TI TLE2022AID

TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
D
D
D
D
D
D
Supply Current . . . 230 µA Max
High Unity-Gain Bandwidth . . . 2 MHz Typ
High Slew Rate . . . 0.45 V/µs Min
Supply-Current Change Over Military Temp
Range . . . 10 µA Typ at VCC ± = ± 15 V
Specified for Both 5-V Single-Supply and
±15-V Operation
Phase-Reversal Protection
D
D
D
D
D
High Open-Loop Gain . . . 6.5 V/µV
(136 dB) Typ
Low Offset Voltage . . . 100 µV Max
Offset Voltage Drift With Time
0.005 µV/mo Typ
Low Input Bias Current . . . 50 nA Max
Low Noise Voltage . . . 19 nV/√Hz Typ
description
The TLE202x, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers
using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with
highly improved slew rate and unity-gain bandwidth.
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic
improvement in unity-gain bandwidth and slew rate over similar devices.
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both
time and temperature. This means that a precision device remains a precision device even with changes in
temperature and over years of use.
This combination of excellent dc performance with a common-mode input voltage range that includes the
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply
rail.
A variety of available options includes small-outline and chip-carrier versions for high-density systems
applications.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized
for operation from – 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of – 55°C to 125°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2021 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax
AT 25°C
SMALL
OUTLINE†
(D)
SSOP‡
(DB)
CHIP
CARRIER
(FK)
CERAMIC DIP
(JG)
PLASTIC DIP
(P)
TSSOP‡
(PW)
CHIP
FORM§
(Y)
0°C to
70°C
200 µ
µV
500 µV
TLE2021ACD
TLE2021CD
TLE2021CDBLE
—
—
TLE2021ACP
TLE2021CP
—
TLE2021CPWLE
—
TLE2021Y
– 40°C
to
85°C
200 µ
µV
500 µV
TLE2021AID
TLE2021ID
—
—
—
TLE2021AIP
TLE2021IP
—
—
– 55°C
to
125°C
100 µ
µV
200 µV
500 µV
—
TLE2021AMD
TLE2021MD
—
TLE2021BMFK
TLE2021AMFK
TLE2021MFK
TLE2021BMJG
TLE2021AMJG
TLE2021MJG
—
TLE2021AMP
TLE2021MP
—
—
† The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR).
‡ The DB and PW packages are only available left-end taped and reeled.
§ Chip forms are tested at 25°C only.
TLE2022 AVAILABLE OPTIONS
PACKAGED DEVICES
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
TSSOP‡
(PW)
CHIP
FORM§
(Y)
—
TLE2022CDBLE
—
—
—
TLE2022ACP
TLE2022CP
—
—
TLE2022CPWLE
—
—
TLE2022Y
TLE2022BID
TLE2022AID
TLE2022ID
—
—
—
—
TLE2022AIP
TLE2022IP
—
—
—
TLE2022AMD
TLE2022MD
—
—
TLE2022AMFK
TLE2022MFK
TLE2022BMJG
TLE2022AMJG
TLE2022MJG
—
TLE2022AMP
TLE2022MP
—
—
TA
VIOmax
AT 25°C
SMALL
OUTLINE†
(D)
SSOP‡
(DB)
0°C
to
70°C
150 µV
300 µV
500 µV
TLE2022BCD
TLE2022ACD
TLE2022CD
—
– 40°C
to
85°C
150 µV
300 µV
500 µV
– 55°C
55 C
to
125°C
150 µV
300 µ
µV
500 µV
‡ The D packages are available taped and reeled. To oerder a taped and reeled part, add the suffix R (e.g., TLE2022CDR).
‡ The DB and PW packages are only available left-end taped and reeled.
† Chip forms are tested at 25°C only.
TLE2024 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax
AT 25°C
0°C to 70°C
500 µV
750 µ
µV
1000 µV
– 40°C to 85°C
– 55°C to 125°C
SMALL
OUTLINE
(DW)
CERAMIC
DIP
(J)
PLASTIC
DIP
(N)
TLE2024BCDW
TLE2024ACDW
TLE2024CDW
—
—
TLE2024BCN
TLE2024ACN
TLE2024CN
—
—
TLE2024Y
500 µV
750 µ
µV
1000 µV
TLE2024BIDW
TLE2024AIDW
TLE2024IDW
—
—
TLE2024BIN
TLE2024AIN
TLE2024IN
—
500 µ
µV
750 µV
1000 µV
TLE2024BMDW
TLE2024AMDW
TLE2024MDW
TLE2024BMFK
TLE2024AMFK
TLE2024MFK
TLE2024BMJ
TLE2024AMJ
TLE2024MJ
TLE2024BMN
TLE2024AMN
TLE2024MN
—
† Chip forms are tested at 25°C only.
2
CHIP
FORM†
(Y)
CHIP
CARRIER
(FK)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
description (continued)
TLE2021
D, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
1
8
2
7
3
6
4
5
NC
OFFSET N1
NC
NC
NC
OFFSET N1
IN –
IN +
VCC – /GND
TLE2021
FK PACKAGE
(TOP VIEW)
NC
VCC +
OUT
OFFSET N2
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
VCC +
NC
OUT
NC
NC
VCC – / GND
NC
OFFSET N2
NC
NC
IN –
NC
IN +
NC
NC – No internal connection
1
8
2
7
3
6
4
5
VCC +
2OUT
2IN –
2IN +
NC
1IN –
NC
1IN +
NC
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN –
NC
NC
VCC – / GND
NC
2IN +
NC
1OUT
1IN –
1IN +
VCC – /GND
FK PACKAGE
(TOP VIEW)
NC
1OUT
NC
VCC +
NC
D, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
NC – No internal connection
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
4OUT
4IN –
4IN +
VCC – /GND
3IN +
3IN –
3OUT
NC
J OR N PACKAGE
(TOP VIEW)
1IN +
NC
VCC +
NC
2IN +
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
4IN +
NC
VCC – /GND
NC
3IN +
2IN –
2OUT
NC
3OUT
3IN –
1OUT
1IN –
1IN +
VCC +
2IN +
2IN –
2OUT
NC
FK PACKAGE
(TOP VIEW)
1IN –
1OUT
NC
4OUT
4IN –
DW PACKAGE
(TOP VIEW)
NC – No internal connection
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1OUT
1IN –
1IN +
VCC +
2IN +
2IN –
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN –
4IN +
VCC – /GND
3IN +
3IN –
3OUT
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2021Y chip information
This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(7)
(6)
(5)
OFFSET N1
IN +
IN –
OFFSET N2
VCC+
(7)
(1)
(3)
(2)
+
(6)
OUT
–
(5)
(4)
VCC – /GND
78
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax= 150°C
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
(4)
(1)
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
(2)
(3)
54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2022Y chip information
This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(7)
(6)
IN +
(3)
(2)
IN –
OUT
(8)
(7)
+
(1)
OUT
–
+
–
(5)
80
VCC+
(8)
(5)
(6)
IN +
IN –
(4)
(4)
VCC –
(1)
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
(2)
(3)
86
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2024Y chip information
This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or
ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
1IN +
1IN –
2OUT
2IN +
100
3IN –
4OUT
VCC +
(4)
(3)
+
(1)
1OUT
(2)
–
+
(7)
(10)
–
+
(5)
(6)
2IN +
2IN –
(8)
3OUT
(9)
–
+
(14)
–
(12)
(13)
4IN +
4IN –
(11)
VCC – /GND
140
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
PIN (11) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
equivalent schematic (each amplifier)
VCC+
Q13
Q3
Q22
Q17
Q7
Q28
Q31
Q35
Q29
Q19
Q1
Q32
Q24
Q39
Q20
Q8
Q5
Q34
Q38
Q11
D3
Q2
Q36
C4
IN –
Q4
Q12
D4
IN +
R7
Q23 Q25
C2
Q10
D1 D2
OUT
Q14
Q40
C3
Q21
Q27
R6
R1
C1
OFFSET N1
(see Note A)
Q6
Q9
R2
R4
R3
R5
Q15
Q30 Q33
Q26
Q18
Q16
OFFSET N2
(see Note A)
VCC – /GND
ACTUAL DEVICE COMPONENT COUNT
COMPONENT
Transistors
8
TLE2021
TLE2022
TLE2024
40
80
160
Resistors
7
14
28
Diodes
4
8
16
Capacitors
4
8
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
Q37
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V
Supply voltage, VCC – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 20 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 0.6 V
Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VCC
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA
Output current, IO (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA
TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 mA
TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 40 mA
Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Total current out of VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Case temperature for 60 seconds, TC: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or PW package . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC – .
2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if a differential input voltage in excess of approximately
± 600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D–8
725 mW
5.8 mW/°C
464 mW
377 mW
145 mW
4.2 mW/°C
336 mW
—
—
656 mW
533 mW
205 mW
880 mW
715 mW
275 mW
DB–8
525 mW
DW–16
1025 mW
FK
1375 mW
8.2 mW/°C
11.0 mW/°C
J–14
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
JG–8
1050 mW
8.4 mW/°C
672 mW
546 mW
210 mW
N–14
1150 mW
736 mW
598 mW
230 mW
P–8
1000 mW
8.0 mW/°C
9.2 mW/°C
640 mW
520 mW
200 mW
PW–8
525 mW
4.2 mW/°C
336 mW
—
—
recommended operating conditions
Supply voltage, VCC
Common mode input voltage,
Common-mode
voltage VIC
VCC = ± 5 V
VCC ± = ± 15 V
Operating free-air temperature, TA
POST OFFICE BOX 655303
C SUFFIX
I SUFFIX
M SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
±2
± 20
±2
± 20
±2
± 20
0
3.5
0
3.2
0
3.2
–15
13.5
–15
13.2
–15
13.2
0
70
– 40
85
– 55
125
• DALLAS, TEXAS 75265
UNIT
V
V
°C
9
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
Common mode input voltage range
Common-mode
TA†
TLE2021C
MIN
25°C
MAX
120
600
Full range
MAX
100
300
MIN
TYP
MAX
80
200
600
300
UNIT
µV
2
2
µV/°C
25°C
0.005
0.005
0.005
µV/mo
25°C
0.2
25
Full range
0
to
3.5
Full range
0
to
3.5
25°C
4
VOH
High level output voltage
High-level
VOL
Low level output voltage
Low-level
AVD
Large-signal
g
g
differential
voltage amplification
VO = 1.4 V to 4 V,,
RL = 10 kΩ
25°C
0.3
Full range
0.3
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin,,
RS = 50 Ω
25°C
85
Full range
80
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC /∆VIO)
VCC = 5 V to 30 V
25°C
105
Full range
100
ICC
Supply current
∆ICC
Supply-current change over
operating temperature range
Full range
– 0.3
to
4
25
– 0.3
to
4
4
0.8
4.3
4
0.8
85
1.5
105
Full range
230
120
105
170
230
110
dB
120
170
230
5
dB
230
230
5
V
V/µV
100
230
5
1.5
80
100
170
0.8
0.85
85
nA
V
0.3
110
nA
V
4.3
0.7
0.3
80
120
– 0.3
to
4
0.85
0.3
110
90
3.9
0.7
0.3
70
0
to
3.5
0.85
1.5
25
0
to
3.5
3.9
0.7
6
10
90
0
to
3.5
4.3
0.2
70
0
to
3.5
Full range
Full range
6
10
70
3.9
25°C
25°C
0.2
90
25°C
RS = 50 Ω
6
10
25°C
VO = 2.5 V,
No load
TLE2021BC
TYP
2
Full range
RL= 10 kΩ
MIN
850
Full range
VIC = 0,, RS = 50 Ω
TLE2021AC
TYP
µA
µA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191 – FEBRUARY 1997
10
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
VOM
OM+
Common mode input voltage range
Common-mode
TA†
TLE2021C
MIN
25°C
120
500
80
200
MIN
TYP
MAX
40
100
500
200
UNIT
µV
µV/°C
25°C
0.006
0.006
0.006
µV/mo
25°C
0.2
25
– 15
to
13.5
Full range
– 15
to
13.5
25°C
Full range
14
– 15.3
to
14
25°C
– 13.7
Full range
– 13.7
AVD
Large-signal
g
g
differential
voltage amplification
VO = ± 10 V,,
RL = 10 kΩ
25°C
1
Full range
1
CMRR
Common mode rejection ratio
Common-mode
VIC = VICR min,,
RS = 50 Ω
25°C
100
Full range
96
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC /∆VIO)
VCC ± = ± 2.5 V
to ± 15 V
25°C
105
Full range
100
ICC
Supply current
25
– 15.3
to
14
14
– 13.7
1
14.3
100
105
– 14.1
– 13.7
6.5
1
300
100
120
105
– 14.1
V
6.5
V/µV
115
dB
120
dB
100
200
300
200
300
300
300
6
µA
µA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
11
SLOS191 – FEBRUARY 1997
6
nA
V
96
300
6
14.3
1
115
nA
V
– 13.7
100
200
– 15.3
to
14
13.9
96
120
90
14
1
115
70
15
to
13.5
– 13.7
6.5
25
– 15
to
13.5
13.9
– 14.1
6
10
90
– 15
to
13.5
14.3
0.2
70
15
to
13.5
Full range
Full range
6
10
70
13.9
Maximum negative
peak
g
output voltage swing
25°C
0.2
90
25°C
RS = 50 Ω
6
10
Full range
No load
MAX
2
25°C
VO = 0
0,
TYP
2
Full range
RL = 10 kΩ
MIN
TLE2021BC
2
Full range
Maximum positive peak
output voltage swing
Supply-current change over
operating temperature range
MAX
750
VOM –
∆ICC
TYP
Full range
VIC = 0, RS = 50 Ω
TLE2021AC
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
g long-term
g
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
VOH
Common-mode input
voltage range
VIC = 0
0,
RS = 50 Ω
TYP
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
ratio
y
g rejection
j
(∆VCC ± /∆VIO)
VCC = 5 V to 30 V
ICC
Supply current
400
µV
2
2
µV/°C
25°C
0 005
0.005
0 005
0.005
0 005
0.005
µV/mo
25°C
0.5
35
0.4
70
Full range
g
0
to
3.5
4
– 0.3
to
4
33
– 0.3
to
4
4
0.8
0.3
0.3
25°C
85
Full range
80
25°C
100
Full range
95
1.5
4.3
4
0.8
87
1.5
103
450
600
102
0.8
0.85
1.5
90
118
105
105
dB
120
dB
100
450
600
450
600
7
600
600
7
V
V/µV
85
600
7
V
0.5
98
Full range
nA
V
4.3
0.7
0.5
82
115
– 0.3
to
4
0.85
0.4
100
90
3.9
0.7
0.4
70
nA
0
to
3.5
0.85
25°C
30
0
to
3.5
3.9
0.7
6
10
70
0
to
3.5
4.3
0.3
90
0
to
3.5
3.9
Full range
6
10
90
0
to
3.5
Full range
6
10
25°C
25°C
No load
UNIT
2
Full range
VO = 2
2.5
5V
V,
MAX
550
25°C
RL = 10 kΩ
TYP
800
Full range
VO = 1.4
1 4 V to 4 V,
V
MIN
Full range
25°C
Large-signal
g
g
differential
voltage amplification
TLE2022BC
MAX
250
RS = 50 Ω
AVD
TYP
400
Full range
Low level output voltage
Low-level
MIN
600
25°C
VOL
TLE2022AC
MAX
25°C
Full range
High level output voltage
High-level
Supply
y current change
g over
operating temperature range
TLE2022C
MIN
Full range
RL = 10 kΩ
∆ICC
TA†
µA
µA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191 – FEBRUARY 1997
12
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
g long-term
g
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
Common-mode input
voltage range
25°C
VIC = 0
0,
RS = 50 Ω
MAX
150
500
VO = ± 10 V
V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
ratio
y
g rejection
j
(∆VCC ± /∆VIO)
2 5 V to ± 15 V
VCC ± = ± 2.5
ICC
Supply current
70
150
450
300
UNIT
µV
0 006
0.006
0 006
0.006
µV/mo
25°C
0.5
35
0.4
70
Full range
g
– 15
to
13.5
14
– 15.3
to
14
33
– 13.7
Full range
– 13.7
25°C
0.8
Full range
0.8
25°C
95
Full range
91
25°C
100
Full range
95
– 15.3
to
14
14
– 13.7
1
14.3
97
14
– 14.1
– 13.7
103
7
1.5
Full range
700
109
14.3
V
– 14.1
V
10
V/µV
100
112
dB
96
118
105
120
dB
100
550
700
700
550
700
9
700
700
9
µA
µA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
13
SLOS191 – FEBRUARY 1997
9
nA
V
1.5
98
550
– 15.3
to
14
– 13.7
93
115
90
13.9
1
106
70
nA
– 15
to
13.5
– 13.7
4
30
– 15
to
13.5
13.9
– 14.1
6
10
70
– 15
to
13.5
14.3
0.3
90
– 15
to
13.5
13.9
25°C
6
10
90
– 15
to
13.5
Full range
6
10
25°C
Full range
No load
MAX
0 006
0.006
25°C
VO = 0
0,
300
TYP
25°C
25°C
Large-signal
g
g
differential
voltage amplification
120
MIN
µV/°C
RS = 50 Ω
AVD
MAX
2
25°C
RL = 10 kΩ
TLE2022BC
TYP
2
Full range
Maximum negative
g
peak
output voltage swing
MIN
2
Full range
VOM –
TLE2022AC
TYP
700
Full range
Maximum positive peak
output voltage swing
Supply
y current change
g over
operating temperature range
TLE2022C
MIN
Full range
VOM +
∆ICC
TA†
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
Common-mode input voltage
g
range
VIC = 0,
RS = 50 Ω
TYP
AVD
Large-signal
g
g
differential
voltage amplification
VO = 1.4
1 4 V to 4 V,
V
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC /∆VIO)
VCC = 5 V to 30 V
ICC
Supply current
TYP
MAX
850
600
800
UNIT
µV
2
2
2
µV/°C
25°C
0.005
0.005
0.005
µV/mo
25°C
0.6
45
0
to
3.5
Full range
0
to
3.5
25°C
3.9
Full range
3.7
40
0
to
3.5
– 0.3
to
4
3.9
Full range
0.1
25°C
80
Full range
80
25°C
98
Full range
93
1.5
4.2
4
0.8
1.5
100
Full range
115
103
800
1200
95
dB
117
800
1200
15
dB
1200
1200
15
V
V/µV
98
1200
15
1.5
85
95
1200
0.8
0.95
85
nA
V
0.1
92
nA
V
4.3
0.7
0.4
82
800
– 0.3
to
4
3.8
0.1
112
90
0.95
82
70
0
to
3.5
0.7
0.3
90
35
0
to
3.5
3.7
0.8
6
10
70
0
to
3.5
4.2
0.4
90
0.95
0.2
6
10
70
– 0.3
to
4
0.7
25°C
Full range
0.5
90
25°C
25°C
6
10
25°C
No load
MIN
1050
Full range
VO = 2
2.5
5V
V,
TLE2024BC
MAX
1100
RS = 50 Ω
RL = 10 kΩ
TYP
1300
Full range
Low level output voltage
Low-level
MIN
25°C
25°C
VOL
TLE2024AC
MAX
Full range
Full range
High level output voltage
High-level
Supply current change over
operating temperature range
TLE2024C
MIN
Full range
VOH
∆ICC
TA†
µA
µA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191 – FEBRUARY 1997
14
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VOM +
Common-mode input voltage
g
range
VIC = 0,
RS = 50 Ω
MIN
TYP
Large-signal
g
g
differential
voltage amplification
VO = ± 10 V
V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC ± /∆VIO)
VCC ± = ± 2.5
2 5 V to ± 15 V
ICC
Supply current
No load
MAX
MIN
TYP
MAX
750
500
950
700
UNIT
µV
2
2
2
µV/°C
25°C
0.006
0.006
0.006
µV/mo
25°C
0.6
50
0.5
70
Full range
– 15
to
13.5
25°C
13.8
Full range
13.7
25°C
– 13.7
Full range
– 13.6
25°C
0.4
Full range
0.4
25°C
92
Full range
88
25°C
98
Full range
93
– 15.3
to
14
6
45
70
– 15.3
to
14
13.9
– 13.7
14.2
0.8
14
– 14.1
– 13.7
94
4
1
105
97
100
1050
Full range
1400
115
103
1050
1400
– 14.1
V
7
V/µV
108
dB
117
1050
1400
dB
1400
1400
20
µA
µA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
15
SLOS191 – FEBRUARY 1997
20
nA
V
98
1400
20
14.3
93
95
nA
V
1
90
112
– 15.3
to
14
– 13.6
0.8
102
90
13.9
– 13.6
2
70
– 15
to
13.5
13.8
– 14.1
40
– 15
to
13.5
– 15
to
13.5
6
10
90
– 15
to
13.5
14.1
0.4
10
90
– 15
to
13.5
Full range
6
10
25°C
25°C
VO = 0
0,
TYP
1200
RS = 50 Ω
AVD
MIN
1000
Full range
Maximum negative
peak output
g
voltage swing
MAX
TLE2024BC
25°C
25°C
RL = 10 kΩ
TLE2024AC
Full range
Full range
Maximum positive peak output
voltage swing
Supply
y current change
g over
operating temperature range
TLE2024C
Full range
VOM –
∆ICC
TA†
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
VOH
Common mode input voltage range
Common-mode
TA†
TLE2021I
MIN
25°C
MAX
120
600
Full range
100
300
MIN
TYP
MAX
80
200
600
300
UNIT
µV
2
µV/°C
25°C
0.005
0.005
0.005
µV/mo
25°C
0.2
25
0
to
3.5
Full range
– 15
to
3.2
25°C
Full range
4
– 0.3
to
4
25°C
AVD
Large-signal
g
g
differential
voltage amplification
VO = 1.4 V to 4 V,,
RL = 10 kΩ
25°C
0.3
Full range
0.25
CMRR
Common mode rejection ratio
Common-mode
VIC = VICR min,,
RS = 50 Ω
25°C
85
Full range
80
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC /∆VIO)
VCC = 5 V to 30 V
25°C
105
Full range
100
ICC
Supply current
∆ICC
Supply-current change over
operating temperature range
– 0.3
to
4
4
0.8
4.3
4
0.8
105
110
170
230
1.5
120
105
110
dB
120
dB
100
170
230
170
230
6
230
230
6
V
V/µV
80
230
6
0.8
0.9
85
100
Full range
V
0.25
80
120
4.3
0.7
0.3
nA
V
0.9
1.5
nA
– 0.3
to
4
3.9
0.7
85
70
90
0
to
3.5
0.25
110
25
0
to
3.2
0.9
0.3
6
10
70
3.9
1.5
0.2
90
0
to
3.5
4.3
Full range
Full range
25
15
to
3.2
0.7
Low level output voltage
Low-level
6
10
70
3.9
VOL
25°C
0.2
90
25°C
RS = 50 Ω
6
10
25°C
VO = 2.5 V,
No load
MAX
2
Full range
RL = 10 kΩ
TLE2021BI
TYP
2
Full range
High level output voltage
High-level
MIN
950
Full range
VIC = 0, RS = 50 Ω
TLE2021AI
TYP
µA
µA
† Full range is – 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191 – FEBRUARY 1997
16
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TLE2021 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
VOM +
Common-mode input voltage
g range
g
TA†
TLE2021I
MIN
25°C
500
80
200
MIN
TYP
MAX
40
100
500
200
UNIT
µV
2
µV/°C
25°C
0.006
0.006
0.006
µV/mo
25°C
0.2
25°C
25
– 15
to
13.5
Full range
– 15
to
3.2
25°C
Full range
14
25°C
– 13.7
Full range
– 13.6
AVD
Large-signal
g
g
differential
voltage amplification
VO = 10 V,,
RL = 10 kΩ
Full range
0.75
CMRR
Common mode rejection ratio
Common-mode
VIC = VICR min,,
RS = 50 Ω
25°C
100
Full range
96
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC /∆VIO)
VCC ± = ± 2. 5 V
to ± 15 V
25°C
105
Full range
100
ICC
Supply current
25°C
– 15.3
to
14
1
25
– 15.3
to
14
14
– 13.7
1
14.3
100
14
– 14.1
– 13.7
105
6.5
1
115
100
300
105
200
300
– 14.1
V
6.5
V/µV
115
dB
120
200
300
dB
300
300
7
µA
µA
† Full range is – 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
17
SLOS191 – FEBRUARY 1997
7
nA
V
100
300
7
14.3
96
120
nA
V
0.75
100
200
– 15.3
to
14
– 13.6
96
120
90
13.9
0.75
115
70
15
to
3.2
– 13.6
6.5
25
– 15
to
13.5
13.9
– 14.1
6
10
90
– 15
to
13.5
14.3
0.2
70
15
to
3.2
Full range
Full range
6
10
70
13.9
Maximum negative
peak output
g
voltage swing
25°C
0.2
90
25°C
RS = 50 Ω
6
10
Full range
VO = 0 V,
V No load
MAX
2
Full range
RL = 10 kΩ
TLE2021BI
TYP
2
Full range
Maximum positive peak output
voltage swing
Supply-current change over
operating temperature range
120
MIN
850
VOM –
∆ICC
MAX
Full range
VIC = 0, RS = 50 Ω
TLE2021AI
TYP
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
g long-term
g
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
VOH
Common-mode input
voltage range
VIC = 0
0,
RS = 50 Ω
TYP
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
ratio
y
g rejection
j
(∆VCC ± /∆VIO)
VCC = 5 V to 30 V
ICC
Supply current
400
µV
2
2
µV/°C
25°C
0 005
0.005
0 005
0.005
0 005
0.005
µV/mo
25°C
0.5
35
0.4
70
Full range
g
0
to
3.2
4
– 0.3
to
4
33
– 0.3
to
4
4
0.8
0.3
0.2
25°C
85
Full range
80
25°C
100
Full range
95
1.5
4.3
4
0.8
87
1.5
103
450
600
102
0.8
0.9
1.5
90
118
105
105
dB
120
dB
100
450
600
450
600
15
600
600
15
V
V/µV
85
600
15
V
0.2
98
Full range
nA
V
4.3
0.7
0.5
82
115
– 0.3
to
4
0.9
0.2
100
90
3.9
0.7
0.4
70
nA
0
to
3.2
0.9
25°C
30
0
to
3.5
3.9
0.7
6
10
70
0
to
3.2
4.3
0.3
90
0
to
3.5
3.9
Full range
6
10
90
0
to
3.5
Full range
6
10
25°C
25°C
No load
UNIT
2
Full range
VO = 2
2.5
5V
V,
MAX
550
25°C
RL = 10 kΩ
TYP
800
Full range
VO = 1.4
1 4 V to 4 V,
V
MIN
Full range
25°C
Large-signal
g
g
differential
voltage amplification
TLE2022BI
MAX
250
RS = 50 Ω
AVD
TYP
400
Full range
Low level output voltage
Low-level
MIN
600
25°C
VOL
TLE2022AI
MAX
25°C
Full range
High level output voltage
High-level
Supply
y current change
g over
operating temperature range
TLE2022I
MIN
Full range
RL = 10 kΩ
∆ICC
TA†
µA
µA
† Full range is – 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191 – FEBRUARY 1997
18
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
g long-term
g
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
Common-mode input
voltage
g range
g
25°C
VIC = 0
0,
RS = 50 Ω
MAX
150
500
VO = ± 10 V
V,
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min, RS = 50 Ω
kSVR
Supply-voltage
ratio
y
g rejection
j
(∆VCC ± /∆VIO)
2 5 V to ± 15 V
VCC = ± 2.5
ICC
Supply current
No load
70
150
450
300
UNIT
µV
0 006
0.006
0 006
0.006
µV/mo
25°C
0.5
35
0.4
70
Full range
g
– 15
to
13.2
14
– 15.3
to
14
33
– 13.7
Full range
– 13.6
25°C
0.8
Full range
0.8
25°C
95
Full range
91
25°C
100
Full range
95
– 15.3
to
14
14
– 13.7
1
14.3
97
14
– 14.1
– 13.7
103
7
1.5
109
100
Full range
700
105
550
700
– 14.1
V
10
V/µV
112
dB
120
550
700
dB
700
700
30
µA
µA
† Full range is – 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
19
SLOS191 – FEBRUARY 1997
30
nA
V
100
700
30
14.3
96
118
nA
V
1.5
98
550
– 15.3
to
14
– 13.6
93
115
90
13.9
1
106
70
– 15
to
13.2
– 13.6
4
30
– 15
to
13.5
13.9
– 14.1
6
10
70
– 15
to
13.2
14.3
0.3
90
– 15
to
13.5
13.9
25°C
6
10
90
– 15
to
13.5
Full range
6
10
25°C
25°C
VO = 0
0,
MAX
0 006
0.006
Full range
RL = 10 kΩ
300
TYP
25°C
25°C
Large-signal
g
g
differential
voltage amplification
120
MIN
µV/°C
RS = 50 Ω
AVD
MAX
2
25°C
RL = 10 kΩ
TLE2022BI
TYP
2
Full range
Maximum negative
g
peak
output voltage swing
MIN
2
Full range
VOM –
TLE2022AI
TYP
700
Full range
Maximum positive peak
output voltage swing
Supply
y current change
g over
operating temperature range
TLE2022I
MIN
Full range
VOM +
∆ICC
TA†
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
Common-mode input voltage
g
range
VIC = 0,
RS = 50 Ω
TYP
AVD
Large-signal
g
g
differential
voltage amplification
VO = 1.4
1 4 V to 4 V,
V
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC± /∆VIO)
VCC ± = ± 2.5
2 5 V to ± 15 V
ICC
Supply current
TYP
MAX
850
600
800
UNIT
µV
2
2
2
µV/°C
25°C
0.005
0.005
0.005
µV/mo
25°C
0.6
45
0
to
3.5
Full range
0
to
3.2
25°C
3.9
Full range
3.7
40
0
to
3.5
– 0.3
to
4
3.9
Full range
0.1
25°C
80
Full range
80
25°C
98
Full range
93
1.5
4.2
4
0.8
1.5
100
Full range
115
103
800
1200
95
dB
117
800
1200
30
dB
1200
1200
30
V
V/µV
98
1200
30
1.5
85
95
1200
0.8
0.95
85
nA
V
0.1
92
nA
V
4.3
0.7
0.4
82
800
– 0.3
to
4
3.8
0.1
112
90
0.95
82
70
0
to
3.2
0.7
0.3
90
35
0
to
3.5
3.7
0.8
6
10
70
0
to
3.2
4.2
0.4
90
0.95
0.2
6
10
70
– 0.3
to
4
0.7
25°C
Full range
0.5
90
25°C
25°C
6
10
25°C
No load
MIN
1050
Full range
VO = 0
0,
TLE2024BI
MAX
1100
RS = 50 Ω
RL = 10 kΩ
TYP
1300
Full range
Maximum negative
peak
g
output voltage swing
MIN
25°C
25°C
VOM –
TLE2024AI
MAX
Full range
Full range
Maximum positive peak
output voltage swing
Supply current change over
operating temperature range
TLE2024I
MIN
Full range
VOM +
∆ICC
TA†
µA
µA
† Full range is – 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191 – FEBRUARY 1997
20
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of input
offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VOM +
Common-mode input voltage
g
range
VIC = 0,
RS = 50 Ω
MIN
TYP
Large-signal
g
g
differential
voltage amplification
VO = ± 10 V
V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC ± /∆VIO)
VCC ± = ± 2.5
2 5 V to ± 15 V
ICC
Supply current
No load
MAX
MIN
TYP
MAX
750
500
950
700
UNIT
µV
2
2
2
µV/°C
25°C
0.006
0.006
0.006
µV/mo
25°C
0.6
50
0.5
70
Full range
– 15
to
13.2
25°C
13.8
Full range
13.7
25°C
– 13.7
Full range
– 13.6
25°C
0.4
Full range
0.4
25°C
92
Full range
88
25°C
98
Full range
93
– 15.3
to
14
6
45
70
– 15.3
to
14
13.9
– 13.7
14.2
0.8
14
– 14.1
– 13.7
94
4
1
105
97
100
1050
Full range
1400
115
103
1050
1400
– 14.1
V
7
V/µV
108
dB
117
1050
1400
dB
1400
1400
50
µA
µA
† Full range is – 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
21
SLOS191 – FEBRUARY 1997
50
nA
V
98
1400
50
14.3
93
95
nA
V
1
90
112
– 15.3
to
14
– 13.6
0.8
102
90
13.8
– 13.6
2
70
– 15
to
13.2
13.7
– 14.1
40
– 15
to
13.5
– 15
to
13.2
6
10
90
– 15
to
13.5
14.1
0.4
10
90
– 15
to
13.5
Full range
6
10
25°C
25°C
VO = 0
0,
TYP
1200
RS = 50 Ω
AVD
MIN
1000
Full range
Maximum negative
peak output
g
voltage swing
MAX
TLE2024BI
25°C
25°C
RL = 10 kΩ
TLE2024AI
Full range
Full range
Maximum positive peak output
voltage swing
Supply
y current change
g over
operating temperature range
TLE2024I
Full range
VOM –
∆ICC
TA†
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
VOH
Common-mode input
voltage range
MAX
120
600
RS = 50 Ω
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC ± /∆VIO)
VCC = 5 V to 30 V
ICC
Supply current
300
µV
µV/mo
25°C
0.2
25
0.2
70
Full range
0
to
3.2
4
– 0.3
to
4
25
– 0.3
to
4
4
0.8
Full range
0.1
25°C
85
Full range
80
25°C
105
Full range
100
1.5
4.3
4
85
0.8
1.5
105
170
230
120
105
170
230
110
dB
120
170
230
9
dB
230
230
9
V
V/µV
100
230
9
1.5
80
100
Full range
0.8
0.95
85
nA
V
0.1
110
nA
V
4.3
0.7
0.3
80
120
– 0.3
to
4
0.95
0.1
110
90
3.8
0.7
0.3
70
0
to
3.2
0.95
0.3
25
0
to
3.5
3.8
0.7
6
10
70
0
to
3.2
4.3
0.2
90
0
to
3.5
3.8
25°C
6
10
90
0
to
3.5
Full range
6
10
25°C
25°C
No load
600
0.005
Full range
VO = 2
2.5
5V
V,
200
0.005
25°C
CMRR
80
UNIT
0.005
25°C
RL = 10 kΩ
MAX
25°C
Full range
VO = 1.4
1 4 V to 4 V,
V
300
TYP
µV/°C
RS = 50 Ω
Large-signal
g
g
differential
voltage amplification
100
MIN
2
25°C
AVD
MAX
2
Full range
Low level output voltage
Low-level
TLE2021BM
TYP
2
Full range
VOL
MIN
1100
Full range
VIC = 0,
TLE2021AM
TYP
Full range
High level output voltage
High-level
Supply current change over
operating temperature range
TLE2021M
MIN
25°C
RL = 10 kΩ
∆ICC
TA†
µA
µA
† Full range is – 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191 – FEBRUARY 1997
22
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VOM +
Common-mode input
voltage range
25°C
TYP
120
VIC = 0,
RS = 50 Ω
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC ± /∆VIO)
VCC ± = ± 2
2.5
5 V to ± 15 V
ICC
Supply current
No load
40
100
500
200
UNIT
µV
0.006
0.006
µV/mo
25°C
0.2
25
Full range
– 15
to
13.2
14
– 15.3
to
14
25°C
– 13.7
– 13.6
1
Full range
0.5
25°C
100
Full range
96
25°C
105
Full range
100
6
25
70
– 15.3
to
14
14
– 13.7
14.3
1
14
– 14.1
– 13.7
100
6.5
1
115
100
105
200
Full range
300
120
105
200
300
– 14.1
V
6.5
V/µV
115
dB
120
200
300
dB
300
300
10
µA
µA
† Full range is – 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
23
SLOS191 – FEBRUARY 1997
10
nA
V
100
300
10
14.3
96
100
nA
V
0.5
96
120
– 15.3
to
14
– 13.6
0.5
115
90
13.8
– 13.6
6.5
70
0
to
13.2
13.8
– 14.1
25
– 15
to
13.5
– 15
to
13.2
6
10
90
– 15
to
13.5
14.3
0.2
10
70
13.8
Full range
Full range
0.2
90
– 15
to
13.5
25°C
6
10
25°C
25°C
VO = 0
0,
MAX
0.006
25°C
RL = 10 kΩ
200
TYP
25°C
Full range
VO = ± 10 V
V,
80
MIN
µV/°C
RS = 50 Ω
Large-signal
g
g
differential
voltage amplification
MAX
2
25°C
AVD
500
TLE2021BM
TYP
2
Full range
Maximum negative
peak
g
output voltage swing
MIN
2
Full range
RL = 10 kΩ
TLE2021AM
MAX
1000
Full range
Maximum positive peak
output voltage swing
Supply current change over
operating temperature range
TLE2021M
MIN
Full range
VOM –
∆ICC
TA†
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
g long-term
g
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
VOH
Common-mode input
voltage
g range
g
VIC = 0
0,
RS = 50 Ω
TYP
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
ratio
y
g rejection
j
(∆VCC ± /∆VIO)
VCC = 5 V to 30 V
ICC
Supply current
400
µV
2
2
µV/°C
25°C
0 005
0.005
0 005
0.005
0 005
0.005
µV/mo
25°C
0.5
35
0.4
70
Full range
g
0
to
3.2
4
– 0.3
to
4
33
– 0.3
to
4
4
0.8
0.3
0.1
25°C
85
Full range
80
25°C
100
Full range
95
1.5
4.3
4
0.8
87
1.5
103
450
600
118
105
450
600
105
dB
120
450
600
37
dB
600
600
37
V
V/µV
100
600
37
1.5
85
98
Full range
0.8
0.95
90
nA
V
0.1
102
nA
V
4.3
0.7
0.5
82
115
– 0.3
to
4
0.95
0.1
100
90
3.8
0.7
0.4
70
0
to
3.2
0.95
25°C
30
0
to
3.5
3.8
0.7
6
10
70
0
to
3.2
4.3
0.3
90
0
to
3.5
3.8
Full range
6
10
90
0
to
3.5
Full range
6
10
25°C
25°C
No load
UNIT
2
Full range
VO = 2
2.5
5V
V,
MAX
550
25°C
RL = 10 kΩ
TYP
800
Full range
VO = 1.4
1 4 V to 4 V,
V
MIN
Full range
25°C
Large-signal
g
g
differential
voltage amplification
TLE2022BM
MAX
250
RS = 50 Ω
AVD
TYP
400
Full range
Low level output voltage
Low-level
MIN
600
25°C
VOL
TLE2022AM
MAX
25°C
Full range
High level output voltage
High-level
Supply
y current change
g over
operating temperature range
TLE2022M
MIN
Full range
RL = 10 kΩ
∆ICC
TA†
µA
µA
† Full range is – 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191 – FEBRUARY 1997
24
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
g long-term
g
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
Common-mode input
voltage
g range
g
25°C
VIC = 0
0,
RS = 50 Ω
MAX
150
500
VO = ± 10 V
V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
ratio
y
g rejection
j
(∆VCC ± /∆VIO)
2 5 V to ± 15 V
VCC ± = ± 2.5
ICC
Supply current
70
150
450
300
UNIT
µV
0 006
0.006
0 006
0.006
µV/mo
25°C
0.5
35
0.4
70
Full range
g
– 15
to
13.2
14
– 15.3
to
14
33
– 13.7
Full range
– 13.6
25°C
0.8
Full range
0.8
25°C
95
Full range
91
25°C
100
Full range
95
– 15.3
to
14
14
– 13.7
1
14.3
97
14
– 14.1
– 13.7
103
7
1.5
109
100
Full range
700
105
550
700
– 14.1
V
10
V/µV
112
dB
120
550
700
dB
700
700
60
µA
µA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
25
SLOS191 – FEBRUARY 1997
60
nA
V
100
700
60
14.3
96
118
nA
V
1.5
98
550
– 15.3
to
14
– 13.6
93
115
90
13.9
1
106
70
– 15
to
13.2
– 13.6
4
30
– 15
to
13.5
13.9
– 14.1
6
10
70
– 15
to
13.2
14.3
0.3
90
– 15
to
13.5
13.9
25°C
6
10
90
– 15
to
13.5
Full range
6
10
25°C
Full range
No load
MAX
0 006
0.006
25°C
VO = 0
0,
300
TYP
25°C
25°C
Large-signal
g
g
differential
voltage amplification
120
MIN
µV/°C
RS = 50 Ω
AVD
MAX
2
25°C
RL = 10 kΩ
TLE2022BM
TYP
2
Full range
Maximum negative
g
peak
output voltage swing
MIN
2
Full range
VOM –
TLE2022AM
TYP
700
Full range
Maximum positive peak
output voltage swing
Supply
y current change
g over
operating temperature range
TLE2022M
MIN
Full range
VOM +
∆ICC
TA†
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
Common-mode input voltage
g
range
VIC = 0,
RS = 50 Ω
TYP
AVD
Large-signal
g
g
differential
voltage amplification
VO = 1.4
1 4 V to 4 V,
V
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC± /∆VIO)
VCC ± = ± 2.5
2 5 V to ± 15 V
ICC
Supply current
TYP
MAX
850
600
800
UNIT
µV
2
2
2
µV/°C
25°C
0.005
0.005
0.005
µV/mo
25°C
0.6
45
0
to
3.5
Full range
0
to
3.2
25°C
3.9
Full range
3.7
40
0
to
3.5
– 0.3
to
4
3.9
Full range
0.1
25°C
80
Full range
80
25°C
98
Full range
93
1.5
4.2
4
0.8
1.5
100
Full range
115
103
800
1200
95
dB
117
800
1200
50
dB
1200
1200
50
V
V/µV
98
1200
50
1.5
85
95
1200
0.8
0.95
85
nA
V
0.1
92
nA
V
4.3
0.7
0.4
82
800
– 0.3
to
4
3.8
0.1
112
90
0.95
82
70
0
to
3.2
0.7
0.3
90
35
0
to
3.5
3.7
0.8
6
10
70
0
to
3.2
4.2
0.4
90
0.95
0.2
6
10
70
– 0.3
to
4
0.7
25°C
Full range
0.5
90
25°C
25°C
6
10
25°C
No load
MIN
1050
Full range
VO = 0
0,
TLE2024BM
MAX
1100
RS = 50 Ω
RL = 10 kΩ
TYP
1300
Full range
Maximum negative
peak
g
output voltage swing
MIN
25°C
25°C
VOM –
TLE2024AM
MAX
Full range
Full range
Maximum positive peak
output voltage swing
Supply current change over
operating temperature range
TLE2024M
MIN
Full range
VOM +
∆ICC
TA†
µA
µA
† Full range is – 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191 – FEBRUARY 1997
26
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VOM +
Common-mode input voltage
g
range
VIC = 0,
RS = 50 Ω
MIN
TYP
Large-signal
g
g
differential
voltage amplification
VO = ± 10 V
V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC ± /∆VIO)
VCC ± = ± 2.5
2 5 V to ± 15 V
ICC
Supply current
No load
MAX
MIN
TYP
MAX
750
500
950
700
UNIT
µV
2
2
2
µV/°C
25°C
0.006
0.006
0.006
µV/mo
25°C
0.6
50
0.5
70
Full range
– 15
to
13.2
25°C
13.8
Full range
13.7
25°C
– 13.7
Full range
– 13.6
25°C
0.4
Full range
0.4
25°C
92
Full range
88
25°C
98
Full range
93
– 15.3
to
14
6
45
70
– 15.3
to
14
13.9
– 13.7
14.2
0.8
14
– 14.1
– 13.7
94
4
1
105
97
100
1050
Full range
1400
115
103
1050
1400
– 14.1
V
7
V/µV
108
dB
117
1050
1400
dB
1400
1400
85
µA
µA
† Full range is – 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
27
SLOS191 – FEBRUARY 1997
85
nA
V
98
1400
85
14.3
93
95
nA
V
1
90
112
– 15.3
to
14
– 13.6
0.8
102
90
13.8
– 13.6
2
70
– 15
to
13.2
13.7
– 14.1
40
– 15
to
13.5
– 15
to
13.2
6
10
90
– 15
to
13.5
14.1
0.4
10
90
– 15
to
13.5
Full range
6
10
25°C
25°C
VO = 0
0,
TYP
1200
RS = 50 Ω
AVD
MIN
1000
Full range
Maximum negative
peak output
g
voltage swing
MAX
TLE2024BM
25°C
25°C
RL = 10 kΩ
TLE2024AM
Full range
Full range
Maximum positive peak output
voltage swing
Supply
y current change
g over
operating temperature range
TLE2024M
Full range
VOM –
∆ICC
TA†
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
Slew rate at unity gain
VO = 1 V to 3 V,
f = 10 Hz
See Figure 1
TA
C SUFFIX
MIN
TYP
I SUFFIX
MAX
MIN
TYP
M SUFFIX
MAX
MIN
TYP
25°C
0.5
25°C
21
50
0.5
21
50
21
30
17
30
17
MAX
0.5
Vn
Equivalent
q
input noise voltage
g
(see Figure 2)
f = 1 kHz
25°C
17
VN(PP)
Peak-to-peak equivalent
q
input
noise voltage
f = 0.1 to 1 Hz
25°C
0.16
0.16
0.16
f = 0.1 to 10 Hz
25°C
0.47
0.47
0.47
UNIT
V/µs
nV/Hz
µV
In
B1
Equivalent input noise current
25°C
0.09
0.09
0.9
pA/Hz
Unity-gain bandwidth
See Figure 3
25°C
1.2
1.2
1.2
MHz
φm
Phase margin at unity gain
See Figure 3
25°C
42°
42°
42°
TLE2021 operating characteristics at specified free-air temperature, VCC = ± 15 V
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
PARAMETER
TEST CONDITIONS
MIN
TYP
25°C
0.45
0.65
Full range
0.45
I SUFFIX
MAX
MIN
TYP
0.45
0.65
M SUFFIX
MAX
MIN
TYP
0.45
0.65
SR
Slew rate at unity gain
VO = 1V to 3 V
V,
Vn
Equivalent
q
input noise voltage
g
(see Figure 2)
f = 10 Hz
25°C
19
50
19
50
19
f = 1 kHz
25°C
15
30
15
30
15
VN(PP)
Peak-to-peak equivalent
q
input
noise voltage
f = 0.1 to 1 Hz
25°C
0.16
0.16
0.16
f = 0.1 to 10 Hz
25°C
0.47
0.47
0.47
25°C
0.09
0.09
0.09
25°C
2
2
2
In
B1
Equivalent input noise current
Unity-gain bandwidth
See Figure 3
See Figure 1
C SUFFIX
TA†
0.42
0.45
φm
Phase margin at unity gain
See Figure 3
25°C
46°
46°
† Full range is 0°C to 70°C for the C-suffix devices, – 40°C to 85°C for the I-suffix devices, and – 55°C to 125°C for the M-suffix devices.
46°
MAX
UNIT
V/µs
nV/Hz
µV
pA/Hz
MHz
Template Release Date: 7–11–94
SR
TEST CONDITIONS
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191 – FEBRUARY 1997
28
TLE2021 operating characteristics, VCC = 5 V, TA = 25°C
TLE2022 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
SR
TEST CONDITIONS
Slew rate at unity gain
VO = 1 V to 3 V,
f = 10 Hz
Vn
Equivalent
q
input noise voltage
g
(see Figure 2)
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
B1
φm
Unity-gain bandwidth
See Figure 3
Phase margin at unity gain
See Figure 3
C SUFFIX
MIN
See Figure 1
TYP
I SUFFIX
MAX
MIN
0.5
f = 1 kHz
TYP
M SUFFIX
MAX
MIN
TYP
0.5
MAX
0.5
21
50
21
50
21
17
30
17
30
17
UNIT
V/µs
nV/√Hz
f = 0.1 to 1 Hz
0.16
0.16
0.16
f = 0.1 to 10 Hz
0.47
0.47
0.47
0.1
0.1
0.1
pA/√Hz
1.7
1.7
1.7
MHz
47°
47°
47°
µV
PARAMETER
TEST CONDITIONS
C SUFFIX
TA†
MIN
TYP
25°C
0.45
0.65
Full range
0.45
I SUFFIX
MAX
MIN
TYP
0.45
0.65
M SUFFIX
MAX
MIN
TYP
0.45
0.65
SR
Slew rate at unity gain
VO = ± 10 V
V,
Vn
Equivalent
q
input noise
voltage (see Figure 2)
f = 10 Hz
25°C
19
50
19
50
19
f = 1 kHz
25°C
15
30
15
30
15
VN(PP)
Peak-to-peak equivalent
q
input noise voltage
f = 0.1 to 1 Hz
25°C
0.16
0.16
0.16
f = 0.1 to 10 Hz
25°C
0.47
0.47
0.47
In
B1
Equivalent input noise current
Unity-gain bandwidth
φm
Phase margin at unity gain
† Full range is 0°C to 70°C.
See Figure 1
0.42
0.4
MAX
UNIT
V/µs
nV/√Hz
µV
25°C
0.1
0.1
0.1
pA/√Hz
See Figure 3
25°C
2.8
2.8
2.8
MHz
See Figure 3
25°C
52°
52°
52°
SLOS191 – FEBRUARY 1997
29
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLE2022 operating characteristics at specified free-air temperature, VCC = ± 15 V
Slew rate at unity gain
VO = 1 V to 3 V,
f = 10 Hz
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
B1
Equivalent input noise current
Unity-gain bandwidth
See Figure 3
φm
Phase margin at unity gain
See Figure 3
C SUFFIX
MIN
See Figure 1
TYP
I SUFFIX
MAX
MIN
0.5
f = 1 kHz
TYP
M SUFFIX
MAX
MIN
TYP
0.5
MAX
0.5
21
50
21
50
21
17
30
17
30
17
UNIT
V/µs
nV/√ Hz
f = 0.1 to 1 Hz
0.16
0.16
0.16
f = 0.1 to 10 Hz
0.47
0.47
0.47
0.1
0.1
0.1
pA/√Hz
1.7
1.7
1.7
MHz
47°
47°
47°
µV
TLE2024 operating characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
PARAMETER
TEST CONDITIONS
TA†
C SUFFIX
MIN
TYP
25°C
0.45
0.7
Full range
0.45
I SUFFIX
MAX
MIN
TYP
0.45
0.7
M SUFFIX
MAX
MIN
TYP
0.45
0.7
MAX
UNIT
SR
Slew rate at unity gain
VO = ± 10 V
V,
Vn
Equivalent
q
input noise voltage
g
(see Figure 2)
f = 10 Hz
25°C
19
50
19
50
19
f = 1 kHz
25°C
15
30
15
30
15
VN(PP)
Peak-to-peak equivalent
q
input noise
voltage
f = 0.1 to 1 Hz
25°C
0.16
0.16
0.16
f = 0.1 to 10 Hz
25°C
0.47
0.47
0.47
25°C
0.1
0.1
0.1
pA/√Hz
MHz
In
B1
Equivalent input noise current
Unity-gain bandwidth
φm
Phase margin at unity gain
† Full range is 0°C to 70°C.
See Figure 1
0.42
0.4
See Figure 3
25°C
2.8
2.8
2.8
See Figure 3
25°C
52°
52°
52°
V/µs
nV/√Hz
µV
Template Release Date: 7–11–94
SR
TEST CONDITIONS
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191 – FEBRUARY 1997
30
TLE2024 operating characteristics, VCC = 5 V, TA = 25°C
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2021Y electrical characteristics at VCC = 5 V, TA = 25°C (unless otherwise noted)
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
TYP
MAX
Input offset current
Input bias current
RS = 50 Ω
VICR
Common-mode input voltage range
VOH
VOL
Maximum high-level output voltage
AVD
CMRR
Large-signal differential voltage amplification
kSVR
Supply-voltage rejection ratio (∆VCC ± /∆VIO)
RL = 10 kΩ
Maximum low-level output voltage
Common-mode rejection ratio
VO = 1.4 to 4 V,
VIC = VICR min,
µV/mo
0.005
RS = 50 Ω
VIC = 0
0,
RL = 10 kΩ
RS = 50 Ω
VCC = 5 V to 30 V
VO = 2.5 V,
No load
UNIT
µV
150
Input offset voltage long-term drift (see Note 4)
IIO
IIB
TLE2021Y
MIN
0.5
nA
35
nA
– 0.3
to
4
V
4.3
V
0.7
V
1.5
V/µV
100
dB
115
dB
ICC
Supply current
400
µA
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2021Y operating characteristics at VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
B1
φm
TLE2021Y
MIN
TYP
VO = 1 V to 3 V
f = 10 Hz
0.5
f = 1 kHz
17
MAX
UNIT
V/µs
21
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
nV/√Hz
µV
0.1
pA/√Hz
Unity-gain bandwidth
1.7
MHz
Phase margin at unity gain
47°
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2022Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted)
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
Input offset voltage long-term drift (see Note 4)
IIO
IIB
TLE2022Y
MIN
Input offset current
VIC = 0
0,
RS = 50 Ω
VOH
VOL
Maximum high-level output voltage
AVD
CMRR
Large-signal differential voltage amplification
kSVR
Supply-voltage rejection ratio (∆VCC ± /∆VIO)
Common-mode rejection ratio
VO = 1.4 to 4 V,
VIC = VICR min,
600
µV
µV/mo
0.5
nA
35
nA
V
4.3
V
0.7
V
RL= 10 kΩ
1.5
V/µV
RS = 50 Ω
100
dB
115
dB
RL = 10 kΩ
Maximum low-level output voltage
150
UNIT
– 0.3
to
4
RS = 50 Ω
Common-mode input voltage range
MAX
0.005
Input bias current
VICR
TYP
VCC = 5 V to 30 V
VO = 2.5 V,
No load
ICC
Supply current
450
µA
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2022Y operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
SR
TEST CONDITIONS
Slew rate at unity gain
VO = 1 V to 3 V,
f = 10 Hz
See Figure 1
TLE2022Y
MIN
TYP
0.5
MAX
UNIT
V/µs
21
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
0.1
pA/√Hz
B1
φm
Unity-gain bandwidth
See Figure 3
1.7
MHz
Phase margin at unity gain
See Figure 3
47°
32
f = 1 kHz
17
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
nV/√Hz
µV
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2024Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLE2024Y
MIN
Input offset voltage long-term drift (see Note 4)
IIO
IIB
Input offset current
VICR
Common-mode input voltage range
VOH
VOL
High-level output voltage
MAX
RS = 50 Ω
Input bias current
RS = 50 Ω
RL = 10 kΩ
UNIT
µV/mo
0.005
VIC = 0,
Low-level output voltage
TYP
0.6
nA
45
nA
– 0.3
to
4
V
4.2
V
0.7
V
AVD
Large-signal differential
voltage amplification
VO = 1.4 V to 4 V,
RL = 10 kΩ
1.5
V/µV
CMRR
Common-mode rejection ratio
VIC = VICRmin,
RS = 50 Ω
90
dB
kSVR
Supply-voltage rejection ratio
(∆VCC /∆VIO)
VCC = 5 V to 30 V
112
dB
ICC
Supply current
VO = 2.5 V,
No load
800
µA
NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2024Y operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
SR
TEST CONDITIONS
Slew rate at unity gain
VO = 1 V to 3 V,
f = 10 Hz
See Figure 1
TLE2024Y
MIN
TYP
0.5
MAX
UNIT
V/µs
21
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
B1
Equivalent input noise current
0.1
pA/√Hz
Unity-gain bandwidth
See Figure 3
1.7
MHz
φm
Phase margin at unity gain
See Figure 3
47°
POST OFFICE BOX 655303
f = 1 kHz
17
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
• DALLAS, TEXAS 75265
nV/√ Hz
µV
33
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
PARAMETER MEASUREMENT INFORMATION
20 kΩ
20 kΩ
5V
15 V
–
–
VO
VO
VI
+
30 pF
(see Note A)
+
VI
– 15 V
30 pF
(see Note A)
20 kΩ
(a) SINGLE SUPPLY
20 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 1. Slew-Rate Test Circuit
2 kΩ
2 kΩ
15 V
5V
–
20 Ω
VO
–
+
VO
2.5 V
+
– 15 V
20 Ω
20 Ω
20 Ω
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 2. Noise-Voltage Test Circuit
10 kΩ
10 kΩ
5V
15 V
100 Ω
–
VI
VI
VO
2.5 V
–
100 Ω
VO
+
+
30 pF
(see Note A)
– 15 V
30 pF
(see Note A)
10 kΩ
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit
34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10 kΩ
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
PARAMETER MEASUREMENT INFORMATION
5V
–
–
10 kΩ
VI
VO
VO
VI
+
10 kΩ
+
0.1 µF
15 V
– 15 V
10 kΩ
30 pF
(see Note A)
30 pF
(see Note A)
(a) SINGLE SUPPLY
10 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 4. Small-Signal Pulse-Response Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
36
VIO
Input offset voltage
Distribution
IIB
Input bias current
vs Common-mode input voltage
vs Free-air temperature
II
Input current
vs Differential input voltage
VOM
Maximum peak output voltage
vs Output current
vs Free-air temperature
VOH
High-level output voltage
vs High-level output current
vs Free-air temperature
19, 20
21
VOL
Low-level output voltage
vs Low-level output current
vs Free-air temperature
22
23
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
AVD
Large-signal differential voltage amplification
vs Frequency
vs Free-air temperature
26
27, 28, 29
IOS
Short-circuit output current
vs Supply voltage
vs Free-air temperature
30 – 33
34 – 37
ICC
Supply current
vs Supply voltage
vs Free-air temperature
38, 39, 40
41, 42, 43
CMRR
Common-mode rejection ratio
vs Frequency
44, 45, 46
SR
Slew rate
vs Free-air temperature
47, 48, 49
Voltage-follower small-signal pulse response
vs Time
50, 51
Voltage-follower large-signal pulse response
vs Time
52 – 57
VN(PP)
Peak-to-peak equivalent input noise voltage
0.1 to 1 Hz
0.1 to 10 Hz
58
59
Vn
Equivalent input noise voltage
vs Frequency
60
B1
Unity-gain bandwidth
vs Supply voltage
vs Free-air temperature
61, 62
63, 64
φm
Phase margin
vs Supply voltage
vs Load capacitance
vs Free-air temperature
65, 66
67, 68
69, 70
Phase shift
vs Frequency
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5, 6, 7
8, 9, 10
11, 12, 13
14
15, 16, 17
18
24, 25
26
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLE2022
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLE2021
INPUT OFFSET VOLTAGE
20
ÏÏÏÏÏÏÏÏÏÏÏ
20
231 Units Tested From 1 Wafer Lot
VCC ± = ± 15 V
ÏÏÏÏ
TA = 25°C
P Package
16
Percentage of Units – %
Percentage of Units – %
16
398 Amplifiers Tested From 1 Wafer Lot
VCC ± = ± 15 V
TA = 25°C
12
8
P Package
12
8
4
4
0
0
150 300
450
– 600 – 450 – 300 – 150
VIO – Input Offset Voltage – µV
0
– 600
600
– 400
– 200
0
200
400
VIO – Input Offset Voltage – µV
Figure 5
Figure 6
TLE2021
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
DISTRIBUTION OF TLE2024
INPUT OFFSET VOLTAGE
16
– 40
796 Amplifiers Tested From 1 Wafer Lot
VCC ± = ± 15 V
TA = 25°C
N Package
VCC ± = ± 15 V
TA = 25°C
– 35
I IB – Input Bias Current – nA
IIB
Percentage of Units – %
600
12
8
4
– 30
– 25
– 20
– 15
– 10
–5
0
–1
– 0.5
0
0.5
1
VIO – Input Offset Voltage – mV
0
– 15
– 10
–5
0
5
10
VIC – Common-Mode Input Voltage – V
15
Figure 8
Figure 7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
37
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2022
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
TLE2024
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
– 50
– 60
VCC ± = ± 15 V
TA = 25°C
IIIB
IB – Input Bias Current – nA
IIB
I IB – Input Bias Current – nA
– 45
VCC ± = ± 15 V
TA = 25°C
– 40
– 35
– 50
– 40
ÁÁ
ÁÁ
– 30
– 25
– 20
– 15
– 20
– 15
15
– 10
–5
0
5
10
VIC – Common-Mode Input Voltage – V
– 30
– 10
–5
10
15
TLE2022
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
TLE2021
INPUT BIAS CURRENT†
vs
FREE–AIR TEMPERATURE
– 50
– 35
VCC ± = ± 15 V
VO = 0
VIC = 0
– 25
– 20
– 15
– 10
VCC ± = ± 15 V
VO = 0
VIC = 0
– 45
IIIB
IB – Input Bias Current – nA
IIB
I IB – Input Bias Current – nA
5
Figure 10
Figure 9
– 30
0
VIC – Common-Mode Input Voltage – V
– 40
– 35
– 30
– 25
–5
0
– 75
– 50
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
125
– 20
– 75
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
Figure 11
Figure 12
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
38
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2024
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
ÏÏÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
1
VCC± = ±15 V
VO = 0
VIC = 0
– 50
– 40
ÁÁ
ÁÁ
VCC± = ±15 V
VIC = 0
TA = 25°C
0.9
0.8
I III – Input Current – mA
IIB – Input Bias Current – nA
IIB
– 60
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
– 30
0.7
0.6
0.5
0.4
0.3
0.2
0.1
– 20
– 75
0
– 50
– 25
0
25
50
75
100
0
125
TA – Free-Air Temperature – °C
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
|VID| – Differential Input Voltage – V
Figure 14
Figure 13
TLE2022
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
TLE2021
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
16
12
VCC ± = ± 15 V
TA = 25°C
|VVOM|
OM – Maximum Peak Output Voltage – V
VOM – Maximum Peak Output Voltage – V
V
OM
16
14
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
VOM+
10
ÁÁ
ÁÁ
ÁÁ
VOM –
8
1
6
ÁÁ
ÁÁ
4
2
0
0
2
4
6
8
IO – Output Current – mA
10
VCC ± = ± 15 V
TA = 25°C
14
12
ÏÏÏ
ÏÏÏ
10
VOM–
8
ÏÏÏÏ
ÏÏÏÏ
VOM+
6
4
2
0
0
2
8
10
4
6
|IO| – Output Current – mA
12
14
Figure 16
Figure 15
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2024
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
ÁÁ
ÁÁ
ÁÁ
15
ÏÏÏÏ
ÏÏÏ ÏÏÏ
ÏÏÏ
VCC ± = ± 5 V
TA = 25°C
14
12
|VVOM|
OM – Maximum Peak Output Voltage – V
VOM – Maximum Peak Output Voltage – V
VOM
16
MAXIMUM PEAK OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
VOM +
10
VOM –
8
6
4
2
0
0
2
8
10
4
6
IO – Output Current – mA
12
14
14.5
VOM +
14
VOM –
13.5
ÁÁ
ÁÁ
ÁÁ
13
12.5
12
– 75
VCC ± = ± 15 V
RL = 10 kΩ
TA = 25°C
– 50
Figure 17
Figure 18
TLE2021
HIGH–LEVEL OUTPUT VOLTAGE
vs
HIGH–LEVEL OUTPUT CURRENT
TLE2022 AND TLE2024
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
5
5
VCC = 5 V
TA = 25°C
VOH – High-Level Output Voltage – V
VOH
VOH
VOH – High-Level Output Voltage – V
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
4
3
2
ÁÁÁ
ÁÁÁ
VCC = 5 V
TA = 25°C
4
3
2
ÁÁ
ÁÁ
1
1
0
0
0
–1
–2
–3
–4
–5
–6
IOH – High-Level Output Current – mA
–7
0
–2
–4
–6
–8
– 10
IOH – High-Level Output Current – mA
Figure 20
Figure 19
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
40
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
5
HIGH-LEVEL OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
5
VCC = 5 V
TA = 25°C
VOL
VOL – Low-Level Output Voltage – V
VOH
VOH – High-Level Output Voltage – V
VCC = 5 V
4.8
4.6
No Load
4.4
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
RL = 10 kΩ
4.2
4
– 75
– 50 – 25
0
25
50
75
100
4
3
2
1
0
125
0
0.5
1
1.5
2
2.5
IOL – Low-Level Output Current – mA
TA – Free-Air Temperature – °C
Figure 21
Figure 22
LOW-LEVEL OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
VVOPP
O(PP) – Maximum Peak-to-Peak Output Voltage – V
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VOL
VOL – Low-Level Output Voltage – V
1
IOL = 1 mA
0.75
IOL = 0
0.5
ÁÁ
ÁÁ
0.25
VCC ± = ± 5 V
0
– 75
– 50
3
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
125
5
4
3
2
ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ
1
VCC = 5 V
RL = 10 kΩ
TA = 25°C
0
100
Figure 23
1k
10 k
100 k
f – Frequency – Hz
1M
Figure 24
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
41
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VVOPP
O(PP) – Maximum Peak-to-Peak Output Voltage – V
30
25
20
15
10
ÁÁ ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ
VCC ± = ± 15 V
RL = 10 kΩ
TA = 25°C
5
0
100
1k
10 k
100 k
f – Frequency – Hz
1M
Figure 25
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
AVD – Large-Signal Differential
Voltage Amplification – dB
100
80°
Phase Shift
80
100°
VCC ± = ± 15 V
AVD
60
120°
VCC = 5 V
40
140°
20
160°
0
– 20
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
10
100
180°
200°
1k
10 k
100 k
f – Frequency – Hz
1M
Figure 26
42
60°
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10 M
Phase Shift
120
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2021
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE–AIR TEMPERATURE
TLE2022
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
10
6
RL = 10 kΩ
ÏÏÏÏÏ
ÏÏÏÏÏ
8
5
AVD
AVD – Large-Signal Differential
Voltage Amplification – V/µV
AVD – Large-Signal Differential
Voltage Amplification – V/ µ V
RL = 10 kΩ
VCC ± = ± 15 V
6
4
2
ÁÁ
ÁÁ
ÁÁ
ÏÏÏÏ
ÏÏÏÏ
VCC = 5 V
0
– 75
– 50
– 25
0
25
50
75
100
VCC ± = ± 15 V
4
3
2
1
VCC = 5 V
0
– 75
125
– 50
TA – Free-Air Temperature – °C
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
Figure 28
Figure 27
TLE2024
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
10
10
VCC ± = ± 15 V
6
4
2
VCC ± = ± 5 V
0
– 75
– 50
– 25
0
25
50
75
100
125
IIOS
OS – Short-Circuit Output Current – mA
AVD – Large-Signal Differential
Voltage Amplification – V/ µ V
RL = 10 kΩ
8
125
ÁÁ
ÁÁ
VO = 0
TA = 25°C
8
6
VID = –100 mV
4
2
0
–2
–4
ÏÏÏÏÏ
–6
VID = 100 mV
–8
– 10
0
2
TA – Free-Air Temperature – °C
4
6
8
10
12
|VCC ±| – Supply Voltage – V
14
16
Figure 30
Figure 29
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
43
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
12
VO = 0
TA = 25°C
IIOS
OS – Short-Circuit Output Current – mA
I OS – Short-Circuit Output Current – mA
IOS
15
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
10
VID = –100 mV
5
0
–5
VID = 100 mV
– 10
– 15
0
2
4
6
8
10
12
14
16
|VCC ±| – Supply Voltage – V
TA = 25°C
8
VID = –100 mV
VO = VCC
4
0
–4
ÁÁ
ÁÁ
ÁÁ
VID = 100 mV
VO = 0
–8
– 12
5
0
10
15
20
25
VCC – Supply Voltage – V
Figure 32
Figure 31
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÏÏÏÏÏ
ÏÏÏÏÏ
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
8
VCC = 5 V
TA = 25°C
IOS
I OS – Short-Circuit Output Current – mA
I OS – Short-Circuit Output CUrrent – mA
IOS
15
10
VID = – 100 mV
VO = VCC
5
0
–5
VID = 100 mV
VO = 0
– 10
– 15
0
5
10
15
20
25
30
6
VID = –100 mV
VO = 5 V
4
2
0
–2
VID = 100 mV
VO = 0
ÁÁ
ÁÁ
–4
–6
–8
– 75
– 50
VCC – Supply Voltage – V
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
Figure 34
Figure 33
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
44
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
12
VCC = 5 V
VID = –100 mV
VO = 5 V
4
IOS
I OS – Short-Circuit Output Current – mA
IOS
I OS – Short-Circuit Output Current – mA
6
2
0
–2
–4
ÏÏÏ
ÏÏÏÏÏ
ÏÏÏ
–8
– 10
– 75
– 50
– 25
0
25
50
75
8
100
VID = –100 mV
4
0
–4
ÁÁ
ÁÁ
VID = 100 mV
VO = 0
–6
VCC ± = ± 15 V
VO = 0
–8
VID = 100 mV
– 12
– 75
125
– 50
TA – Free-Air Temperature –°C
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
Figure 36
Figure 35
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
TLE2021
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
250
VO = 0
No Load
VCC ± = ± 15 V
VO = 0
200
A
IICC
CC – Supply Current – µua
I OS – Short-Circuit Output Current – mA
IOS
15
10
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÁÁ
ÏÏÏÏ
ÁÁ
5
VID = – 100 mV
0
–5
VID = 100 mV
150
TA = 125°C
TA = 25°C
100
TA = – 55°C
50
– 10
– 15
– 75
125
– 50
– 25
0
25
50
75
100
125
0
0
2
TA – Free-Air Temperature – °C
4
6
8
10
12
|VCC ±| – Supply Voltage – V
14
16
Figure 38
Figure 37
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
45
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2022
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
TLE2024
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
500
VO = 0
No Load
TA = 25°C
300
TA = 125°C
TA = – 55°C
200
100
0
TA = 125°C
800
I CC – Supply Current – µ A
IICC
A
CC – Supply Current – µua
400
ÁÁ
ÁÁ
ÁÁ
ÏÏÏÏÏ
1000
VO = 0
No Load
TA = 25°C
600
TA = – 55°C
400
200
0
2
4
6
8
10
12
|VCC ±| – Supply Voltage – V
14
0
16
0
2
4
8
10
12
14
16
|VCC ±| – Supply Voltage – V
Figure 39
Figure 40
TLE2022
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
TLE2021
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
ÁÁ
ÁÁ
225
6
500
VCC ± = ± 15 V
175
150
VCC ± = ± 2.5 V
125
100
ÁÁÁ
ÁÁÁ
75
50
25
0
– 75
VCC ± = ± 15 V
400
IICC
A
CC – Supply Current – µua
A
IICC
CC – Supply Current – µua
200
VCC ± = ± 2.5 V
300
200
100
VO = 0
No Load
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
125
VO = 0
No Load
0
– 75
– 50
Figure 41
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
Figure 42
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
46
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2021
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
TLE2024
SUPPLY CURRENT †
vs
FREE-AIR TEMPERATURE
1000
CMRR – Common-Mode Rejection Ratio – dB
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ± 15 V
800
I CC – Supply Current – µ A
120
VCC ± = ± 2.5 V
600
400
200
VO = 0
No Load
0
– 75
– 50
– 25
0
25
50
75
100
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
100
VCC ± = ± 15 V
80
VCC = 5 V
60
40
20
TA = 25°C
0
125
10
100
TA – Free-Air Temperature – °C
1k
10 k
100 k
f – Frequency – Hz
Figure 43
10 M
Figure 44
TLE2024
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
TLE2022
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
ÏÏÏÏÏÏ
120
CMRR – Common-Mode Rejection Ratio – dB
120
CMRR – Common-Mode Rehection Ratio – dB
1M
TA = 25°C
100
VCC ± = ± 15 V
80
VCC = 5 V
60
40
20
100
80
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
VCC ± = ± 15 V
VCC = 5 V
60
40
20
TA = 25°C
0
0
10
100
1k
10 k
100 k
f – Frequency – Hz
1M
10 M
10
100
1k
10 k
100 k
1M
10 M
f – Frequency – Hz
Figure 45
Figure 46
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
47
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2022
SLEW RATE†
vs
FREE-AIR TEMPERATURE
TLE2021
SLEW RATE†
vs
FREE-AIR TEMPERATURE
1
1
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
VCC ± = ± 15 V
0.8
SR – Slew Rate – V/ µ
uss
SR – Slew Rate – V/us
µs
0.8
VCC = 5 V
0.6
0.4
0.2
0
– 75
0.6
VCC = 5 V
0.4
0.2
RL = 20 kΩ
CL = 30 pF
See Figure 1
– 50
VCC ± = ± 15 V
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
RL = 20 kΩ
CL = 30 pF
See Figure 1
0
– 75
125
– 50
TLE2024
SLEW RATE†
vs
FREE-AIR TEMPERATURE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
1
ÏÏÏÏÏ
SR – Slew Rate – V/s
V/ µ s
VCC ± = ± 15 V
VCC = 5 V
0.4
0
– 75
– 25
50
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 4
ÏÏÏÏ
ÏÏÏÏ
0
ÁÁ
ÁÁ
RL = 20 kΩ
CL = 30 pF
See Figure 1
– 50
VO – Output Voltage – mV
VO
100
0.6
0.2
0
25
50
75
100
125
– 50
– 100
0
TA – Free-Air Temperature – °C
Figure 49
20
40
t – Time – µs
60
Figure 50
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
48
125
Figure 48
Figure 47
0.8
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
80
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
2.55
4
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 4
ÏÏÏÏ
VO – Output Voltage – V
VO
VO – Output Voltage – V
VO
2.6
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
2.5
ÁÁ
ÁÁ
3
2.4
ÏÏÏÏÏ
ÏÏÏÏÏ
2
ÁÁ
ÁÁ
2.45
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
1
0
0
20
40
t – Time – µs
60
80
0
Figure 51
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
4
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
VO – Output Voltage – V
VO
VO
VO – Output Voltage – V
80
TLE2024
VOLTAGE-FOLLOWER LARGE-SCALE
PULSE RESPONSE
4
ÁÁ
ÁÁ
60
Figure 52
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
3
20
40
t – Time – µs
2
1
3
VCC ± = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
2
1
0
0
0
20
40
t – Time – µs
60
0
80
20
40
60
80
t – Time – µs
Figure 53
Figure 54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
49
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VO – Output Voltage – V
VO
10
ÁÁ
ÁÁ
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
15
10
VO
VO – Output Voltage – V
15
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
5
0
– 10
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
5
ÁÁ
ÁÁ
–5
ÏÏÏÏÏ
ÏÏÏÏÏ
0
–5
– 10
– 15
0
20
40
t – Time – µs
60
– 15
80
0
TLE2024
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
15
VO – Output Voltage – V
VO
10
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
5
0
–5
–10
–15
0
20
t – Time – µs
Figure 57
50
60
80
Figure 56
40
60
80
VN(PP)
VNPP – Peak-to-Peak Equivalent Input Noise Voltage – uV
µV
Figure 55
20
40
t – Time – µs
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 1 Hz
0.5
0.4
VCC ± = ± 15 V
TA = 25°C
0.3
0.2
0.1
0
– 0.1
– 0.2
– 0.3
ÁÁ
ÁÁ
ÁÁ
POST OFFICE BOX 655303
ÏÏÏÏÏ
ÏÏÏÏÏ
– 0.4
– 0.5
0
1
• DALLAS, TEXAS 75265
2
3
4
5
t – Time – s
Figure 58
6
7
8
9
10
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 10 Hz
0.5
VCC ± = ± 15 V
TA = 25°C
0.4
0.3
0.2
0.1
0
– 0.1
– 0.2
– 0.3
ÁÁ
ÁÁ
ÁÁ
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
VVn
nV/ Hz
n – Equivalent Input Noise Voltage – nVHz
VN(PP)
VNPP – Peak-to-Peak Equivalent Input Noise Voltage – uV
µV
TYPICAL CHARACTERISTICS
– 0.4
– 0.5
VCC ± = ± 15 V
RS = 20 Ω
TA = 25°C
See Figure 2
160
120
80
40
0
0
1
2
3
4
5
6
t – Time – s
7
8
9
10
1
10
Figure 60
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
4
4
B1
B1 – Unity-Gain Bandwidth – MHz
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
3
10 k
100
1k
f – Frequency – Hz
Figure 59
TLE2021
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
B1
B
1 – Unity-Gain Bandwidth – MHz
ÏÏÏÏÏ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏÏ
ÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁ
200
2
1
0
3
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
2
1
0
0
2
4
6
8
10
12
14
|VCC±| – Supply Voltage – V
16
0
2
Figure 61
4
6
8
10
12
|VCC±| – Supply Voltage – V
14
16
Figure 62
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
51
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2021
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
4
RL = 10 kΩ
CL = 30 pF
See Figure 3
3
VCC ± = ± 15 V
2
ÏÏÏÏÏ
1
VCC = 5 V
– 50 – 25
0
25
50
75
TA – Free-Air Temperature – °C
100
ÏÏÏÏÏ
ÏÏÏÏÏ
3
VCC ± = ± 15 V
2
VCC = 5 V
1
0
– 75
0
– 75
125
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
Figure 63
TLE2022 AND TLE2024
PHASE MARGIN
vs
SUPPLY VOLTAGE
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
53°
φ m – Phase Margin
φm
m – Phase Margin
ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
55°
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
48°
46°
51°
ÁÁ
ÁÁ
44°
49°
47°
42°
45°
40°
0
2
4
6
8
10
12
14
|VCC ±| – Supply Voltage – V
16
0
2
4
6
8
10
12
|VCC±| – Supply Voltage – V
14
Figure 66
Figure 65
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
52
125
Figure 64
TLE2021
PHASE MARGIN
vs
SUPPLY VOLTAGE
50°
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
See Figure 3
B1
B1 – Unity-Gain Bandwidth – MHz
B
B1
1 – Unity-Gain Bandwidth – MHz
4
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
16
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
PHASE MARGIN
vs
LOAD CAPACITANCE
TLE2021
PHASE MARGIN
vs
LOAD CAPACITANCE
60°
70°
RL = 10 kΩ
TA = 30 pF
See Figure 3
50°
60°
VCC ± = ± 15 V
VCC ± = ± 15 V
φm
m – Phase Margin
φm
m – Phase Margin
50°
40°
VCC = 5 V
ÁÁ
ÁÁ
ÁÁ
30°
RL = 10 kΩ
TA = 25°C
See Figure 3
VCC = 5 V
40°
ÁÁ
ÁÁ
20°
30°
20°
10°
10°
0
0
20
40
60
80
CL – Load Capacitance – pF
0°
100
0
20
40
60
80
CL – Load Capacitance – pF
Figure 67
50°
48°
TLE2022 AND TLE2024
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
54°
RL = 10 kΩ
CL = 30 pF
See Figure 3
52°
VCC ± = ± 15 V
VCC ± = ± 15 V
46°
φm
m – Phase Margin
50°
44°
ÁÁ
ÁÁ
42°
VCC = 5 V
40°
38°
36°
– 75
100
Figure 68
TLE2021
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
φm
m – Phase Margin
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
48°
ÁÁ ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
46°
44°
42°
– 50
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
125
VCC = 5 V
40°
– 75
RL = 10 kΩ
CL = 30 pF
See Figure 3
– 50
Figure 69
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
125
Figure 70
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
53
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
APPLICATION INFORMATION
voltage-follower applications
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For
feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).
CF = 20 pF to 50 pF
IF ≤ 1 mA
RF
VCC +
–
VO
VI
+
VCC –
Figure 71. Voltage Follower
Input offset voltage nulling
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null
pins may be left disconnected.
–
IN –
OFFSET N2
OFFSET N1
+
IN +
5 kΩ
1 kΩ
VCC – (split supply)
GND (single supply)
Figure 72. Input Offset Voltage Null Circuit
54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts , the model generation software used
with Microsim PSpice . The Boyle macromodel (see Note 5) and subcircuit in73, Figure 74, and Figure 75 were
generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this information,
output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
VCC +
egnd
9
rss
iss
2
10
IN –
j1
dp
vc
j2
IN+
1
11
dc
12
r2
–
53
hlim
–
+
C2
6
54
4
+
–
–
–
+
vin
7
gcm
ga
vlim
8
rd2
91
+
vip
+
C1
rd1
+ dip
90
ro2
vb
rp
VCC –
92
fb
–
+
din
+
–
ro1
de
5
–
ve
OUT
Figure 73. Boyle Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
55
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
.SUBCKT TLE2021 1 2 3 4 5
*
c1
11 12 6.244E–12
c2
6
7 13.4E–12
c3
87 0 10.64E–9
cpsr 85 86 15.9E–9
dcm+ 81 82 dx
dcm– 83 81 dx
dc
5
53 dx
de
54 5 dx
dlp
90 91 dx
dln
92 90 dx
dp
4
3 dx
ecmr 84 99 (2 99) 1
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
epsr 85 0 poly(1) (3,4) –60E–6 2.0E–6
ense 89 2 poly(1) (88,0) 120E–6 1
fb
7
99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6
+ –50E7 50E7 50E7 –50E7 547E6
ga
6
0 11 12 188.5E–6
gcm 0
6 10 99 335.2E–12
gpsr 85 86 (85,86) 100E–6
grc1 4
11 (4,11) 1.885E–4
grc2 4
12 (4,12) 1.885E–4
gre1 13 10 (13,10) 6.82E–4
gre2 14 10 (14,10) 6.82E–4
hlim
90 0 vlim 1k
hcmr 80 1 poly(2) vcm+ vcm– 0 1E2 1E2
irp
3
4 185E–6
iee
3
10 dc 15.67E–6
iio
2
0 2E–9
i1
88 0 1E–21
q1
11 89 13 qx
q2
12 80 14 qx
R2
6
9 100.0E3
rcm 84 81 1K
ree 10 99 14.76E6
rn1 87 0 2.55E8
rn2 87 88 11.67E3
ro1 8
5 62
ro2 7
99 63
vcm+ 82 99 13.3
vcm– 83 99 –14.6
vb
9
0 dc 0
vc
3
53 dc 1.300
ve
54 4 dc 1.500
vlim 7
8 dc 0
vlp
91 0 dc 3.600
vln
0
92 dc 3.600
vpsr 0
86 dc 0
.model dx d(is=800.0E–18)
.model qx pnp(is=800.0E–18 bf=270)
.ends
Figure 74. Boyle Macromodel for the TLE2021
.SUBCKT TLE2022 1 2 3 4 5
*
c1
11 12 6.814E–12
c2
6
7 20.00E–12
dc
5
53 dx
de
54 5 dx
dlp
90 91 dx
dln
92 90 dx
dp
4
3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb
7
99 poly(5) vb vc ve vlp vln 0
+ 45.47E6 –50E6 50E6 50E6 –50E6
ga 6 0
11 12 377.9E–6
gcm 0 6
10 99 7.84E–10
iee
3
10 DC 18.07E–6
hlim 90 0 vlim 1k
q1
11 2 13 qx
q2
12 1 14 qx
r2
6
9 100.0E3
rc1
rc2
ge1
ge2
ree
ro1
ro2
rp
vb
vc
ve
vlim
vlp
vln
.model
.model
.ends
4
4
13
14
10
8
7
3
9
3
54
7
91
0
dx
qx
11 2.842E3
12 2.842E3
10 (10,13) 31.299E–3
10 (10,14) 31.299E–3
99 11.07E6
5 250
99 250
4 137.2E3
0 dc 0
53 dc 1.300
4 dc 1.500
8 dc 0
0 dc 3
92 dc 3
d(is=800.0E–18)
pnp(is=800.0E–18 bf=257.1)
Figure 75. Boyle Macromodel for the TLE2022
56
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
PINS **
0.050 (1,27)
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
0.020 (0,51)
0.014 (0,35)
14
0.010 (0,25) M
8
0.244 (6,20)
0.228 (5,80)
0.008 (0,20) NOM
0.157 (4,00)
0.150 (3,81)
1
Gage Plane
7
A
0.010 (0,25)
0°– 8°
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
0.004 (0,10)
4040047 / B 03/95
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
Four center pins are connected to die mount pad.
Falls within JEDEC MS-012
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
57
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
28 PIN SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,15 NOM
5,60
5,00
8,20
7,40
Gage Plane
1
14
0,25
A
0°– 8°
1,03
0,63
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
8
14
16
20
24
28
30
38
A MAX
3,30
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
2,70
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 / C 10/95
NOTES: A.
B.
C.
D.
58
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
DW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
16 PIN SHOWN
PINS **
0.050 (1,27)
16
20
24
28
A MAX
0.410
(10,41)
0.510
(12,95)
0.610
(15,49)
0.710
(18,03)
A MIN
0.400
(10,16)
0.500
(12,70)
0.600
(15,24)
0.700
(17,78)
DIM
0.020 (0,51)
0.014 (0,35)
16
0.010 (0,25) M
9
0.419 (10,65)
0.400 (10,15)
0.010 (0,25) NOM
0.299 (7,59)
0.293 (7,45)
Gage Plane
0.010 (0,25)
1
8
0°– 8°
A
0.050 (1,27)
0.016 (0,40)
Seating Plane
0.104 (2,65) MAX
0.012 (0,30)
0.004 (0,10)
0.004 (0,10)
4040000 / B 03/95
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
Falls within JEDEC MS-013
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
59
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
B
A
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
25
5
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
60
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
J (R-GDIP-T**)
CERAMIC DUAL-IN-LINE PACKAGE
14 PIN SHOWN
PINS **
14
16
18
20
22
A MAX
0.310
(7,87)
0.310
(7,87)
0.310
(7,87)
0.310
(7,87)
0.410
(10,41)
A MIN
0.290
(7,37)
0.290
(7,37)
0.290
(7,37)
0.290
(7,37)
0.390
(9,91)
B MAX
0.785
(19,94)
0.785
(19,94)
0.910
(23,10)
0.975
(24,77)
1.100
(28,00)
B MIN
0.755
(19,18)
0.755
(19,18)
C MAX
0.280
(7,11)
0.300
(7,62)
0.300
(7,62)
0.300
(7,62)
C MIN
0.245
(6,22)
0.245
(6,22)
0.245
(6,22)
0.245
(6,22)
DIM
B
14
8
C
1
7
0.065 (1,65)
0.045 (1,14)
0.100 (2,54)
0.070 (1,78)
0.020 (0,51) MIN
0.930
(23,62)
0.388
(9,65)
A
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0°– 15°
0.100 (2,54)
0.023 (0,58)
0.015 (0,38)
0.014 (0,36)
0.008 (0,20)
4040083 / B 04/95
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
61
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE PACKAGE
0.400 (10,20)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.063 (1,60)
0.015 (0,38)
0°–15°
0.023 (0,58)
0.015 (0,38)
0.015 (0,38)
0.008 (0,20)
0.100 (2,54)
4040107 / B 04/95
NOTES: A.
B.
C.
D.
E.
62
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only on press ceramic glass frit seal only
Falls within MIL-STD-1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PIN SHOWN
PINS **
14
16
18
20
A MAX
0.775
(19,69)
0.775
(19,69)
0.920
(23.37)
0.975
(24,77)
A MIN
0.745
(18,92)
0.745
(18,92)
0.850
(21.59)
0.940
(23,88)
DIM
A
16
9
0.260 (6,60)
0.240 (6,10)
1
8
0.070 (1,78) MAX
0.035 (0,89) MAX
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.010 (0,25) M
0°– 15°
0.010 (0,25) NOM
14/18 PIN ONLY
4040049/C 08/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
63
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE PACKAGE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0°– 15°
0.010 (0,25) M
0.010 (0,25) NOM
4040082 / B 03/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
64
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0,32
0,19
0,65
14
0,13 M
8
0,15 NOM
4,50
4,30
6,70
6,10
Gage Plane
0,25
1
7
0°– 8°
0,75
0,50
A
Seating Plane
1,20 MAX
0,10
0,10 MIN
PINS **
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064 / D 10/95
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
65
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated