TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 D D D D, JG, OR P PACKAGE (TOP VIEW) Outstanding Combination of dc Precision and AC Performance: Unity-Gain Bandwidth . . . 15 MHz Typ Vn . . . . 3.3 nV/√Hz at f = 10 Hz Typ, 2.5 nV/√Hz at f = 1 kHz Typ VIO . . . . 25 µV Max AVD . . . 45 V/µV Typ With RL = 2 kΩ, 19 V/µV Typ With RL = 600 Ω Available in Standard-Pinout Small-Outline Package Output Features Saturation Recovery Circuitry Macromodels and Statistical information OFFSET N1 IN – IN + VCC – 1 8 2 7 3 6 4 5 OFFSET N2 VCC + OUT NC FK PACKAGE (TOP VIEW) NC OFFSET N1 NC OFFSET N2 NC D description NC IN – NC IN + NC 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC VCC + NC OUT NC NC VCC – NC NC NC The TLE20x7 and TLE20x7A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. In the area of dc precision, the TLE20x7 and TLE20x7A offer maximum offset voltages of 100 µV and 25 µV, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/µV (typ). AVAILABLE OPTIONS PACKAGED DEVICES TA 0°C to 70°C – 40°C to 105°C – 55°C to 125°C CHIP FORM‡ (Y) VIOmax AT 25°C SMALL OUTLINE† (D) CHIP CARRIER (FK) 25 µV TLE2027ACD TLE2037ACD — — — — TLE2027ACP TLE2037ACP TLE2027Y TLE2037Y 100 µV TLE2027CD TLE2037CD — — — — TLE2027CP TLE2037CP TLE2027Y TLE2037Y 25 µV TLE2027AID TLE2037AID — — — — TLE2027AIP TLE2037AIP — 100 µV TLE2027ID TLE2037ID — — — — TLE2027IP TLE2037IP — 25 µV TLE2027AMD TLE2037AMD TLE2027AMFK TLE2037AMFK TLE2027AMJG TLE2037AMJG TLE2027AMP TLE2037AMP — 100 µV TLE2027MD TLE2037MD TLE2027MFK TLE2037MFK TLE2027MJG TLE2037MJG TLE2027MP TLE2037MP — CERAMIC DIP (JG) PLASTIC DIP (P) † The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2027ACDR). ‡ Chip forms are tested at 25°C only. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1997, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 description (continued) The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/√Hz and 2.5 nV/√Hz at frequencies of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate (–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be operated with a closed-loop gain of 5 or greater. Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from – 40°C to 105°C. The M-suffix devices are characterized for operation over the full military temperature range of – 55°C to 125°C. symbol OFFSET N1 IN + + IN – – OUT OFFSET N2 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TLE202xY chip information This chip, when properly assembled, displays characteristics similar to the TLE202xC. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (6) (4) (8) (7) (6) OFFSET N1 IN + IN – OFFSET N2 (1) (3) (2) VCC+ + – (7) (6) OUT (4) (8) VCC – (5) 90 (3) (7) (4) (2) CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. (1) (2) (3) ALL DIMENSIONS ARE IN MILS. (8) (1) PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP. 73 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 R1 Q10 R2 Q5 Q2 R9 R4 R5 Q9 Q42 C1 Q11 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Q1 Q7 Q17 Q59 Q32 Q39 R17 Q25 Q28 C2 OUT Q44 R22 Q43 R13 Q34 Q23 Q24 Q20 Q48 Q47 C4 Q18 Q57 Q37 C3 IN – Q56 Q38 R16 R11 Q19 Q8 Q52 Q50 Q62 Q53 Q41 Q33 Q21 Q54 Q15 Q51 Q26 Q29 Q22 R6 R7 R10 R12 R14 Q45 Q60 R23 R24 R26 R19 R18 VCC – ACTUAL DEVICE COMPONENT COUNT COMPONENT Q40 Q35 Q31 Q16 R3 Q61 Q55 R21 Q14 Q12 Q4 Q58 Q30 R8 IN + Q46 Q36 Q6 R25 Q49 Q27 Q13 Q3 R20 R15 TLE2027 TLE2037 Transistors 61 61 Resistors 26 26 epiFET 1 1 Capacitors 4 4 Template Release Date: 7–11–94 V CC+ OFFSET N1 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS OFFSET N2 SLOS192 – FEBRUARY 1997 4 equivalent schematic TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V Supply voltage, VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 19 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1.2 V Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC± Input current, II (each Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Total current out of VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 105°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Case temperature for 60 seconds, TC: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC – . 2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if a differential input voltage in excess of approximately ±1.2 V is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 105°C POWER RATING TA = 125°C POWER RATING D 725 mW 5.8 mW/°C 464 mW 261 mW 145 mW FK 1375 mW 11.0 mW/°C 880 mW 495 mW 275 mW JG 1050 mW 8.4 mW/°C 672 mW 378 mW 210 mW P 1000 mW 8.0 mW/°C 640 mW 360 mW 200 mW recommended operating conditions C SUFFIX Supply voltage, VCC ± Common mode input voltage, voltage VIC Common-mode TA = 25°C TA = Full range‡ I SUFFIX MIN MAX M SUFFIX MIN MAX MIN MAX ±4 ± 19 ±4 ± 19 ±4 ± 19 – 11 11 – 11 11 – 11 11 – 10.5 10.5 – 10.4 10.4 – 10.2 10.2 Operating free-air temperature, TA 0 70 – 40 105 – 55 125 ‡ Full range is 0°C to 70°C for C-suffix devices, – 40°C to 105°C for I-suffix devices, and – 55°C to 125°C for M-suffix devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT V V °C 6–5 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TLE20x7C electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current TA† TEST CONDITIONS 25°C Common-mode input voltage range Maximum positive peak output voltage swing RS = 50 Ω Maximum negative peak g output voltage swing VO = ± 11 V, VO = ± 10 V, Large-signal differential g g voltage amplification VO = ± 10 V V, 1 0.006 1 µV/mo 25°C 6 90 6 90 – 12 Full range – 11 Full range Common-mode rejection j ratio VIC = VICRmin,, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO) 5 2 90 150 – 13 to 13 12.9 10.5 12 – 13 – 10.5 nA 12.9 10 13.2 nA V – 10.5 to 10.5 V 13.2 11 – 13 – 10 – 13.5 – 12 V – 13.5 – 11 45 10 45 4 38 8 1 38 V/µV 2.5 19 5 0.5 19 2 25°C 8 8 pF 25°C 50 50 Ω 25°C 100 98 VCC ± = ± 4 V to ± 18 V, RS = 50 Ω 25°C 94 VCC ± = ± 4 V to ± 18 V, RS = 50 Ω Full range 92 No load 15 –11 to 11 2 3.5 Full range VO = 0 0, – 13 to 13 11 – 10.5 25°C 25°C CMRR 10.5 – 10 25°C 90 – 10.5 to 10.5 Full range Full range IO = 0 –11 to 11 12 Full range 150 150 10 RL = 2 kΩ zo Supply current 15 25°C 25°C Open-loop output impedance ICC 150 Full range RL = 2 kΩ Input capacitance µV 0.006 25°C Ci 70 25°C Full range VO = ± 10 V,, RL = 600 Ω 25 µV/°C 25°C RL = 1 kΩ 10 UNIT 1 RS = 50 Ω RL = 600 Ω MAX 0.2 25°C RL = 600 Ω TYP 1 Full range RL = 2 kΩ AVD 100 Full range RL = 2 kΩ VOM – 20 MIN 0.4 Full range VOM + MAX 145 Full range VIC = 0, TLE20x7AC TYP Full range 25°C VICR TLE20x7C MIN 131 117 131 dB 114 144 110 144 dB 25°C Full range 106 3.8 5.3 5.6 3.8 5.3 5.6 mA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6–6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TLE20x7C operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C (unless otherwise specified) PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltq age (see Figure 2) VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise curq rent THD Total harmonic distortion TLE20x7C TEST CONDITIONS MIN TYP TLE20x7AC MAX MIN TYP RL = 2 kΩ, CL = 100 pF pF, See Figure 1 TLE2027 1.7 2.8 1.7 2.8 TLE2037 6 7.5 6 7.5 RL = 2 kΩ, CL = 100 pF,, TA = 0°C to 70°C, See Figure 1 TLE2027 1.2 1.2 TLE2037 5 5 MAX V/µs RS = 20 Ω, f = 10 Hz 3.3 8 3.3 4.5 RS = 20 Ω, f = 1 kHz 2.5 4.5 2.5 3.8 f = 0.1 Hz to 10 Hz 50 250 50 130 f = 10 Hz 1.5 4 1.5 4 f = 1 kHz 0.4 0.6 0.4 0.6 VO = + 10 V, AVD = 1, See Note 5 TLE2027 < 0.002% < 0.002% VO = + 10 V, AVD = 5, See Note 5 TLE2037 < 0.002% < 0.002% B1 Unity-gain yg bandwidth (see Figure 3) RL = 2 kΩ,, CL = 100 pF BOM Maximum output-swing g bandwidth RL = 2 kΩ φm Phase margin g at unity yg gain (see Figure 3) RL = 2 kΩ, CL = 100 pF UNIT TLE2027 7 13 9 13 TLE2037 35 50 35 50 TLE2027 30 30 TLE2037 80 80 TLE2027 55° 55° TLE2037 50° 50° nV/√Hz nV pA/√Hz MHz kHz NOTE 5: Measured distortion of the source used in the analysis was 0.002%. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–7 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TLE20x7I electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current TA† TEST CONDITIONS 25°C Common-mode input voltage range Maximum positive peak output voltage swing RS = 50 Ω Maximum negative peak g output voltage swing Large-signal differential g g voltage amplification Ci Input capacitance zo Open-loop output impedance IO = 0 CMRR Common-mode rejection j ratio VIC = VICRmin,, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO) ICC Supply current 1 0.006 1 µV/mo 25°C 6 90 6 90 150 15 –11 to 11 10 12 25°C – 12 Full range – 11 25°C Full range 12.9 – 13 to 13 10.5 13.2 12 – 13 – 10.5 nA nA V 12.9 10 V 13.2 11 – 13 – 10 – 13.5 5 – 12 10 45 3.5 38 8 1 2 V – 13.5 – 11 45 2 3.5 38 V/µV 2.2 19 5 0.5 19 1.1 25°C 8 8 pF 25°C 50 50 Ω 25°C 100 96 VCC ± = ± 4 V to ± 18 V, RS = 50 Ω 25°C 94 VCC ± = ± 4 V to ± 18 V, RS = 50 Ω Full range 90 No load 90 150 –11 to 11 11 – 10 Full range 15 – 10.4 to 10.4 – 10.5 Full range 25°C – 13 to 13 10.5 25°C Full range 90 – 10.4 to 10.4 Full range 25°C 150 150 Full range VO = 0 0, µV 0.006 25°C VO = ± 10 V V, RL = 600 Ω 105 25°C Full range VO = ± 10 V V, RL = 1 kΩ 25 µV/°C 25°C VO = ± 11 V, RL = 2 kΩ VO = ± 10 V, RL = 2 kΩ 10 UNIT 1 RS = 50 Ω RL = 600 Ω MAX 0.2 25°C RL = 600 Ω TYP 1 Full range RL = 2 kΩ AVD 100 Full range RL = 2 kΩ VOM – 20 MIN 0.4 Full range VOM + MAX 180 Full range VIC = 0, TLE20x7AI TYP Full range 25°C VICR TLE20x7I MIN 131 117 131 dB 113 144 110 144 dB 25°C Full range 105 3.8 5.3 5.6 3.8 5.3 5.6 mA † Full range is – 40°C to 105°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6–8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TLE20x7I operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C (unless otherwise specified) PARAMETER SR Slew rate at unity gain Vn Equivalent input noise q voltage (see Figure 2) VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise q current THD Total harmonic distortion TEST CONDITIONS TLE20x7I MIN TYP TLE20x7AI MAX MIN TYP RL = 2 kΩ, CL = 100 pF pF, See Figure 1 TLE2027 1.7 2.8 1.7 2.8 TLE2037 6 7.5 6 7.5 RL = 2 kΩ, CL = 100 pF,, TA = – 40°C to 85°C, See Figure 1 TLE2027 1.1 1.1 TLE2037 4.7 4.7 MAX V/µs RS = 20 Ω, f = 10 Hz 3.3 8 3.3 4.5 RS = 20 Ω, f = 1 kHz 2.5 4.5 2.5 3.8 f = 0.1 Hz to 10 Hz 50 250 50 130 f = 10 Hz 1.5 4 1.5 4 f = 1 kHz 0.4 0.6 0.4 0.6 VO = + 10 V, AVD = 1, See Note 5 TLE2027 < 0.002% < 0.002% VO = + 10 V, AVD = 5, See Note 5 TLE2037 < 0.002% < 0.002% B1 Unity-gain yg bandwidth (see Figure 3) RL = 2 kΩ,, CL = 100 pF BOM Maximum output-swing g bandwidth RL = 2 kΩ φm Phase margin g at unity y gain (see Figure 3) RL = 2 kΩ , CL = 100 pF UNIT TLE2027 7 13 9 13 TLE2037 35 50 35 50 TLE2027 30 30 TLE2037 80 80 TLE2027 55° 55° TLE2037 50° 50° nV/√Hz nV pA/√Hz MHz kHz NOTE 5: Measured distortion of the source used in the analysis was 0.002%. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–9 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TLE20x7M electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current TA† TEST CONDITIONS 25°C Common-mode input voltage range Maximum positive peak output voltage swing RS = 50 Ω Maximum negative peak g output voltage swing Large-signal differential voltage amplification am lification 1* 0.006 1* µV/mo 25°C 6 90 6 90 Input capacitance zo Open-loop output impedance IO = 0 CMRR Common-mode rejection j ratio VIC = VICRmin,, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO) ICC Supply current 150 15 –11 to 11 Full range – 10 25°C – 12 Full range – 11 12.9 2.5 25°C 3.5 Full range 1.8 – 13 to 13 10.5 13.2 12 – 13 – 10.5 nA nA V 12.9 10 V 13.2 11 – 13 – 10 – 13.5 5 Full range 90 150 –11 to 11 11 2 – 12 V – 13.5 – 11 45 10 45 3.5 38 8 V/µV µ 38 2.2 19 5 19 25°C 8 8 pF 25°C 50 50 Ω 25°C 100 96 VCC ± = ± 4 V to ± 18 V, RS = 50 Ω 25°C 94 VCC ± = ± 4 V to ± 18 V, RS = 50 Ω Full range 90 No load 15 – 10.4 to 10.4 – 10.5 Full range VO = 0 0, – 13 to 13 10.5 12 25°C 90 – 10.3 to 10.3 10 25°C 150 150 25°C 25°C Ci µV 0.006 Full range VO = ± 10 V V, RL = 600 Ω 105 25°C Full range VO = ± 10 V V, RL = 1 kΩ 25 µV/°C 25°C VO = ± 11 V, RL = 2 kΩ VO = ± 10 V, RL = 2 kΩ 10 UNIT 1* RS = 50 Ω RL = 600 Ω MAX 0.2 25°C RL = 600 Ω TYP 1* Full range RL = 2 kΩ AVD 100 Full range RL = 2 kΩ VOM – 20 MIN 0.4 Full range VOM + MAX 200 Full range VIC = 0, TLE20x7AM TYP Full range 25°C VICR TLE20x7M MIN 131 117 131 dB 113 144 110 144 dB 25°C Full range 105 3.8 5.3 5.6 3.8 5.3 5.6 mA * On products compliant to MIL-PRF-38535, this parameter is not production tested. † Full range is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6–10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TLE20x7M operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C (unless otherwise specified) PARAMETER SR Slew rate at unity gain Vn Equivalent input noise q voltage (see Figure 2) VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise q current THD Total harmonic distortion TLE20x7M TEST CONDITIONS MIN TYP TLE20x7AM MAX MIN TYP MAX RL = 2 kΩ, CL = 100 pF pF, See Figure 1 TLE2027 1.7 2.8 1.7 2.8 TLE2037 6* 7.5 6* 7.5 RL = 2 kΩ, CL = 100 pF,, TA = – 55°C to 125°C, See Figure 1 TLE2027 1 1 TLE2037 4.4* 4.4* RS = 20 Ω, f = 10 Hz 3.3 8* 3.3 4.5* RS = 20 Ω, f = 1 kHz 2.5 4.5 * 2.5 3.8* f = 0.1 Hz to 10 Hz 50 250* 50 130* f = 10 Hz 1.5 4* 1.5 4* f = 1 kHz 0.4 0.6* 0.4 0.6* V/µs VO = + 10 V, AVD = 1, See Note 5 TLE2027 < 0.002% < 0.002% VO = + 10 V, AVD = 5, See Note 5 TLE2037 < 0.002% < 0.002% B1 Unity-gain yg bandwidth (see Figure 3) RL = 2 kΩ,, CL = 100 pF BOM Maximum output-swing g bandwidth RL = 2 kΩ φm Phase margin g at unity y gain (see Figure 3) RL = 2 kΩ, CL = 100 pF UNIT TLE2027 7* 13 9* 13 TLE2037 35 50 35 50 TLE2027 30 30 TLE2037 80 80 TLE2027 55° 55° TLE2037 50° 50° nV/√Hz nV pA/√Hz MHz kHz * On products compliant to MIL-PRF-38535, this parameter is not production tested. NOTE 5: Measured distortion of the source used in the analysis was 0.002%. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–11 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TLE20x7Y electrical characteristics, VCC± = ±15 V, TA = 25°C (unless otherwise noted) PARAMETER VIO TEST CONDITIONS Input offset voltage TLE20x7Y MIN TYP 20 Input offset voltage long-term drift (see Note 4) VIC = 0,, RS = 50 Ω 0.006 MAX UNIT µV µV/mo IIO IIB Input offset current 6 nA Input bias current 15 nA VICR Common-mode input voltage range RS = 50 Ω – 13 to 13 V VOM + Maximum positive peak output voltage swing RL = 600 Ω 12.9 RL = 2 kΩ 13.2 VOM – Maximum negative peak output voltage swing AVD Large-signal differential voltage amplification am lification Ci Input capacitance zo Open-loop output impedance CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio (∆VCC ± RL = 600 Ω – 13 RL = 2 kΩ VO = ± 11 V, VO = ± 10 V, – 13.5 RL = 2 kΩ 45 RL = 1 kΩ 38 VO = ± 10 V, RL = 600 Ω IO = 0 VIC = VICRmin, RS = 50 Ω /∆VIO) VCC ± = ± 4 V to ± 18 V, RS = 50 Ω V V V/µV 19 8 pF 50 Ω 131 dB 144 dB ICC Supply current VO = 0, No load 3.8 mA NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6–12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TLE20x7Y operating characteristics at specified free-air temperature, VCC ± = ±15 V PARAMETER RL = 2 kΩ,, CL = 100 pF,, See Figure 1 SR Slew rate at unity gain Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current THD TLE20x7Y TEST CONDITIONS Total harmonic distortion MIN TYP TLE2027 2.8 TLE2037 7.5 RS = 20 Ω, f = 10 Hz 3.3 RS = 20 Ω, f = 1 kHz 2.5 f = 0.1 Hz to 10 Hz 50 f = 10 Hz 1.5 f = 1 kHz 0.4 VO = + 10 V, AVD = 1, See Note 5 TLE2027 < 0.002% VO = + 10 V, AVD = 5, See Note 5 TLE2037 < 0.002% TLE2027 13 TLE2037 50 TLE2027 30 TLE2037 80 TLE2027 55° TLE2037 50° B1 Unity gain bandwidth (see Figure 3) Unity-gain RL = 2 kΩ kΩ, BOM Maximum output output-swing swing bandwidth RL = 2 kΩ φm Phase margin at unity gain (see Figure 3) RL = 2 kΩ kΩ, CL = 100 pF CL = 100 pF F MAX UNIT V/µs nV/√Hz nV pA/√Hz MHz kHz NOTE 5: Measured distortion of the source used in the analysis was 0.002%. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–13 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 PARAMETER MEASUREMENT INFORMATION 2 kΩ Rf 15 V 15 V – – VO VO RI + + VI CL = 100 pF (see Note A) – 15 V RL = 2 kΩ 20 Ω 20 Ω – 15 V NOTE A: CL includes fixture capacitance. Figure 1. Slew-Rate Test Circuit Figure 2. Noise-Voltage Test Circuit Rf 10 kΩ 15 V 100 Ω VI 15 V – – VO VO RI VI + –15 V CL = 100 pF (see Note A) CL = 100 pF (see Note A) – 15 V 2 kΩ NOTE A: CL includes fixture capacitance. 2 kΩ NOTES: A. CL includes fixture capacitance. B. For the TLE2037 and TLE2037A, AVD must be ≥ 5. Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit (TLE2027 Only) 6–14 + POST OFFICE BOX 655303 Figure 4. Small-Signal PulseResponse Test Circuit • DALLAS, TEXAS 75265 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. initial estimates of parameter distributions In the ongoing program of improving data sheets and supplying more information to our customers, Texas Instruments has added an estimate of not only the typical values but also the spread around these values. These are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown at the points where data was actually collected. The 95% and 5% points are used instead of ± 3 sigma since some of the distributions are not true Gaussian distributions. The number of units tested and the number of different wafer lots used are on all of the graphs where distribution bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this case, there is a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability. This is always the case on newly released products since there can only be data available from a few wafer lots. The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices fell outside every distribution bar. SUPPLY CURRENT vs FREE-AIR TEMPERATURE ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ I CC – Supply Current – mA 5 4.5 VCC± = ±15 V VO = 0 No Load Sample Size = 835 Units From 2 Water Lots 95% point on the distribution bar (5% of the devices fell above this point.) 90% of the devices were within the upper and lower points on the distribution bar. 5% point on the distribution bar (5% of the devices fell below this point.) 4 3.5 3 2.5 – 75 – 50 – 25 0 25 50 75 100 125 150 TA – Free-Air Temperature – °C Figure 5. Sample Graph With Distribution Bars POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–15 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution 6, 7 ∆VIO Input offset voltage change vs Time after power on 8, 9 IIO Input offset current vs Free-air temperature 10 IIB Input bias current vs vs Free-air temperature Common-mode input voltage 11 12 II VO(PP) Input current vs Differential input voltage Maximum peak-to-peak output voltage vs Frequency 14, 15 Maximum ((positive/negative) g ) peak output voltage vs vs Load resistance Free-air temperature 16,, 17 18, 19 AVD Large signal differential voltage amplification Large-signal vs vs vs vs Su ly voltage Supply Load resistance Frequency Free-air temperature 20 21 22 – 25 26 zo Output impedance vs Frequency 27 CMRR Common-mode rejection ratio vs Frequency 28 kSVR Supply-voltage rejection ratio vs Frequency IOS Short-circut output current vs vs vs Supply y voltage g Elapsed time Free-air temperature 30,, 31 32, 33 34, 35 ICC Supply current vs vs Supply y voltage g Free-air temperature 36 37 Voltage follower pulse response Voltage-follower Small signal g Large signal Equivalent input noise voltage vs Noise voltage (referred to input) Over 10-second interval 43 Unity gain bandwidth Unity-gain vs vs Supply y voltage g Load capacitance 44 45 Gain bandwidth product vs vs Supply y voltage g Load capacitance 46 47 Slew rate vs Free-air temperature 48, 49 Phase margin g vs vs vs Supply y voltage g Load capacitance Free-air temperature 50,, 51 52, 53 54, 55 Phase shift vs Frequency 22 – 25 VOM Vn B1 SR φm 6–16 POST OFFICE BOX 655303 Frequency • DALLAS, TEXAS 75265 13 29 38,, 40 39, 41 42 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS DISTRIBUTION INPUT OFFSET VOLTAGE Percentage of Amplifiers – % 14 12 ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ 1568 Amplifiers Tested From 2 Wafer Lots VCC± = +15 V TA = 25°C D Package 10 8 6 4 2 0 – 120 – 90 – 60 – 30 0 30 60 90 120 VIO – Input Offset Voltage – µV INPUT OFFSET VOLTAGE CHANGE vs TIME AFTER POWER ON AVIO ∆ VIO – Change in Input Offset Voltage – µV 16 12 10 8 6 ÎÎÎÎÎÎÎÎÎÎÎ ÁÁÁÁÁÁ ÁÁ ÎÎÎÎÎÎÎÎÎÎÎ ÁÁÁÁÁÁ ÁÁ ÎÎÎÎ ÁÁÁÁÁÁ ÁÁ ÎÎÎÎ 4 50 Amplifiers Tested From 2 Wafer Lots VCC± = ±15 V TA = 25°C D Package 2 0 0 10 20 30 40 50 t – Time After Power On – s Figure 6 Figure 7 INPUT OFFSET CURRENT † vs FREE-AIR TEMPERATURE 6 30 5 25 4 3 ÎÎÎÎÎÎÎÎÎÎÎ ÁÁ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÁÁ ÎÎÎÎ 2 50 Amplifiers Tested From 2 Wafer Lots VCC± = ±15 V TA = 25°C P Package 0 0 20 40 60 80 100 120 140 160 180 IIO I IO – Input Offset Current – nA AVIO ∆ VIO – Change in Input Offset Voltage – µV INPUT OFFSET VOLTAGE CHANGE vs TIME AFTER POWER ON 1 60 ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ VCC± = ±15 V VIC = 0 Sample Size = 833 Units From 2 Wafer Lots 20 15 10 5 0 – 75 – 50 – 25 0 25 50 75 100 125 150 TA – Free-Air Temperature – °C t – Time After Power On – s Figure 8 Figure 9 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–17 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS INPUT BIAS CURRENT † vs FREE-AIR TEMPERATURE VCC ± = ± 15 V VIC = 0 Sample Size = 836 Units From 2 Wafer Lots IIIB IB – Input Bias Current – nA 50 40 30 20 10 0 40 35 IIIB IB – Input Bias Current – nA ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ 60 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE VCC± = ± 15 V TA = 25°C 30 25 20 15 10 – 10 5 – 20 – 75 – 50 – 25 0 25 50 75 100 125 150 TA – Free-Air Temperature – °C 0 –12 –8 –4 0 4 8 VIC – Common-Mode Input Voltage – V Figure 10 Figure 11 TLE2027 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE † vs FREQUENCY INPUT CURRENT vs DIFFERENTIAL INPUT VOLTAGE 0.8 IIII – Input Current – mA 0.6 0.4 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ VO(PP) – Maximum Peak-to-Peak Output Voltage – V 1 VCC ± = ± 15 V VIC = 0 TA = 25°C 0.2 0 – 0.2 – 0.4 – 0.6 – 0.8 –1 – 1.8 – 1.2 – 0.6 0 12 0.6 1.2 1.8 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 30 VCC± = ±15 V RL = 2 kΩ 25 20 15 TA = 125°C 10 5 TA = – 55°C 0 10 k VID – Differential Input Voltage – V 100 k 1M f – Frequency – Hz Figure 13 Figure 12 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 6–18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 M TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS 20 ÎÎÎÎ ÎÎÎÎ 15 TA = 125°C 10 TA = – 55°C 5 0 10 k 100 k 1M 10 M 100 M f – Frequency – Hz Figure 14 – 14 – 12 – 10 –8 –6 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁ –4 0 100 14 12 10 8 6 ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁ 4 VCC ± = ± 15 V TA = 25°C 2 0 100 1k RL – Load Resistance – Ω 10 k Figure 15 MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE –2 VVOM+ OM + – Maximum Positive Peak Output Voltage – V VCC ± = ± 15 V RL = 2 kΩ 25 ÁÁÁ ÁÁÁ ÁÁÁ VVOM– OM – – Maximum Negative Peak Output Voltage – V ÎÎÎÎÎ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎÎ ÎÎÎÎÎ ÁÁÁÁÁ 30 MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE VCC ± = ± 15 V TA = 25°C 1k RL – Load Resistance – Ω 10 k VVOM+ OM + – Maximum Positive Peak Output Voltage – V VO(PP) VO(PP) – Maximum Peak-to-Peak Output Voltage – V TLE2037 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE † vs FREQUENCY MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE † vs FREE-AIR TEMPERATURE 13.5 13.4 13.3 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ VCC± = ± 15 V RL = 2 kΩ Sample Size = 832 Units From 2 Wafer Lots 13.2 13.1 ÁÁ ÁÁ ÁÁ 13 12.9 – 75 – 50 – 25 Figure 16 0 25 50 75 100 125 150 TA – Free-Air Temperature – °C Figure 17 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–19 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE † vs FREE-AIR TEMPERATURE ÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ – 13 VCC ± = ± 15 V RL = 2 kΩ Sample Size = 831 Units From 2 Wafer Lots – 13.2 – 13.4 – 13.8 – 14 – 75 – 50 – 25 ÎÎÎÎ TA = 25°C ÁÁ ÁÁ ÁÁ – 13.6 ÁÁÁ ÁÁÁ ÁÁÁ 50 AVD AVD – Large-Signal differential Voltage Amplification – V/ µ V VVOM– OM – – Maximum Negative Peak Output Voltage – V TYPICAL CHARACTERISTICS RL = 2 kΩ 40 RL = 1 kΩ 30 20 RL = 600 Ω 10 0 0 25 50 75 4 0 100 125 150 8 12 16 VCC± – Supply Voltage – V TA – Free-Air Temperature – °C Figure 19 Figure 18 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE AVD AVD – Large-Signal differential Voltage Amplification – V/ µ V 50 ÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ VCC± = ± 15 V TA = 25°C 40 30 20 10 0 100 200 400 1k 2k 4k 10 k RL – Load Resistance – Ω Figure 20 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 6–20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 20 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2027 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 75° 160 Phase Shift 100° 125° 120 AVD 100 150° 80 175° 60 200° ÁÁ ÁÁ 40 225° VCC± = ± 15 V RL = 2 kΩ CL = 100 pF TA = 25°C 20 250° 0 100 100 k f – Frequency – Hz 0.1 Phase Shift AVD AVD– Large-Signal Differential Voltage Amplification – dB 140 275° 100 M Figure 21 TLE2037 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY AVD AVD – Large-Signal Differential Voltage Amplification – dB 140 120 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎ Phase Shift AVD 100 Á ÁÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁ 0 0.1 125° 150° 200° 60 20 100° 175° 80 40 75° VCC± = ± 15 V RL = 2 kΩ CL = 100 pF TA = 25°C 100 Phase Shift 160 225° 250° 100 k 275° 100 M f – Frequency – MHz Figure 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–21 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS 6 100° 3 125° 0 150° –3 175° AVD 200° –6 Phase Shift 225° –9 ÁÁ ÎÎÎÎÎ ÁÁ ÎÎÎÎÎ ÁÁ ÎÎÎÎÎ – 12 250° VCC± = ± 15 V RL = 2 kΩ CL = 100 pF TA = 25°C – 15 – 18 20 10 Phase Shift AVD AVD– Large-Signal Differential Voltage Amplification – dB TLE2027 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 275° 40 70 300° 100 f – Frequency – MHz Figure 23 TLE2037 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 100 ° 30 ÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎ AVD 20 125 ° Phase Shift 150 ° 15 175 ° 10 200 ° 5 225 ° ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ VCC± = ± 15 V RL = 2 kΩ CL = 100 pF TA = 25°C 0 –5 250 ° 275 ° 300 ° –10 1 2 4 10 20 f – Frequency – MHz 40 Figure 24 6–22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 Phase Shift AVD AVD – Large-Signal Differential Voltage Amplification – dB 25 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION † vs FREE-AIR TEMPERATURE 60 ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÎÎÎÎÎ ÁÁ ÎÎÎÎÎ ÎÎÎÎÎ ÁÁ ÁÁ 100 50 RL = 2 kΩ RL = 1 kΩ 40 30 – 75 – 50 – 25 0 25 50 75 100 125 150 TA – Free-Air Temperature – °C CMRR – Common-Mode Rejection Ratio – dB 10 AVD = 100 See Note A 1 AVD = 10 – 10 – 100 10 100 1k 10 k 100 k 1M 10 M 100 M f – Frequency – Hz NOTE A: For this curve, the TLE2027 is AVD = 1 and the TLE2037 is AVD = 5. Figure 25 Figure 26 COMMON-MODE REJECTION RATIO vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY ÎÎÎÎÎ ÁÁÁÁ ÎÎÎÎ ÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁ 140 VCC ± = ± 15 V TA = 25°C 120 100 80 60 40 20 0 10 zo z o – Output Impedance – Ω VCC ± = ± 15 V TA = 25°C 100 1k 10 k 100 k 1 M f – Frequency – Hz 10 M 100 M ÎÎÎÎÎÎ ÁÁÁÁ ÎÎÎÎ ÁÁÁÁ ÎÎÎÎ ÎÎÎ ÎÎÎ 140 KSVR – Supply-Voltage Rejection Ratio – dB AVD AVD – Large-Signal differential Voltage Amplification – V/ µ V VCC ± = ± 15 V ÁÁ ÁÁ ÁÁ OUTPUT IMPEDANCE vs FREQUENCY VCC ± = ± 15 V TA = 25°C 120 100 kSVR – 80 60 kSVR + 40 20 0 10 100 Figure 27 1k 10 k 100 k 1 M f – Frequency – Hz 10 M 100 M Figure 28 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–23 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎ ÁÁÁÁÁ VID = 100 mV VO = 0 TA = 25°C P Package – 40 – 38 ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ 44 IIOS OS – Short-Circuit Output Current – mA IIOS OS – Short-Circuit Output Current – mA – 42 – 36 – 34 ÁÁ ÁÁ VID = – 100 mV VO = 0 TA = 25°C P Package 42 40 38 36 34 ÁÁ ÁÁ – 32 32 30 – 30 0 2 4 6 8 10 12 14 16 VCC± – Supply Voltage – V 18 0 20 2 4 6 8 10 12 14 16 VCC± – Supply Voltage – V Figure 29 44 VCC ± = ± 15 V VID = 100 mV VO = 0 TA = 25°C P Package – 41 IIOS OS – Short-Circuit Output Current – mA IIOS OS – Short-Circuit Output Current – mA SHORT-CIRCUIT OUTPUT CURRENT vs ELAPSED TIME ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎ ÁÁÁÁÁ – 43 – 39 ÁÁÁ ÁÁÁ ÁÁÁ – 37 – 35 0 30 60 90 120 t – Elasped Time – s 150 180 ÁÁ ÁÁ 42 40 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁÁ ÁÁÁÁÁ VCC ± = ± 15 V VID = 100 mV VO = 0 TA = 25°C P Package 38 36 34 0 Figure 31 6–24 20 Figure 30 SHORT-CIRCUIT OUTPUT CURRENT vs ELAPSED TIME – 45 18 30 60 90 120 t – Elasped Time – s Figure 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 150 180 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ – 48 VCC ± = ± 15 V VID = 100 mV VO = 0 P Package – 44 – 40 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 46 IIOS OS – Short-Circuit Output Current – mA IIOS OS – Short-Circuit Output Current – mA SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE – 36 – 32 ÁÁ ÁÁ ÁÁ – 28 – 24 – 75 – 50 – 25 0 25 50 75 100 125 150 TA – Free-Air Temperature – °C VCC ± = ± 15 V VID = – 100 mV VO = 0 P Package 42 38 34 ÁÁ ÁÁ ÁÁ 30 26 – 75 – 50 – 25 0 25 50 75 100 125 150 TA – Free-Air Temperature – °C Figure 33 Figure 34 SUPPLY CURRENT † vs FREE-AIR TEMPERATURE SUPPLY CURRENT † vs SUPPLY VOLTAGE ÁÁÁÁ ÁÁÁÁ 5 VO = 0 No Load IICC CC – Supply Current – mA 5 ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÁÁ ÁÁ TA = 125°C 4 IICC CC – Supply Current – mA 6 TA = 25°C 3 TA = – 55°C ÁÁ ÁÁ 2 1 0 0 2 4 6 8 10 12 14 16 VCC± – Supply Voltage – V 18 20 4.5 ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ VCC ± = ± 15 V VO = 0 No Load Sample Size = 836 Units From 2 Wafer Lots 4 3.5 3 2.5 – 75 – 50 – 25 0 25 50 75 100 125 150 TA – Free-Air Temperature – °C Figure 35 Figure 36 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–25 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2027 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 100 50 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 15 VCC± = ±15 V RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 4 10 VO – Output Voltage – V VO – Output Voltage – mV TLE2027 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 0 – 50 VCC± = ±15 V RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 1 5 0 –5 – 10 – 100 – 15 0 200 400 600 t – Time – ns 800 1000 0 5 Figure 37 ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 15 50 V VO O – Output Voltage – V V VO O – Output Voltage – mV 10 ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁ ÁÁ VCC ± = ± 15 V AVD = 5 RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 4 – 50 – 100 0 100 200 300 400 5 VCC ± = ± 15 V AVD = 5 RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 1 0 –5 – 10 – 15 0 t – Time – ns Figure 39 6–26 25 TLE2037 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 100 ÁÁ ÁÁ 20 Figure 38 TLE2037 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 0 10 15 t – Time – µs 2 4 6 t – Time – µs Figure 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8 10 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ Vn V n – Equivalent Input Noise Voltage – nVHz nV/ Hz 10 VCC ± = ± 15 V RS = 20 Ω TA = 25°C See Figure 2 Sample Size = 100 Units From 2 Wafer Lots 8 6 4 ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ 50 VCC ± = ± 15 V f = 0.1 to 10 Hz TA = 25°C 40 30 Noise Voltage – nV ÁÁ ÁÁ ÁÁ NOISE VOLTAGE (REFERRED TO INPUT) OVER A 10-SECOND INTERVAL EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 20 10 0 – 10 – 20 2 – 30 – 40 0 1 10 100 1k 10 k 100 k – 50 0 2 4 f – Frequency – Hz Figure 41 10 TLE2037 GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 20 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 52 RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 3 Gain-Bandwidth Product – MHz B1 – Unity-Gain Bandwidth – MHz 8 Figure 42 TLE2027 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 18 6 t – Time – s 16 14 12 f = 100 kHz RL = 2 kΩ CL = 100 pF TA = 25°C 51 50 49 48 10 0 2 4 6 8 10 12 14 16 18 | VCC± | – Supply Voltage – V 20 22 0 2 4 6 8 10 12 14 16 18 20 VCC± – Supply Voltage – V Figure 44 Figure 43 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–27 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2027 UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE VCC± = ±15 V RL = 2 kΩ TA = 25°C See Figure 3 12 8 4 VCC± = ±15 V RL = 2 kΩ TA = 25°C 51 50 49 48 100 0 100 1000 CL – Load Capacitance – pF ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ 52 Gain-Bandwidth Product – MHz B1 – Unity-Gain Bandwidth – MHz 16 TLE2037 GAIN-BANDWIDTH PRODUCT vs LOAD CAPACITANCE 10000 1000 10000 CL – Load Capacitance – pF Figure 45 Figure 46 TLE2027 SLEW RATE † vs FREE-AIR TEMPERATURE TLE2037 SLEW RATE † vs FREE-AIR TEMPERATURE 3 ÎÎÎÎÎÎ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎÎÎ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 10 2.8 SR – Slew Rate – V/ µ s SR – Slew Rate – V/ µs 9 2.6 2.4 2.2 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ VCC± = ±15 V AVD = 1 RL = 2 kΩ CL = 100 pF See Figure 1 2 – 75 – 50 – 25 0 VCC ± = ± 15 V AVD = 5 RL = 2 kΩ CL = 100 pF See Figure 1 8 7 6 25 50 75 100 125 150 TA – Free-Air Temperature – °C 5 – 75 – 50 – 25 0 25 50 75 100 125 150 TA – Free-Air Temperature – °C Figure 47 Figure 48 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 6–28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2027 PHASE MARGIN vs SUPPLY VOLTAGE 56° φ m – Phase Margin 54° 52° ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 52° RL = 2 kΩ CL = 100 pF TA = 25°C See Figure 3 50° φ m – Phase Margin 58° TLE2037 PHASE MARGIN vs SUPPLY VOLTAGE 50° ÁÁ ÁÁ 48° 48° ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ AVD = 5 RL = 2 kΩ CL = 100 pF TA = 25°C 46° 44° 42° 46° 40° 44° 38° 42° 0 2 4 6 8 10 12 14 16 18 20 0 22 2 4 8 10 12 14 16 | VCC± | – Supply Voltage – V VCC± – Supply Voltage – V Figure 49 Figure 50 TLE2027 PHASE MARGIN vs LOAD CAPACITANCE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 60° ÁÁ ÁÁ 30° 20° 20 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 60° VCC ± = ± 15 V RL = 2 kΩ TA = 25°C 50° φ m – Phase Margin 40° 18 TLE2037 PHASE MARGIN vs LOAD CAPACITANCE VCC± = ±15 V RL = 2 kΩ TA = 25°C See Figure 3 50° φ m – Phase Margin 6 40° 30° 20° 10° 10° 0° 100 1000 CL – Load Capacitance – pF 0° 100 1000 10000 CL – Load Capacitance – pF Figure 51 Figure 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–29 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 TYPICAL CHARACTERISTICS TLE2027 PHASE MARGIN † vs FREE-AIR TEMPERATURE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 65° 50° 45° VCC ± = ± 15 V AVD = 5 RL = 2 kΩ CL = 100 pF 53° φ m – Phase Margin φ m – Phase Margin 55° ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ 55° VCC± = ±15 V RL = 2 kΩ TA = 25°C See Figure 3 60° ÁÁ ÁÁ TLE2037 PHASE MARGIN † vs FREE-AIR TEMPERATURE 51° 49° 47° 40° 35° 0 25 50 75 100 – 75 – 50 – 25 TA – Free-Air Temperature – °C 125 150 45° – 75 – 50 – 25 0 25 50 75 100 125 150 TA – Free-Air Temperature – °C Figure 53 Figure 54 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 6–30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 APPLICATION INFORMATION input offset voltage nulling The TLE2027 and TLE2037 series offers external null pins that can be used to further reduce the input offset voltage. The circuits of Figure 55 can be connected as shown if the feature is desired. If external nulling is not needed, the null pins may be left disconnected. 1 kΩ VCC + 10 kΩ 4.7 kΩ VCC + 4.7 kΩ IN – – IN – – OUT OUT IN + + IN + VCC – + VCC – (b) ADJUSTMENT WITH IMPROVED SENSITIVITY (a) STANDARD ADJUSTMENT Figure 55. Input Offset Voltage Nulling Circuits voltage-follower applications The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device. For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 56). CF = 20 to 50 pF IF ≤ 1 mA RF VCC – VO VI + VCC – Figure 56. Voltage Follower POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–31 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts , the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 6) and subcircuit in Figure 57, Figure 58, and Figure 59 were generated using the TLE20x7 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • • • • • • • • • • • • Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Gain-bandwidth product Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 3 VCC + 9 egnd rc1 1 rp c1 Q1 2 dp vc Q2 14 re1 + dip – C2 6 cee dc gcm vlim 8 – 5 + ve OUT PSpice and Parts are trademarks of MicroSim Corporation. POST OFFICE BOX 655303 – ro1 54 de Figure 57. Boyle Macromodel 6–32 7 + ga 10 4 90 hlim 53 ree re2 lee 92 ro2 – r2 – 13 dln – fb vb + IN – VCC – + 12 11 IN + rc2 99 + • DALLAS, TEXAS 75265 91 + vip – – vin + TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 APPLICATION INFORMATION macromodel information (continued) .subckt TLE2027 1 2 3 4 5 * c1 11 12 4.003E-12 c2 6 7 20.00E-12 dc 5 53 dz de 54 5 dz dlp 90 91 dz dln 92 90 dx dp 4 3 dz egnd 99 0 poly(2) (3,0) (4,0) 0 5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 954.8E6 –1E9 1E9 1E9 –1E9 ga 6 0 11 12 2.062E-3 gcm 0 6 10 99 531.3E-12 iee 10 4 dc 56.01E-6 hlim 90 0 vlim 1K q1 11 2 13 qx q2 12 1 14 qx r2 6 9 100.0E3 rc1 3 11 530.5 rc2 3 12 530.5 re1 13 10 –393.2 re2 14 10 –393.2 ree 10 99 3.571E6 ro1 8 5 25 ro2 7 99 25 rp 3 4 8.013E3 vb 9 0 dc 0 vc 3 53 dc 2.400 ve 54 4 dc 2.100 vlim 7 8 dc 0 vlp 91 0 dc 40 vln 0 92 dc 40 .modeldx D(Is=800.0E-18) .modelqx NPN(Is=800.0E-18 Bf=7.000E3) .ends Figure 58. TLE2027 Macromodel Subcircuit .subckt TLE2037 1 2 3 4 5 * c1 11 12 4.003E–12 c2 6 7 7.500E–12 dc 5 53 dz de 54 5 dz dlp 90 91 dz dln 92 90 dx dp 4 3 dz egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vip vln 0 923.4E6 A800E6 800E6 800E6 A800E6 ga 6 0 11 12 2.121E–3 gcm 0 6 10 99 597.7E–12 iee 10 4 dc 56.26E–6 hlim 90 0 vlim 1K q1 11 2 13 qx q2 12 1 14 qz r2 6 9 100.0E3 rc1 3 11 471.5 rc2 3 12 471.5 re1 13 10 A448 re2 14 10 A448 ree 10 99 3.555E6 ro1 8 5 25 ro2 7 99 25 rp 3 4 8.013E3 vb 9 0 dc 0 vc 3 53 dc 2.400 ve 54 4 dc 2.100 vlim 7 8 dc 0 vlp 91 0 dc 40 vln 0 92 dc 40 .model dxD(Is=800.0E–18) .model qxNPN(Is=800.0E–18 Bf=7.031E3) .ends Figure 59. TLE2037 Macromodel Subcircuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6–33 TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS192 – FEBRUARY 1997 6–34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated