . . 2 MHz Typ High Slew Rate . . . 0.45 V/µs Min Supply-Current Change Over Military Temp Range . . . 10 µA Typ at VCC ± = ± 15 V Specified for Both 5-V Single-Supply and ±15-V Operation Phase-Reversal Protection D D D D D High Open-Loop Gain . . . 6.5 V/µV (136 dB) Typ Low Offset Voltage . . . 100 µV Max Offset Voltage Drift With Time 0.005 µV/mo Typ Low Input Bias Current . . . 50 nA Max Low Noise Voltage . . . 19 nV/√Hz Typ description The TLE202x, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly improved slew rate and unity-gain bandwidth. The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic improvement in unity-gain bandwidth and slew rate over similar devices. The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both time and temperature. This means that a precision device remains a precision device even with changes in temperature and over years of use. This combination of excellent dc performance with a common-mode input voltage range that includes the negative rail makes these devices the ideal choice for low-level signal conditioning applications in either single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative supply rail. A variety of available options includes small-outline and chip-carrier versions for high-density systems applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from – 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of – 55°C to 125°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1997, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TLE2021 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE† (D) SSOP‡ (DB) CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) TSSOP‡ (PW) CHIP FORM§ (Y) 0°C to 70°C 200 µ µV 500 µV TLE2021ACD TLE2021CD TLE2021CDBLE — — TLE2021ACP TLE2021CP — TLE2021CPWLE — TLE2021Y – 40°C to 85°C 200 µ µV 500 µV TLE2021AID TLE2021ID — — — TLE2021AIP TLE2021IP — — – 55°C to 125°C 100 µ µV 200 µV 500 µV — TLE2021AMD TLE2021MD — TLE2021BMFK TLE2021AMFK TLE2021MFK TLE2021BMJG TLE2021AMJG TLE2021MJG — TLE2021AMP TLE2021MP — — † The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR). ‡ The DB and PW packages are only available left-end taped and reeled. § Chip forms are tested at 25°C only. TLE2022 AVAILABLE OPTIONS PACKAGED DEVICES CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) TSSOP‡ (PW) CHIP FORM§ (Y) — TLE2022CDBLE — — — TLE2022ACP TLE2022CP — — TLE2022CPWLE — — TLE2022Y TLE2022BID TLE2022AID TLE2022ID — — — — TLE2022AIP TLE2022IP — — — TLE2022AMD TLE2022MD — — TLE2022AMFK TLE2022MFK TLE2022BMJG TLE2022AMJG TLE2022MJG — TLE2022AMP TLE2022MP — — TA VIOmax AT 25°C SMALL OUTLINE† (D) SSOP‡ (DB) 0°C to 70°C 150 µV 300 µV 500 µV TLE2022BCD TLE2022ACD TLE2022CD — – 40°C to 85°C 150 µV 300 µV 500 µV – 55°C 55 C to 125°C 150 µV 300 µ µV 500 µV ‡ The D packages are available taped and reeled. To oerder a taped and reeled part, add the suffix R (e.g., TLE2022CDR). ‡ The DB and PW packages are only available left-end taped and reeled. † Chip forms are tested at 25°C only. TLE2024 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C 0°C to 70°C 500 µV 750 µ µV 1000 µV – 40°C to 85°C – 55°C to 125°C SMALL OUTLINE (DW) CERAMIC DIP (J) PLASTIC DIP (N) TLE2024BCDW TLE2024ACDW TLE2024CDW — — TLE2024BCN TLE2024ACN TLE2024CN — — TLE2024Y 500 µV 750 µ µV 1000 µV TLE2024BIDW TLE2024AIDW TLE2024IDW — — TLE2024BIN TLE2024AIN TLE2024IN — 500 µ µV 750 µV 1000 µV TLE2024BMDW TLE2024AMDW TLE2024MDW TLE2024BMFK TLE2024AMFK TLE2024MFK TLE2024BMJ TLE2024AMJ TLE2024MJ TLE2024BMN TLE2024AMN TLE2024MN — † Chip forms are tested at 25°C only. 2 CHIP FORM† (Y) CHIP CARRIER (FK) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 description (continued) TLE2021 D, DB, JG, P, OR PW PACKAGE (TOP VIEW) 1 8 2 7 3 6 4 5 NC OFFSET N1 NC NC NC OFFSET N1 IN – IN + VCC – /GND TLE2021 FK PACKAGE (TOP VIEW) NC VCC + OUT OFFSET N2 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC VCC + NC OUT NC NC VCC – / GND NC OFFSET N2 NC NC IN – NC IN + NC NC – No internal connection 1 8 2 7 3 6 4 5 VCC + 2OUT 2IN – 2IN + NC 1IN – NC 1IN + NC 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN – NC NC VCC – / GND NC 2IN + NC 1OUT 1IN – 1IN + VCC – /GND FK PACKAGE (TOP VIEW) NC 1OUT NC VCC + NC D, DB, JG, P, OR PW PACKAGE (TOP VIEW) NC – No internal connection POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 4OUT 4IN – 4IN + VCC – /GND 3IN + 3IN – 3OUT NC J OR N PACKAGE (TOP VIEW) 1IN + NC VCC + NC 2IN + 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 4IN + NC VCC – /GND NC 3IN + 2IN – 2OUT NC 3OUT 3IN – 1OUT 1IN – 1IN + VCC + 2IN + 2IN – 2OUT NC FK PACKAGE (TOP VIEW) 1IN – 1OUT NC 4OUT 4IN – DW PACKAGE (TOP VIEW) NC – No internal connection 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1OUT 1IN – 1IN + VCC + 2IN + 2IN – 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN – 4IN + VCC – /GND 3IN + 3IN – 3OUT TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TLE2021Y chip information This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (7) (6) (5) OFFSET N1 IN + IN – OFFSET N2 VCC+ (7) (1) (3) (2) + (6) OUT – (5) (4) VCC – /GND 78 CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax= 150°C TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. (4) (1) PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP. (2) (3) 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TLE2022Y chip information This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (7) (6) IN + (3) (2) IN – OUT (8) (7) + (1) OUT – + – (5) 80 VCC+ (8) (5) (6) IN + IN – (4) (4) VCC – (1) CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. (2) (3) 86 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP. TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TLE2024Y chip information This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS 1IN + 1IN – 2OUT 2IN + 100 3IN – 4OUT VCC + (4) (3) + (1) 1OUT (2) – + (7) (10) – + (5) (6) 2IN + 2IN – (8) 3OUT (9) – + (14) – (12) (13) 4IN + 4IN – (11) VCC – /GND 140 CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. PIN (11) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 equivalent schematic (each amplifier) VCC+ Q13 Q3 Q22 Q17 Q7 Q28 Q31 Q35 Q29 Q19 Q1 Q32 Q24 Q39 Q20 Q8 Q5 Q34 Q38 Q11 D3 Q2 Q36 C4 IN – Q4 Q12 D4 IN + R7 Q23 Q25 C2 Q10 D1 D2 OUT Q14 Q40 C3 Q21 Q27 R6 R1 C1 OFFSET N1 (see Note A) Q6 Q9 R2 R4 R3 R5 Q15 Q30 Q33 Q26 Q18 Q16 OFFSET N2 (see Note A) VCC – /GND ACTUAL DEVICE COMPONENT COUNT COMPONENT Transistors 8 TLE2021 TLE2022 TLE2024 40 80 160 Resistors 7 14 28 Diodes 4 8 16 Capacitors 4 8 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Q37 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Supply voltage, VCC – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 20 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 0.6 V Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VCC Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA Output current, IO (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 mA TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 40 mA Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA Total current out of VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Case temperature for 60 seconds, TC: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or PW package . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC – . 2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if a differential input voltage in excess of approximately ± 600 mV is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D–8 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW 4.2 mW/°C 336 mW — — 656 mW 533 mW 205 mW 880 mW 715 mW 275 mW DB–8 525 mW DW–16 1025 mW FK 1375 mW 8.2 mW/°C 11.0 mW/°C J–14 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW JG–8 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW N–14 1150 mW 736 mW 598 mW 230 mW P–8 1000 mW 8.0 mW/°C 9.2 mW/°C 640 mW 520 mW 200 mW PW–8 525 mW 4.2 mW/°C 336 mW — — recommended operating conditions Supply voltage, VCC Common mode input voltage, Common-mode voltage VIC VCC = ± 5 V VCC ± = ± 15 V Operating free-air temperature, TA POST OFFICE BOX 655303 C SUFFIX I SUFFIX M SUFFIX MIN MAX MIN MAX MIN MAX ±2 ± 20 ±2 ± 20 ±2 ± 20 0 3.5 0 3.2 0 3.2 –15 13.5 –15 13.2 –15 13.2 0 70 – 40 85 – 55 125 • DALLAS, TEXAS 75265 UNIT V V °C 9 Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR Common mode input voltage range Common-mode TA† TLE2021C MIN 25°C MAX 120 600 Full range MAX 100 300 MIN TYP MAX 80 200 600 300 UNIT µV 2 2 µV/°C 25°C 0.005 0.005 0.005 µV/mo 25°C 0.2 25 Full range 0 to 3.5 Full range 0 to 3.5 25°C 4 VOH High level output voltage High-level VOL Low level output voltage Low-level AVD Large-signal g g differential voltage amplification VO = 1.4 V to 4 V,, RL = 10 kΩ 25°C 0.3 Full range 0.3 CMRR Common mode rejection ratio Common-mode VIC = VICRmin,, RS = 50 Ω 25°C 85 Full range 80 kSVR Supply-voltage y g rejection j ratio (∆VCC /∆VIO) VCC = 5 V to 30 V 25°C 105 Full range 100 ICC Supply current ∆ICC Supply-current change over operating temperature range Full range – 0.3 to 4 25 – 0.3 to 4 4 0.8 4.3 4 0.8 85 1.5 105 Full range 230 120 105 170 230 110 dB 120 170 230 5 dB 230 230 5 V V/µV 100 230 5 1.5 80 100 170 0.8 0.85 85 nA V 0.3 110 nA V 4.3 0.7 0.3 80 120 – 0.3 to 4 0.85 0.3 110 90 3.9 0.7 0.3 70 0 to 3.5 0.85 1.5 25 0 to 3.5 3.9 0.7 6 10 90 0 to 3.5 4.3 0.2 70 0 to 3.5 Full range Full range 6 10 70 3.9 25°C 25°C 0.2 90 25°C RS = 50 Ω 6 10 25°C VO = 2.5 V, No load TLE2021BC TYP 2 Full range RL= 10 kΩ MIN 850 Full range VIC = 0,, RS = 50 Ω TLE2021AC TYP µA µA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Template Release Date: 7–11–94 VIO TEST CONDITIONS TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191 – FEBRUARY 1997 10 TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VOM OM+ Common mode input voltage range Common-mode TA† TLE2021C MIN 25°C 120 500 80 200 MIN TYP MAX 40 100 500 200 UNIT µV µV/°C 25°C 0.006 0.006 0.006 µV/mo 25°C 0.2 25 – 15 to 13.5 Full range – 15 to 13.5 25°C Full range 14 – 15.3 to 14 25°C – 13.7 Full range – 13.7 AVD Large-signal g g differential voltage amplification VO = ± 10 V,, RL = 10 kΩ 25°C 1 Full range 1 CMRR Common mode rejection ratio Common-mode VIC = VICR min,, RS = 50 Ω 25°C 100 Full range 96 kSVR Supply-voltage y g rejection j ratio (∆VCC /∆VIO) VCC ± = ± 2.5 V to ± 15 V 25°C 105 Full range 100 ICC Supply current 25 – 15.3 to 14 14 – 13.7 1 14.3 100 105 – 14.1 – 13.7 6.5 1 300 100 120 105 – 14.1 V 6.5 V/µV 115 dB 120 dB 100 200 300 200 300 300 300 6 µA µA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 11 SLOS191 – FEBRUARY 1997 6 nA V 96 300 6 14.3 1 115 nA V – 13.7 100 200 – 15.3 to 14 13.9 96 120 90 14 1 115 70 15 to 13.5 – 13.7 6.5 25 – 15 to 13.5 13.9 – 14.1 6 10 90 – 15 to 13.5 14.3 0.2 70 15 to 13.5 Full range Full range 6 10 70 13.9 Maximum negative peak g output voltage swing 25°C 0.2 90 25°C RS = 50 Ω 6 10 Full range No load MAX 2 25°C VO = 0 0, TYP 2 Full range RL = 10 kΩ MIN TLE2021BC 2 Full range Maximum positive peak output voltage swing Supply-current change over operating temperature range MAX 750 VOM – ∆ICC TYP Full range VIC = 0, RS = 50 Ω TLE2021AC TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR VOH Common-mode input voltage range VIC = 0 0, RS = 50 Ω TYP CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO) VCC = 5 V to 30 V ICC Supply current 400 µV 2 2 µV/°C 25°C 0 005 0.005 0 005 0.005 0 005 0.005 µV/mo 25°C 0.5 35 0.4 70 Full range g 0 to 3.5 4 – 0.3 to 4 33 – 0.3 to 4 4 0.8 0.3 0.3 25°C 85 Full range 80 25°C 100 Full range 95 1.5 4.3 4 0.8 87 1.5 103 450 600 102 0.8 0.85 1.5 90 118 105 105 dB 120 dB 100 450 600 450 600 7 600 600 7 V V/µV 85 600 7 V 0.5 98 Full range nA V 4.3 0.7 0.5 82 115 – 0.3 to 4 0.85 0.4 100 90 3.9 0.7 0.4 70 nA 0 to 3.5 0.85 25°C 30 0 to 3.5 3.9 0.7 6 10 70 0 to 3.5 4.3 0.3 90 0 to 3.5 3.9 Full range 6 10 90 0 to 3.5 Full range 6 10 25°C 25°C No load UNIT 2 Full range VO = 2 2.5 5V V, MAX 550 25°C RL = 10 kΩ TYP 800 Full range VO = 1.4 1 4 V to 4 V, V MIN Full range 25°C Large-signal g g differential voltage amplification TLE2022BC MAX 250 RS = 50 Ω AVD TYP 400 Full range Low level output voltage Low-level MIN 600 25°C VOL TLE2022AC MAX 25°C Full range High level output voltage High-level Supply y current change g over operating temperature range TLE2022C MIN Full range RL = 10 kΩ ∆ICC TA† µA µA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Template Release Date: 7–11–94 VIO TEST CONDITIONS TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191 – FEBRUARY 1997 12 TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4) IIO Input offset current IIB Input bias current Common-mode input voltage range 25°C VIC = 0 0, RS = 50 Ω MAX 150 500 VO = ± 10 V V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO) 2 5 V to ± 15 V VCC ± = ± 2.5 ICC Supply current 70 150 450 300 UNIT µV 0 006 0.006 0 006 0.006 µV/mo 25°C 0.5 35 0.4 70 Full range g – 15 to 13.5 14 – 15.3 to 14 33 – 13.7 Full range – 13.7 25°C 0.8 Full range 0.8 25°C 95 Full range 91 25°C 100 Full range 95 – 15.3 to 14 14 – 13.7 1 14.3 97 14 – 14.1 – 13.7 103 7 1.5 Full range 700 109 14.3 V – 14.1 V 10 V/µV 100 112 dB 96 118 105 120 dB 100 550 700 700 550 700 9 700 700 9 µA µA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 13 SLOS191 – FEBRUARY 1997 9 nA V 1.5 98 550 – 15.3 to 14 – 13.7 93 115 90 13.9 1 106 70 nA – 15 to 13.5 – 13.7 4 30 – 15 to 13.5 13.9 – 14.1 6 10 70 – 15 to 13.5 14.3 0.3 90 – 15 to 13.5 13.9 25°C 6 10 90 – 15 to 13.5 Full range 6 10 25°C Full range No load MAX 0 006 0.006 25°C VO = 0 0, 300 TYP 25°C 25°C Large-signal g g differential voltage amplification 120 MIN µV/°C RS = 50 Ω AVD MAX 2 25°C RL = 10 kΩ TLE2022BC TYP 2 Full range Maximum negative g peak output voltage swing MIN 2 Full range VOM – TLE2022AC TYP 700 Full range Maximum positive peak output voltage swing Supply y current change g over operating temperature range TLE2022C MIN Full range VOM + ∆ICC TA† TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR Common-mode input voltage g range VIC = 0, RS = 50 Ω TYP AVD Large-signal g g differential voltage amplification VO = 1.4 1 4 V to 4 V, V RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC /∆VIO) VCC = 5 V to 30 V ICC Supply current TYP MAX 850 600 800 UNIT µV 2 2 2 µV/°C 25°C 0.005 0.005 0.005 µV/mo 25°C 0.6 45 0 to 3.5 Full range 0 to 3.5 25°C 3.9 Full range 3.7 40 0 to 3.5 – 0.3 to 4 3.9 Full range 0.1 25°C 80 Full range 80 25°C 98 Full range 93 1.5 4.2 4 0.8 1.5 100 Full range 115 103 800 1200 95 dB 117 800 1200 15 dB 1200 1200 15 V V/µV 98 1200 15 1.5 85 95 1200 0.8 0.95 85 nA V 0.1 92 nA V 4.3 0.7 0.4 82 800 – 0.3 to 4 3.8 0.1 112 90 0.95 82 70 0 to 3.5 0.7 0.3 90 35 0 to 3.5 3.7 0.8 6 10 70 0 to 3.5 4.2 0.4 90 0.95 0.2 6 10 70 – 0.3 to 4 0.7 25°C Full range 0.5 90 25°C 25°C 6 10 25°C No load MIN 1050 Full range VO = 2 2.5 5V V, TLE2024BC MAX 1100 RS = 50 Ω RL = 10 kΩ TYP 1300 Full range Low level output voltage Low-level MIN 25°C 25°C VOL TLE2024AC MAX Full range Full range High level output voltage High-level Supply current change over operating temperature range TLE2024C MIN Full range VOH ∆ICC TA† µA µA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Template Release Date: 7–11–94 VIO TEST CONDITIONS TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191 – FEBRUARY 1997 14 TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VOM + Common-mode input voltage g range VIC = 0, RS = 50 Ω MIN TYP Large-signal g g differential voltage amplification VO = ± 10 V V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO) VCC ± = ± 2.5 2 5 V to ± 15 V ICC Supply current No load MAX MIN TYP MAX 750 500 950 700 UNIT µV 2 2 2 µV/°C 25°C 0.006 0.006 0.006 µV/mo 25°C 0.6 50 0.5 70 Full range – 15 to 13.5 25°C 13.8 Full range 13.7 25°C – 13.7 Full range – 13.6 25°C 0.4 Full range 0.4 25°C 92 Full range 88 25°C 98 Full range 93 – 15.3 to 14 6 45 70 – 15.3 to 14 13.9 – 13.7 14.2 0.8 14 – 14.1 – 13.7 94 4 1 105 97 100 1050 Full range 1400 115 103 1050 1400 – 14.1 V 7 V/µV 108 dB 117 1050 1400 dB 1400 1400 20 µA µA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 15 SLOS191 – FEBRUARY 1997 20 nA V 98 1400 20 14.3 93 95 nA V 1 90 112 – 15.3 to 14 – 13.6 0.8 102 90 13.9 – 13.6 2 70 – 15 to 13.5 13.8 – 14.1 40 – 15 to 13.5 – 15 to 13.5 6 10 90 – 15 to 13.5 14.1 0.4 10 90 – 15 to 13.5 Full range 6 10 25°C 25°C VO = 0 0, TYP 1200 RS = 50 Ω AVD MIN 1000 Full range Maximum negative peak output g voltage swing MAX TLE2024BC 25°C 25°C RL = 10 kΩ TLE2024AC Full range Full range Maximum positive peak output voltage swing Supply y current change g over operating temperature range TLE2024C Full range VOM – ∆ICC TA† TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR VOH Common mode input voltage range Common-mode TA† TLE2021I MIN 25°C MAX 120 600 Full range 100 300 MIN TYP MAX 80 200 600 300 UNIT µV 2 µV/°C 25°C 0.005 0.005 0.005 µV/mo 25°C 0.2 25 0 to 3.5 Full range – 15 to 3.2 25°C Full range 4 – 0.3 to 4 25°C AVD Large-signal g g differential voltage amplification VO = 1.4 V to 4 V,, RL = 10 kΩ 25°C 0.3 Full range 0.25 CMRR Common mode rejection ratio Common-mode VIC = VICR min,, RS = 50 Ω 25°C 85 Full range 80 kSVR Supply-voltage y g rejection j ratio (∆VCC /∆VIO) VCC = 5 V to 30 V 25°C 105 Full range 100 ICC Supply current ∆ICC Supply-current change over operating temperature range – 0.3 to 4 4 0.8 4.3 4 0.8 105 110 170 230 1.5 120 105 110 dB 120 dB 100 170 230 170 230 6 230 230 6 V V/µV 80 230 6 0.8 0.9 85 100 Full range V 0.25 80 120 4.3 0.7 0.3 nA V 0.9 1.5 nA – 0.3 to 4 3.9 0.7 85 70 90 0 to 3.5 0.25 110 25 0 to 3.2 0.9 0.3 6 10 70 3.9 1.5 0.2 90 0 to 3.5 4.3 Full range Full range 25 15 to 3.2 0.7 Low level output voltage Low-level 6 10 70 3.9 VOL 25°C 0.2 90 25°C RS = 50 Ω 6 10 25°C VO = 2.5 V, No load MAX 2 Full range RL = 10 kΩ TLE2021BI TYP 2 Full range High level output voltage High-level MIN 950 Full range VIC = 0, RS = 50 Ω TLE2021AI TYP µA µA † Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Template Release Date: 7–11–94 VIO TEST CONDITIONS TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191 – FEBRUARY 1997 16 TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) TLE2021 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VOM + Common-mode input voltage g range g TA† TLE2021I MIN 25°C 500 80 200 MIN TYP MAX 40 100 500 200 UNIT µV 2 µV/°C 25°C 0.006 0.006 0.006 µV/mo 25°C 0.2 25°C 25 – 15 to 13.5 Full range – 15 to 3.2 25°C Full range 14 25°C – 13.7 Full range – 13.6 AVD Large-signal g g differential voltage amplification VO = 10 V,, RL = 10 kΩ Full range 0.75 CMRR Common mode rejection ratio Common-mode VIC = VICR min,, RS = 50 Ω 25°C 100 Full range 96 kSVR Supply-voltage y g rejection j ratio (∆VCC /∆VIO) VCC ± = ± 2. 5 V to ± 15 V 25°C 105 Full range 100 ICC Supply current 25°C – 15.3 to 14 1 25 – 15.3 to 14 14 – 13.7 1 14.3 100 14 – 14.1 – 13.7 105 6.5 1 115 100 300 105 200 300 – 14.1 V 6.5 V/µV 115 dB 120 200 300 dB 300 300 7 µA µA † Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 17 SLOS191 – FEBRUARY 1997 7 nA V 100 300 7 14.3 96 120 nA V 0.75 100 200 – 15.3 to 14 – 13.6 96 120 90 13.9 0.75 115 70 15 to 3.2 – 13.6 6.5 25 – 15 to 13.5 13.9 – 14.1 6 10 90 – 15 to 13.5 14.3 0.2 70 15 to 3.2 Full range Full range 6 10 70 13.9 Maximum negative peak output g voltage swing 25°C 0.2 90 25°C RS = 50 Ω 6 10 Full range VO = 0 V, V No load MAX 2 Full range RL = 10 kΩ TLE2021BI TYP 2 Full range Maximum positive peak output voltage swing Supply-current change over operating temperature range 120 MIN 850 VOM – ∆ICC MAX Full range VIC = 0, RS = 50 Ω TLE2021AI TYP TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR VOH Common-mode input voltage range VIC = 0 0, RS = 50 Ω TYP CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO) VCC = 5 V to 30 V ICC Supply current 400 µV 2 2 µV/°C 25°C 0 005 0.005 0 005 0.005 0 005 0.005 µV/mo 25°C 0.5 35 0.4 70 Full range g 0 to 3.2 4 – 0.3 to 4 33 – 0.3 to 4 4 0.8 0.3 0.2 25°C 85 Full range 80 25°C 100 Full range 95 1.5 4.3 4 0.8 87 1.5 103 450 600 102 0.8 0.9 1.5 90 118 105 105 dB 120 dB 100 450 600 450 600 15 600 600 15 V V/µV 85 600 15 V 0.2 98 Full range nA V 4.3 0.7 0.5 82 115 – 0.3 to 4 0.9 0.2 100 90 3.9 0.7 0.4 70 nA 0 to 3.2 0.9 25°C 30 0 to 3.5 3.9 0.7 6 10 70 0 to 3.2 4.3 0.3 90 0 to 3.5 3.9 Full range 6 10 90 0 to 3.5 Full range 6 10 25°C 25°C No load UNIT 2 Full range VO = 2 2.5 5V V, MAX 550 25°C RL = 10 kΩ TYP 800 Full range VO = 1.4 1 4 V to 4 V, V MIN Full range 25°C Large-signal g g differential voltage amplification TLE2022BI MAX 250 RS = 50 Ω AVD TYP 400 Full range Low level output voltage Low-level MIN 600 25°C VOL TLE2022AI MAX 25°C Full range High level output voltage High-level Supply y current change g over operating temperature range TLE2022I MIN Full range RL = 10 kΩ ∆ICC TA† µA µA † Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Template Release Date: 7–11–94 VIO TEST CONDITIONS TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191 – FEBRUARY 1997 18 TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4) IIO Input offset current IIB Input bias current Common-mode input voltage g range g 25°C VIC = 0 0, RS = 50 Ω MAX 150 500 VO = ± 10 V V, CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO) 2 5 V to ± 15 V VCC = ± 2.5 ICC Supply current No load 70 150 450 300 UNIT µV 0 006 0.006 0 006 0.006 µV/mo 25°C 0.5 35 0.4 70 Full range g – 15 to 13.2 14 – 15.3 to 14 33 – 13.7 Full range – 13.6 25°C 0.8 Full range 0.8 25°C 95 Full range 91 25°C 100 Full range 95 – 15.3 to 14 14 – 13.7 1 14.3 97 14 – 14.1 – 13.7 103 7 1.5 109 100 Full range 700 105 550 700 – 14.1 V 10 V/µV 112 dB 120 550 700 dB 700 700 30 µA µA † Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 19 SLOS191 – FEBRUARY 1997 30 nA V 100 700 30 14.3 96 118 nA V 1.5 98 550 – 15.3 to 14 – 13.6 93 115 90 13.9 1 106 70 – 15 to 13.2 – 13.6 4 30 – 15 to 13.5 13.9 – 14.1 6 10 70 – 15 to 13.2 14.3 0.3 90 – 15 to 13.5 13.9 25°C 6 10 90 – 15 to 13.5 Full range 6 10 25°C 25°C VO = 0 0, MAX 0 006 0.006 Full range RL = 10 kΩ 300 TYP 25°C 25°C Large-signal g g differential voltage amplification 120 MIN µV/°C RS = 50 Ω AVD MAX 2 25°C RL = 10 kΩ TLE2022BI TYP 2 Full range Maximum negative g peak output voltage swing MIN 2 Full range VOM – TLE2022AI TYP 700 Full range Maximum positive peak output voltage swing Supply y current change g over operating temperature range TLE2022I MIN Full range VOM + ∆ICC TA† TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR Common-mode input voltage g range VIC = 0, RS = 50 Ω TYP AVD Large-signal g g differential voltage amplification VO = 1.4 1 4 V to 4 V, V RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC± /∆VIO) VCC ± = ± 2.5 2 5 V to ± 15 V ICC Supply current TYP MAX 850 600 800 UNIT µV 2 2 2 µV/°C 25°C 0.005 0.005 0.005 µV/mo 25°C 0.6 45 0 to 3.5 Full range 0 to 3.2 25°C 3.9 Full range 3.7 40 0 to 3.5 – 0.3 to 4 3.9 Full range 0.1 25°C 80 Full range 80 25°C 98 Full range 93 1.5 4.2 4 0.8 1.5 100 Full range 115 103 800 1200 95 dB 117 800 1200 30 dB 1200 1200 30 V V/µV 98 1200 30 1.5 85 95 1200 0.8 0.95 85 nA V 0.1 92 nA V 4.3 0.7 0.4 82 800 – 0.3 to 4 3.8 0.1 112 90 0.95 82 70 0 to 3.2 0.7 0.3 90 35 0 to 3.5 3.7 0.8 6 10 70 0 to 3.2 4.2 0.4 90 0.95 0.2 6 10 70 – 0.3 to 4 0.7 25°C Full range 0.5 90 25°C 25°C 6 10 25°C No load MIN 1050 Full range VO = 0 0, TLE2024BI MAX 1100 RS = 50 Ω RL = 10 kΩ TYP 1300 Full range Maximum negative peak g output voltage swing MIN 25°C 25°C VOM – TLE2024AI MAX Full range Full range Maximum positive peak output voltage swing Supply current change over operating temperature range TLE2024I MIN Full range VOM + ∆ICC TA† µA µA † Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Template Release Date: 7–11–94 VIO TEST CONDITIONS TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191 – FEBRUARY 1997 20 TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VOM + Common-mode input voltage g range VIC = 0, RS = 50 Ω MIN TYP Large-signal g g differential voltage amplification VO = ± 10 V V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO) VCC ± = ± 2.5 2 5 V to ± 15 V ICC Supply current No load MAX MIN TYP MAX 750 500 950 700 UNIT µV 2 2 2 µV/°C 25°C 0.006 0.006 0.006 µV/mo 25°C 0.6 50 0.5 70 Full range – 15 to 13.2 25°C 13.8 Full range 13.7 25°C – 13.7 Full range – 13.6 25°C 0.4 Full range 0.4 25°C 92 Full range 88 25°C 98 Full range 93 – 15.3 to 14 6 45 70 – 15.3 to 14 13.9 – 13.7 14.2 0.8 14 – 14.1 – 13.7 94 4 1 105 97 100 1050 Full range 1400 115 103 1050 1400 – 14.1 V 7 V/µV 108 dB 117 1050 1400 dB 1400 1400 50 µA µA † Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 21 SLOS191 – FEBRUARY 1997 50 nA V 98 1400 50 14.3 93 95 nA V 1 90 112 – 15.3 to 14 – 13.6 0.8 102 90 13.8 – 13.6 2 70 – 15 to 13.2 13.7 – 14.1 40 – 15 to 13.5 – 15 to 13.2 6 10 90 – 15 to 13.5 14.1 0.4 10 90 – 15 to 13.5 Full range 6 10 25°C 25°C VO = 0 0, TYP 1200 RS = 50 Ω AVD MIN 1000 Full range Maximum negative peak output g voltage swing MAX TLE2024BI 25°C 25°C RL = 10 kΩ TLE2024AI Full range Full range Maximum positive peak output voltage swing Supply y current change g over operating temperature range TLE2024I Full range VOM – ∆ICC TA† TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR VOH Common-mode input voltage range MAX 120 600 RS = 50 Ω Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO) VCC = 5 V to 30 V ICC Supply current 300 µV µV/mo 25°C 0.2 25 0.2 70 Full range 0 to 3.2 4 – 0.3 to 4 25 – 0.3 to 4 4 0.8 Full range 0.1 25°C 85 Full range 80 25°C 105 Full range 100 1.5 4.3 4 85 0.8 1.5 105 170 230 120 105 170 230 110 dB 120 170 230 9 dB 230 230 9 V V/µV 100 230 9 1.5 80 100 Full range 0.8 0.95 85 nA V 0.1 110 nA V 4.3 0.7 0.3 80 120 – 0.3 to 4 0.95 0.1 110 90 3.8 0.7 0.3 70 0 to 3.2 0.95 0.3 25 0 to 3.5 3.8 0.7 6 10 70 0 to 3.2 4.3 0.2 90 0 to 3.5 3.8 25°C 6 10 90 0 to 3.5 Full range 6 10 25°C 25°C No load 600 0.005 Full range VO = 2 2.5 5V V, 200 0.005 25°C CMRR 80 UNIT 0.005 25°C RL = 10 kΩ MAX 25°C Full range VO = 1.4 1 4 V to 4 V, V 300 TYP µV/°C RS = 50 Ω Large-signal g g differential voltage amplification 100 MIN 2 25°C AVD MAX 2 Full range Low level output voltage Low-level TLE2021BM TYP 2 Full range VOL MIN 1100 Full range VIC = 0, TLE2021AM TYP Full range High level output voltage High-level Supply current change over operating temperature range TLE2021M MIN 25°C RL = 10 kΩ ∆ICC TA† µA µA † Full range is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Template Release Date: 7–11–94 VIO TEST CONDITIONS TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191 – FEBRUARY 1997 22 TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VOM + Common-mode input voltage range 25°C TYP 120 VIC = 0, RS = 50 Ω CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO) VCC ± = ± 2 2.5 5 V to ± 15 V ICC Supply current No load 40 100 500 200 UNIT µV 0.006 0.006 µV/mo 25°C 0.2 25 Full range – 15 to 13.2 14 – 15.3 to 14 25°C – 13.7 – 13.6 1 Full range 0.5 25°C 100 Full range 96 25°C 105 Full range 100 6 25 70 – 15.3 to 14 14 – 13.7 14.3 1 14 – 14.1 – 13.7 100 6.5 1 115 100 105 200 Full range 300 120 105 200 300 – 14.1 V 6.5 V/µV 115 dB 120 200 300 dB 300 300 10 µA µA † Full range is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 23 SLOS191 – FEBRUARY 1997 10 nA V 100 300 10 14.3 96 100 nA V 0.5 96 120 – 15.3 to 14 – 13.6 0.5 115 90 13.8 – 13.6 6.5 70 0 to 13.2 13.8 – 14.1 25 – 15 to 13.5 – 15 to 13.2 6 10 90 – 15 to 13.5 14.3 0.2 10 70 13.8 Full range Full range 0.2 90 – 15 to 13.5 25°C 6 10 25°C 25°C VO = 0 0, MAX 0.006 25°C RL = 10 kΩ 200 TYP 25°C Full range VO = ± 10 V V, 80 MIN µV/°C RS = 50 Ω Large-signal g g differential voltage amplification MAX 2 25°C AVD 500 TLE2021BM TYP 2 Full range Maximum negative peak g output voltage swing MIN 2 Full range RL = 10 kΩ TLE2021AM MAX 1000 Full range Maximum positive peak output voltage swing Supply current change over operating temperature range TLE2021M MIN Full range VOM – ∆ICC TA† TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR VOH Common-mode input voltage g range g VIC = 0 0, RS = 50 Ω TYP CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO) VCC = 5 V to 30 V ICC Supply current 400 µV 2 2 µV/°C 25°C 0 005 0.005 0 005 0.005 0 005 0.005 µV/mo 25°C 0.5 35 0.4 70 Full range g 0 to 3.2 4 – 0.3 to 4 33 – 0.3 to 4 4 0.8 0.3 0.1 25°C 85 Full range 80 25°C 100 Full range 95 1.5 4.3 4 0.8 87 1.5 103 450 600 118 105 450 600 105 dB 120 450 600 37 dB 600 600 37 V V/µV 100 600 37 1.5 85 98 Full range 0.8 0.95 90 nA V 0.1 102 nA V 4.3 0.7 0.5 82 115 – 0.3 to 4 0.95 0.1 100 90 3.8 0.7 0.4 70 0 to 3.2 0.95 25°C 30 0 to 3.5 3.8 0.7 6 10 70 0 to 3.2 4.3 0.3 90 0 to 3.5 3.8 Full range 6 10 90 0 to 3.5 Full range 6 10 25°C 25°C No load UNIT 2 Full range VO = 2 2.5 5V V, MAX 550 25°C RL = 10 kΩ TYP 800 Full range VO = 1.4 1 4 V to 4 V, V MIN Full range 25°C Large-signal g g differential voltage amplification TLE2022BM MAX 250 RS = 50 Ω AVD TYP 400 Full range Low level output voltage Low-level MIN 600 25°C VOL TLE2022AM MAX 25°C Full range High level output voltage High-level Supply y current change g over operating temperature range TLE2022M MIN Full range RL = 10 kΩ ∆ICC TA† µA µA † Full range is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Template Release Date: 7–11–94 VIO TEST CONDITIONS TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191 – FEBRUARY 1997 24 TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4) IIO Input offset current IIB Input bias current Common-mode input voltage g range g 25°C VIC = 0 0, RS = 50 Ω MAX 150 500 VO = ± 10 V V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO) 2 5 V to ± 15 V VCC ± = ± 2.5 ICC Supply current 70 150 450 300 UNIT µV 0 006 0.006 0 006 0.006 µV/mo 25°C 0.5 35 0.4 70 Full range g – 15 to 13.2 14 – 15.3 to 14 33 – 13.7 Full range – 13.6 25°C 0.8 Full range 0.8 25°C 95 Full range 91 25°C 100 Full range 95 – 15.3 to 14 14 – 13.7 1 14.3 97 14 – 14.1 – 13.7 103 7 1.5 109 100 Full range 700 105 550 700 – 14.1 V 10 V/µV 112 dB 120 550 700 dB 700 700 60 µA µA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 25 SLOS191 – FEBRUARY 1997 60 nA V 100 700 60 14.3 96 118 nA V 1.5 98 550 – 15.3 to 14 – 13.6 93 115 90 13.9 1 106 70 – 15 to 13.2 – 13.6 4 30 – 15 to 13.5 13.9 – 14.1 6 10 70 – 15 to 13.2 14.3 0.3 90 – 15 to 13.5 13.9 25°C 6 10 90 – 15 to 13.5 Full range 6 10 25°C Full range No load MAX 0 006 0.006 25°C VO = 0 0, 300 TYP 25°C 25°C Large-signal g g differential voltage amplification 120 MIN µV/°C RS = 50 Ω AVD MAX 2 25°C RL = 10 kΩ TLE2022BM TYP 2 Full range Maximum negative g peak output voltage swing MIN 2 Full range VOM – TLE2022AM TYP 700 Full range Maximum positive peak output voltage swing Supply y current change g over operating temperature range TLE2022M MIN Full range VOM + ∆ICC TA† TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR Common-mode input voltage g range VIC = 0, RS = 50 Ω TYP AVD Large-signal g g differential voltage amplification VO = 1.4 1 4 V to 4 V, V RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC± /∆VIO) VCC ± = ± 2.5 2 5 V to ± 15 V ICC Supply current TYP MAX 850 600 800 UNIT µV 2 2 2 µV/°C 25°C 0.005 0.005 0.005 µV/mo 25°C 0.6 45 0 to 3.5 Full range 0 to 3.2 25°C 3.9 Full range 3.7 40 0 to 3.5 – 0.3 to 4 3.9 Full range 0.1 25°C 80 Full range 80 25°C 98 Full range 93 1.5 4.2 4 0.8 1.5 100 Full range 115 103 800 1200 95 dB 117 800 1200 50 dB 1200 1200 50 V V/µV 98 1200 50 1.5 85 95 1200 0.8 0.95 85 nA V 0.1 92 nA V 4.3 0.7 0.4 82 800 – 0.3 to 4 3.8 0.1 112 90 0.95 82 70 0 to 3.2 0.7 0.3 90 35 0 to 3.5 3.7 0.8 6 10 70 0 to 3.2 4.2 0.4 90 0.95 0.2 6 10 70 – 0.3 to 4 0.7 25°C Full range 0.5 90 25°C 25°C 6 10 25°C No load MIN 1050 Full range VO = 0 0, TLE2024BM MAX 1100 RS = 50 Ω RL = 10 kΩ TYP 1300 Full range Maximum negative peak g output voltage swing MIN 25°C 25°C VOM – TLE2024AM MAX Full range Full range Maximum positive peak output voltage swing Supply current change over operating temperature range TLE2024M MIN Full range VOM + ∆ICC TA† µA µA † Full range is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. Template Release Date: 7–11–94 VIO TEST CONDITIONS TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191 – FEBRUARY 1997 26 TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted) TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VOM + Common-mode input voltage g range VIC = 0, RS = 50 Ω MIN TYP Large-signal g g differential voltage amplification VO = ± 10 V V, RL = 10 kΩ CMRR Common mode rejection ratio Common-mode VIC = VICRmin min, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO) VCC ± = ± 2.5 2 5 V to ± 15 V ICC Supply current No load MAX MIN TYP MAX 750 500 950 700 UNIT µV 2 2 2 µV/°C 25°C 0.006 0.006 0.006 µV/mo 25°C 0.6 50 0.5 70 Full range – 15 to 13.2 25°C 13.8 Full range 13.7 25°C – 13.7 Full range – 13.6 25°C 0.4 Full range 0.4 25°C 92 Full range 88 25°C 98 Full range 93 – 15.3 to 14 6 45 70 – 15.3 to 14 13.9 – 13.7 14.2 0.8 14 – 14.1 – 13.7 94 4 1 105 97 100 1050 Full range 1400 115 103 1050 1400 – 14.1 V 7 V/µV 108 dB 117 1050 1400 dB 1400 1400 85 µA µA † Full range is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 27 SLOS191 – FEBRUARY 1997 85 nA V 98 1400 85 14.3 93 95 nA V 1 90 112 – 15.3 to 14 – 13.6 0.8 102 90 13.8 – 13.6 2 70 – 15 to 13.2 13.7 – 14.1 40 – 15 to 13.5 – 15 to 13.2 6 10 90 – 15 to 13.5 14.1 0.4 10 90 – 15 to 13.5 Full range 6 10 25°C 25°C VO = 0 0, TYP 1200 RS = 50 Ω AVD MIN 1000 Full range Maximum negative peak output g voltage swing MAX TLE2024BM 25°C 25°C RL = 10 kΩ TLE2024AM Full range Full range Maximum positive peak output voltage swing Supply y current change g over operating temperature range TLE2024M Full range VOM – ∆ICC TA† TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR TEST CONDITIONS Slew rate at unity gain VO = 1 V to 3 V, f = 10 Hz See Figure 1 TA C SUFFIX MIN TYP I SUFFIX MAX MIN TYP M SUFFIX MAX MIN TYP 25°C 0.5 25°C 21 50 0.5 21 50 21 30 17 30 17 MAX 0.5 Vn Equivalent q input noise voltage g (see Figure 2) f = 1 kHz 25°C 17 VN(PP) Peak-to-peak equivalent q input noise voltage f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 UNIT V/µs nV/Hz µV In B1 Equivalent input noise current 25°C 0.09 0.09 0.9 pA/Hz Unity-gain bandwidth See Figure 3 25°C 1.2 1.2 1.2 MHz φm Phase margin at unity gain See Figure 3 25°C 42° 42° 42° TLE2021 operating characteristics at specified free-air temperature, VCC = ± 15 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PARAMETER TEST CONDITIONS MIN TYP 25°C 0.45 0.65 Full range 0.45 I SUFFIX MAX MIN TYP 0.45 0.65 M SUFFIX MAX MIN TYP 0.45 0.65 SR Slew rate at unity gain VO = 1V to 3 V V, Vn Equivalent q input noise voltage g (see Figure 2) f = 10 Hz 25°C 19 50 19 50 19 f = 1 kHz 25°C 15 30 15 30 15 VN(PP) Peak-to-peak equivalent q input noise voltage f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 25°C 0.09 0.09 0.09 25°C 2 2 2 In B1 Equivalent input noise current Unity-gain bandwidth See Figure 3 See Figure 1 C SUFFIX TA† 0.42 0.45 φm Phase margin at unity gain See Figure 3 25°C 46° 46° † Full range is 0°C to 70°C for the C-suffix devices, – 40°C to 85°C for the I-suffix devices, and – 55°C to 125°C for the M-suffix devices. 46° MAX UNIT V/µs nV/Hz µV pA/Hz MHz Template Release Date: 7–11–94 SR TEST CONDITIONS TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191 – FEBRUARY 1997 28 TLE2021 operating characteristics, VCC = 5 V, TA = 25°C TLE2022 operating characteristics, VCC = 5 V, TA = 25°C PARAMETER SR TEST CONDITIONS Slew rate at unity gain VO = 1 V to 3 V, f = 10 Hz Vn Equivalent q input noise voltage g (see Figure 2) VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current B1 φm Unity-gain bandwidth See Figure 3 Phase margin at unity gain See Figure 3 C SUFFIX MIN See Figure 1 TYP I SUFFIX MAX MIN 0.5 f = 1 kHz TYP M SUFFIX MAX MIN TYP 0.5 MAX 0.5 21 50 21 50 21 17 30 17 30 17 UNIT V/µs nV/√Hz f = 0.1 to 1 Hz 0.16 0.16 0.16 f = 0.1 to 10 Hz 0.47 0.47 0.47 0.1 0.1 0.1 pA/√Hz 1.7 1.7 1.7 MHz 47° 47° 47° µV PARAMETER TEST CONDITIONS C SUFFIX TA† MIN TYP 25°C 0.45 0.65 Full range 0.45 I SUFFIX MAX MIN TYP 0.45 0.65 M SUFFIX MAX MIN TYP 0.45 0.65 SR Slew rate at unity gain VO = ± 10 V V, Vn Equivalent q input noise voltage (see Figure 2) f = 10 Hz 25°C 19 50 19 50 19 f = 1 kHz 25°C 15 30 15 30 15 VN(PP) Peak-to-peak equivalent q input noise voltage f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 In B1 Equivalent input noise current Unity-gain bandwidth φm Phase margin at unity gain † Full range is 0°C to 70°C. See Figure 1 0.42 0.4 MAX UNIT V/µs nV/√Hz µV 25°C 0.1 0.1 0.1 pA/√Hz See Figure 3 25°C 2.8 2.8 2.8 MHz See Figure 3 25°C 52° 52° 52° SLOS191 – FEBRUARY 1997 29 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2022 operating characteristics at specified free-air temperature, VCC = ± 15 V Slew rate at unity gain VO = 1 V to 3 V, f = 10 Hz Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In B1 Equivalent input noise current Unity-gain bandwidth See Figure 3 φm Phase margin at unity gain See Figure 3 C SUFFIX MIN See Figure 1 TYP I SUFFIX MAX MIN 0.5 f = 1 kHz TYP M SUFFIX MAX MIN TYP 0.5 MAX 0.5 21 50 21 50 21 17 30 17 30 17 UNIT V/µs nV/√ Hz f = 0.1 to 1 Hz 0.16 0.16 0.16 f = 0.1 to 10 Hz 0.47 0.47 0.47 0.1 0.1 0.1 pA/√Hz 1.7 1.7 1.7 MHz 47° 47° 47° µV TLE2024 operating characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PARAMETER TEST CONDITIONS TA† C SUFFIX MIN TYP 25°C 0.45 0.7 Full range 0.45 I SUFFIX MAX MIN TYP 0.45 0.7 M SUFFIX MAX MIN TYP 0.45 0.7 MAX UNIT SR Slew rate at unity gain VO = ± 10 V V, Vn Equivalent q input noise voltage g (see Figure 2) f = 10 Hz 25°C 19 50 19 50 19 f = 1 kHz 25°C 15 30 15 30 15 VN(PP) Peak-to-peak equivalent q input noise voltage f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 25°C 0.1 0.1 0.1 pA/√Hz MHz In B1 Equivalent input noise current Unity-gain bandwidth φm Phase margin at unity gain † Full range is 0°C to 70°C. See Figure 1 0.42 0.4 See Figure 3 25°C 2.8 2.8 2.8 See Figure 3 25°C 52° 52° 52° V/µs nV/√Hz µV Template Release Date: 7–11–94 SR TEST CONDITIONS TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS191 – FEBRUARY 1997 30 TLE2024 operating characteristics, VCC = 5 V, TA = 25°C TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TLE2021Y electrical characteristics at VCC = 5 V, TA = 25°C (unless otherwise noted) PARAMETER VIO TEST CONDITIONS Input offset voltage TYP MAX Input offset current Input bias current RS = 50 Ω VICR Common-mode input voltage range VOH VOL Maximum high-level output voltage AVD CMRR Large-signal differential voltage amplification kSVR Supply-voltage rejection ratio (∆VCC ± /∆VIO) RL = 10 kΩ Maximum low-level output voltage Common-mode rejection ratio VO = 1.4 to 4 V, VIC = VICR min, µV/mo 0.005 RS = 50 Ω VIC = 0 0, RL = 10 kΩ RS = 50 Ω VCC = 5 V to 30 V VO = 2.5 V, No load UNIT µV 150 Input offset voltage long-term drift (see Note 4) IIO IIB TLE2021Y MIN 0.5 nA 35 nA – 0.3 to 4 V 4.3 V 0.7 V 1.5 V/µV 100 dB 115 dB ICC Supply current 400 µA NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE2021Y operating characteristics at VCC = 5 V, TA = 25°C PARAMETER TEST CONDITIONS SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current B1 φm TLE2021Y MIN TYP VO = 1 V to 3 V f = 10 Hz 0.5 f = 1 kHz 17 MAX UNIT V/µs 21 f = 0.1 to 1 Hz 0.16 f = 0.1 to 10 Hz 0.47 nV/√Hz µV 0.1 pA/√Hz Unity-gain bandwidth 1.7 MHz Phase margin at unity gain 47° POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TLE2022Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted) PARAMETER VIO TEST CONDITIONS Input offset voltage Input offset voltage long-term drift (see Note 4) IIO IIB TLE2022Y MIN Input offset current VIC = 0 0, RS = 50 Ω VOH VOL Maximum high-level output voltage AVD CMRR Large-signal differential voltage amplification kSVR Supply-voltage rejection ratio (∆VCC ± /∆VIO) Common-mode rejection ratio VO = 1.4 to 4 V, VIC = VICR min, 600 µV µV/mo 0.5 nA 35 nA V 4.3 V 0.7 V RL= 10 kΩ 1.5 V/µV RS = 50 Ω 100 dB 115 dB RL = 10 kΩ Maximum low-level output voltage 150 UNIT – 0.3 to 4 RS = 50 Ω Common-mode input voltage range MAX 0.005 Input bias current VICR TYP VCC = 5 V to 30 V VO = 2.5 V, No load ICC Supply current 450 µA NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE2022Y operating characteristics, VCC = 5 V, TA = 25°C PARAMETER SR TEST CONDITIONS Slew rate at unity gain VO = 1 V to 3 V, f = 10 Hz See Figure 1 TLE2022Y MIN TYP 0.5 MAX UNIT V/µs 21 Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current 0.1 pA/√Hz B1 φm Unity-gain bandwidth See Figure 3 1.7 MHz Phase margin at unity gain See Figure 3 47° 32 f = 1 kHz 17 f = 0.1 to 1 Hz 0.16 f = 0.1 to 10 Hz 0.47 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 nV/√Hz µV TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TLE2024Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS TLE2024Y MIN Input offset voltage long-term drift (see Note 4) IIO IIB Input offset current VICR Common-mode input voltage range VOH VOL High-level output voltage MAX RS = 50 Ω Input bias current RS = 50 Ω RL = 10 kΩ UNIT µV/mo 0.005 VIC = 0, Low-level output voltage TYP 0.6 nA 45 nA – 0.3 to 4 V 4.2 V 0.7 V AVD Large-signal differential voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩ 1.5 V/µV CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 Ω 90 dB kSVR Supply-voltage rejection ratio (∆VCC /∆VIO) VCC = 5 V to 30 V 112 dB ICC Supply current VO = 2.5 V, No load 800 µA NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TLE2024Y operating characteristics, VCC = 5 V, TA = 25°C PARAMETER SR TEST CONDITIONS Slew rate at unity gain VO = 1 V to 3 V, f = 10 Hz See Figure 1 TLE2024Y MIN TYP 0.5 MAX UNIT V/µs 21 Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In B1 Equivalent input noise current 0.1 pA/√Hz Unity-gain bandwidth See Figure 3 1.7 MHz φm Phase margin at unity gain See Figure 3 47° POST OFFICE BOX 655303 f = 1 kHz 17 f = 0.1 to 1 Hz 0.16 f = 0.1 to 10 Hz 0.47 • DALLAS, TEXAS 75265 nV/√ Hz µV 33 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 PARAMETER MEASUREMENT INFORMATION 20 kΩ 20 kΩ 5V 15 V – – VO VO VI + 30 pF (see Note A) + VI – 15 V 30 pF (see Note A) 20 kΩ (a) SINGLE SUPPLY 20 kΩ (b) SPLIT SUPPLY NOTE A: CL includes fixture capacitance. Figure 1. Slew-Rate Test Circuit 2 kΩ 2 kΩ 15 V 5V – 20 Ω VO – + VO 2.5 V + – 15 V 20 Ω 20 Ω 20 Ω (a) SINGLE SUPPLY (b) SPLIT SUPPLY Figure 2. Noise-Voltage Test Circuit 10 kΩ 10 kΩ 5V 15 V 100 Ω – VI VI VO 2.5 V – 100 Ω VO + + 30 pF (see Note A) – 15 V 30 pF (see Note A) 10 kΩ (a) SINGLE SUPPLY (b) SPLIT SUPPLY NOTE A: CL includes fixture capacitance. Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 kΩ TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 PARAMETER MEASUREMENT INFORMATION 5V – – 10 kΩ VI VO VO VI + 10 kΩ + 0.1 µF 15 V – 15 V 10 kΩ 30 pF (see Note A) 30 pF (see Note A) (a) SINGLE SUPPLY 10 kΩ (b) SPLIT SUPPLY NOTE A: CL includes fixture capacitance. Figure 4. Small-Signal Pulse-Response Test Circuit typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS Table of Graphs FIGURE 36 VIO Input offset voltage Distribution IIB Input bias current vs Common-mode input voltage vs Free-air temperature II Input current vs Differential input voltage VOM Maximum peak output voltage vs Output current vs Free-air temperature VOH High-level output voltage vs High-level output current vs Free-air temperature 19, 20 21 VOL Low-level output voltage vs Low-level output current vs Free-air temperature 22 23 VO(PP) Maximum peak-to-peak output voltage vs Frequency AVD Large-signal differential voltage amplification vs Frequency vs Free-air temperature 26 27, 28, 29 IOS Short-circuit output current vs Supply voltage vs Free-air temperature 30 – 33 34 – 37 ICC Supply current vs Supply voltage vs Free-air temperature 38, 39, 40 41, 42, 43 CMRR Common-mode rejection ratio vs Frequency 44, 45, 46 SR Slew rate vs Free-air temperature 47, 48, 49 Voltage-follower small-signal pulse response vs Time 50, 51 Voltage-follower large-signal pulse response vs Time 52 – 57 VN(PP) Peak-to-peak equivalent input noise voltage 0.1 to 1 Hz 0.1 to 10 Hz 58 59 Vn Equivalent input noise voltage vs Frequency 60 B1 Unity-gain bandwidth vs Supply voltage vs Free-air temperature 61, 62 63, 64 φm Phase margin vs Supply voltage vs Load capacitance vs Free-air temperature 65, 66 67, 68 69, 70 Phase shift vs Frequency POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5, 6, 7 8, 9, 10 11, 12, 13 14 15, 16, 17 18 24, 25 26 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLE2022 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLE2021 INPUT OFFSET VOLTAGE 20 ÏÏÏÏÏÏÏÏÏÏÏ 20 231 Units Tested From 1 Wafer Lot VCC ± = ± 15 V ÏÏÏÏ TA = 25°C P Package 16 Percentage of Units – % Percentage of Units – % 16 398 Amplifiers Tested From 1 Wafer Lot VCC ± = ± 15 V TA = 25°C 12 8 P Package 12 8 4 4 0 0 150 300 450 – 600 – 450 – 300 – 150 VIO – Input Offset Voltage – µV 0 – 600 600 – 400 – 200 0 200 400 VIO – Input Offset Voltage – µV Figure 5 Figure 6 TLE2021 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE DISTRIBUTION OF TLE2024 INPUT OFFSET VOLTAGE 16 – 40 796 Amplifiers Tested From 1 Wafer Lot VCC ± = ± 15 V TA = 25°C N Package VCC ± = ± 15 V TA = 25°C – 35 I IB – Input Bias Current – nA IIB Percentage of Units – % 600 12 8 4 – 30 – 25 – 20 – 15 – 10 –5 0 –1 – 0.5 0 0.5 1 VIO – Input Offset Voltage – mV 0 – 15 – 10 –5 0 5 10 VIC – Common-Mode Input Voltage – V 15 Figure 8 Figure 7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2022 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE TLE2024 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE – 50 – 60 VCC ± = ± 15 V TA = 25°C IIIB IB – Input Bias Current – nA IIB I IB – Input Bias Current – nA – 45 VCC ± = ± 15 V TA = 25°C – 40 – 35 – 50 – 40 ÁÁ ÁÁ – 30 – 25 – 20 – 15 – 20 – 15 15 – 10 –5 0 5 10 VIC – Common-Mode Input Voltage – V – 30 – 10 –5 10 15 TLE2022 INPUT BIAS CURRENT† vs FREE-AIR TEMPERATURE TLE2021 INPUT BIAS CURRENT† vs FREE–AIR TEMPERATURE – 50 – 35 VCC ± = ± 15 V VO = 0 VIC = 0 – 25 – 20 – 15 – 10 VCC ± = ± 15 V VO = 0 VIC = 0 – 45 IIIB IB – Input Bias Current – nA IIB I IB – Input Bias Current – nA 5 Figure 10 Figure 9 – 30 0 VIC – Common-Mode Input Voltage – V – 40 – 35 – 30 – 25 –5 0 – 75 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 – 20 – 75 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 11 Figure 12 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2024 INPUT BIAS CURRENT† vs FREE-AIR TEMPERATURE ÏÏÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ 1 VCC± = ±15 V VO = 0 VIC = 0 – 50 – 40 ÁÁ ÁÁ VCC± = ±15 V VIC = 0 TA = 25°C 0.9 0.8 I III – Input Current – mA IIB – Input Bias Current – nA IIB – 60 INPUT CURRENT vs DIFFERENTIAL INPUT VOLTAGE – 30 0.7 0.6 0.5 0.4 0.3 0.2 0.1 – 20 – 75 0 – 50 – 25 0 25 50 75 100 0 125 TA – Free-Air Temperature – °C 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 |VID| – Differential Input Voltage – V Figure 14 Figure 13 TLE2022 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT TLE2021 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT 16 12 VCC ± = ± 15 V TA = 25°C |VVOM| OM – Maximum Peak Output Voltage – V VOM – Maximum Peak Output Voltage – V V OM 16 14 ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ VOM+ 10 ÁÁ ÁÁ ÁÁ VOM – 8 1 6 ÁÁ ÁÁ 4 2 0 0 2 4 6 8 IO – Output Current – mA 10 VCC ± = ± 15 V TA = 25°C 14 12 ÏÏÏ ÏÏÏ 10 VOM– 8 ÏÏÏÏ ÏÏÏÏ VOM+ 6 4 2 0 0 2 8 10 4 6 |IO| – Output Current – mA 12 14 Figure 16 Figure 15 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2024 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT ÁÁ ÁÁ ÁÁ 15 ÏÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ VCC ± = ± 5 V TA = 25°C 14 12 |VVOM| OM – Maximum Peak Output Voltage – V VOM – Maximum Peak Output Voltage – V VOM 16 MAXIMUM PEAK OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE VOM + 10 VOM – 8 6 4 2 0 0 2 8 10 4 6 IO – Output Current – mA 12 14 14.5 VOM + 14 VOM – 13.5 ÁÁ ÁÁ ÁÁ 13 12.5 12 – 75 VCC ± = ± 15 V RL = 10 kΩ TA = 25°C – 50 Figure 17 Figure 18 TLE2021 HIGH–LEVEL OUTPUT VOLTAGE vs HIGH–LEVEL OUTPUT CURRENT TLE2022 AND TLE2024 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 5 5 VCC = 5 V TA = 25°C VOH – High-Level Output Voltage – V VOH VOH VOH – High-Level Output Voltage – V – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 4 3 2 ÁÁÁ ÁÁÁ VCC = 5 V TA = 25°C 4 3 2 ÁÁ ÁÁ 1 1 0 0 0 –1 –2 –3 –4 –5 –6 IOH – High-Level Output Current – mA –7 0 –2 –4 –6 –8 – 10 IOH – High-Level Output Current – mA Figure 20 Figure 19 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS 5 HIGH-LEVEL OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 5 VCC = 5 V TA = 25°C VOL VOL – Low-Level Output Voltage – V VOH VOH – High-Level Output Voltage – V VCC = 5 V 4.8 4.6 No Load 4.4 ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ RL = 10 kΩ 4.2 4 – 75 – 50 – 25 0 25 50 75 100 4 3 2 1 0 125 0 0.5 1 1.5 2 2.5 IOL – Low-Level Output Current – mA TA – Free-Air Temperature – °C Figure 21 Figure 22 LOW-LEVEL OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE VVOPP O(PP) – Maximum Peak-to-Peak Output Voltage – V MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY VOL VOL – Low-Level Output Voltage – V 1 IOL = 1 mA 0.75 IOL = 0 0.5 ÁÁ ÁÁ 0.25 VCC ± = ± 5 V 0 – 75 – 50 3 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 5 4 3 2 ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ 1 VCC = 5 V RL = 10 kΩ TA = 25°C 0 100 Figure 23 1k 10 k 100 k f – Frequency – Hz 1M Figure 24 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY VVOPP O(PP) – Maximum Peak-to-Peak Output Voltage – V 30 25 20 15 10 ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ VCC ± = ± 15 V RL = 10 kΩ TA = 25°C 5 0 100 1k 10 k 100 k f – Frequency – Hz 1M Figure 25 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏÏ ÏÏÏÏÏÏ AVD – Large-Signal Differential Voltage Amplification – dB 100 80° Phase Shift 80 100° VCC ± = ± 15 V AVD 60 120° VCC = 5 V 40 140° 20 160° 0 – 20 ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ RL = 10 kΩ CL = 30 pF TA = 25°C 10 100 180° 200° 1k 10 k 100 k f – Frequency – Hz 1M Figure 26 42 60° POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 M Phase Shift 120 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2021 LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE–AIR TEMPERATURE TLE2022 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE 10 6 RL = 10 kΩ ÏÏÏÏÏ ÏÏÏÏÏ 8 5 AVD AVD – Large-Signal Differential Voltage Amplification – V/µV AVD – Large-Signal Differential Voltage Amplification – V/ µ V RL = 10 kΩ VCC ± = ± 15 V 6 4 2 ÁÁ ÁÁ ÁÁ ÏÏÏÏ ÏÏÏÏ VCC = 5 V 0 – 75 – 50 – 25 0 25 50 75 100 VCC ± = ± 15 V 4 3 2 1 VCC = 5 V 0 – 75 125 – 50 TA – Free-Air Temperature – °C – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 28 Figure 27 TLE2024 LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE TLE2021 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE ÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ 10 10 VCC ± = ± 15 V 6 4 2 VCC ± = ± 5 V 0 – 75 – 50 – 25 0 25 50 75 100 125 IIOS OS – Short-Circuit Output Current – mA AVD – Large-Signal Differential Voltage Amplification – V/ µ V RL = 10 kΩ 8 125 ÁÁ ÁÁ VO = 0 TA = 25°C 8 6 VID = –100 mV 4 2 0 –2 –4 ÏÏÏÏÏ –6 VID = 100 mV –8 – 10 0 2 TA – Free-Air Temperature – °C 4 6 8 10 12 |VCC ±| – Supply Voltage – V 14 16 Figure 30 Figure 29 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE TLE2021 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 12 VO = 0 TA = 25°C IIOS OS – Short-Circuit Output Current – mA I OS – Short-Circuit Output Current – mA IOS 15 ÏÏÏÏÏÏ ÏÏÏÏÏÏ 10 VID = –100 mV 5 0 –5 VID = 100 mV – 10 – 15 0 2 4 6 8 10 12 14 16 |VCC ±| – Supply Voltage – V TA = 25°C 8 VID = –100 mV VO = VCC 4 0 –4 ÁÁ ÁÁ ÁÁ VID = 100 mV VO = 0 –8 – 12 5 0 10 15 20 25 VCC – Supply Voltage – V Figure 32 Figure 31 TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE ÏÏÏÏÏ ÏÏÏÏÏ TLE2021 SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE 8 VCC = 5 V TA = 25°C IOS I OS – Short-Circuit Output Current – mA I OS – Short-Circuit Output CUrrent – mA IOS 15 10 VID = – 100 mV VO = VCC 5 0 –5 VID = 100 mV VO = 0 – 10 – 15 0 5 10 15 20 25 30 6 VID = –100 mV VO = 5 V 4 2 0 –2 VID = 100 mV VO = 0 ÁÁ ÁÁ –4 –6 –8 – 75 – 50 VCC – Supply Voltage – V – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 34 Figure 33 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 44 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE TLE2021 SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE 12 VCC = 5 V VID = –100 mV VO = 5 V 4 IOS I OS – Short-Circuit Output Current – mA IOS I OS – Short-Circuit Output Current – mA 6 2 0 –2 –4 ÏÏÏ ÏÏÏÏÏ ÏÏÏ –8 – 10 – 75 – 50 – 25 0 25 50 75 8 100 VID = –100 mV 4 0 –4 ÁÁ ÁÁ VID = 100 mV VO = 0 –6 VCC ± = ± 15 V VO = 0 –8 VID = 100 mV – 12 – 75 125 – 50 TA – Free-Air Temperature –°C – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 36 Figure 35 TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE TLE2021 SUPPLY CURRENT vs SUPPLY VOLTAGE 250 VO = 0 No Load VCC ± = ± 15 V VO = 0 200 A IICC CC – Supply Current – µua I OS – Short-Circuit Output Current – mA IOS 15 10 ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÁÁ ÏÏÏÏ ÁÁ 5 VID = – 100 mV 0 –5 VID = 100 mV 150 TA = 125°C TA = 25°C 100 TA = – 55°C 50 – 10 – 15 – 75 125 – 50 – 25 0 25 50 75 100 125 0 0 2 TA – Free-Air Temperature – °C 4 6 8 10 12 |VCC ±| – Supply Voltage – V 14 16 Figure 38 Figure 37 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2022 SUPPLY CURRENT vs SUPPLY VOLTAGE TLE2024 SUPPLY CURRENT vs SUPPLY VOLTAGE 500 VO = 0 No Load TA = 25°C 300 TA = 125°C TA = – 55°C 200 100 0 TA = 125°C 800 I CC – Supply Current – µ A IICC A CC – Supply Current – µua 400 ÁÁ ÁÁ ÁÁ ÏÏÏÏÏ 1000 VO = 0 No Load TA = 25°C 600 TA = – 55°C 400 200 0 2 4 6 8 10 12 |VCC ±| – Supply Voltage – V 14 0 16 0 2 4 8 10 12 14 16 |VCC ±| – Supply Voltage – V Figure 39 Figure 40 TLE2022 SUPPLY CURRENT† vs FREE-AIR TEMPERATURE TLE2021 SUPPLY CURRENT† vs FREE-AIR TEMPERATURE ÏÏÏÏÏÏ ÏÏÏÏÏÏ ÏÏÏÏÏÏ ÏÏÏÏÏÏ ÁÁ ÁÁ 225 6 500 VCC ± = ± 15 V 175 150 VCC ± = ± 2.5 V 125 100 ÁÁÁ ÁÁÁ 75 50 25 0 – 75 VCC ± = ± 15 V 400 IICC A CC – Supply Current – µua A IICC CC – Supply Current – µua 200 VCC ± = ± 2.5 V 300 200 100 VO = 0 No Load – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 VO = 0 No Load 0 – 75 – 50 Figure 41 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 42 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2021 COMMON-MODE REJECTION RATIO vs FREQUENCY TLE2024 SUPPLY CURRENT † vs FREE-AIR TEMPERATURE 1000 CMRR – Common-Mode Rejection Ratio – dB ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ VCC ± = ± 15 V 800 I CC – Supply Current – µ A 120 VCC ± = ± 2.5 V 600 400 200 VO = 0 No Load 0 – 75 – 50 – 25 0 25 50 75 100 ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 100 VCC ± = ± 15 V 80 VCC = 5 V 60 40 20 TA = 25°C 0 125 10 100 TA – Free-Air Temperature – °C 1k 10 k 100 k f – Frequency – Hz Figure 43 10 M Figure 44 TLE2024 COMMON-MODE REJECTION RATIO vs FREQUENCY TLE2022 COMMON-MODE REJECTION RATIO vs FREQUENCY ÏÏÏÏÏÏ 120 CMRR – Common-Mode Rejection Ratio – dB 120 CMRR – Common-Mode Rehection Ratio – dB 1M TA = 25°C 100 VCC ± = ± 15 V 80 VCC = 5 V 60 40 20 100 80 ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ VCC ± = ± 15 V VCC = 5 V 60 40 20 TA = 25°C 0 0 10 100 1k 10 k 100 k f – Frequency – Hz 1M 10 M 10 100 1k 10 k 100 k 1M 10 M f – Frequency – Hz Figure 45 Figure 46 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2022 SLEW RATE† vs FREE-AIR TEMPERATURE TLE2021 SLEW RATE† vs FREE-AIR TEMPERATURE 1 1 ÏÏÏÏÏÏ ÏÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ VCC ± = ± 15 V 0.8 SR – Slew Rate – V/ µ uss SR – Slew Rate – V/us µs 0.8 VCC = 5 V 0.6 0.4 0.2 0 – 75 0.6 VCC = 5 V 0.4 0.2 RL = 20 kΩ CL = 30 pF See Figure 1 – 50 VCC ± = ± 15 V – 25 0 25 50 75 100 TA – Free-Air Temperature – °C RL = 20 kΩ CL = 30 pF See Figure 1 0 – 75 125 – 50 TLE2024 SLEW RATE† vs FREE-AIR TEMPERATURE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 1 ÏÏÏÏÏ SR – Slew Rate – V/s V/ µ s VCC ± = ± 15 V VCC = 5 V 0.4 0 – 75 – 25 50 VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 4 ÏÏÏÏ ÏÏÏÏ 0 ÁÁ ÁÁ RL = 20 kΩ CL = 30 pF See Figure 1 – 50 VO – Output Voltage – mV VO 100 0.6 0.2 0 25 50 75 100 125 – 50 – 100 0 TA – Free-Air Temperature – °C Figure 49 20 40 t – Time – µs 60 Figure 50 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 48 125 Figure 48 Figure 47 0.8 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 80 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 2.55 4 VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 4 ÏÏÏÏ VO – Output Voltage – V VO VO – Output Voltage – V VO 2.6 TLE2021 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 2.5 ÁÁ ÁÁ 3 2.4 ÏÏÏÏÏ ÏÏÏÏÏ 2 ÁÁ ÁÁ 2.45 VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 1 0 0 20 40 t – Time – µs 60 80 0 Figure 51 ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ 4 VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 VO – Output Voltage – V VO VO VO – Output Voltage – V 80 TLE2024 VOLTAGE-FOLLOWER LARGE-SCALE PULSE RESPONSE 4 ÁÁ ÁÁ 60 Figure 52 TLE2022 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 3 20 40 t – Time – µs 2 1 3 VCC ± = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 2 1 0 0 0 20 40 t – Time – µs 60 0 80 20 40 60 80 t – Time – µs Figure 53 Figure 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2021 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VO – Output Voltage – V VO 10 ÁÁ ÁÁ VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 15 10 VO VO – Output Voltage – V 15 TLE2022 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 0 – 10 VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 5 ÁÁ ÁÁ –5 ÏÏÏÏÏ ÏÏÏÏÏ 0 –5 – 10 – 15 0 20 40 t – Time – µs 60 – 15 80 0 TLE2024 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ 15 VO – Output Voltage – V VO 10 VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1 5 0 –5 –10 –15 0 20 t – Time – µs Figure 57 50 60 80 Figure 56 40 60 80 VN(PP) VNPP – Peak-to-Peak Equivalent Input Noise Voltage – uV µV Figure 55 20 40 t – Time – µs PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 TO 1 Hz 0.5 0.4 VCC ± = ± 15 V TA = 25°C 0.3 0.2 0.1 0 – 0.1 – 0.2 – 0.3 ÁÁ ÁÁ ÁÁ POST OFFICE BOX 655303 ÏÏÏÏÏ ÏÏÏÏÏ – 0.4 – 0.5 0 1 • DALLAS, TEXAS 75265 2 3 4 5 t – Time – s Figure 58 6 7 8 9 10 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 TO 10 Hz 0.5 VCC ± = ± 15 V TA = 25°C 0.4 0.3 0.2 0.1 0 – 0.1 – 0.2 – 0.3 ÁÁ ÁÁ ÁÁ EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY ÁÁ ÁÁ ÁÁ VVn nV/ Hz n – Equivalent Input Noise Voltage – nVHz VN(PP) VNPP – Peak-to-Peak Equivalent Input Noise Voltage – uV µV TYPICAL CHARACTERISTICS – 0.4 – 0.5 VCC ± = ± 15 V RS = 20 Ω TA = 25°C See Figure 2 160 120 80 40 0 0 1 2 3 4 5 6 t – Time – s 7 8 9 10 1 10 Figure 60 TLE2022 AND TLE2024 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 4 4 B1 B1 – Unity-Gain Bandwidth – MHz RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 3 10 k 100 1k f – Frequency – Hz Figure 59 TLE2021 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE B1 B 1 – Unity-Gain Bandwidth – MHz ÏÏÏÏÏ ÁÁÁÁÁ ÁÁÁÁÁ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ÁÁÁÁÁ ÏÏÏÏÏ ÁÁÁÁÁ 200 2 1 0 3 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 2 1 0 0 2 4 6 8 10 12 14 |VCC±| – Supply Voltage – V 16 0 2 Figure 61 4 6 8 10 12 |VCC±| – Supply Voltage – V 14 16 Figure 62 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2021 UNITY-GAIN BANDWIDTH† vs FREE-AIR TEMPERATURE 4 RL = 10 kΩ CL = 30 pF See Figure 3 3 VCC ± = ± 15 V 2 ÏÏÏÏÏ 1 VCC = 5 V – 50 – 25 0 25 50 75 TA – Free-Air Temperature – °C 100 ÏÏÏÏÏ ÏÏÏÏÏ 3 VCC ± = ± 15 V 2 VCC = 5 V 1 0 – 75 0 – 75 125 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 63 TLE2022 AND TLE2024 PHASE MARGIN vs SUPPLY VOLTAGE RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 53° φ m – Phase Margin φm m – Phase Margin ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ 55° RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3 48° 46° 51° ÁÁ ÁÁ 44° 49° 47° 42° 45° 40° 0 2 4 6 8 10 12 14 |VCC ±| – Supply Voltage – V 16 0 2 4 6 8 10 12 |VCC±| – Supply Voltage – V 14 Figure 66 Figure 65 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 52 125 Figure 64 TLE2021 PHASE MARGIN vs SUPPLY VOLTAGE 50° ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ RL = 10 kΩ CL = 30 pF See Figure 3 B1 B1 – Unity-Gain Bandwidth – MHz B B1 1 – Unity-Gain Bandwidth – MHz 4 TLE2022 AND TLE2024 UNITY-GAIN BANDWIDTH† vs FREE-AIR TEMPERATURE POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 16 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 PHASE MARGIN vs LOAD CAPACITANCE TLE2021 PHASE MARGIN vs LOAD CAPACITANCE 60° 70° RL = 10 kΩ TA = 30 pF See Figure 3 50° 60° VCC ± = ± 15 V VCC ± = ± 15 V φm m – Phase Margin φm m – Phase Margin 50° 40° VCC = 5 V ÁÁ ÁÁ ÁÁ 30° RL = 10 kΩ TA = 25°C See Figure 3 VCC = 5 V 40° ÁÁ ÁÁ 20° 30° 20° 10° 10° 0 0 20 40 60 80 CL – Load Capacitance – pF 0° 100 0 20 40 60 80 CL – Load Capacitance – pF Figure 67 50° 48° TLE2022 AND TLE2024 PHASE MARGIN† vs FREE-AIR TEMPERATURE 54° RL = 10 kΩ CL = 30 pF See Figure 3 52° VCC ± = ± 15 V VCC ± = ± 15 V 46° φm m – Phase Margin 50° 44° ÁÁ ÁÁ 42° VCC = 5 V 40° 38° 36° – 75 100 Figure 68 TLE2021 PHASE MARGIN† vs FREE-AIR TEMPERATURE φm m – Phase Margin ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 48° ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 46° 44° 42° – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 VCC = 5 V 40° – 75 RL = 10 kΩ CL = 30 pF See Figure 3 – 50 Figure 69 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 Figure 70 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 APPLICATION INFORMATION voltage-follower applications The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71). CF = 20 pF to 50 pF IF ≤ 1 mA RF VCC + – VO VI + VCC – Figure 71. Voltage Follower Input offset voltage nulling The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null pins may be left disconnected. – IN – OFFSET N2 OFFSET N1 + IN + 5 kΩ 1 kΩ VCC – (split supply) GND (single supply) Figure 72. Input Offset Voltage Null Circuit 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts , the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 5) and subcircuit in73, Figure 74, and Figure 75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + egnd 9 rss iss 2 10 IN – j1 dp vc j2 IN+ 1 11 dc 12 r2 – 53 hlim – + C2 6 54 4 + – – – + vin 7 gcm ga vlim 8 rd2 91 + vip + C1 rd1 + dip 90 ro2 vb rp VCC – 92 fb – + din + – ro1 de 5 – ve OUT Figure 73. Boyle Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 55 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 .SUBCKT TLE2021 1 2 3 4 5 * c1 11 12 6.244E–12 c2 6 7 13.4E–12 c3 87 0 10.64E–9 cpsr 85 86 15.9E–9 dcm+ 81 82 dx dcm– 83 81 dx dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx ecmr 84 99 (2 99) 1 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 epsr 85 0 poly(1) (3,4) –60E–6 2.0E–6 ense 89 2 poly(1) (88,0) 120E–6 1 fb 7 99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6 + –50E7 50E7 50E7 –50E7 547E6 ga 6 0 11 12 188.5E–6 gcm 0 6 10 99 335.2E–12 gpsr 85 86 (85,86) 100E–6 grc1 4 11 (4,11) 1.885E–4 grc2 4 12 (4,12) 1.885E–4 gre1 13 10 (13,10) 6.82E–4 gre2 14 10 (14,10) 6.82E–4 hlim 90 0 vlim 1k hcmr 80 1 poly(2) vcm+ vcm– 0 1E2 1E2 irp 3 4 185E–6 iee 3 10 dc 15.67E–6 iio 2 0 2E–9 i1 88 0 1E–21 q1 11 89 13 qx q2 12 80 14 qx R2 6 9 100.0E3 rcm 84 81 1K ree 10 99 14.76E6 rn1 87 0 2.55E8 rn2 87 88 11.67E3 ro1 8 5 62 ro2 7 99 63 vcm+ 82 99 13.3 vcm– 83 99 –14.6 vb 9 0 dc 0 vc 3 53 dc 1.300 ve 54 4 dc 1.500 vlim 7 8 dc 0 vlp 91 0 dc 3.600 vln 0 92 dc 3.600 vpsr 0 86 dc 0 .model dx d(is=800.0E–18) .model qx pnp(is=800.0E–18 bf=270) .ends Figure 74. Boyle Macromodel for the TLE2021 .SUBCKT TLE2022 1 2 3 4 5 * c1 11 12 6.814E–12 c2 6 7 20.00E–12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 + 45.47E6 –50E6 50E6 50E6 –50E6 ga 6 0 11 12 377.9E–6 gcm 0 6 10 99 7.84E–10 iee 3 10 DC 18.07E–6 hlim 90 0 vlim 1k q1 11 2 13 qx q2 12 1 14 qx r2 6 9 100.0E3 rc1 rc2 ge1 ge2 ree ro1 ro2 rp vb vc ve vlim vlp vln .model .model .ends 4 4 13 14 10 8 7 3 9 3 54 7 91 0 dx qx 11 2.842E3 12 2.842E3 10 (10,13) 31.299E–3 10 (10,14) 31.299E–3 99 11.07E6 5 250 99 250 4 137.2E3 0 dc 0 53 dc 1.300 4 dc 1.500 8 dc 0 0 dc 3 92 dc 3 d(is=800.0E–18) pnp(is=800.0E–18 bf=257.1) Figure 75. Boyle Macromodel for the TLE2022 56 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 MECHANICAL INFORMATION D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN PINS ** 0.050 (1,27) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.244 (6,20) 0.228 (5,80) 0.008 (0,20) NOM 0.157 (4,00) 0.150 (3,81) 1 Gage Plane 7 A 0.010 (0,25) 0°– 8° 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) 0.004 (0,10) 4040047 / B 03/95 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Four center pins are connected to die mount pad. Falls within JEDEC MS-012 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 57 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 MECHANICAL INFORMATION DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 28 PIN SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,15 NOM 5,60 5,00 8,20 7,40 Gage Plane 1 14 0,25 A 0°– 8° 1,03 0,63 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 8 14 16 20 24 28 30 38 A MAX 3,30 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 2,70 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 / C 10/95 NOTES: A. B. C. D. 58 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 MECHANICAL INFORMATION DW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 16 PIN SHOWN PINS ** 0.050 (1,27) 16 20 24 28 A MAX 0.410 (10,41) 0.510 (12,95) 0.610 (15,49) 0.710 (18,03) A MIN 0.400 (10,16) 0.500 (12,70) 0.600 (15,24) 0.700 (17,78) DIM 0.020 (0,51) 0.014 (0,35) 16 0.010 (0,25) M 9 0.419 (10,65) 0.400 (10,15) 0.010 (0,25) NOM 0.299 (7,59) 0.293 (7,45) Gage Plane 0.010 (0,25) 1 8 0°– 8° A 0.050 (1,27) 0.016 (0,40) Seating Plane 0.104 (2,65) MAX 0.012 (0,30) 0.004 (0,10) 0.004 (0,10) 4040000 / B 03/95 NOTES: A. B. C. D. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). Falls within JEDEC MS-013 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 59 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 MECHANICAL INFORMATION FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 B A MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.739 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 25 5 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / D 10/96 NOTES: A. B. C. D. E. 60 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 MECHANICAL INFORMATION J (R-GDIP-T**) CERAMIC DUAL-IN-LINE PACKAGE 14 PIN SHOWN PINS ** 14 16 18 20 22 A MAX 0.310 (7,87) 0.310 (7,87) 0.310 (7,87) 0.310 (7,87) 0.410 (10,41) A MIN 0.290 (7,37) 0.290 (7,37) 0.290 (7,37) 0.290 (7,37) 0.390 (9,91) B MAX 0.785 (19,94) 0.785 (19,94) 0.910 (23,10) 0.975 (24,77) 1.100 (28,00) B MIN 0.755 (19,18) 0.755 (19,18) C MAX 0.280 (7,11) 0.300 (7,62) 0.300 (7,62) 0.300 (7,62) C MIN 0.245 (6,22) 0.245 (6,22) 0.245 (6,22) 0.245 (6,22) DIM B 14 8 C 1 7 0.065 (1,65) 0.045 (1,14) 0.100 (2,54) 0.070 (1,78) 0.020 (0,51) MIN 0.930 (23,62) 0.388 (9,65) A 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0°– 15° 0.100 (2,54) 0.023 (0,58) 0.015 (0,38) 0.014 (0,36) 0.008 (0,20) 4040083 / B 04/95 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 61 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 MECHANICAL INFORMATION JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE 0.400 (10,20) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.063 (1,60) 0.015 (0,38) 0°–15° 0.023 (0,58) 0.015 (0,38) 0.015 (0,38) 0.008 (0,20) 0.100 (2,54) 4040107 / B 04/95 NOTES: A. B. C. D. E. 62 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only Falls within MIL-STD-1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 MECHANICAL INFORMATION N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE 16 PIN SHOWN PINS ** 14 16 18 20 A MAX 0.775 (19,69) 0.775 (19,69) 0.920 (23.37) 0.975 (24,77) A MIN 0.745 (18,92) 0.745 (18,92) 0.850 (21.59) 0.940 (23,88) DIM A 16 9 0.260 (6,60) 0.240 (6,10) 1 8 0.070 (1,78) MAX 0.035 (0,89) MAX 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0.010 (0,25) M 0°– 15° 0.010 (0,25) NOM 14/18 PIN ONLY 4040049/C 08/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 63 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 MECHANICAL INFORMATION P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0°– 15° 0.010 (0,25) M 0.010 (0,25) NOM 4040082 / B 03/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 64 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997 MECHANICAL INFORMATION PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0,32 0,19 0,65 14 0,13 M 8 0,15 NOM 4,50 4,30 6,70 6,10 Gage Plane 0,25 1 7 0°– 8° 0,75 0,50 A Seating Plane 1,20 MAX 0,10 0,10 MIN PINS ** 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064 / D 10/95 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 65 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated