TI TLE2027ACP

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
D
D
D
D, JG, OR P PACKAGE
(TOP VIEW)
Outstanding Combination of dc Precision
and AC Performance:
Unity-Gain Bandwidth . . . 15 MHz Typ
Vn . . . . 3.3 nV/√Hz at f = 10 Hz Typ,
2.5 nV/√Hz at f = 1 kHz Typ
VIO . . . . 25 µV Max
AVD . . . 45 V/µV Typ With RL = 2 kΩ,
19 V/µV Typ With RL = 600 Ω
Available in Standard-Pinout Small-Outline
Package
Output Features Saturation Recovery
Circuitry
Macromodels and Statistical information
OFFSET N1
IN –
IN +
VCC –
1
8
2
7
3
6
4
5
OFFSET N2
VCC +
OUT
NC
FK PACKAGE
(TOP VIEW)
NC
OFFSET N1
NC
OFFSET N2
NC
D
description
NC
IN –
NC
IN +
NC
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
VCC +
NC
OUT
NC
NC
VCC –
NC
NC
NC
The TLE20x7 and TLE20x7A contain innovative
circuit design expertise and high-quality process
control techniques to produce a level of ac
performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art
Excalibur process, these devices allow upgrades
to systems that use lower-precision devices.
In the area of dc precision, the TLE20x7 and
TLE20x7A offer maximum offset voltages of
100 µV and 25 µV, respectively, common-mode
rejection ratio of 131 dB (typ), supply voltage
rejection ratio of 144 dB (typ), and dc gain of
45 V/µV (typ).
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
– 40°C to 105°C
– 55°C to 125°C
CHIP
FORM‡
(Y)
VIOmax AT
25°C
SMALL
OUTLINE†
(D)
CHIP
CARRIER
(FK)
25 µV
TLE2027ACD
TLE2037ACD
—
—
—
—
TLE2027ACP
TLE2037ACP
TLE2027Y
TLE2037Y
100 µV
TLE2027CD
TLE2037CD
—
—
—
—
TLE2027CP
TLE2037CP
TLE2027Y
TLE2037Y
25 µV
TLE2027AID
TLE2037AID
—
—
—
—
TLE2027AIP
TLE2037AIP
—
100 µV
TLE2027ID
TLE2037ID
—
—
—
—
TLE2027IP
TLE2037IP
—
25 µV
TLE2027AMD
TLE2037AMD
TLE2027AMFK
TLE2037AMFK
TLE2027AMJG
TLE2037AMJG
TLE2027AMP
TLE2037AMP
—
100 µV
TLE2027MD
TLE2037MD
TLE2027MFK
TLE2037MFK
TLE2027MJG
TLE2037MJG
TLE2027MP
TLE2037MP
—
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
† The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2027ACDR).
‡ Chip forms are tested at 25°C only.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
description (continued)
The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification
of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/√Hz and 2.5 nV/√Hz at frequencies
of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate
(–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be
operated with a closed-loop gain of 5 or greater.
Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard
8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for
operation from 0°C to 70°C. The I-suffix devices are characterized for operation from – 40°C to 105°C. The
M-suffix devices are characterized for operation over the full military temperature range of – 55°C to 125°C.
symbol
OFFSET N1
IN +
+
IN –
–
OUT
OFFSET N2
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TLE202xY chip information
This chip, when properly assembled, displays characteristics similar to the TLE202xC. Thermal compression
or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(6)
(4)
(8)
(7)
(6)
OFFSET N1
IN +
IN –
OFFSET N2
(1)
(3)
(2)
VCC+
+
–
(7)
(6)
OUT
(4)
(8)
VCC –
(5)
90
(3)
(7)
(4)
(2)
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
(1)
(2)
(3)
ALL DIMENSIONS ARE IN MILS.
(8)
(1)
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
73
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
R1
Q10
R2
Q5
Q2
R9
R4
R5
Q9
Q42
C1
Q11
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Q1
Q7
Q17
Q59
Q32
Q39
R17
Q25 Q28
C2
OUT
Q44
R22
Q43
R13
Q34
Q23 Q24
Q20
Q48
Q47
C4
Q18
Q57
Q37
C3
IN –
Q56
Q38
R16
R11
Q19
Q8
Q52
Q50
Q62
Q53
Q41
Q33
Q21
Q54
Q15
Q51
Q26
Q29
Q22
R6
R7 R10
R12
R14
Q45
Q60
R23
R24 R26
R19
R18
VCC –
ACTUAL DEVICE COMPONENT COUNT
COMPONENT
Q40
Q35
Q31
Q16
R3
Q61
Q55
R21
Q14
Q12
Q4
Q58
Q30
R8
IN +
Q46
Q36
Q6
R25
Q49
Q27
Q13
Q3
R20
R15
TLE2027
TLE2037
Transistors
61
61
Resistors
26
26
epiFET
1
1
Capacitors
4
4
Template Release Date: 7–11–94
V CC+
OFFSET N1
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
OFFSET N2
SLOS192 – FEBRUARY 1997
4
equivalent schematic
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V
Supply voltage, VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 19 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1.2 V
Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC±
Input current, II (each Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Total current out of VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 105°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Case temperature for 60 seconds, TC: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . 300°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC – .
2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if a differential input voltage in excess of approximately
±1.2 V is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 105°C
POWER RATING
TA = 125°C
POWER RATING
D
725 mW
5.8 mW/°C
464 mW
261 mW
145 mW
FK
1375 mW
11.0 mW/°C
880 mW
495 mW
275 mW
JG
1050 mW
8.4 mW/°C
672 mW
378 mW
210 mW
P
1000 mW
8.0 mW/°C
640 mW
360 mW
200 mW
recommended operating conditions
C SUFFIX
Supply voltage, VCC ±
Common mode input voltage,
voltage VIC
Common-mode
TA = 25°C
TA = Full range‡
I SUFFIX
MIN
MAX
M SUFFIX
MIN
MAX
MIN
MAX
±4
± 19
±4
± 19
±4
± 19
– 11
11
– 11
11
– 11
11
– 10.5
10.5
– 10.4
10.4
– 10.2
10.2
Operating free-air temperature, TA
0
70
– 40
105
– 55
125
‡ Full range is 0°C to 70°C for C-suffix devices, – 40°C to 105°C for I-suffix devices, and – 55°C to 125°C for M-suffix devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
V
V
°C
6–5
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TLE20x7C electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
TA†
TEST CONDITIONS
25°C
Common-mode input
voltage range
Maximum positive peak
output voltage swing
RS = 50 Ω
Maximum negative
peak
g
output voltage swing
VO = ± 11 V,
VO = ± 10 V,
Large-signal
differential
g
g
voltage amplification
VO = ± 10 V
V,
1
0.006
1
µV/mo
25°C
6
90
6
90
– 12
Full range
– 11
Full range
Common-mode rejection
j
ratio
VIC = VICRmin,,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio (∆VCC ± /∆VIO)
5
2
90
150
– 13
to
13
12.9
10.5
12
– 13
– 10.5
nA
12.9
10
13.2
nA
V
– 10.5
to
10.5
V
13.2
11
– 13
– 10
– 13.5
– 12
V
– 13.5
– 11
45
10
45
4
38
8
1
38
V/µV
2.5
19
5
0.5
19
2
25°C
8
8
pF
25°C
50
50
Ω
25°C
100
98
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
25°C
94
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
Full range
92
No load
15
–11
to
11
2
3.5
Full range
VO = 0
0,
– 13
to
13
11
– 10.5
25°C
25°C
CMRR
10.5
– 10
25°C
90
– 10.5
to
10.5
Full range
Full range
IO = 0
–11
to
11
12
Full range
150
150
10
RL = 2 kΩ
zo
Supply current
15
25°C
25°C
Open-loop output
impedance
ICC
150
Full range
RL = 2 kΩ
Input capacitance
µV
0.006
25°C
Ci
70
25°C
Full range
VO = ± 10 V,,
RL = 600 Ω
25
µV/°C
25°C
RL = 1 kΩ
10
UNIT
1
RS = 50 Ω
RL = 600 Ω
MAX
0.2
25°C
RL = 600 Ω
TYP
1
Full range
RL = 2 kΩ
AVD
100
Full range
RL = 2 kΩ
VOM –
20
MIN
0.4
Full range
VOM +
MAX
145
Full range
VIC = 0,
TLE20x7AC
TYP
Full range
25°C
VICR
TLE20x7C
MIN
131
117
131
dB
114
144
110
144
dB
25°C
Full range
106
3.8
5.3
5.6
3.8
5.3
5.6
mA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6–6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TLE20x7C operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent
input noise voltq
age (see Figure 2)
VN(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent
input noise curq
rent
THD
Total harmonic distortion
TLE20x7C
TEST CONDITIONS
MIN
TYP
TLE20x7AC
MAX
MIN
TYP
RL = 2 kΩ,
CL = 100 pF
pF,
See Figure 1
TLE2027
1.7
2.8
1.7
2.8
TLE2037
6
7.5
6
7.5
RL = 2 kΩ,
CL = 100 pF,,
TA = 0°C to 70°C,
See Figure 1
TLE2027
1.2
1.2
TLE2037
5
5
MAX
V/µs
RS = 20 Ω,
f = 10 Hz
3.3
8
3.3
4.5
RS = 20 Ω,
f = 1 kHz
2.5
4.5
2.5
3.8
f = 0.1 Hz to 10 Hz
50
250
50
130
f = 10 Hz
1.5
4
1.5
4
f = 1 kHz
0.4
0.6
0.4
0.6
VO = + 10 V,
AVD = 1,
See Note 5
TLE2027
< 0.002%
< 0.002%
VO = + 10 V,
AVD = 5,
See Note 5
TLE2037
< 0.002%
< 0.002%
B1
Unity-gain
yg
bandwidth
(see Figure 3)
RL = 2 kΩ,,
CL = 100 pF
BOM
Maximum output-swing
g
bandwidth
RL = 2 kΩ
φm
Phase margin
g at unity
yg
gain
(see Figure 3)
RL = 2 kΩ,
CL = 100 pF
UNIT
TLE2027
7
13
9
13
TLE2037
35
50
35
50
TLE2027
30
30
TLE2037
80
80
TLE2027
55°
55°
TLE2037
50°
50°
nV/√Hz
nV
pA/√Hz
MHz
kHz
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–7
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TLE20x7I electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
TA†
TEST CONDITIONS
25°C
Common-mode input
voltage range
Maximum positive peak
output voltage swing
RS = 50 Ω
Maximum negative
peak
g
output voltage swing
Large-signal
differential
g
g
voltage amplification
Ci
Input capacitance
zo
Open-loop output
impedance
IO = 0
CMRR
Common-mode rejection
j
ratio
VIC = VICRmin,,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio (∆VCC ± /∆VIO)
ICC
Supply current
1
0.006
1
µV/mo
25°C
6
90
6
90
150
15
–11
to
11
10
12
25°C
– 12
Full range
– 11
25°C
Full range
12.9
– 13
to
13
10.5
13.2
12
– 13
– 10.5
nA
nA
V
12.9
10
V
13.2
11
– 13
– 10
– 13.5
5
– 12
10
45
3.5
38
8
1
2
V
– 13.5
– 11
45
2
3.5
38
V/µV
2.2
19
5
0.5
19
1.1
25°C
8
8
pF
25°C
50
50
Ω
25°C
100
96
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
25°C
94
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
Full range
90
No load
90
150
–11
to
11
11
– 10
Full range
15
– 10.4
to
10.4
– 10.5
Full range
25°C
– 13
to
13
10.5
25°C
Full range
90
– 10.4
to
10.4
Full range
25°C
150
150
Full range
VO = 0
0,
µV
0.006
25°C
VO = ± 10 V
V, RL = 600 Ω
105
25°C
Full range
VO = ± 10 V
V, RL = 1 kΩ
25
µV/°C
25°C
VO = ± 11 V, RL = 2 kΩ
VO = ± 10 V, RL = 2 kΩ
10
UNIT
1
RS = 50 Ω
RL = 600 Ω
MAX
0.2
25°C
RL = 600 Ω
TYP
1
Full range
RL = 2 kΩ
AVD
100
Full range
RL = 2 kΩ
VOM –
20
MIN
0.4
Full range
VOM +
MAX
180
Full range
VIC = 0,
TLE20x7AI
TYP
Full range
25°C
VICR
TLE20x7I
MIN
131
117
131
dB
113
144
110
144
dB
25°C
Full range
105
3.8
5.3
5.6
3.8
5.3
5.6
mA
† Full range is – 40°C to 105°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6–8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TLE20x7I operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent
input noise
q
voltage (see Figure 2)
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
Equivalent
input noise
q
current
THD
Total harmonic distortion
TEST CONDITIONS
TLE20x7I
MIN
TYP
TLE20x7AI
MAX
MIN
TYP
RL = 2 kΩ,
CL = 100 pF
pF,
See Figure 1
TLE2027
1.7
2.8
1.7
2.8
TLE2037
6
7.5
6
7.5
RL = 2 kΩ,
CL = 100 pF,,
TA = – 40°C to 85°C,
See Figure 1
TLE2027
1.1
1.1
TLE2037
4.7
4.7
MAX
V/µs
RS = 20 Ω,
f = 10 Hz
3.3
8
3.3
4.5
RS = 20 Ω,
f = 1 kHz
2.5
4.5
2.5
3.8
f = 0.1 Hz to 10 Hz
50
250
50
130
f = 10 Hz
1.5
4
1.5
4
f = 1 kHz
0.4
0.6
0.4
0.6
VO = + 10 V,
AVD = 1,
See Note 5
TLE2027
< 0.002%
< 0.002%
VO = + 10 V,
AVD = 5,
See Note 5
TLE2037
< 0.002%
< 0.002%
B1
Unity-gain
yg
bandwidth
(see Figure 3)
RL = 2 kΩ,,
CL = 100 pF
BOM
Maximum output-swing
g
bandwidth
RL = 2 kΩ
φm
Phase margin
g at unity
y
gain (see Figure 3)
RL = 2 kΩ ,
CL = 100 pF
UNIT
TLE2027
7
13
9
13
TLE2037
35
50
35
50
TLE2027
30
30
TLE2037
80
80
TLE2027
55°
55°
TLE2037
50°
50°
nV/√Hz
nV
pA/√Hz
MHz
kHz
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–9
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TLE20x7M electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
TA†
TEST CONDITIONS
25°C
Common-mode input
voltage range
Maximum positive peak
output voltage swing
RS = 50 Ω
Maximum negative
peak
g
output voltage swing
Large-signal differential
voltage amplification
am lification
1*
0.006
1*
µV/mo
25°C
6
90
6
90
Input capacitance
zo
Open-loop output
impedance
IO = 0
CMRR
Common-mode rejection
j
ratio
VIC = VICRmin,,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio (∆VCC ± /∆VIO)
ICC
Supply current
150
15
–11
to
11
Full range
– 10
25°C
– 12
Full range
– 11
12.9
2.5
25°C
3.5
Full range
1.8
– 13
to
13
10.5
13.2
12
– 13
– 10.5
nA
nA
V
12.9
10
V
13.2
11
– 13
– 10
– 13.5
5
Full range
90
150
–11
to
11
11
2
– 12
V
– 13.5
– 11
45
10
45
3.5
38
8
V/µV
µ
38
2.2
19
5
19
25°C
8
8
pF
25°C
50
50
Ω
25°C
100
96
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
25°C
94
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
Full range
90
No load
15
– 10.4
to
10.4
– 10.5
Full range
VO = 0
0,
– 13
to
13
10.5
12
25°C
90
– 10.3
to
10.3
10
25°C
150
150
25°C
25°C
Ci
µV
0.006
Full range
VO = ± 10 V
V, RL = 600 Ω
105
25°C
Full range
VO = ± 10 V
V, RL = 1 kΩ
25
µV/°C
25°C
VO = ± 11 V, RL = 2 kΩ
VO = ± 10 V, RL = 2 kΩ
10
UNIT
1*
RS = 50 Ω
RL = 600 Ω
MAX
0.2
25°C
RL = 600 Ω
TYP
1*
Full range
RL = 2 kΩ
AVD
100
Full range
RL = 2 kΩ
VOM –
20
MIN
0.4
Full range
VOM +
MAX
200
Full range
VIC = 0,
TLE20x7AM
TYP
Full range
25°C
VICR
TLE20x7M
MIN
131
117
131
dB
113
144
110
144
dB
25°C
Full range
105
3.8
5.3
5.6
3.8
5.3
5.6
mA
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
† Full range is – 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6–10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TLE20x7M operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent
input noise
q
voltage (see Figure 2)
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
Equivalent
input noise
q
current
THD
Total harmonic distortion
TLE20x7M
TEST CONDITIONS
MIN
TYP
TLE20x7AM
MAX
MIN
TYP
MAX
RL = 2 kΩ,
CL = 100 pF
pF,
See Figure 1
TLE2027
1.7
2.8
1.7
2.8
TLE2037
6*
7.5
6*
7.5
RL = 2 kΩ,
CL = 100 pF,,
TA = – 55°C to 125°C,
See Figure 1
TLE2027
1
1
TLE2037
4.4*
4.4*
RS = 20 Ω,
f = 10 Hz
3.3
8*
3.3
4.5*
RS = 20 Ω,
f = 1 kHz
2.5
4.5 *
2.5
3.8*
f = 0.1 Hz to 10 Hz
50
250*
50
130*
f = 10 Hz
1.5
4*
1.5
4*
f = 1 kHz
0.4
0.6*
0.4
0.6*
V/µs
VO = + 10 V,
AVD = 1,
See Note 5
TLE2027
< 0.002%
< 0.002%
VO = + 10 V,
AVD = 5,
See Note 5
TLE2037
< 0.002%
< 0.002%
B1
Unity-gain
yg
bandwidth
(see Figure 3)
RL = 2 kΩ,,
CL = 100 pF
BOM
Maximum output-swing
g
bandwidth
RL = 2 kΩ
φm
Phase margin
g at unity
y
gain (see Figure 3)
RL = 2 kΩ,
CL = 100 pF
UNIT
TLE2027
7*
13
9*
13
TLE2037
35
50
35
50
TLE2027
30
30
TLE2037
80
80
TLE2027
55°
55°
TLE2037
50°
50°
nV/√Hz
nV
pA/√Hz
MHz
kHz
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–11
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TLE20x7Y electrical characteristics, VCC± = ±15 V, TA = 25°C (unless otherwise noted)
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
TLE20x7Y
MIN
TYP
20
Input offset voltage
long-term drift (see Note 4)
VIC = 0,,
RS = 50 Ω
0.006
MAX
UNIT
µV
µV/mo
IIO
IIB
Input offset current
6
nA
Input bias current
15
nA
VICR
Common-mode input voltage range
RS = 50 Ω
– 13
to
13
V
VOM +
Maximum positive peak output voltage swing
RL = 600 Ω
12.9
RL = 2 kΩ
13.2
VOM –
Maximum negative peak output voltage swing
AVD
Large-signal differential voltage amplification
am lification
Ci
Input capacitance
zo
Open-loop output impedance
CMRR
Common-mode rejection ratio
kSVR
Supply-voltage rejection ratio (∆VCC ±
RL = 600 Ω
– 13
RL = 2 kΩ
VO = ± 11 V,
VO = ± 10 V,
– 13.5
RL = 2 kΩ
45
RL = 1 kΩ
38
VO = ± 10 V,
RL = 600 Ω
IO = 0
VIC = VICRmin,
RS = 50 Ω
/∆VIO)
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
V
V
V/µV
19
8
pF
50
Ω
131
dB
144
dB
ICC
Supply current
VO = 0,
No load
3.8
mA
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6–12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TLE20x7Y operating characteristics at specified free-air temperature, VCC ± = ±15 V
PARAMETER
RL = 2 kΩ,, CL = 100 pF,,
See Figure 1
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
THD
TLE20x7Y
TEST CONDITIONS
Total harmonic distortion
MIN
TYP
TLE2027
2.8
TLE2037
7.5
RS = 20 Ω,
f = 10 Hz
3.3
RS = 20 Ω,
f = 1 kHz
2.5
f = 0.1 Hz to 10 Hz
50
f = 10 Hz
1.5
f = 1 kHz
0.4
VO = + 10 V, AVD = 1,
See Note 5
TLE2027
< 0.002%
VO = + 10 V, AVD = 5,
See Note 5
TLE2037
< 0.002%
TLE2027
13
TLE2037
50
TLE2027
30
TLE2037
80
TLE2027
55°
TLE2037
50°
B1
Unity gain bandwidth (see Figure 3)
Unity-gain
RL = 2 kΩ
kΩ,
BOM
Maximum output
output-swing
swing bandwidth
RL = 2 kΩ
φm
Phase margin at unity gain (see Figure 3)
RL = 2 kΩ
kΩ,
CL = 100 pF
CL = 100 pF
F
MAX
UNIT
V/µs
nV/√Hz
nV
pA/√Hz
MHz
kHz
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–13
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
PARAMETER MEASUREMENT INFORMATION
2 kΩ
Rf
15 V
15 V
–
–
VO
VO
RI
+
+
VI
CL =
100 pF
(see Note A)
– 15 V
RL = 2 kΩ
20 Ω
20 Ω
– 15 V
NOTE A: CL includes fixture capacitance.
Figure 1. Slew-Rate Test Circuit
Figure 2. Noise-Voltage Test Circuit
Rf
10 kΩ
15 V
100 Ω
VI
15 V
–
–
VO
VO
RI
VI
+
–15 V
CL =
100 pF
(see Note A)
CL =
100 pF
(see Note A)
– 15 V
2 kΩ
NOTE A: CL includes fixture capacitance.
2 kΩ
NOTES: A. CL includes fixture capacitance.
B. For the TLE2037 and TLE2037A,
AVD must be ≥ 5.
Figure 3. Unity-Gain Bandwidth and
Phase-Margin Test Circuit (TLE2027 Only)
6–14
+
POST OFFICE BOX 655303
Figure 4. Small-Signal PulseResponse Test Circuit
• DALLAS, TEXAS 75265
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
initial estimates of parameter distributions
In the ongoing program of improving data sheets and supplying more information to our customers, Texas
Instruments has added an estimate of not only the typical values but also the spread around these values. These
are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the
characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown
at the points where data was actually collected. The 95% and 5% points are used instead of ± 3 sigma since
some of the distributions are not true Gaussian distributions.
The number of units tested and the number of different wafer lots used are on all of the graphs where distribution
bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this case, there is
a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability. This is always
the case on newly released products since there can only be data available from a few wafer lots.
The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each
distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested
fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices
fell outside every distribution bar.
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
I CC – Supply Current – mA
5
4.5
VCC± = ±15 V
VO = 0
No Load
Sample Size = 835 Units
From 2 Water Lots
95% point on the distribution bar
(5% of the devices fell above this point.)
90% of the devices were within the upper
and lower points on the distribution bar.
5% point on the distribution bar
(5% of the devices fell below this point.)
4
3.5
3
2.5
– 75 – 50 – 25
0
25
50
75
100 125 150
TA – Free-Air Temperature – °C
Figure 5. Sample Graph With Distribution Bars
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–15
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
6, 7
∆VIO
Input offset voltage change
vs
Time after power on
8, 9
IIO
Input offset current
vs
Free-air temperature
10
IIB
Input bias current
vs
vs
Free-air temperature
Common-mode input voltage
11
12
II
VO(PP)
Input current
vs
Differential input voltage
Maximum peak-to-peak output voltage
vs
Frequency
14, 15
Maximum ((positive/negative)
g
) peak output
voltage
vs
vs
Load resistance
Free-air temperature
16,, 17
18, 19
AVD
Large signal differential voltage amplification
Large-signal
vs
vs
vs
vs
Su ly voltage
Supply
Load resistance
Frequency
Free-air temperature
20
21
22 – 25
26
zo
Output impedance
vs
Frequency
27
CMRR
Common-mode rejection ratio
vs
Frequency
28
kSVR
Supply-voltage rejection ratio
vs
Frequency
IOS
Short-circut output current
vs
vs
vs
Supply
y voltage
g
Elapsed time
Free-air temperature
30,, 31
32, 33
34, 35
ICC
Supply current
vs
vs
Supply
y voltage
g
Free-air temperature
36
37
Voltage follower pulse response
Voltage-follower
Small signal
g
Large signal
Equivalent input noise voltage
vs
Noise voltage (referred to input)
Over 10-second interval
43
Unity gain bandwidth
Unity-gain
vs
vs
Supply
y voltage
g
Load capacitance
44
45
Gain bandwidth product
vs
vs
Supply
y voltage
g
Load capacitance
46
47
Slew rate
vs
Free-air temperature
48, 49
Phase margin
g
vs
vs
vs
Supply
y voltage
g
Load capacitance
Free-air temperature
50,, 51
52, 53
54, 55
Phase shift
vs
Frequency
22 – 25
VOM
Vn
B1
SR
φm
6–16
POST OFFICE BOX 655303
Frequency
• DALLAS, TEXAS 75265
13
29
38,, 40
39, 41
42
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
DISTRIBUTION
INPUT OFFSET VOLTAGE
Percentage of Amplifiers – %
14
12
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
1568 Amplifiers Tested From 2 Wafer Lots
VCC± = +15 V
TA = 25°C
D Package
10
8
6
4
2
0
– 120 – 90 – 60 – 30
0
30
60
90
120
VIO – Input Offset Voltage – µV
INPUT OFFSET VOLTAGE CHANGE
vs
TIME AFTER POWER ON
AVIO
∆
VIO – Change in Input Offset Voltage – µV
16
12
10
8
6
ÎÎÎÎÎÎÎÎÎÎÎ
ÁÁÁÁÁÁ
ÁÁ ÎÎÎÎÎÎÎÎÎÎÎ
ÁÁÁÁÁÁ
ÁÁ ÎÎÎÎ
ÁÁÁÁÁÁ
ÁÁ ÎÎÎÎ
4
50 Amplifiers Tested From 2 Wafer Lots
VCC± = ±15 V
TA = 25°C
D Package
2
0
0
10
20
30
40
50
t – Time After Power On – s
Figure 6
Figure 7
INPUT OFFSET CURRENT †
vs
FREE-AIR TEMPERATURE
6
30
5
25
4
3
ÎÎÎÎÎÎÎÎÎÎÎ
ÁÁ ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÁÁ ÎÎÎÎ
2
50 Amplifiers Tested From 2 Wafer Lots
VCC± = ±15 V
TA = 25°C
P Package
0
0
20
40
60
80
100 120 140 160 180
IIO
I IO – Input Offset Current – nA
AVIO
∆
VIO – Change in Input Offset Voltage – µV
INPUT OFFSET VOLTAGE CHANGE
vs
TIME AFTER POWER ON
1
60
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC± = ±15 V
VIC = 0
Sample Size = 833 Units
From 2 Wafer Lots
20
15
10
5
0
– 75 – 50 – 25
0
25
50
75
100 125 150
TA – Free-Air Temperature – °C
t – Time After Power On – s
Figure 8
Figure 9
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–17
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
INPUT BIAS CURRENT †
vs
FREE-AIR TEMPERATURE
VCC ± = ± 15 V
VIC = 0
Sample Size = 836 Units
From 2 Wafer Lots
IIIB
IB – Input Bias Current – nA
50
40
30
20
10
0
40
35
IIIB
IB – Input Bias Current – nA
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
60
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
VCC± = ± 15 V
TA = 25°C
30
25
20
15
10
– 10
5
– 20
– 75 – 50 – 25 0
25 50 75 100 125 150
TA – Free-Air Temperature – °C
0
–12
–8
–4
0
4
8
VIC – Common-Mode Input Voltage – V
Figure 10
Figure 11
TLE2027
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE †
vs
FREQUENCY
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
0.8
IIII – Input Current – mA
0.6
0.4
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
1
VCC ± = ± 15 V
VIC = 0
TA = 25°C
0.2
0
– 0.2
– 0.4
– 0.6
– 0.8
–1
– 1.8
– 1.2
– 0.6
0
12
0.6
1.2
1.8
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
30
VCC± = ±15 V
RL = 2 kΩ
25
20
15
TA = 125°C
10
5
TA = – 55°C
0
10 k
VID – Differential Input Voltage – V
100 k
1M
f – Frequency – Hz
Figure 13
Figure 12
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
6–18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10 M
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
20
ÎÎÎÎ
ÎÎÎÎ
15
TA = 125°C
10
TA = – 55°C
5
0
10 k
100 k
1M
10 M
100 M
f – Frequency – Hz
Figure 14
– 14
– 12
– 10
–8
–6
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ
ÁÁ
–4
0
100
14
12
10
8
6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁ
4
VCC ± = ± 15 V
TA = 25°C
2
0
100
1k
RL – Load Resistance – Ω
10 k
Figure 15
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
–2
VVOM+
OM + – Maximum Positive Peak Output Voltage – V
VCC ± = ± 15 V
RL = 2 kΩ
25
ÁÁÁ
ÁÁÁ
ÁÁÁ
VVOM–
OM – – Maximum Negative Peak Output Voltage – V
ÎÎÎÎÎ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÁÁÁÁÁ
30
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
VCC ± = ± 15 V
TA = 25°C
1k
RL – Load Resistance – Ω
10 k
VVOM+
OM + – Maximum Positive Peak Output Voltage – V
VO(PP)
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
TLE2037
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE †
vs
FREQUENCY
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE †
vs
FREE-AIR TEMPERATURE
13.5
13.4
13.3
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC± = ± 15 V
RL = 2 kΩ
Sample Size = 832 Units
From 2 Wafer Lots
13.2
13.1
ÁÁ
ÁÁ
ÁÁ
13
12.9
– 75 – 50 – 25
Figure 16
0
25
50
75
100 125 150
TA – Free-Air Temperature – °C
Figure 17
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–19
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE †
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
– 13
VCC ± = ± 15 V
RL = 2 kΩ
Sample Size = 831 Units
From 2 Wafer Lots
– 13.2
– 13.4
– 13.8
– 14
– 75 – 50 – 25
ÎÎÎÎ
TA = 25°C
ÁÁ
ÁÁ
ÁÁ
– 13.6
ÁÁÁ
ÁÁÁ
ÁÁÁ
50
AVD
AVD – Large-Signal differential
Voltage Amplification – V/ µ V
VVOM–
OM – – Maximum Negative Peak Output Voltage – V
TYPICAL CHARACTERISTICS
RL = 2 kΩ
40
RL = 1 kΩ
30
20
RL = 600 Ω
10
0
0
25
50
75
4
0
100 125 150
8
12
16
 VCC± – Supply Voltage – V
TA – Free-Air Temperature – °C
Figure 19
Figure 18
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
AVD
AVD – Large-Signal differential
Voltage Amplification – V/ µ V
50
ÁÁ
ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
VCC± = ± 15 V
TA = 25°C
40
30
20
10
0
100
200
400
1k
2k
4k
10 k
RL – Load Resistance – Ω
Figure 20
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
6–20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
20
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2027
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
75°
160
Phase Shift
100°
125°
120
AVD
100
150°
80
175°
60
200°
ÁÁ
ÁÁ
40
225°
VCC± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
20
250°
0
100
100 k
f – Frequency – Hz
0.1
Phase Shift
AVD
AVD– Large-Signal Differential
Voltage Amplification – dB
140
275°
100 M
Figure 21
TLE2037
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
AVD
AVD – Large-Signal Differential
Voltage Amplification – dB
140
120
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
Phase Shift
AVD
100
Á ÁÁÁÁÁ
Á ÁÁÁÁÁ
Á ÁÁÁÁÁ
ÁÁÁÁÁ
0
0.1
125°
150°
200°
60
20
100°
175°
80
40
75°
VCC± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
100
Phase Shift
160
225°
250°
100 k
275°
100 M
f – Frequency – MHz
Figure 22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–21
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
6
100°
3
125°
0
150°
–3
175°
AVD
200°
–6
Phase Shift
225°
–9
ÁÁ ÎÎÎÎÎ
ÁÁ ÎÎÎÎÎ
ÁÁ ÎÎÎÎÎ
– 12
250°
VCC± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
– 15
– 18
20
10
Phase Shift
AVD
AVD– Large-Signal Differential
Voltage Amplification – dB
TLE2027
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
275°
40
70
300°
100
f – Frequency – MHz
Figure 23
TLE2037
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
100 °
30
ÎÎÎ ÎÎÎÎÎ
ÎÎÎ ÎÎÎÎÎ
AVD
20
125 °
Phase Shift
150 °
15
175 °
10
200 °
5
225 °
ÁÁ ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
0
–5
250 °
275 °
300 °
–10
1
2
4
10
20
f – Frequency – MHz
40
Figure 24
6–22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
100
Phase Shift
AVD
AVD – Large-Signal Differential
Voltage Amplification – dB
25
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION †
vs
FREE-AIR TEMPERATURE
60
ÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎ ÁÁ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÁÁ
ÁÁ
100
50
RL = 2 kΩ
RL = 1 kΩ
40
30
– 75 – 50 – 25
0
25
50
75
100 125 150
TA – Free-Air Temperature – °C
CMRR – Common-Mode Rejection Ratio – dB
10
AVD = 100
See Note A
1
AVD = 10
– 10
– 100
10
100
1k
10 k
100 k
1M
10 M 100 M
f – Frequency – Hz
NOTE A: For this curve, the TLE2027 is AVD = 1 and the
TLE2037 is AVD = 5.
Figure 25
Figure 26
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
ÎÎÎÎÎ
ÁÁÁÁ
ÎÎÎÎ
ÁÁÁÁ
ÎÎÎÎÎ
ÁÁÁÁ
140
VCC ± = ± 15 V
TA = 25°C
120
100
80
60
40
20
0
10
zo
z o – Output Impedance – Ω
VCC ± = ± 15 V
TA = 25°C
100
1k
10 k 100 k 1 M
f – Frequency – Hz
10 M 100 M
ÎÎÎÎÎÎ
ÁÁÁÁ
ÎÎÎÎ
ÁÁÁÁ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
140
KSVR – Supply-Voltage Rejection Ratio – dB
AVD
AVD – Large-Signal differential
Voltage Amplification – V/ µ V
VCC ± = ± 15 V
ÁÁ
ÁÁ
ÁÁ
OUTPUT IMPEDANCE
vs
FREQUENCY
VCC ± = ± 15 V
TA = 25°C
120
100
kSVR –
80
60
kSVR +
40
20
0
10
100
Figure 27
1k
10 k 100 k 1 M
f – Frequency – Hz
10 M 100 M
Figure 28
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–23
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎ
ÁÁÁÁÁ
VID = 100 mV
VO = 0
TA = 25°C
P Package
– 40
– 38
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
44
IIOS
OS – Short-Circuit Output Current – mA
IIOS
OS – Short-Circuit Output Current – mA
– 42
– 36
– 34
ÁÁ
ÁÁ
VID = – 100 mV
VO = 0
TA = 25°C
P Package
42
40
38
36
34
ÁÁ
ÁÁ
– 32
32
30
– 30
0
2
4
6
8 10 12 14 16
 VCC± – Supply Voltage – V
18
0
20
2
4
6
8 10 12 14 16
 VCC± – Supply Voltage – V
Figure 29
44
VCC ± = ± 15 V
VID = 100 mV
VO = 0
TA = 25°C
P Package
– 41
IIOS
OS – Short-Circuit Output Current – mA
IIOS
OS – Short-Circuit Output Current – mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎ
ÁÁÁÁÁ
– 43
– 39
ÁÁÁ
ÁÁÁ
ÁÁÁ
– 37
– 35
0
30
60
90
120
t – Elasped Time – s
150
180
ÁÁ
ÁÁ
42
40
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ± 15 V
VID = 100 mV
VO = 0
TA = 25°C
P Package
38
36
34
0
Figure 31
6–24
20
Figure 30
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
– 45
18
30
60
90
120
t – Elasped Time – s
Figure 32
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
150
180
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
– 48
VCC ± = ± 15 V
VID = 100 mV
VO = 0
P Package
– 44
– 40
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
46
IIOS
OS – Short-Circuit Output Current – mA
IIOS
OS – Short-Circuit Output Current – mA
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
– 36
– 32
ÁÁ
ÁÁ
ÁÁ
– 28
– 24
– 75 – 50 – 25 0
25 50 75 100 125 150
TA – Free-Air Temperature – °C
VCC ± = ± 15 V
VID = – 100 mV
VO = 0
P Package
42
38
34
ÁÁ
ÁÁ
ÁÁ
30
26
– 75 – 50 – 25 0
25 50 75 100 125 150
TA – Free-Air Temperature – °C
Figure 33
Figure 34
SUPPLY CURRENT †
vs
FREE-AIR TEMPERATURE
SUPPLY CURRENT †
vs
SUPPLY VOLTAGE
ÁÁÁÁ
ÁÁÁÁ
5
VO = 0
No Load
IICC
CC – Supply Current – mA
5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ ÁÁ
ÁÁ
TA = 125°C
4
IICC
CC – Supply Current – mA
6
TA = 25°C
3
TA = – 55°C
ÁÁ
ÁÁ
2
1
0
0
2
4
6
8 10 12 14 16
 VCC± – Supply Voltage – V
18
20
4.5
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC ± = ± 15 V
VO = 0
No Load
Sample Size = 836 Units
From 2 Wafer Lots
4
3.5
3
2.5
– 75 – 50 – 25 0
25 50 75 100 125 150
TA – Free-Air Temperature – °C
Figure 35
Figure 36
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–25
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2027
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
100
50
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
15
VCC± = ±15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 4
10
VO – Output Voltage – V
VO – Output Voltage – mV
TLE2027
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
0
– 50
VCC± = ±15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
5
0
–5
– 10
– 100
– 15
0
200
400
600
t – Time – ns
800
1000
0
5
Figure 37
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
15
50
V
VO
O – Output Voltage – V
V
VO
O – Output Voltage – mV
10
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁ
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 4
– 50
– 100
0
100
200
300
400
5
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
0
–5
– 10
– 15
0
t – Time – ns
Figure 39
6–26
25
TLE2037
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
100
ÁÁ
ÁÁ
20
Figure 38
TLE2037
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
0
10
15
t – Time – µs
2
4
6
t – Time – µs
Figure 40
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
8
10
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Vn
V n – Equivalent Input Noise Voltage – nVHz
nV/ Hz
10
VCC ± = ± 15 V
RS = 20 Ω
TA = 25°C
See Figure 2
Sample Size = 100 Units
From 2 Wafer Lots
8
6
4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
50
VCC ± = ± 15 V
f = 0.1 to 10 Hz
TA = 25°C
40
30
Noise Voltage – nV
ÁÁ
ÁÁ
ÁÁ
NOISE VOLTAGE
(REFERRED TO INPUT)
OVER A 10-SECOND INTERVAL
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
20
10
0
– 10
– 20
2
– 30
– 40
0
1
10
100
1k
10 k
100 k
– 50
0
2
4
f – Frequency – Hz
Figure 41
10
TLE2037
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
20
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
52
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
Gain-Bandwidth Product – MHz
B1 – Unity-Gain Bandwidth – MHz
8
Figure 42
TLE2027
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
18
6
t – Time – s
16
14
12
f = 100 kHz
RL = 2 kΩ
CL = 100 pF
TA = 25°C
51
50
49
48
10
0
2
4
6
8 10 12 14 16 18
| VCC± | – Supply Voltage – V
20
22
0
2
4
6
8
10
12
14
16
18
20
 VCC± – Supply Voltage – V
Figure 44
Figure 43
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–27
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2027
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
12
8
4
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
51
50
49
48
100
0
100
1000
CL – Load Capacitance – pF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
52
Gain-Bandwidth Product – MHz
B1 – Unity-Gain Bandwidth – MHz
16
TLE2037
GAIN-BANDWIDTH PRODUCT
vs
LOAD CAPACITANCE
10000
1000
10000
CL – Load Capacitance – pF
Figure 45
Figure 46
TLE2027
SLEW RATE †
vs
FREE-AIR TEMPERATURE
TLE2037
SLEW RATE †
vs
FREE-AIR TEMPERATURE
3
ÎÎÎÎÎÎ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎÎ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
10
2.8
SR – Slew Rate – V/ µ s
SR – Slew Rate – V/ µs
9
2.6
2.4
2.2
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
AVD = 1
RL = 2 kΩ
CL = 100 pF
See Figure 1
2
– 75 – 50 – 25
0
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
See Figure 1
8
7
6
25
50
75
100 125 150
TA – Free-Air Temperature – °C
5
– 75 – 50 – 25 0
25 50 75 100 125 150
TA – Free-Air Temperature – °C
Figure 47
Figure 48
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
6–28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2027
PHASE MARGIN
vs
SUPPLY VOLTAGE
56°
φ m – Phase Margin
54°
52°
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
52°
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
50°
φ m – Phase Margin
58°
TLE2037
PHASE MARGIN
vs
SUPPLY VOLTAGE
50°
ÁÁ
ÁÁ
48°
48°
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
AVD = 5
RL = 2 kΩ
CL = 100 pF
TA = 25°C
46°
44°
42°
46°
40°
44°
38°
42°
0
2
4
6
8
10
12
14
16
18
20
0
22
2
4
8
10
12
14
16
| VCC± | – Supply Voltage – V
 VCC± – Supply Voltage – V
Figure 49
Figure 50
TLE2027
PHASE MARGIN
vs
LOAD CAPACITANCE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
60°
ÁÁ
ÁÁ
30°
20°
20
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
60°
VCC ± = ± 15 V
RL = 2 kΩ
TA = 25°C
50°
φ m – Phase Margin
40°
18
TLE2037
PHASE MARGIN
vs
LOAD CAPACITANCE
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
50°
φ m – Phase Margin
6
40°
30°
20°
10°
10°
0°
100
1000
CL – Load Capacitance – pF
0°
100
1000
10000
CL – Load Capacitance – pF
Figure 51
Figure 52
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–29
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2027
PHASE MARGIN †
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
65°
50°
45°
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
53°
φ m – Phase Margin
φ m – Phase Margin
55°
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
55°
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
60°
ÁÁ
ÁÁ
TLE2037
PHASE MARGIN †
vs
FREE-AIR TEMPERATURE
51°
49°
47°
40°
35°
0
25
50
75 100
– 75 – 50 – 25
TA – Free-Air Temperature – °C
125
150
45°
– 75 – 50 – 25
0
25
50
75
100 125 150
TA – Free-Air Temperature – °C
Figure 53
Figure 54
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
6–30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
APPLICATION INFORMATION
input offset voltage nulling
The TLE2027 and TLE2037 series offers external null pins that can be used to further reduce the input offset
voltage. The circuits of Figure 55 can be connected as shown if the feature is desired. If external nulling is not
needed, the null pins may be left disconnected.
1 kΩ
VCC +
10 kΩ
4.7 kΩ
VCC +
4.7 kΩ
IN –
–
IN –
–
OUT
OUT
IN +
+
IN +
VCC –
+
VCC –
(b) ADJUSTMENT WITH IMPROVED SENSITIVITY
(a) STANDARD ADJUSTMENT
Figure 55. Input Offset Voltage Nulling Circuits
voltage-follower applications
The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device.
For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem
can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 56).
CF = 20 to 50 pF
IF ≤ 1 mA
RF
VCC
–
VO
VI
+
VCC –
Figure 56. Voltage Follower
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–31
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts , the model generation software used
with Microsim PSpice . The Boyle macromodel (see Note 6) and subcircuit in Figure 57, Figure 58, and
Figure 59 were generated using the TLE20x7 typical electrical and operating characteristics at 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
•
•
•
•
•
•
•
•
•
•
•
•
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Gain-bandwidth product
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
3
VCC +
9 egnd
rc1
1
rp
c1
Q1
2
dp
vc
Q2
14
re1
+ dip
–
C2
6
cee
dc
gcm
vlim
8
–
5
+
ve
OUT
PSpice and Parts are trademarks of MicroSim Corporation.
POST OFFICE BOX 655303
–
ro1
54 de
Figure 57. Boyle Macromodel
6–32
7
+
ga
10
4
90
hlim
53
ree
re2
lee
92
ro2
–
r2
–
13
dln
– fb
vb
+
IN –
VCC –
+
12
11
IN +
rc2
99
+
• DALLAS, TEXAS 75265
91
+
vip
–
–
vin
+
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
APPLICATION INFORMATION
macromodel information (continued)
.subckt TLE2027 1 2 3 4 5
*
c1
11
12
4.003E-12
c2
6
7
20.00E-12
dc
5
53
dz
de
54
5
dz
dlp
90
91
dz
dln
92
90
dx
dp
4
3
dz
egnd
99
0
poly(2) (3,0)
(4,0) 0 5 .5
fb
7
99
poly(5) vb vc
ve vlp vln 0 954.8E6 –1E9 1E9 1E9
–1E9
ga
6
0
11 12
2.062E-3
gcm
0
6
10 99
531.3E-12
iee
10
4
dc 56.01E-6
hlim
90
0
vlim 1K
q1
11
2
13 qx
q2
12
1
14 qx
r2
6
9
100.0E3
rc1
3
11
530.5
rc2
3
12
530.5
re1
13
10
–393.2
re2
14
10
–393.2
ree
10
99
3.571E6
ro1
8
5
25
ro2
7
99
25
rp
3
4
8.013E3
vb
9
0
dc 0
vc
3
53
dc 2.400
ve
54
4
dc 2.100
vlim
7
8
dc 0
vlp
91
0
dc 40
vln
0
92
dc 40
.modeldx D(Is=800.0E-18)
.modelqx NPN(Is=800.0E-18
Bf=7.000E3)
.ends
Figure 58. TLE2027 Macromodel Subcircuit
.subckt TLE2037 1 2 3 4 5
*
c1
11
12
4.003E–12
c2
6
7
7.500E–12
dc
5
53
dz
de
54
5
dz
dlp
90
91
dz
dln
92
90
dx
dp
4
3
dz
egnd
99
0
poly(2) (3,0)
(4,0) 0 .5 .5
fb
7
99
poly(5) vb vc
ve vip vln 0 923.4E6 A800E6
800E6 800E6 A800E6
ga
6
0
11 12 2.121E–3
gcm
0
6
10 99 597.7E–12
iee
10
4
dc 56.26E–6
hlim
90
0
vlim 1K
q1
11
2
13 qx
q2
12
1
14 qz
r2
6
9
100.0E3
rc1
3
11
471.5
rc2
3
12
471.5
re1
13
10
A448
re2
14
10
A448
ree
10
99
3.555E6
ro1
8
5
25
ro2
7
99
25
rp
3
4
8.013E3
vb
9
0
dc 0
vc
3
53
dc 2.400
ve
54
4
dc 2.100
vlim
7
8
dc 0
vlp
91
0
dc 40
vln
0
92
dc 40
.model
dxD(Is=800.0E–18)
.model
qxNPN(Is=800.0E–18
Bf=7.031E3)
.ends
Figure 59. TLE2037 Macromodel Subcircuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6–33
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192 – FEBRUARY 1997
6–34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated