TI TLE2022AID

 SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
D
D
D
D
D
D
Supply Current . . . 300 µA Max
High Unity-Gain Bandwidth . . . 2 MHz Typ
High Slew Rate . . . 0.45 V/µs Min
Supply-Current Change Over Military Temp
Range . . . 10 µA Typ at VCC ± = ± 15 V
Specified for Both 5-V Single-Supply and
±15-V Operation
Phase-Reversal Protection
D High Open-Loop Gain . . . 6.5 V/µV
D
D
D
D
(136 dB) Typ
Low Offset Voltage . . . 100 µV Max
Offset Voltage Drift With Time
0.005 µV/mo Typ
Low Input Bias Current . . . 50 nA Max
Low Noise Voltage . . . 19 nV/√Hz Typ
description
The TLE202x, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers
using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with
highly improved slew rate and unity-gain bandwidth.
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic
improvement in unity-gain bandwidth and slew rate over similar devices.
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both
time and temperature. This means that a precision device remains a precision device even with changes in
temperature and over years of use.
This combination of excellent dc performance with a common-mode input voltage range that includes the
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply
rail.
A variety of available options includes small-outline and chip-carrier versions for high-density systems
applications.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized
for operation from − 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of −55°C to 125°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
Copyright  1997−2007, Texas Instruments Incorporated
!"#$ % &'!!($ #% )'*+&#$ ,#$(!,'&$% &!" $ %)(&&#$% )(! $.( $(!"% (#% %$!'"($%
%$#,#!, /#!!#$0- !,'&$ )!&(%%1 ,(% $ (&(%%#!+0 &+',(
$(%$1 #++ )#!#"($(!%-
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TLE2021 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax
AT 25°C
SMALL
OUTLINE†
(D)
SSOP‡
(DB)
CHIP
CARRIER
(FK)
CERAMIC DIP
(JG)
PLASTIC DIP
(P)
TSSOP‡
(PW)
CHIP
FORM§
(Y)
0°C
0
C to
70°C
200 µV
500 µV
TLE2021ACD
TLE2021CD
TLE2021CDBLE
—
—
TLE2021ACP
TLE2021CP
—
TLE2021CPWLE
—
TLE2021Y
−40°C
to
85°C
200 µV
500 µV
TLE2021AID
TLE2021ID
—
—
—
TLE2021AIP
TLE2021IP
—
—
−55 C
−55°C
to
125°C
100 µV
200 µV
500 µV
—
TLE2021AMD
TLE2021MD
—
TLE2021BMFK
TLE2021AMFK
TLE2021MFK
TLE2021BMJG
TLE2021AMJG
TLE2021MJG
—
TLE2021AMP
TLE2021MP
—
—
† The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR).
‡ The DB and PW packages are only available left-end taped and reeled.
§ Chip forms are tested at 25°C only.
TLE2022 AVAILABLE OPTIONS
PACKAGED DEVICES
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
TSSOP‡
(PW)
CHIP
FORM§
(Y)
—
TLE2022CDBLE
—
—
—
TLE2022ACP
TLE2022CP
—
—
TLE2022CPWLE
—
—
TLE2022Y
TLE2022BID
TLE2022AID
TLE2022ID
—
—
—
—
TLE2022AIP
TLE2022IP
—
—
—
TLE2022AMD
TLE2022MD
—
—
TLE2022AMFK
TLE2022MFK
TLE2022BMJG
TLE2022AMJG
TLE2022MJG
—
TLE2022AMP
TLE2022MP
—
—
TA
VIOmax
AT 25°C
SMALL
OUTLINE†
(D)
SSOP‡
(DB)
0°C
to
70°C
150 µV
300 µV
500 µV
TLE2022BCD
TLE2022ACD
TLE2022CD
—
−40°C
to
85°C
150 µV
300 µV
500 µV
−55 C
−55°C
to
125°C
150 µV
300 µV
500 µV
† The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2022CDR).
‡ The DB and PW packages are only available left-end taped and reeled.
§ Chip forms are tested at 25°C only.
TLE2024 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax
AT 25°C
0°C
0
C to 70°C
500 µV
750 µV
1000 µV
−40°C
−40
C to 85°C
85 C
−55°C
−55
C to 125
125°C
C
SMALL
OUTLINE
(DW)
CERAMIC
DIP
(J)
PLASTIC
DIP
(N)
TLE2024BCDW
TLE2024ACDW
TLE2024CDW
—
—
TLE2024BCN
TLE2024ACN
TLE2024CN
—
—
TLE2024Y
500 µV
750 µV
1000 µV
TLE2024BIDW
TLE2024AIDW
TLE2024IDW
—
—
TLE2024BIN
TLE2024AIN
TLE2024IN
—
500 µV
750 µV
1000 µV
TLE2024BMDW
TLE2024AMDW
TLE2024MDW
TLE2024BMFK
TLE2024AMFK
TLE2024MFK
TLE2024BMJ
TLE2024AMJ
TLE2024MJ
TLE2024BMN
TLE2024AMN
TLE2024MN
—
§ Chip forms are tested at 25°C only.
2
CHIP
FORM§
(Y)
CHIP
CARRIER
(FK)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TLE2021
D, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
1
8
2
7
3
6
4
5
NC
OFFSET N1
NC
NC
NC
OFFSET N1
IN−
IN+
VCC − /GND
TLE2021
FK PACKAGE
(TOP VIEW)
NC
VCC+
OUT
OFFSET N2
NC
IN−
NC
IN+
NC
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
VCC+
NC
OUT
NC
NC
V CC−/ GND
NC
OFFSET N2
NC
NC − No internal connection
4
1OUT
1IN−
1IN+
VCC − /GND
1
8
2
7
3
6
4
5
FK PACKAGE
(TOP VIEW)
NC
1OUT
NC
VCC +
NC
D, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
VCC+
2OUT
2IN−
2IN+
NC
1IN −
NC
1IN +
NC
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN −
NC
NC
V CC−/ GND
NC
2IN +
NC
NC − No internal connection
4
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
4OUT
4IN−
4IN +
VCC − /GND
3IN +
3IN −
3OUT
NC
NC − No internal connection
J OR N PACKAGE
(TOP VIEW)
1IN +
NC
VCC +
NC
2IN +
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
4IN +
NC
VCC − /GND
NC
3IN +
1OUT
1IN −
1IN +
VCC +
2IN +
2IN −
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN −
4IN +
VCC − /GND
3IN +
3IN −
3OUT
2IN −
2OUT
NC
3OUT
3IN −
1OUT
1IN −
1IN +
VCC +
2IN +
2IN −
2OUT
NC
FK PACKAGE
(TOP VIEW)
1IN −
1OUT
NC
4OUT
4IN −
DW PACKAGE
(TOP VIEW)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TLE2021Y chip information
This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(7)
(6)
(5)
OFFSET N1
IN +
IN −
OFFSET N2
VCC+
(7)
(1)
(3)
(2)
+
(6)
OUT
−
(5)
(4)
VCC − /GND
78
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax= 150°C
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
(4)
(1)
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
(2)
(3)
54
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TLE2022Y chip information
This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(7)
(6)
IN +
(3)
(2)
IN −
OUT
(8)
(7)
+
(1)
OUT
−
+
−
(5)
80
VCC+
(8)
(5)
(6)
IN +
IN −
(4)
(4)
VCC −
(1)
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
(2)
(3)
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
86
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TLE2024Y chip information
This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or
ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
1IN +
1IN −
2OUT
2IN +
100
3IN −
4OUT
VCC +
(4)
(3)
+
(1)
1OUT
(2)
−
+
(7)
(10)
−
+
(5)
(6)
2IN +
2IN −
(8)
3OUT
(9)
−
+
(14)
−
(12)
(13)
4IN +
4IN −
(11)
VCC −/GND
140
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
PIN (11) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
equivalent schematic (each amplifier)
VCC+
Q13
Q3
Q22
Q17
Q7
Q28
Q35
Q31
Q29
Q19
Q1
Q32
Q24
Q39
Q20
Q8
Q5
Q34
Q38
Q11
D3
Q2
Q36
C4
IN −
Q4
Q12
D4
IN +
R7
Q23 Q25
C2
Q10
D1 D2
OUT
Q14
Q40
C3
Q21
Q27
R6
R1
C1
Q6
Q9
R2
R4
R3
R5
Q15
OFFSET N1
Q30 Q33
Q26
Q18
Q37
Q16
OFFSET N2
VCC − /GND
ACTUAL DEVICE COMPONENT COUNT
COMPONENT
Transistors
TLE2021
TLE2022
TLE2024
40
80
160
Resistors
7
14
28
Diodes
4
8
16
Capacitors
4
8
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V
Supply voltage, VCC − (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 0.6 V
Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VCC
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA
Output current, IO (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA
TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 mA
TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 40 mA
Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Total current out of VCC − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Case temperature for 60 seconds, TC: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or PW package . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC − .
2. Differential voltages are at IN+ with respect to IN −. Excessive current flows if a differential input voltage in excess of approximately
± 600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D−8
725 mW
5.8 mW/°C
464 mW
377 mW
145 mW
DB−8
525 mW
4.2 mW/°C
336 mW
—
—
DW−16
1025 mW
8.2 mW/°C
656 mW
533 mW
205 mW
FK
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
J−14
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
JG−8
1050 mW
8.4 mW/°C
672 mW
546 mW
210 mW
N−14
1150 mW
9.2 mW/°C
736 mW
598 mW
230 mW
P−8
1000 mW
8.0 mW/°C
640 mW
520 mW
200 mW
PW−8
525 mW
4.2 mW/°C
336 mW
—
—
recommended operating conditions
Supply voltage, VCC
Common-mode input voltage, VIC
VCC = ± 5 V
VCC ± = ± 15 V
Operating free-air temperature, TA
8
POST OFFICE BOX 655303
C SUFFIX
I SUFFIX
M SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
±2
± 20
±2
± 20
±2
± 20
0
3.5
0
3.2
0
3.2
−15
13.5
−15
13.2
−15
13.2
0
70
−40
85
−55
125
• DALLAS, TEXAS 75265
UNIT
V
V
°C
Temperature coefficient of
input offset voltage
αVIO
VIC = VICRmin,
RS = 50 Ω
VCC = 5 V to 30 V
Low-level output voltage
Large-signal differential
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC /∆VIO)
Supply current
Supply-current change over
operating temperature range
VOL
AVD
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
4
25°C
25°C
25°C
Full range
Full range
100
105
25°C
Full range
80
85
25°C
Full range
0.3
0.3
Full range
25°C
Full range
3.9
Full range
Full range
0
to
3.5
25°C
5
200
120
110
1.5
0.7
4.3
− 0.3
to
4
300
300
0.85
0.8
90
70
25°C
Full range
10
6
850
600
MAX
Full range
25
0.2
25°C
2
120
TYP
0.005
0
to
3.5
MIN
TLE2021C
25°C
Full range
Full range
25°C
TA†
100
105
80
85
0.3
0.3
3.9
4
0
to
3.5
0
to
3.5
MIN
5
200
120
110
1.5
0.7
4.3
− 0.3
to
4
25
0.2
0.005
2
100
TYP
TLE2021AC
300
300
0.85
0.8
90
70
10
6
600
300
MAX
100
105
80
85
0.3
0.3
3.9
4
0
to
3.5
0
to
3.5
MIN
5
200
120
110
1.5
0.7
4.3
− 0.3
to
4
25
0.2
0.005
2
80
TYP
TLE2021BC
300
300
0.85
0.8
90
70
10
6
300
200
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 2.5 V, No load
VO = 1.4 V to 4 V,
RL = 10 kΩ
RL= 10 kΩ
High-level output voltage
VOH
RS = 50 Ω
Common-mode input voltage range
Input bias current
IIB
VIC = 0, RS = 50 Ω
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term drift
(see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
9
10
Temperature coefficient of
input offset voltage
αVIO
VIC = VICR min,
RS = 50 Ω
VCC ± = ± 2.5 V
to ± 15 V
Maximum negative peak
output voltage swing
Large-signal differential
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC /∆VIO)
Supply current
Supply-current change over
operating temperature range
VOM −
AVD
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
No load
−15
to
13.5
0.2
25°C
25°C
25°C
25°C
Full range
Full range
100
105
25°C
Full range
96
100
1
1
−13.7
−13.7
Full range
25°C
Full range
25°C
Full range
13.9
14
Full range
Full range
−15
to
13.5
25°C
6
240
120
115
6.5
−14.1
14.3
−15.3
to
14
350
350
90
70
25°C
Full range
10
6
750
500
MAX
Full range
25
0.006
2
120
TYP
TLE2021C
MIN
25°C
Full range
Full range
25°C
TA†
100
105
96
100
1
1
−13.7
−13.7
13.9
14
−15
to
13.5
−15
to
13.5
6
240
120
115
6.5
−14.1
14.3
−15.3
to
14
25
0.2
0.006
2
80
TYP
TLE2021AC
MIN
350
350
90
70
10
6
500
200
MAX
100
105
96
100
1
1
−13.7
−13.7
13.9
14
−15
to
13.5
−15
to
13.5
6
240
120
115
6.5
−14.1
14.3
−15.3
to
14
25
0.2
0.006
2
40
TYP
TLE2021BC
MIN
350
350
90
70
10
6
200
100
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 0,
VO = ± 10 V,
RL = 10 kΩ
RL = 10 kΩ
Maximum positive peak
output voltage swing
VOM+
RS = 50 Ω
Common-mode input voltage range
Input bias current
IIB
VIC = 0, RS = 50 Ω
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term drift
(see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
Temperature coefficient of
input offset voltage
αVIO
VIC = VICRmin,
VCC = 5 V to 30 V
Low-level output voltage
Large-signal differential
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC ± /∆VIO)
Supply current
Supply current change over
operating temperature range
VOL
AVD
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
No load
RS = 50 Ω
RL = 10 kΩ
RS = 50 Ω
0
to
3.5
0.5
25°C
4
25°C
Full range
Full range
25°C
95
100
25°C
Full range
80
85
25°C
Full range
0.3
0.3
Full range
25°C
Full range
25°C
3.9
Full range
Full range
0
to
3.5
25°C
25
C
7
450
115
100
1.5
0.7
4.3
−0.3
to
4
600
600
0.85
0.8
90
70
25°C
Full range
10
6
800
600
MAX
Full range
35
0.005
2
TYP
TLE2022C
MIN
25°C
Full range
Full range
25°C
TA†
98
103
82
87
0.4
0.4
3.9
4
0
to
3.5
0
to
3.5
7
450
118
102
1.5
0.7
4.3
−0.3
to
4
33
0.4
0.005
2
TYP
TLE2022AC
MIN
600
600
0.85
0.8
90
70
10
6
550
400
MAX
100
105
85
90
0.5
0.5
3.9
4
0
to
3.5
0
to
3.5
7
450
120
105
1.5
0.7
4.3
−0.3
to
4
30
0.3
0.005
2
TYP
TLE2022BC
MIN
600
600
0.85
0.8
90
70
10
6
400
250
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
V/mo
µV/°C
V/°C
µV
V
UNIT
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
VO = 2.5 V,
VO = 1.4 V to 4 V,
RL = 10 kΩ
High-level output voltage
VOH
RS = 50 Ω
Common-mode input
voltage range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
11
12
Temperature coefficient of
input offset voltage
αVIO
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VCC ± = ± 2.5 V to ± 15 V
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC ± /∆VIO)
Supply current
Supply current change over
operating temperature range
CMRR
kSVR
ICC
∆ICC
No load
−15
to
13.5
0.5
25°C
25°C
25°C
Full range
Full range
95
100
25°C
Full range
91
95
25°C
Full range
0.8
0.8
−13.7
−13.7
Full range
25°C
Full range
25°C
13.9
14
Full range
Full range
−15
to
13.5
25°C
25
C
9
550
115
106
4
−14.1
14.3
−15.3
to
14
700
700
90
70
25°C
Full range
10
6
700
500
MAX
Full range
35
0.006
2
150
TYP
TLE2022C
MIN
25°C
Full range
Full range
25°C
TA†
98
103
93
97
1
1
−13.7
−13.7
13.9
14
−15
to
13.5
−15
to
13.5
9
550
118
109
7
−14.1
14.3
−15.3
to
14
33
0.4
0.006
2
120
TYP
TLE2022AC
MIN
700
700
90
70
10
6
450
300
MAX
100
105
96
100
1.5
1.5
−13.7
−13.7
13.9
14
−15
to
13.5
−15
to
13.5
9
550
120
112
10
−14.1
14.3
−15.3
to
14
30
0.3
0.006
2
70
TYP
TLE2022BC
MIN
700
700
90
70
10
6
300
150
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
V/mo
µV/°C
V/°C
µV
V
UNIT
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
VO = 0,
VO = ± 10 V,
RS = 50 Ω
VIC = VICRmin,
Large-signal differential
voltage amplification
AVD
RL = 10 kΩ
Maximum negative peak
output voltage swing
VOM −
RL = 10 kΩ
Maximum positive peak
output voltage swing
VOM +
RS = 50 Ω
RS = 50 Ω
Common-mode input
voltage range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
Temperature coefficient of
input offset voltage
αVIO
VIC = VICRmin,
VCC = 5 V to 30 V
Low-level output voltage
Large-signal differential
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC /∆VIO)
Supply current
Supply current change over
operating temperature range
VOL
AVD
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
No load
RS = 50 Ω
RL = 10 kΩ
RS = 50 Ω
25°C
25°C
25°C
Full range
Full range
93
98
25°C
Full range
80
80
25°C
Full range
0.1
0.2
Full range
25°C
Full range
3.7
3.9
Full range
Full range
0
to
3.5
25°C
15
800
112
90
1.5
0.7
4.2
−0.3
to
4
1200
1200
0.95
0.8
90
70
25°C
Full range
10
6
1300
1100
MAX
Full range
45
0.6
25°C
2
TYP
0.005
0
to
3.5
MIN
TLE2024C
25°C
Full range
Full range
25°C
TA†
95
100
82
82
0.1
0.3
3.7
3.9
0
to
3.5
0
to
3.5
MIN
15
800
115
92
1.5
0.7
4.2
−0.3
to
4
40
0.5
0.005
2
TYP
TLE2024AC
1200
1200
0.95
0.8
90
70
10
6
1050
850
MAX
98
103
85
85
0.1
0.4
3.8
4
0
to
3.5
0
to
3.5
MIN
15
800
117
95
1.5
0.7
4.3
−0.3
to
4
35
0.4
0.005
2
TYP
TLE2024BC
1200
1200
0.95
0.8
90
70
10
6
800
600
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 2.5 V,
VO = 1.4 V to 4 V,
RL = 10 kΩ
High-level output voltage
VOH
RS = 50 Ω
Common-mode input voltage
range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
13
14
Temperature coefficient of
input offset voltage
αVIO
VCC ± = ± 2.5 V to ± 15 V
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC ± /∆VIO)
Supply current
Supply current change over
operating temperature range
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
No load
−15
to
13.5
0.6
25°C
25°C
Full range
Full range
25°C
93
98
25°C
Full range
88
92
25°C
Full range
0.4
0.4
−13.6
−13.7
Full range
25°C
Full range
25°C
13.7
13.8
Full range
Full range
−15
to
13.5
25°C
20
1050
112
102
2
−14.1
14.1
−15.3
to
14
1400
1400
90
70
25°C
Full range
10
6
1200
1000
MAX
Full range
50
0.006
2
TYP
TLE2024C
MIN
25°C
Full range
Full range
25°C
TA†
95
100
90
94
0.8
0.8
−13.6
−13.7
13.8
13.9
−15
to
13.5
−15
to
13.5
20
1050
115
105
4
−14.1
14.2
−15.3
to
14
45
0.5
0.006
2
TYP
TLE2024AC
MIN
1400
1400
90
70
10
6
950
750
MAX
98
103
93
97
1
1
−13.6
−13.7
13.9
14
−15
to
13.5
−15
to
13.5
20
1050
117
108
7
−14.1
14.3
−15.3
to
14
40
0.4
0.006
2
TYP
TLE2024BC
MIN
1400
1400
90
70
10
6
700
500
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 0,
VO = ± 10 V,
RS = 50 Ω
VIC = VICRmin,
Large-signal differential
voltage amplification
AVD
RL = 10 kΩ
Maximum negative peak output
voltage swing
VOM −
RL = 10 kΩ
Maximum positive peak output
voltage swing
VOM +
RS = 50 Ω
RS = 50 Ω
Common-mode input voltage
range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
Temperature coefficient of
input offset voltage
αVIO
VIC = VICR min,
RS = 50 Ω
VCC = 5 V to 30 V
Low-level output voltage
Large-signal differential
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC /∆VIO)
Supply current
Supply-current change over
operating temperature range
VOL
AVD
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
4
25°C
25°C
25°C
Full range
Full range
100
105
25°C
Full range
80
Full range
85
25°C
0.3
0.25
Full range
25°C
Full range
3.9
Full range
Full range
0
to
3.2
25°C
6
200
120
110
1.5
0.7
4.3
−0.3
to
4
300
300
0.9
0.8
90
70
25°C
Full range
10
6
950
600
MAX
Full range
25
0.2
25°C
2
120
TYP
TLE2021I
0.005
0
to
3.5
MIN
25°C
Full range
Full range
25°C
TA†
100
105
80
85
0.25
0.3
3.9
4
0
to
3.2
0
to
3.5
6
200
120
110
1.5
0.7
4.3
−0.3
to
4
25
0.2
0.005
2
100
TYP
TLE2021AI
MIN
300
300
0.9
0.8
90
70
10
6
600
300
MAX
100
105
80
85
0.25
0.3
3.9
4
0
to
3.2
0
to
3.5
6
200
120
110
1.5
0.7
4.3
− 0.3
to
4
25
0.2
0.005
2
80
TYP
TLE2021BI
MIN
300
300
0.9
0.8
90
70
10
6
300
200
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 2.5 V,
No load
VO = 1.4 V to 4 V,
RL = 10 kΩ
RL = 10 kΩ
High-level output voltage
VOH
RS = 50 Ω
Common-mode input voltage range
Input bias current
IIB
VIC = 0, RS = 50 Ω
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term drift
(see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
15
16
Temperature coefficient of
input offset voltage
αVIO
VIC = VICR min,
RS = 50 Ω
VCC ± = ± 2. 5 V
to ± 15 V
Large-signal differential
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC /∆VIO)
Supply current
Supply-current change over
operating temperature range
AVD
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
14
25°C
Full range
Full range
25°C
100
105
25°C
Full range
96
100
25°C
Full range
0.75
1
−13.6
−13.7
Full range
25°C
Full range
25°C
13.9
Full range
Full range
−15
to
13.2
25°C
7
240
120
115
6.5
−14.1
14.3
−15.3
to
14
350
350
90
70
25°C
Full range
10
6
850
500
MAX
Full range
25
0.2
25°C
2
120
TYP
TLE2021I
0.006
−15
to
13.5
MIN
25°C
Full range
Full range
25°C
TA†
100
105
96
100
0.75
1
−13.6
−13.7
13.9
14
−15
to
13.2
−15
to
13.5
7
240
120
115
6.5
−14.1
14.3
−15.3
to
14
25
0.2
0.006
2
80
TYP
TLE2021AI
MIN
350
350
90
70
10
6
500
200
MAX
100
105
96
100
0.75
1
−13.6
−13.7
13.9
14
−15
to
13.2
−15
to
13.5
7
240
120
115
6.5
−14.1
14.3
−15.3
to
14
25
0.2
0.006
2
40
TYP
TLE2021BI
MIN
350
350
90
70
10
6
200
100
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 0 V, No load
VO = 10 V,
RL = 10 kΩ
Maximum negative peak output
voltage swing
VOM −
RL = 10 kΩ
Maximum positive peak output
voltage swing
RS = 50 Ω
VIC = 0, RS = 50 Ω
TEST CONDITIONS
VOM +
Common-mode input voltage range
Input bias current
IIB
VICR
Input offset current
IIO
Input offset voltage long-term drift
(see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2021 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
Temperature coefficient of
input offset voltage
αVIO
VIC = VICRmin,
VCC = 5 V to 30 V
Low-level output voltage
Large-signal differential
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC ± /∆VIO)
Supply current
Supply current change over
operating temperature range
VOL
AVD
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
No load
RS = 50 Ω
RL = 10 kΩ
RS = 50 Ω
4
25°C
Full range
Full range
25°C
95
100
25°C
Full range
80
85
25°C
Full range
0.2
0.3
Full range
25°C
Full range
25°C
3.9
Full range
Full range
0
to
3.2
25°C
25
C
15
450
115
100
1.5
0.7
4.3
−0.3
to
4
600
600
0.9
0.8
90
70
25°C
Full range
10
6
800
600
MAX
Full range
35
0.5
25°C
2
TYP
TLE2022I
0.005
0
to
3.5
MIN
25°C
Full range
Full range
25°C
TA†
98
103
82
87
0.2
0.4
3.9
4
0
to
3.2
0
to
3.5
15
450
118
102
1.5
0.7
4.3
−0.3
to
4
33
0.4
0.005
2
TYP
TLE2022AI
MIN
600
600
0.9
0.8
90
70
10
6
550
400
MAX
100
105
85
90
0.2
0.5
3.9
4
0
to
3.2
0
to
3.5
15
450
120
105
1.5
0.7
4.3
−0.3
to
4
30
0.3
0.005
2
TYP
TLE2022BI
MIN
600
600
0.9
0.8
90
70
10
6
400
250
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
V/mo
µV/°C
V/°C
µV
V
UNIT
† Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 2.5 V,
VO = 1.4 V to 4 V,
RL = 10 kΩ
High-level output voltage
VOH
RS = 50 Ω
Common-mode input
voltage range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
17
18
Temperature coefficient of
input offset voltage
αVIO
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VCC = ± 2.5 V to ± 15 V
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC ± /∆VIO)
Supply current
Supply current change over
operating temperature range
CMRR
kSVR
ICC
∆ICC
14
Full range
25°C
25°C
Full range
Full range
95
100
25°C
Full range
91
95
25°C
Full range
0.8
0.8
− 13.6
− 13.7
Full range
25°C
Full range
25°C
13.9
− 15
to
13.2
Full range
− 15
to
13.5
25°C
25
C
30
550
115
106
4
− 14.1
14.3
−15.3
to
14
700
700
90
70
25°C
Full range
10
6
700
500
MAX
Full range
35
0.5
25°C
2
150
TYP
TLE2022I
0.006
MIN
25°C
Full range
Full range
25°C
TA†
98
103
93
97
1
1
− 13.6
− 13.7
13.9
14
− 15
to
13.2
− 15
to
13.5
30
550
118
109
7
− 14.1
14.3
−15.3
to
14
33
0.4
0.006
2
120
TYP
TLE2022AI
MIN
700
700
90
70
10
6
450
300
MAX
100
105
96
100
1.5
1.5
− 13.6
− 13.7
13.9
14
− 15
to
13.2
− 15
to
13.5
30
550
120
112
10
− 14.1
14.3
−15.3
to
14
30
0.3
0.006
2
70
TYP
TLE2022BI
MIN
700
700
90
70
10
6
300
150
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
V/mo
µV/°C
V/°C
µV
V
UNIT
† Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
VO = 0,
VO = ± 10 V,
No load
VIC = VICRmin, RS = 50 Ω
Large-signal differential
voltage amplification
AVD
RL = 10 kΩ
Maximum negative peak
output voltage swing
VOM −
RL = 10 kΩ
Maximum positive peak
output voltage swing
VOM +
RS = 50 Ω
RS = 50 Ω
Common-mode input
voltage range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
Temperature coefficient of
input offset voltage
αVIO
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VCC ± = ± 2.5 V to ± 15 V
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC± /∆VIO)
Supply current
Supply current change over
operating temperature range
CMRR
kSVR
ICC
∆ICC
No load
25°C
25°C
98
93
25°C
Full range
Full range
Full range
25°C
80
80
25°C
Full range
0.1
0.2
Full range
25°C
Full range
3.7
3.9
Full range
Full range
0
to
3.2
25°C
30
800
112
90
1.5
0.7
4.2
−0.3
to
4
1200
1200
0.95
0.8
90
70
25°C
Full range
10
6
1300
1100
MAX
Full range
45
0.6
25°C
2
TYP
0.005
0
to
3.5
MIN
TLE2024I
25°C
Full range
Full range
25°C
TA†
95
100
82
82
0.1
0.3
3.7
3.9
0
to
3.2
0
to
3.5
MIN
30
800
115
92
1.5
0.7
4.2
−0.3
to
4
40
0.5
0.005
2
TYP
TLE2024AI
1200
1200
0.95
0.8
90
70
10
6
1050
850
MAX
98
103
85
85
0.1
0.4
3.8
4
0
to
3.2
0
to
3.5
MIN
30
800
117
95
1.5
0.7
4.3
−0.3
to
4
35
0.4
0.005
2
TYP
TLE2024BI
1200
1200
0.95
0.8
90
70
10
6
800
600
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 0,
VO = 1.4 V to 4 V,
RS = 50 Ω
VIC = VICRmin,
Large-signal differential
voltage amplification
AVD
RL = 10 kΩ
Maximum negative peak
output voltage swing
VOM −
RL = 10 kΩ
Maximum positive peak
output voltage swing
VOM +
RS = 50 Ω
RS = 50 Ω
Common-mode input voltage
range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
19
20
VCC ± = ± 2.5 V to ± 15 V
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC ± /∆VIO)
Supply current
Supply current change over
operating temperature range
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
−15
to
13.5
No load
25°C
Full range
Full range
25°C
93
98
25°C
Full range
88
92
25°C
Full range
0.4
0.4
−13.6
−13.7
Full range
25°C
Full range
25°C
13.7
13.8
Full range
Full range
−15
to
13.2
25°C
Full range
50
1050
112
102
2
−14.1
14.1
−15.3
to
14
1400
1400
90
70
25°C
50
10
Full range
6
1200
1000
MAX
95
100
90
94
0.8
0.8
−13.6
−13.7
13.7
13.9
−15
to
13.2
−15
to
13.5
50
1050
115
105
4
−14.1
14.2
−15.3
to
14
45
0.5
0.006
2
TYP
TLE2024AI
MIN
1400
1400
90
70
10
6
950
750
MAX
98
103
93
97
1
1
−13.6
−13.7
13.8
14
−15
to
13.2
−15
to
13.5
50
1050
117
108
7
−14.1
14.3
−15.3
to
14
40
0.4
0.006
2
TYP
TLE2024BI
MIN
1400
1400
90
70
10
6
700
500
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 0,
VO = ± 10 V,
RS = 50 Ω
VIC = VICRmin,
Large-signal differential
voltage amplification
AVD
RL = 10 kΩ
Maximum negative peak output
voltage swing
VOM −
RL = 10 kΩ
Maximum positive peak output
voltage swing
VOM +
RS = 50 Ω
Common-mode input voltage
range
VICR
Input bias current
IIB
0.6
25°C
Input offset current
IIO
0.006
25°C
Input offset voltage long-term
drift (see Note 4)
RS = 50 Ω
Full range
2
TYP
TLE2024I
Temperature coefficient of input
offset voltage
VIC = 0,
MIN
αVIO
Full range
25°C
TA†
Input offset voltage
TEST CONDITIONS
VIO
PARAMETER
TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
Temperature coefficient of
input offset voltage
αVIO
VIC = VICRmin,
VCC = 5 V to 30 V
Low-level output voltage
Large-signal differential
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC ± /∆VIO)
Supply current
Supply current change over
operating temperature range
VOL
AVD
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
No load
RS = 50 Ω
RL = 10 kΩ
RS = 50 Ω
0
to
3.5
0.2
25°C
4
25°C
25°C
25°C
Full range
Full range
100
105
25°C
Full range
80
85
25°C
Full range
0.1
0.3
Full range
25°C
Full range
3.8
Full range
Full range
0
to
3.2
25°C
9
170
120
110
1.5
0.7
4.3
−0.3
to
4
230
230
0.95
0.8
90
70
25°C
Full range
10
6
1100
600
MAX
Full range
25
0.005
2
120
TYP
TLE2021M
MIN
25°C
Full range
Full range
25°C
TA†
100
105
80
85
0.1
0.3
3.8
4
0
to
3.2
0
to
3.5
9
170
120
110
1.5
0.7
4.3
−0.3
to
4
25
0.2
0.005
2
100
TYP
TLE2021AM
MIN
230
230
0.95
0.8
90
70
10
6
600
300
MAX
100
105
80
85
0.1
0.3
3.8
4
0
to
3.2
0
to
3.5
9
170
120
110
1.5
0.7
4.3
−0.3
to
4
25
0.2
0.005
2
80
TYP
TLE2021BM
MIN
230
230
0.95
0.8
90
70
10
6
300
200
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is − 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 2.5 V,
VO = 1.4 V to 4 V,
RL = 10 kΩ
High-level output voltage
VOH
RS = 50 Ω
Common-mode input
voltage range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
21
22
Temperature coefficient of
input offset voltage
αVIO
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VCC ± = ± 2.5 V to ± 15 V
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC ± /∆VIO)
Supply current
Supply current change over
operating temperature range
CMRR
kSVR
ICC
∆ICC
No load
−15
to
13.5
0.2
25°C
14
25°C
25°C
105
100
25°C
Full range
Full range
Full range
25°C
96
100
25°C
Full range
0.5
1
−13.6
−13.7
Full range
25°C
Full range
13.8
Full range
Full range
−15
to
13.2
25°C
10
200
120
115
6.5
−14.1
14.3
−15.3
to
14
300
300
90
70
25°C
Full range
10
6
1000
500
MAX
Full range
25
0.006
2
120
TYP
TLE2021M
MIN
25°C
Full range
Full range
25°C
TA†
100
105
96
100
0.5
1
−13.6
−13.7
13.8
14
−15
to
13.2
−15
to
13.5
10
200
120
115
6.5
−14.1
14.3
−15.3
to
14
25
0.2
0.006
2
80
TYP
TLE2021AM
MIN
300
300
90
70
10
6
500
200
MAX
100
105
96
100
0.5
1
−13.6
−13.7
13.8
14
−15
to
13.2
−15
to
13.5
10
200
120
115
6.5
−14.1
14.3
−15.3
to
14
25
0.2
0.006
2
40
TYP
TLE2021BM
MIN
300
300
90
70
10
6
200
100
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is − 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 0,
VO = ± 10 V,
RS = 50 Ω
VIC = VICRmin,
Large-signal differential
voltage amplification
AVD
RL = 10 kΩ
Maximum negative peak
output voltage swing
VOM −
RL = 10 kΩ
Maximum positive peak
output voltage swing
VOM +
RS = 50 Ω
RS = 50 Ω
Common-mode input
voltage range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
Temperature coefficient of
input offset voltage
αVIO
VIC = VICRmin,
VCC = 5 V to 30 V
Low-level output voltage
Large-signal differential
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC ± /∆VIO)
Supply current
Supply current change over
operating temperature range
VOL
AVD
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
No load
RS = 50 Ω
RL = 10 kΩ
RS = 50 Ω
0.5
25°C
4
Full range
25°C
Full range
Full range
25°C
95
100
25°C
Full range
80
85
25°C
Full range
0.1
0.3
Full range
25°C
Full range
25°C
3.8
0
to
3.2
Full range
0
to
3.5
25°C
25
C
37
450
115
100
1.5
0.7
4.3
−0.3
to
4
600
600
0.95
0.8
90
70
25°C
Full range
10
6
800
600
MAX
Full range
35
0.005
2
TYP
TLE2022M
MIN
25°C
Full range
Full range
25°C
TA†
98
103
82
87
0.1
0.4
3.8
4
0
to
3.2
0
to
3.5
37
450
118
102
1.5
0.7
4.3
−0.3
to
4
33
0.4
0.005
2
TYP
TLE2022AM
MIN
600
600
0.95
0.8
90
70
10
6
550
400
MAX
100
105
85
90
0.1
0.5
3.8
4
0
to
3.2
0
to
3.5
37
450
120
105
1.5
0.7
4.3
−0.3
to
4
30
0.3
0.005
2
TYP
600
600
0.95
0.8
90
70
10
6
400
250
MAX
TLE2022BM
MIN
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
V/mo
µV/°C
V/°C
µV
V
UNIT
† Full range is − 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 2.5 V,
VO = 1.4 V to 4 V,
RL = 10 kΩ
High-level output voltage
VOH
RS = 50 Ω
Common-mode input
voltage range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
23
24
Temperature coefficient of
input offset voltage
αVIO
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VCC ± = ± 2.5 V to ± 15 V
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC ± /∆VIO)
Supply current
Supply current change over
operating temperature range
CMRR
kSVR
ICC
∆ICC
No load
0.5
25°C
14
Full range
25°C
25°C
Full range
Full range
95
100
25°C
Full range
91
95
25°C
Full range
0.8
0.8
−13.6
−13.7
Full range
25°C
Full range
25°C
13.9
−15
to
13.2
Full range
−15
to
13.5
25°C
25
C
60
550
115
106
4
−14.1
14.3
−15.3
to
14
700
700
90
70
25°C
Full range
10
6
700
500
MAX
Full range
35
0.006
2
150
TYP
TLE2022M
MIN
25°C
Full range
Full range
25°C
TA†
98
103
93
97
1
1
−13.6
−13.7
13.9
14
−15
to
13.2
−15
to
13.5
60
550
118
109
7
−14.1
14.3
−15.3
to
14
33
0.4
0.006
2
120
TYP
TLE2022AM
MIN
700
700
90
70
10
6
450
300
MAX
100
105
96
100
1.5
1.5
−13.6
−13.7
13.9
14
−15
to
13.2
−15
to
13.5
60
550
120
112
10
−14.1
14.3
−15.3
to
14
30
0.3
0.006
2
70
TYP
TLE2022BM
MIN
700
700
90
70
10
6
300
150
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
V/mo
µV/°C
V/°C
µV
V
UNIT
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
VO = 0,
VO = ± 10 V,
RS = 50 Ω
VIC = VICRmin,
Large-signal differential
voltage amplification
AVD
RL = 10 kΩ
Maximum negative peak
output voltage swing
VOM −
RL = 10 kΩ
Maximum positive peak
output voltage swing
VOM +
RS = 50 Ω
RS = 50 Ω
Common-mode input
voltage range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
Temperature coefficient of
input offset voltage
αVIO
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VCC ± = ± 2.5 V to ± 15 V
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC± /∆VIO)
Supply current
Supply current change over
operating temperature range
CMRR
kSVR
ICC
∆ICC
No load
25°C
25°C
98
93
25°C
Full range
Full range
Full range
25°C
80
80
25°C
Full range
0.1
0.2
Full range
25°C
Full range
3.7
3.9
Full range
Full range
0
to
3.2
25°C
50
800
112
90
1.5
0.7
4.2
−0.3
to
4
1200
1200
0.95
0.8
90
70
25°C
Full range
10
6
1300
1100
MAX
Full range
45
0.6
25°C
2
TYP
0.005
0
to
3.5
MIN
TLE2024M
25°C
Full range
Full range
25°C
TA†
95
100
82
82
0.1
0.3
3.7
3.9
0
to
3.2
0
to
3.5
MIN
50
800
115
92
1.5
0.7
4.2
−0.3
to
4
40
0.5
0.005
2
TYP
TLE2024AM
1200
1200
0.95
0.8
90
70
10
6
1050
850
MAX
98
103
85
85
0.1
0.4
3.8
4
0
to
3.2
0
to
3.5
MIN
50
800
117
95
1.5
0.7
4.3
−0.3
to
4
35
0.4
0.005
2
TYP
TLE2024BM
1200
1200
0.95
0.8
90
70
10
6
800
600
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is − 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 0,
VO = 1.4 V to 4 V,
RS = 50 Ω
VIC = VICRmin,
Large-signal differential
voltage amplification
AVD
RL = 10 kΩ
Maximum negative peak
output voltage swing
VOM −
RL = 10 kΩ
Maximum positive peak
output voltage swing
VOM +
RS = 50 Ω
RS = 50 Ω
Common-mode input voltage
range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
25
26
Temperature coefficient of
input offset voltage
αVIO
VCC ± = ± 2.5 V to ± 15 V
Common-mode rejection ratio
Supply-voltage rejection ratio
(∆VCC ± /∆VIO)
Supply current
Supply current change over
operating temperature range
CMRR
kSVR
ICC
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
∆ICC
No load
−15
to
13.5
0.6
25°C
25°C
Full range
Full range
25°C
93
98
25°C
Full range
88
92
25°C
Full range
0.4
0.4
−13.6
−13.7
Full range
25°C
Full range
25°C
13.7
13.8
Full range
Full range
−15
to
13.2
25°C
85
1050
112
102
2
−14.1
14.1
−15.3
to
14
1400
1400
90
70
25°C
Full range
10
6
1200
1000
MAX
Full range
50
0.006
2
TYP
TLE2024M
MIN
25°C
Full range
Full range
25°C
TA†
95
100
90
94
0.8
0.8
−13.6
−13.7
13.7
13.9
−15
to
13.2
−15
to
13.5
85
1050
115
105
4
−14.1
14.2
−15.3
to
14
45
0.5
0.006
2
TYP
TLE2024AM
MIN
1400
1400
90
70
10
6
950
750
MAX
98
103
93
97
1
1
−13.6
−13.7
13.8
14
−15
to
13.2
−15
to
13.5
85
1050
117
108
7
−14.1
14.3
−15.3
to
14
40
0.4
0.006
2
TYP
TLE2024BM
MIN
1400
1400
90
70
10
6
700
500
MAX
µA
µA
A
dB
dB
V/ V
V/µV
V
V
V
nA
nA
µV/mo
µV/°C
µV
V
UNIT
† Full range is − 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
VO = 0,
VO = ± 10 V,
RS = 50 Ω
VIC = VICRmin,
Large-signal differential
voltage amplification
AVD
RL = 10 kΩ
Maximum negative peak output
voltage swing
VOM −
RL = 10 kΩ
Maximum positive peak output
voltage swing
VOM +
RS = 50 Ω
RS = 50 Ω
Common-mode input voltage
range
Input bias current
IIB
VIC = 0,
TEST CONDITIONS
VICR
Input offset current
IIO
Input offset voltage long-term
drift (see Note 4)
Input offset voltage
VIO
PARAMETER
TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
Phase margin at unity gain
φm
42°
1.2
0.09
0.47
0.16
30
50
MAX
0.42
0.45
MIN
0.09
0.47
0.16
15
19
0.65
TYP
I SUFFIX
30
50
MAX
42°
1.2
0.9
0.47
0.16
17
21
0.5
TYP
0.45
0.09
0.47
0.16
15
19
0.65
TYP
M SUFFIX
0.45
MIN
MIN
46°
2
0.09
30
50
MAX
30
50
MAX
φm
Phase margin at unity gain
See Figure 3
25°C
46°
46°
† Full range is 0°C to 70°C for the C-suffix devices, − 40°C to 85°C for the I-suffix devices, and − 55°C to 125°C for the M-suffix devices.
25°C
0.47
0.16
15
19
0.65
TYP
C SUFFIX
42°
1.2
0.09
0.47
0.16
17
21
0.5
TYP
M SUFFIX
2
25°C
Unity-gain bandwidth
See Figure 3
Equivalent input noise current
25°C
0.45
0.45
MIN
MIN
I SUFFIX
2
In
B1
f = 0.1 to 10 Hz
25°C
25°C
f = 0.1 to 1 Hz
Peak-to-peak equivalent input
noise voltage
VN(PP)
25°C
Full range
25°C
f = 10 Hz
Equivalent input noise voltage
(see Figure 2)
Vn
See Figure 1
TA†
f = 1 kHz
VO = 1V to 3 V,
Slew rate at unity gain
TEST CONDITIONS
SR
PARAMETER
TLE2021 operating characteristics at specified free-air temperature, VCC = ± 15 V
25°C
25°C
See Figure 3
25°C
See Figure 3
25°C
25°C
f = 0.1 to 1 Hz
f = 0.1 to 10 Hz
Unity-gain bandwidth
Peak-to-peak equivalent input
noise voltage
VN(PP)
17
21
25°C
0.5
TYP
25°C
MIN
C SUFFIX
25°C
f = 1 kHz
See Figure 1
TA
Equivalent input noise current
Equivalent input noise voltage
(see Figure 2)
Vn
VO = 1 V to 3 V,
f = 10 Hz
TEST CONDITIONS
In
B1
Slew rate at unity gain
SR
PARAMETER
TLE2021 operating characteristics, VCC = 5 V, TA = 25°C
MAX
MAX
MHz
pA/Hz
µV
V
nV/Hz
V/ s
V/µs
UNIT
MHz
pA/Hz
µV
V
nV/Hz
V/µs
UNIT
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
27
28
See Figure 3
See Figure 3
Peak-to-peak equivalent input noise voltage
Equivalent input noise current
Unity-gain bandwidth
Phase margin at unity gain
VN(PP)
In
B1
φm
See Figure 1
MIN
47°
1.7
0.1
0.47
0.16
17
30
Unity-gain bandwidth
Equivalent input noise current
φm
Phase margin at unity gain
† Full range is 0°C to 70°C.
In
B1
See Figure 3
See Figure 3
25°C
25°C
25°C
25°C
25°C
f = 0.1 to 10 Hz
f = 0.1 to 1 Hz
Peak-to-peak equivalent
input noise voltage
VN(PP)
25°C
Full range
25°C
25°C
f = 10 Hz
Equivalent input noise
voltage (see Figure 2)
Vn
See Figure 1
TA†
f = 1 kHz
VO = ± 10 V,
Slew rate at unity gain
TEST CONDITIONS
SR
PARAMETER
0.45
0.45
MIN
52°
2.8
0.1
0.47
0.16
15
19
0.65
TYP
C SUFFIX
30
50
MAX
0.42
0.45
MIN
52°
2.8
0.1
0.47
0.16
15
19
0.65
TYP
I SUFFIX
47°
1.7
0.1
0.47
0.16
17
21
TYP
I SUFFIX
0.5
50
MIN
21
MAX
0.5
TYP
C SUFFIX
TLE2022 operating characteristics at specified free-air temperature, VCC = ± 15 V
f = 0.1 to 10 Hz
f = 0.1 to 1 Hz
f = 1 kHz
Equivalent input noise voltage
(see Figure 2)
Vn
VO = 1 V to 3 V,
f = 10 Hz
Slew rate at unity gain
TEST CONDITIONS
SR
PARAMETER
TLE2022 operating characteristics, VCC = 5 V, TA = 25°C
30
50
MAX
30
50
MAX
0.4
52°
2.8
0.1
0.47
0.16
15
19
0.65
TYP
M SUFFIX
47°
1.7
0.1
0.47
0.16
17
21
0.5
TYP
M SUFFIX
0.45
MIN
MIN
MAX
MAX
MHz
pA/√Hz
µV
V
nV/√Hz
V/ s
V/µs
UNIT
MHz
pA/√Hz
µV
V
nV/√Hz
V/µs
UNIT
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
0.1
1.7
Peak-to-peak equivalent input noise voltage
Equivalent input noise current
Unity-gain bandwidth
Phase margin at unity gain
In
B1
φm
47°
0.47
0.16
30
47°
1.7
0.1
0.47
0.16
17
30
50
MAX
MIN
47°
1.7
0.1
0.47
0.16
17
21
0.5
TYP
M SUFFIX
25°C
25°C
See Figure 3
25°C
Unity-gain bandwidth
See Figure 3
Equivalent input noise current
φm
Phase margin at unity gain
† Full range is 0°C to 70°C.
In
B1
25°C
25°C
f = 0.1 to 10 Hz
f = 0.1 to 1 Hz
Peak-to-peak equivalent input noise
voltage
VN(PP)
25°C
Full range
25°C
25°C
f = 10 Hz
Equivalent input noise voltage
(see Figure 2)
Vn
See Figure 1
TA†
f = 1 kHz
VO = ± 10 V,
Slew rate at unity gain
TEST CONDITIONS
SR
PARAMETER
0.45
0.45
MIN
52°
2.8
0.1
0.47
0.16
15
19
0.7
TYP
C SUFFIX
30
50
MAX
0.42
0.45
MIN
52°
2.8
0.1
0.47
0.16
15
19
0.7
TYP
I SUFFIX
30
50
MAX
0.4
52°
2.8
0.1
0.47
0.16
15
19
0.7
TYP
M SUFFIX
0.45
MIN
TLE2024 operating characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
See Figure 3
See Figure 3
f = 0.1 to 10 Hz
f = 0.1 to 1 Hz
17
VN(PP)
f = 1 kHz
21
TYP
0.5
50
MIN
21
MAX
I SUFFIX
0.5
Equivalent input noise voltage (see Figure 2)
See Figure 1
TYP
Vn
VO = 1 V to 3 V,
f = 10 Hz
MIN
C SUFFIX
Slew rate at unity gain
TEST CONDITIONS
SR
PARAMETER
TLE2024 operating characteristics, VCC = 5 V, TA = 25°C
MAX
MAX
MHz
pA/√Hz
µV
V
nV/√Hz
V/ s
V/µs
UNIT
MHz
pA/√Hz
µV
V
nV/√ Hz
V/µs
UNIT
222
222
2
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
29
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TLE2021Y electrical characteristics at VCC = 5 V, TA = 25°C (unless otherwise noted)
TLE2021Y
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
TYP
MAX
0.5
nA
35
nA
− 0.3
to
4
V
4.3
V
0.7
V
RL = 10 kΩ
1.5
V/µV
RS = 50 Ω
100
dB
115
dB
Input bias current
RS = 50 Ω
VICR
Common-mode input voltage range
VOH
VOL
Maximum high-level output voltage
AVD
CMRR
Large-signal differential voltage amplification
kSVR
Supply-voltage rejection ratio (∆VCC ± /∆VIO)
RL = 10 kΩ
Maximum low-level output voltage
Common-mode rejection ratio
VO = 1.4 to 4 V,
VIC = VICR min,
µV/mo
0.005
RS = 50 Ω
VIC = 0,
Input offset current
UNIT
µV
150
Input offset voltage long-term drift (see Note 4)
IIO
IIB
MIN
VCC = 5 V to 30 V
VO = 2.5 V,
No load
ICC
Supply current
400
µA
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2021Y operating characteristics at VCC = 5 V, TA = 25°C
TLE2021Y
PARAMETER
SR
TEST CONDITIONS
Slew rate at unity gain
MIN
TYP
VO = 1 V to 3 V
f = 10 Hz
0.5
f = 1 kHz
17
MAX
UNIT
V/µs
21
nV/√Hz
Vn
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
0.1
pA/√Hz
B1
φm
Unity-gain bandwidth
1.7
MHz
Phase margin at unity gain
47°
30
POST OFFICE BOX 655303
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
• DALLAS, TEXAS 75265
V
µV
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TLE2022Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted)
TLE2022Y
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
Input offset voltage long-term drift (see Note 4)
IIO
IIB
MIN
VIC = 0,
Input offset current
RS = 50 Ω
VOH
VOL
Maximum high-level output voltage
AVD
CMRR
Large-signal differential voltage amplification
Common-mode rejection ratio
VO = 1.4 to 4 V,
VIC = VICR min,
600
µV
µV/mo
nA
35
nA
− 0.3
to
4
V
4.3
V
0.7
V
RL= 10 kΩ
1.5
V/µV
RS = 50 Ω
100
dB
RL = 10 kΩ
Maximum low-level output voltage
150
UNIT
0.5
RS = 50 Ω
Common-mode input voltage range
MAX
0.005
Input bias current
VICR
TYP
kSVR
Supply-voltage rejection ratio (∆VCC ± /∆VIO)
VCC = 5 V to 30 V
115
dB
ICC
Supply current
VO = 2.5 V,
No load
450
µA
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2022Y operating characteristics, VCC = 5 V, TA = 25°C
TLE2022Y
PARAMETER
SR
TEST CONDITIONS
Slew rate at unity gain
VO = 1 V to 3 V,
f = 10 Hz
See Figure 1
MIN
TYP
0.5
MAX
UNIT
V/µs
21
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
0.1
pA/√Hz
B1
φm
Unity-gain bandwidth
See Figure 3
1.7
MHz
Phase margin at unity gain
See Figure 3
47°
f = 1 kHz
17
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
nV/√Hz
V
µV
31
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TLE2024Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted)
TLE2024Y
PARAMETER
TEST CONDITIONS
MIN
Input offset voltage long-term drift (see Note 4)
IIO
IIB
Input offset current
Common-mode input voltage range
VOH
VOL
High-level output voltage
MAX
RS = 50 Ω
RS = 50 Ω
UNIT
µV/mo
0.005
VIC = 0,
Input bias current
VICR
TYP
0.6
nA
45
nA
−0.3
to
4
V
4.2
V
0.7
V
Low-level output voltage
RL = 10 kΩ
AVD
Large-signal differential
voltage amplification
VO = 1.4 V to 4 V,
RL = 10 kΩ
1.5
V/µV
CMRR
Common-mode rejection ratio
VIC = VICRmin,
RS = 50 Ω
90
dB
kSVR
Supply-voltage rejection ratio
(∆VCC /∆VIO)
VCC = 5 V to 30 V
112
dB
ICC
Supply current
VO = 2.5 V,
No load
800
µA
NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2024Y operating characteristics, VCC = 5 V, TA = 25°C
TLE2024Y
PARAMETER
TEST CONDITIONS
UNIT
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak-to-peak equivalent input noise voltage
In
B1
Equivalent input noise current
0.1
pA/√Hz
Unity-gain bandwidth
See Figure 3
1.7
MHz
φm
Phase margin at unity gain
See Figure 3
47°
POST OFFICE BOX 655303
0.5
MAX
Slew rate at unity gain
f = 1 kHz
See Figure 1
TYP
SR
32
VO = 1 V to 3 V,
f = 10 Hz
MIN
21
17
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
• DALLAS, TEXAS 75265
V/µs
nV/√ Hz
µV
V
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
PARAMETER MEASUREMENT INFORMATION
20 kΩ
20 kΩ
5V
15 V
−
−
VO
VO
VI
+
30 pF
(see Note A)
+
VI
−15 V
30 pF
(see Note A)
20 kΩ
(a) SINGLE SUPPLY
20 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 1. Slew-Rate Test Circuit
2 kΩ
2 kΩ
15 V
5V
−
20 Ω
VO
−
+
VO
2.5 V
+
−15 V
20 Ω
20 Ω
20 Ω
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 2. Noise-Voltage Test Circuit
100 Ω
VI
10 kΩ
10 kΩ
5V
15 V
−
VI
VO
2.5 V
−
100 Ω
VO
+
+
30 pF
(see Note A)
−15 V
30 pF
(see Note A)
10 kΩ
(a) SINGLE SUPPLY
10 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
PARAMETER MEASUREMENT INFORMATION
5V
−
−
10 kΩ
VI
VO
VO
VI
+
10 kΩ
+
0.1 µF
15 V
− 15 V
10 kΩ
30 pF
(see Note A)
30 pF
(see Note A)
(a) SINGLE SUPPLY
10 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 4. Small-Signal Pulse-Response Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
IIB
Input bias current
vs Common-mode input voltage
vs Free-air temperature
II
Input current
vs Differential input voltage
VOM
Maximum peak output voltage
vs Output current
vs Free-air temperature
VOH
High-level output voltage
vs High-level output current
vs Free-air temperature
19, 20
21
VOL
Low-level output voltage
vs Low-level output current
vs Free-air temperature
22
23
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
AVD
Large-signal differential voltage amplification
vs Frequency
vs Free-air temperature
26
27, 28, 29
IOS
Short-circuit output current
vs Supply voltage
vs Free-air temperature
30 − 33
34 − 37
ICC
Supply current
vs Supply voltage
vs Free-air temperature
38, 39, 40
41, 42, 43
CMRR
Common-mode rejection ratio
vs Frequency
44, 45, 46
SR
Slew rate
vs Free-air temperature
47, 48, 49
Voltage-follower small-signal pulse response
5, 6, 7
8, 9, 10
11, 12, 13
14
15, 16, 17
18
24, 25
50, 51
Voltage-follower large-signal pulse response
52 − 57
VN(PP)
Peak-to-peak equivalent input noise voltage
0.1 to 1 Hz
0.1 to 10 Hz
Vn
Equivalent input noise voltage
vs Frequency
B1
Unity-gain bandwidth
vs Supply voltage
vs Free-air temperature
61, 62
63, 64
φm
Phase margin
vs Supply voltage
vs Load capacitance
vs Free-air temperature
65, 66
67, 68
69, 70
Phase shift
vs Frequency
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
58
59
60
26
35
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLE2022
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLE2021
INPUT OFFSET VOLTAGE
20
ÏÏÏÏÏÏÏÏÏÏÏ
20
231 Units Tested From 1 Wafer Lot
VCC ± = ± 15 V
ÏÏÏÏ
TA = 25°C
P Package
16
Percentage of Units − %
Percentage of Units − %
16
398 Amplifiers Tested From 1 Wafer Lot
VCC ± = ± 15 V
TA = 25°C
12
8
P Package
12
8
4
4
0
−600 −450 −300 −150
150 300
450
0
VIO − Input Offset Voltage − µV
0
−600
600
−400
−200
0
200
400
VIO − Input Offset Voltage − µV
Figure 5
Figure 6
TLE2021
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
DISTRIBUTION OF TLE2024
INPUT OFFSET VOLTAGE
16
−40
796 Amplifiers Tested From 1 Wafer Lot
VCC ± = ± 15 V
TA = 25°C
N Package
VCC ± = ± 15 V
TA = 25°C
−35
IIB
I IB − Input Bias Current − nA
Percentage of Units − %
600
12
8
4
−30
−25
−20
−15
−10
−5
0
−1
−0.5
0
0.5
1
VIO − Input Offset Voltage − mV
0
−15
−10
−5
0
5
10
VIC − Common-Mode Input Voltage − V
Figure 8
Figure 7
36
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2022
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
TLE2024
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
−50
−60
VCC ± = ± 15 V
TA = 25°C
IIIB
IB − Input Bias Current − nA
IIB
I IB − Input Bias Current − nA
−45
VCC ± = ± 15 V
TA = 25°C
−40
−35
−40
ÁÁ
ÁÁ
−30
−25
−20
−15
−50
−10
−5
0
5
10
VIC − Common-Mode Input Voltage − V
−30
−20
−15
15
−10
−5
15
10
TLE2022
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
TLE2021
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
−50
−35
VCC ± = ± 15 V
VO = 0
VIC = 0
−25
−20
−15
−10
VCC ± = ± 15 V
VO = 0
VIC = 0
−45
IIIB
IB − Input Bias Current − nA
IIB
I IB − Input Bias Current − nA
5
Figure 10
Figure 9
−30
0
VIC − Common-Mode Input Voltage − V
−40
−35
−30
−25
−5
0
−75
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
−20
−75
−50
−25
0
25
50
75
100
125
TA − Free-Air Temperature − °C
Figure 11
Figure 12
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
37
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2024
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
ÏÏÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
−60
1
ÁÁ
ÁÁ
−50
VCC± = ±15 V
VIC = 0
TA = 25°C
0.9
0.8
I III − Input Current − mA
IIB − Input Bias Current − nA
IIB
VCC± = ±15 V
VO = 0
VIC = 0
−40
−30
0.7
0.6
0.5
0.4
0.3
0.2
0.1
−20
−75
0
−50
−25
0
25
50
75
100
0
125
TA − Free-Air Temperature − °C
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
|VID| − Differential Input Voltage − V
Figure 14
Figure 13
TLE2022
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
TLE2021
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
16
VCC ± = ± 15 V
TA = 25°C
14
12
ÏÏÏÏ
ÏÏÏÏ
10
VOM −
8
|VVOM|
OM − Maximum Peak Output Voltage − V
VOM − Maximum Peak Output Voltage − V
V
OM
16
ÏÏÏÏ
ÏÏÏÏ
VOM+
6
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
4
2
0
0
2
4
6
8
IO − Output Current − mA
10
VCC ± = ± 15 V
TA = 25°C
14
12
ÏÏÏÏ
ÏÏÏÏ
10
VOM−
8
ÏÏÏ
ÏÏÏ
VOM+
6
4
2
0
0
2
4
6
8
10
|IO| − Output Current − mA
12
Figure 16
Figure 15
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
38
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
14
1
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2024
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
15
ÏÏÏÏ
VCC ± = ± 15 V
TA = 25°C
14
12
ÏÏÏ
ÏÏÏ
10
VOM −
8
|VVOM|
OM − Maximum Peak Output Voltage − V
VOM − Maximum Peak Output Voltage − V
VOM
16
MAXIMUM PEAK OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
ÏÏÏ
VOM +
6
ÁÁ
ÁÁ
ÁÁ
4
2
0
0
2
8
10
4
6
IO − Output Current − mA
12
14
14.5
VOM +
14
VOM −
13.5
13
ÁÁÁ
ÁÁÁ
ÁÁÁ
12.5
12
−75
VCC ± = ± 15 V
RL = 10 kΩ
TA = 25°C
−50
Figure 17
TLE2022 AND TLE2024
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
5
5
VCC = 5 V
TA = 25°C
VOH − High-Level Output Voltage − V
VOH
VOH
VOH − High-Level Output Voltage − V
125
Figure 18
TLE2021
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
4
3
2
ÁÁ
ÁÁ
1
VCC = 5 V
TA = 25°C
4
3
2
1
0
0
0
−1
−2
−3
−4
−5
−6
IOH − High-Level Output Current − mA
−7
0
−2
−4
−6
−8
−10
IOH − High-Level Output Current − mA
Figure 20
Figure 19
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
5
HIGH-LEVEL OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
5
VCC = 5 V
TA = 25°C
ÁÁ
ÁÁ
VOL
VOL − Low-Level Output Voltage − V
VOH
VOH − High-Level Output Voltage − V
VCC = 5 V
4.8
4.6
No Load
4.4
ÁÁ
ÁÁ
ÁÁ
RL = 10 kΩ
4.2
4
−75
−50 −25
0
25
50
75
100
4
3
2
1
0
125
0
0.5
1
1.5
2
2.5
IOL − Low-Level Output Current − mA
TA − Free-Air Temperature − °C
Figure 21
Figure 22
LOW-LEVEL OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
VVOPP
O(PP) − Maximum Peak-to-Peak Output Voltage − V
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VOL
VOL − Low-Level Output Voltage − V
1
IOL = 1 mA
0.75
IOL = 0
0.5
ÁÁÁ
ÁÁÁ
0.25
VCC ± = ± 5 V
0
−75
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
5
4
3
2
ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ
1
VCC = 5 V
RL = 10 kΩ
TA = 25°C
0
100
Figure 23
1k
10 k
100 k
f − Frequency − Hz
Figure 24
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
40
3
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1M
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VVOPP
O(PP) − Maximum Peak-to-Peak Output Voltage − V
30
25
20
15
10
ÁÁ ÁÁÁÁ
ÁÁ ÁÁÁÁ
ÁÁ ÁÁÁÁ
ÁÁ
VCC ± = ± 15 V
RL = 10 kΩ
TA = 25°C
5
0
100
1k
10 k
100 k
f − Frequency − Hz
1M
Figure 25
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
100
AVD − Large-Signal Differential
Voltage Amplification − dB
60°
80°
Phase Shift
80
100°
VCC ± = ± 15 V
AVD
60
120°
VCC = 5 V
40
140°
20
160°
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
0
180°
−20
10
100
Phase Shift
120
200°
1k
10 k
100 k
f − Frequency − Hz
1M
10 M
Figure 26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
41
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2021
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
TLE2022
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
10
6
RL = 10 kΩ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
8
5
AVD
AVD − Large-Signal Differential
Voltage Amplification − V/µV
AVD − Large-Signal Differential
Voltage Amplification − V/ µ V
RL = 10 kΩ
VCC ± = ± 15 V
6
4
2
ÏÏÏÏ
ÏÏÏÏ
−50
−25
0
25
50
75
3
ÁÁ
ÁÁ
ÁÁ
2
1
VCC = 5 V
0
−75
VCC ± = ± 15 V
4
100
VCC = 5 V
0
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
TA − Free-Air Temperature − °C
Figure 28
Figure 27
TLE2024
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
10
10
VCC ± = ± 15 V
6
4
2
VCC ± = ± 5 V
0
−75
−50
−25
0
25
50
75
100
125
IIOS
OS − Short-Circuit Output Current − mA
AVD − Large-Signal Differential
Voltage Amplification − V/ µ V
RL = 10 kΩ
8
125
VO = 0
TA = 25°C
8
6
VID = −100 mV
4
2
0
−2
ÁÁ
ÁÁ
−4
ÏÏÏÏÏ
−6
VID = 100 mV
−8
−10
0
2
TA − Free-Air Temperature − °C
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
Figure 30
Figure 29
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
42
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
16
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
12
VO = 0
TA = 25°C
10
ÏÏÏÏÏ
VID = −100 mV
5
0
−5
VID = 100 mV
−10
−15
0
2
4
6
8
10
12
14
TA = 25°C
IIOS
OS − Short-Circuit Output Current − mA
I OS − Short-Circuit Output Current − mA
IOS
15
16
8
VID = −100 mV
VO = VCC
4
0
ÁÁ
ÁÁ
ÁÁ
−4
VID = 100 mV
VO = 0
−8
− 12
5
0
|VCC ±| − Supply Voltage − V
10
15
20
25
VCC − Supply Voltage − V
Figure 32
Figure 31
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÏÏÏÏ
ÏÏÏÏ
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
8
VCC = 5 V
TA = 25°C
10
IOS
I OS − Short-Circuit Output Current − mA
I OS − Short-Circuit Output CUrrent − mA
IOS
15
VID = − 100 mV
VO = VCC
5
0
−5
VID = 100 mV
VO = 0
−10
−15
0
5
10
30
15
20
25
30
ÁÁ
ÁÁ
6
VID = −100 mV
VO = 5 V
4
2
0
−2
VID = 100 mV
VO = 0
−4
−6
−8
− 75
− 50
VCC − Supply Voltage − V
− 25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
Figure 34
Figure 33
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
43
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
12
VCC = 5 V
VID = −100 mV
VO = 5 V
4
IOS
I OS − Short-Circuit Output Current − mA
IOS
I OS− Short-Circuit Output Current − mA
6
2
0
−2
−4
ÏÏÏ
ÏÏÏÏÏ
ÏÏÏ
−8
−10
−75
−50
−25
0
25
50
75
8
VID = −100 mV
4
0
−4
ÁÁ
ÁÁ
VID = 100 mV
VO = 0
−6
VCC ± = ± 15 V
VO = 0
100
−8
VID = 100 mV
−12
−75
125
−50
TA − Free-Air Temperature −°C
0
25
50
75 100
−25
TA − Free-Air Temperature − °C
Figure 36
Figure 35
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
TLE2021
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
250
VO = 0
No Load
VCC ± = ± 15 V
VO = 0
200
A
IICC
CC − Supply Current − µua
I OS − Short-Circuit Output Current − mA
IOS
15
10
5
VID = − 100 mV
0
VID = 100 mV
−10
−50
−25
0
25
50
75
100
125
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
150
TA = 125°C
TA = 25°C
100
ÁÁ
ÁÁ
−5
−15
−75
TA = − 55°C
50
0
0
2
TA − Free-Air Temperature − °C
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
Figure 38
Figure 37
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
44
125
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
16
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2022
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
TLE2024
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
500
VO = 0
No Load
TA = 125°C
800
I CC − Supply Current − µ A
IICC
A
CC − Supply Current − µua
400
TA = 25°C
300
TA = 125°C
TA = − 55°C
ÁÁ
ÁÁ
ÁÁ
200
100
0
ÏÏÏÏ
1000
VO = 0
No Load
TA = 25°C
600
TA = − 55°C
400
200
0
2
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
0
16
0
2
4
16
500
VCC ± = ± 15 V
400
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
150
VCC ± = ± 2.5 V
125
100
ÁÁ
ÁÁ
75
50
VO = 0
No Load
−50
IICC
A
CC − Supply Current − µua
A
IICC
CC − Supply Current − µua
14
VCC ± = ± 15 V
175
0
−75
12
TLE2022
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
ÏÏÏÏÏ
ÏÏÏÏÏ
200
25
10
Figure 40
TLE2021
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
ÁÁ
ÁÁ
8
|VCC ±| − Supply Voltage − V
Figure 39
225
6
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
125
VCC ± = ± 2.5 V
300
200
100
VO = 0
No Load
0
−75
−50
Figure 41
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
125
Figure 42
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
45
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2021
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
TLE2024
SUPPLY CURRENT †
vs
FREE-AIR TEMPERATURE
1000
CMRR − Common-Mode Rejection Ratio − dB
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ± 15 V
800
I CC − Supply Current − µ A
120
VCC ± = ± 2.5 V
600
400
200
VO = 0
No Load
0
−75
−50
−25
0
25
50
75
100
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
100
VCC ± = ± 15 V
80
VCC = 5 V
60
40
20
TA = 25°C
0
125
10
100
TA − Free-Air Temperature − °C
1k
10 k
100 k
f − Frequency − Hz
Figure 43
TLE2024
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR − Common-Mode Rejection Ratio − dB
CMRR − Common-Mode Rehection Ratio − dB
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
120
TA = 25°C
100
10 M
Figure 44
TLE2022
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
120
1M
VCC ± = ± 15 V
80
VCC = 5 V
60
40
20
VCC ± = ± 15 V
100
VCC = 5 V
80
60
40
20
TA = 25°C
0
0
10
100
1k
10 k
100 k
f − Frequency − Hz
1M
10 M
10
100
1k
10 k
100 k
1M
10 M
f − Frequency − Hz
Figure 45
Figure 46
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
46
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2022
SLEW RATE†
vs
FREE-AIR TEMPERATURE
TLE2021
SLEW RATE†
vs
FREE-AIR TEMPERATURE
1
1
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
VCC ± = ± 15 V
0.8
VCC = 5 V
0.6
0.4
0.2
0
−75
VCC ± = ± 15 V
SR − Slew Rate − V/ µ
uss
SR − Slew Rate − V/us
µs
0.8
0.6
VCC = 5 V
0.4
0.2
RL = 20 kΩ
CL = 30 pF
See Figure 1
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
RL = 20 kΩ
CL = 30 pF
See Figure 1
0
−75
125
−50
TLE2024
SLEW RATE†
vs
FREE-AIR TEMPERATURE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
1
ÏÏÏÏÏ
SR − Slew Rate − V/
V/sµ s
VCC ± = ± 15 V
VCC = 5 V
0.4
0
−75
−25
50
0
25
50
75
100
125
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 4
ÏÏÏÏÏ
ÏÏÏÏÏ
0
ÁÁ
ÁÁ
RL = 20 kΩ
CL = 30 pF
See Figure 1
−50
VO − Output Voltage − mV
VO
100
0.6
0.2
125
Figure 48
Figure 47
0.8
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
−50
−100
0
TA − Free-Air Temperature − °C
Figure 49
20
40
t − Time − µs
60
80
Figure 50
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
47
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
4
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 4
ÏÏÏÏÏ
2.55
VO − Output Voltage − V
VO
VO − Output Voltage − V
VO
2.6
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
2.5
ÁÁÁ
ÁÁÁ
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
ÏÏÏÏÏ
ÏÏÏÏÏ
3
2
ÁÁ
ÁÁ
1
2.45
2.4
0
0
20
40
t − Time − µs
60
80
0
Figure 51
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
4
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
VO − Output Voltage − V
VO
VO
VO − Output Voltage − V
80
TLE2024
VOLTAGE-FOLLOWER LARGE-SCALE
PULSE RESPONSE
4
2
ÁÁÁ
ÁÁÁ
1
3
VCC ± = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
2
1
0
0
0
20
40
t − Time − µs
60
0
80
20
40
t − Time − µs
Figure 53
48
60
Figure 52
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
3
20
40
t − Time − µs
Figure 54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
60
80
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VO − Output Voltage − V
VO
10
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
15
10
VO
VO − Output Voltage − V
15
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
5
0
ÁÁ
ÁÁ
ÁÁ
ÁÁ
−5
−10
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
5
0
−5
−10
−15
0
20
40
t − Time − µs
60
−15
80
0
TLE2024
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
15
VO − Output Voltage − V
VO
10
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
5
0
−5
−10
−15
0
20
t − Time − µs
Figure 57
60
80
Figure 56
40
60
80
VN(PP)
VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV
µV
Figure 55
20
40
t − Time − µs
ÁÁ
ÁÁ
ÁÁ
POST OFFICE BOX 655303
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 1 Hz
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
0.5
VCC ± = ± 15 V
TA = 25°C
0.4
0.3
0.2
0.1
0
− 0.1
− 0.2
− 0.3
− 0.4
− 0.5
0
1
• DALLAS, TEXAS 75265
2
3
4
5
t − Time − s
6
7
8
9
10
Figure 58
49
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 10 Hz
0.5
VCC ± = ± 15 V
TA = 25°C
0.4
0.3
0.2
0.1
0
− 0.1
− 0.2
− 0.3
ÁÁÁ
ÁÁÁ
ÁÁÁ
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
VVn
nV/ Hz
n − Equivalent Input Noise Voltage − nVHz
VN(PP)
VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV
µV
TYPICAL CHARACTERISTICS
− 0.4
ÏÏÏÏÏ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁÁ
ÏÏÏÏ
ÏÏÏÏÏ
ÁÁÁÁÁÁ
ÏÏÏÏÏ
200
VCC ± = ± 15 V
RS = 20 Ω
TA = 25°C
See Figure 2
160
120
80
40
0
− 0.5
0
1
2
3
4
5
6
t − Time − s
7
8
9
10
1
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
4
B1
B1 − Unity-Gain Bandwidth − MHz
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
3
10 k
Figure 60
4
2
1
0
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
3
2
1
0
0
2
4
6
8
10
12
14
|VCC±| − Supply Voltage − V
16
0
2
Figure 61
50
100
1k
f − Frequency − Hz
Figure 59
TLE2021
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
B1
B
1 − Unity-Gain Bandwidth − MHz
10
4
6
8
10
12
|VCC±| − Supply Voltage − V
Figure 62
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
14
16
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2021
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
4
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
4
RL = 10 kΩ
3
VCC ± = ± 15 V
2
ÏÏÏÏÏ
1
VCC = 5 V
−50 −25
0
25
50
75
TA − Free-Air Temperature − °C
100
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
3
VCC ± = ± 15 V
2
VCC = 5 V
1
0
−75
0
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
Figure 63
TLE2022 AND TLE2024
PHASE MARGIN
vs
SUPPLY VOLTAGE
53°
φm
m − Phase Margin
φm
m − Phase Margin
55°
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
48°
125
Figure 64
TLE2021
PHASE MARGIN
vs
SUPPLY VOLTAGE
50°
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
See Figure 3
B1
B1 − Unity-Gain Bandwidth − MHz
B
B1
1 − Unity-Gain Bandwidth − MHz
CL = 30 pF
See Figure 3
46°
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
51°
ÁÁ
ÁÁ
44°
49°
47°
42°
45°
40°
0
2
4
6
8
10
12
14
|VCC ±| − Supply Voltage − V
16
0
2
4
6
8
10
12
|VCC±| − Supply Voltage − V
14
16
Figure 66
Figure 65
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
51
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
PHASE MARGIN
vs
LOAD CAPACITANCE
TLE2021
PHASE MARGIN
vs
LOAD CAPACITANCE
60°
70°
RL = 10 kΩ
TA = 30 pF
See Figure 3
50°
60°
VCC ± = ± 15 V
VCC ± = ± 15 V
ÁÁ
ÁÁ
ÁÁ
φm
m − Phase Margin
φm
m − Phase Margin
50°
40°
VCC = 5 V
30°
VCC = 5 V
40°
30°
20°
10°
10°
0
20
40
60
80
CL − Load Capacitance − pF
0°
100
0
20
40
60
80
CL − Load Capacitance − pF
Figure 67
50°
48°
TLE2022 AND TLE2024
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
54°
RL = 10 kΩ
CL = 30 pF
See Figure 3
52°
VCC ± = ± 15 V
VCC ± = ± 15 V
46°
φm
m − Phase Margin
50°
44°
42°
VCC = 5 V
40°
38°
36°
−75
48°
ÁÁ
ÁÁ ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
44°
42°
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
VCC = 5 V
46°
40°
−75
RL = 10 kΩ
CL = 30 pF
See Figure 3
−50
Figure 69
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
Figure 70
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
52
100
Figure 68
TLE2021
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
φm
m − Phase Margin
RL = 10 kΩ
TA = 25°C
See Figure 3
ÁÁ
ÁÁ
20°
0
Á
Á
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
APPLICATION INFORMATION
voltage-follower applications
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For
feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).
CF = 20 pF to 50 pF
IF ≤ 1 mA
RF
VCC +
−
VO
VI
+
VCC −
Figure 71. Voltage Follower
Input offset voltage nulling
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null
pins may be left disconnected.
−
IN −
OFFSET N2
OFFSET N1
+
IN +
5 kΩ
1 kΩ
VCC − (split supply)
GND (single supply)
Figure 72. Input Offset Voltage Null Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
53
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and Figure
75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
VCC +
egnd
ree
cee
Iee
+
din
9
−
+
rp
92
fb
re1
IN −
IN+
1
re2
14
13
Q1
2
Q2
r2
−
53
dc
C1
dp
11
C2
6
gcm
54
−
ve
de
5
−
ro1
+
OUT
Figure 73. Boyle Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
54
vlim
8
rc2
4
7
+
ga
12
rc1
VCC −
vc
hlim
−
+
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
+ dip
−
−
−
+
90
ro2
vb
91
+
vip
vin
SLOS191C − FEBRUARY 1997 − REVISED APRIL 2007
.SUBCKT TLE2021 1 2 3 4 5
*
c1
11 12 6.244E−12
c2
6
7 13.4E−12
c3
87 0 10.64E−9
cpsr 85 86 15.9E−9
dcm+ 81 82 dx
dcm− 83 81 dx
dc
5
53 dx
de
54 5 dx
dlp
90 91 dx
dln
92 90 dx
dp
4
3 dx
ecmr 84 99 (2 99) 1
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
epsr 85 0 poly(1) (3,4) −60E−6 2.0E−6
ense 89 2 poly(1) (88,0) 120E−6 1
fb
7
99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6
+ −50E7 50E7 50E7 −50E7 547E6
ga
6
0 11 12 188.5E−6
gcm 0
6 10 99 335.2E−12
gpsr 85 86 (85,86) 100E−6
grc1 4
11 (4,11) 1.885E−4
grc2 4
12 (4,12) 1.885E−4
gre1 13 10 (13,10) 6.82E−4
gre2 14 10 (14,10) 6.82E−4
hlim
90 0 vlim 1k
hcmr 80 1 poly(2) vcm+ vcm− 0 1E2 1E2
irp
3
4 185E−6
iee
3
10 dc 15.67E−6
iio
2
0 2E−9
i1
88 0 1E−21
q1
11 89 13 qx
q2
12 80 14 qx
R2
6
9 100.0E3
rcm 84 81 1K
ree 10 99 14.76E6
rn1 87 0 2.55E8
rn2 87 88 11.67E3
ro1 8
5 62
ro2 7
99 63
vcm+ 82 99 13.3
vcm− 83 99 −14.6
vb
9
0 dc 0
vc
3
53 dc 1.300
ve
54 4 dc 1.500
vlim 7
8 dc 0
vlp
91 0 dc 3.600
vln
0
92 dc 3.600
vpsr 0
86 dc 0
.model dx d(is=800.0E−18)
.model qx pnp(is=800.0E−18 bf=270)
.ends
Figure 74. Boyle Macromodel for the TLE2021
.SUBCKT TLE2022 1 2 3 4 5
*
c1
11 12 6.814E−12
c2
6
7 20.00E−12
dc
5
53 dx
de
54 5 dx
dlp
90 91 dx
dln
92 90 dx
dp
4
3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb
7
99 poly(5) vb vc ve vlp vln 0
+ 45.47E6 −50E6 50E6 50E6 −50E6
ga 6 0
11 12 377.9E−6
gcm 0 6
10 99 7.84E−10
iee
3
10 DC 18.07E−6
hlim 90 0 vlim 1k
q1
11 2 13 qx
q2
12 1 14 qx
r2
6
9 100.0E3
rc1
rc2
ge1
ge2
ree
ro1
ro2
rp
vb
vc
ve
vlim
vlp
vln
.model
.model
.ends
4
4
13
14
10
8
7
3
9
3
54
7
91
0
dx
qx
11 2.842E3
12 2.842E3
10 (10,13) 31.299E−3
10 (10,14) 31.299E−3
99 11.07E6
5 250
99 250
4 137.2E3
0 dc 0
53 dc 1.300
4 dc 1.500
8 dc 0
0 dc 3
92 dc 3
d(is=800.0E−18)
pnp(is=800.0E−18 bf=257.1)
Figure 75. Boyle Macromodel for the TLE2022
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
55
PACKAGE OPTION ADDENDUM
www.ti.com
12-Oct-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
5962-9088101M2A
ACTIVE
LCCC
FK
20
TBD
Call TI
5962-9088101MPA
ACTIVE
CDIP
JG
8
1
TBD
A42 SNPB
5962-9088102M2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9088102MPA
ACTIVE
CDIP
JG
8
1
TBD
5962-9088104Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9088104QPA
ACTIVE
CDIP
JG
8
1
TBD
5962-9088105Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9088105QPA
ACTIVE
CDIP
JG
8
1
TBD
MSL Peak Temp (3)
Call TI
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
5962-9088106Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9088106QCA
ACTIVE
CDIP
J
14
1
TBD
POST-PLATE N / A for Pkg Type
5962-9088107Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9088107QPA
ACTIVE
CDIP
JG
8
1
TBD
5962-9088108Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9088108QPA
ACTIVE
CDIP
JG
8
1
TBD
A42 SNPB
TLE2021ACD
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021ACDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021ACDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021ACDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021ACP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021ACPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021AID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021AIDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021AIP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021AIPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021AMFKB
ACTIVE
LCCC
FK
20
1
TBD
TLE2021AMJGB
ACTIVE
CDIP
JG
8
1
TBD
TLE2021BMFKB
ACTIVE
LCCC
FK
20
1
TBD
TLE2021BMJG
ACTIVE
CDIP
JG
8
1
TBD
TLE2021BMJGB
ACTIVE
CDIP
JG
8
1
TLE2021CD
ACTIVE
SOIC
D
8
75
TLE2021CDG4
ACTIVE
SOIC
D
8
75
TLE2021CDR
ACTIVE
SOIC
D
TLE2021CDRG4
ACTIVE
SOIC
D
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
TBD
A42 SNPB
N / A for Pkg Type
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
8
2500 Green (RoHS &
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
12-Oct-2007
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLE2021CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021CPWLE
OBSOLETE
TSSOP
PW
8
TBD
Call TI
TLE2021CPWR
ACTIVE
TSSOP
PW
8
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021CPWRG4
ACTIVE
TSSOP
PW
8
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021MD
ACTIVE
SOIC
D
8
75
TBD
CU NIPDAU
Level-1-220C-UNLIM
TLE2021MDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021MFKB
OBSOLETE
LCCC
FK
20
TBD
Call TI
Lead/Ball Finish
MSL Peak Temp (3)
no Sb/Br)
Call TI
Call TI
TLE2021MJG
ACTIVE
CDIP
JG
8
1
TBD
A42 SNPB
N / A for Pkg Type
TLE2021MJGB
ACTIVE
CDIP
JG
8
1
TBD
A42 SNPB
N / A for Pkg Type
TLE2022ACD
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022ACDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022ACDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022ACDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022ACP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022ACPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022AID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022AIDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022AIDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022AIDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022AIP
ACTIVE
PDIP
P
8
CU NIPDAU
N / A for Pkg Type
50
Addendum-Page 2
Pb-Free
(RoHS)
PACKAGE OPTION ADDENDUM
www.ti.com
12-Oct-2007
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLE2022AIPE4
ACTIVE
PDIP
P
8
50
Lead/Ball Finish
MSL Peak Temp (3)
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022AMD
ACTIVE
SOIC
D
8
75
TBD
CU NIPDAU
Level-1-220C-UNLIM
TLE2022AMDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022AMDR
ACTIVE
SOIC
D
8
2500
TBD
CU NIPDAU
Level-1-220C-UNLIM
TLE2022AMDRG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022AMFKB
ACTIVE
LCCC
FK
20
1
TBD
TLE2022AMJG
OBSOLETE
CDIP
JG
8
TLE2022AMJGB
ACTIVE
CDIP
JG
8
TLE2022BCDR
OBSOLETE
SOIC
D
8
TLE2022BMFKB
ACTIVE
LCCC
FK
20
TLE2022BMJG
OBSOLETE
CDIP
JG
8
TLE2022BMJGB
ACTIVE
CDIP
JG
8
TLE2022CD
ACTIVE
SOIC
D
TLE2022CDG4
ACTIVE
SOIC
TLE2022CDR
ACTIVE
TLE2022CDRG4
1
1
POST-PLATE N / A for Pkg Type
TBD
Call TI
TBD
A42 SNPB
TBD
Call TI
TBD
Call TI
N / A for Pkg Type
Call TI
POST-PLATE N / A for Pkg Type
TBD
Call TI
1
TBD
A42 SNPB
Call TI
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022CPSR
OBSOLETE
SO
PS
8
TBD
Call TI
TLE2022ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
N / A for Pkg Type
Call TI
TLE2022MD
ACTIVE
SOIC
D
8
75
TBD
CU NIPDAU
Level-1-220C-UNLIM
TLE2022MDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022MDR
ACTIVE
SOIC
D
8
2500
TBD
CU NIPDAU
Level-1-220C-UNLIM
TLE2022MDRG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022MFKB
ACTIVE
LCCC
FK
20
1
TBD
TLE2022MJG
ACTIVE
CDIP
JG
8
1
TBD
A42 SNPB
N / A for Pkg Type
TLE2022MJGB
ACTIVE
CDIP
JG
8
1
TBD
A42 SNPB
N / A for Pkg Type
Addendum-Page 3
POST-PLATE N / A for Pkg Type
PACKAGE OPTION ADDENDUM
www.ti.com
12-Oct-2007
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLE2024ACDW
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024ACDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024ACDWR
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024ACDWRG4
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024ACN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024ACNE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024AIDW
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024AIDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024AIN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024AINE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
Lead/Ball Finish
MSL Peak Temp (3)
TLE2024AMFK
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE N / A for Pkg Type
TLE2024AMFKB
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE N / A for Pkg Type
TLE2024AMJ
ACTIVE
CDIP
J
14
1
TBD
A42 SNPB
N / A for Pkg Type
1
N / A for Pkg Type
TLE2024AMJB
ACTIVE
CDIP
J
14
TBD
A42 SNPB
TLE2024BCDW
OBSOLETE
SOIC
DW
16
TBD
Call TI
Call TI
TLE2024BCN
OBSOLETE
PDIP
N
14
TBD
Call TI
Call TI
TLE2024BIDW
OBSOLETE
SOIC
DW
16
TBD
Call TI
Call TI
TLE2024BIN
OBSOLETE
PDIP
N
14
TBD
Call TI
Call TI
TLE2024CDW
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024CDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024CDWR
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024CDWRG4
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024CN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024CNE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024IDW
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024IDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024IN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024INE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024MDW
ACTIVE
SOIC
DW
16
40
TBD
CU NIPDAU
Level-1-220C-UNLIM
Addendum-Page 4
PACKAGE OPTION ADDENDUM
www.ti.com
12-Oct-2007
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 5
PACKAGE MATERIALS INFORMATION
www.ti.com
5-Nov-2007
TAPE AND REEL BOX INFORMATION
Device
Package Pins
Site
Reel
Diameter
(mm)
Reel
Width
(mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
TLE2021ACDR
D
8
SITE 60
330
12
6.4
5.2
2.1
8
12
Q1
TLE2021CDR
D
8
SITE 60
330
12
6.4
5.2
2.1
8
12
Q1
TLE2021CPWR
PW
8
SITE 41
330
12
7.0
3.6
1.6
8
12
Q1
TLE2021IDR
D
8
SITE 60
330
12
6.4
5.2
2.1
8
12
Q1
TLE2022ACDR
D
8
SITE 27
330
12
6.4
5.2
2.1
8
12
Q1
TLE2022ACDR
D
8
SITE 60
330
12
6.4
5.2
2.1
8
12
Q1
TLE2022AIDR
D
8
SITE 27
330
12
6.4
5.2
2.1
8
12
Q1
TLE2022AIDR
D
8
SITE 60
330
12
6.4
5.2
2.1
8
12
Q1
TLE2022CDR
D
8
SITE 27
330
12
6.4
5.2
2.1
8
12
Q1
TLE2022CDR
D
8
SITE 60
330
12
6.4
5.2
2.1
8
12
Q1
TLE2022IDR
D
8
SITE 27
330
12
6.4
5.2
2.1
8
12
Q1
TLE2022IDR
D
8
SITE 60
330
12
6.4
5.2
2.1
8
12
Q1
TLE2024ACDWR
DW
16
SITE 60
330
16
10.75
10.7
2.7
12
16
Q1
TLE2024CDWR
DW
16
SITE 60
330
16
10.75
10.7
2.7
12
16
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
5-Nov-2007
Device
Package
Pins
Site
Length (mm)
Width (mm)
Height (mm)
TLE2021ACDR
D
8
SITE 60
346.0
346.0
29.0
TLE2021CDR
D
8
SITE 60
346.0
346.0
29.0
TLE2021CPWR
PW
8
SITE 41
346.0
346.0
29.0
TLE2021IDR
D
8
SITE 60
346.0
346.0
29.0
TLE2022ACDR
D
8
SITE 27
342.9
336.6
20.64
TLE2022ACDR
D
8
SITE 60
346.0
346.0
29.0
TLE2022AIDR
D
8
SITE 27
342.9
336.6
20.64
TLE2022AIDR
D
8
SITE 60
346.0
346.0
29.0
TLE2022CDR
D
8
SITE 27
342.9
336.6
20.64
TLE2022CDR
D
8
SITE 60
346.0
346.0
29.0
TLE2022IDR
D
8
SITE 27
342.9
336.6
20.64
TLE2022IDR
D
8
SITE 60
346.0
346.0
29.0
TLE2024ACDWR
DW
16
SITE 60
346.0
346.0
33.0
TLE2024CDWR
DW
16
SITE 60
346.0
346.0
33.0
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE
0.400 (10,16)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
0.063 (1,60)
0.015 (0,38)
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.023 (0,58)
0.015 (0,38)
0°–15°
0.100 (2,54)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification.
Falls within MIL STD 1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MLCC006B – OCTOBER 1996
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
25
5
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDI001A – JANUARY 1995 – REVISED JUNE 1999
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.325 (8,26)
0.300 (7,62)
0.020 (0,51) MIN
0.015 (0,38)
Gage Plane
0.200 (5,08) MAX
Seating Plane
0.010 (0,25) NOM
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.430 (10,92)
MAX
0.010 (0,25) M
4040082/D 05/98
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Telephony
www.ti.com/telephony
Low Power
Wireless
www.ti.com/lpw
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated