INFINEON TLE7278

Data Sheet, Rev. 1.2, April 2009
TLE7278-2
Low Dropout Voltage Regulator
Automotive Power
Low Dropout Voltage Regulator
1
TLE7278-2
Overview
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Output Voltage 5 V, 3.3 V or 2.6 V
Output Voltage Tolerance ±2%
Output Current Up To 180 mA
Ultra Low Quiescent Current Consumption < 36 µA
Enable Function
Very Low Dropout voltage
Reset With Adjustable Power-On Delay
Standard Watchdog With Current Dependent Deactivation
Output Current Limitation
Wide Operation Range Up To 45 V
Wide Temperature Range From -40 °C To 150 °C
Overtemperature Shutdown
Green Product (RoHS compliant)
AEC Qualified
PG-DSO-14
PG-SSOP-14 Exposed Pad
Description
The TLE7278-2 is a monolithic integrated voltage regulator with integrated standard watchdog and reset dedicated
for microcontroller supplies under harsh automotive environment conditions. The watchdog circuit is deactivated
for very low loads at the device’s output (e.g. microcontroller in standby mode).
Due to its ultra low quiescent current the TLE7278-2 is perfectly suited for applications that are permanently
connected to battery. In addition, the regulator can be shut down via the Enable input causing the current
consumption to drop below 3 µA. The TLE7278-2 is equipped with an overtemperature shutdown and an output
current limitation protecting the device against overload, short circuit and overtemperature. It operates in the wide
junction temperature range from -40 °C to 150 °C.
Type
Package
Marking
TLE7278-2GV50
PG-DSO-14
TLE7278-2GV50
TLE7278-2GV33
PG-DSO-14
TLE7278-2GV33
TLE7278-2GV26
PG-DSO-14
TLE7278-2GV26
TLE7278-2EV50
PG-SSOP-14 Exposed Pad
7278 V50
Data Sheet
2
Rev. 1.2, 2009-04-28
TLE7278-2
Block Diagram
2
Block Diagram
TLE7278-2
I
Q
Overtemperature
shutdown
RO
Bandgap
Reference
1
WDI
WM1
Charge
Pump
EN
Reset
Generator
and
Watchdog
WM2
Enable
GND
Figure 1
Data Sheet
Block Diagram
3
Rev. 1.2, 2009-04-28
TLE7278-2
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment (PG-DSO-14)
RO
GND
GND
GND
GND
WM2
WM1
1
2
3
4
5
6
7
14
13
12
11
10
9
8
EN
I
GND
GND
GND
Q
WDI
AEP02113_7278
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions (PG-DSO-14)
Pin
Symbol
Function
1
RO
Reset Output
TLE7278-2GV33, TLE7278-2GV26: open drain output;
TLE7278-2GV50: integrated 20 kΩ pull-up resistor
2-5,
10-12
GND
Ground
connect pin 2 and 3 to GND;
connect pin 4-5, 10-12 to PCB heat sink area with GND potential
7
WM1
Watchdog Mode Bit 1
watchdog and Reset mode selection, see Figure 5;
connect to Q or GND
6
WM2
Watchdog Mode Bit 2
watchdog and reset mode selection, see Figure 5;
connect to Q or GND
8
WDI
Watchdog Input
trigger input for watchdog pulses;
pull down to GND if not needed and turn off the watchdog with WM1 and WM2 pin
9
Q
Output Voltage
block to GND with a ceramic capacitor close to the IC terminals, respecting the
values given for its capacitance CQ and ESR in “Functional Range” on Page 7
13
I
Input Voltage
block to ground directly at the IC with a 100 nF ceramic capacitor
14
EN
Enable Input
low level disables the IC;
integrated pull-down resistor to GND
Data Sheet
4
Rev. 1.2, 2009-04-28
TLE7278-2
Pin Configuration
3.3
Pin Assignments (PG-SSOP-14 Exposed Pad)
52
*1'
(1
,
QF
QF
QF
QF
*1'
QF
:0
4
:0
:',
7/(B3,1&21),*B6623
69*
Figure 3
Pin Assignment PG-SSOP-14 Exposed Pad (top view)
3.4
Pin Definitions and Functions (PG-SSOP-14 Exposed Pad)
Table 1
Pin Definitions and Functions
Pin No.
Symbol
Function
1
RO
Reset Output
integrated 20 kΩ pull-up resistor;
leave open if not needed
2, 5
GND
Ground
connect to GND
3, 4, 10, 11, 12
n.c.
not connected
leave open or connect to GND
6
WM2
Watchdog Mode Bit 2
watchdog and reset mode selection, see Figure 5;
connect to Q or GND
7
WM1
Watchdog Mode Bit 1
watchdog and Reset mode selection, see Figure 5;
connect to Q or GND
8
WDI
Watchdog Input
trigger input for watchdog pulses;
pull down to GND if not needed and turn off the watchdog with WM1 and
WM2 pin
9
Q
Output Voltage
block to GND with a ceramic capacitor close to the IC terminals, respecting
the values given for its capacitance CQ and ESR in “Functional Range” on
Page 7
13
I
Input Voltage
block to ground directly at the IC with a 100 nF ceramic capacitor
14
EN
Enable Input
low level disables the IC;
integrated pull-down resistor
Pad
–
Exposed Pad
connect to heatsink area;
connect to GND on PCB
Data Sheet
5
Rev. 1.2, 2009-04-28
TLE7278-2
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Absolute Maximum Ratings 1)
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
V
–
Min.
Max.
VI
-0.3
45
VQ
VQ
-0.3
5.5
V
permanent
-0.3
6.2
V
t < 10 s2)
VEN
IEN
-1
45
V
–
-1
1
mA
–
VRO
-1
7
V
permanent
VWM1
VWM1
IWM1
-0.3
5.5
V
permanent
-0.3
6.2
V
t < 10 s2)
-5
5
mA
–
Voltage
–
3
kV
–
Voltage
–
1.5
kV
–
Tj
Tstg
-40
150
°C
–
-50
150
°C
–
Input I
4.1.1
Voltage
Output Q, Reset Output RO, Watchdog Mode 2
4.1.2
Voltage
4.1.3
Voltage
Enable Input EN
4.1.4
Voltage
4.1.5
Current
Watchdog Input WDI
4.1.6
Voltage
Watchdog Mode 1
4.1.7
Voltage
4.1.8
Voltage
4.1.9
Current
ESD Susceptibility
4.1.10
4.1.11
Human Body Model (HBM)3)
Charge Device Model (CDM)
4)
Temperatures
4.1.12
Junction temperature
4.1.13
Storage temperature
1)
2)
3)
4)
not subject to production test, specified by design
exposure to these absolute maximum ratings for extended periods (t > 10 s) may affect device reliability
ESD HBM Test according to JEDEC JESD22-A114
ESD CDM Test according AEC/ESDA ESD-STM5.3.1-1999
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
6
Rev. 1.2, 2009-04-28
TLE7278-2
General Product Characteristics
4.2
Pos.
Functional Range
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Max.
5.5
45
V
TLE7278-2GV50,
TLE7278-2EV50
4.2.2
4.2
45
V
TLE7278-2GV33
4.2.3
4.5
45
V
TLE7278-2GV26
–
nF
–1)
3
Ω
–2)
150
°C
–
4.2.1
4.2.4
4.2.5
Input voltage
Output Capacitor’s Requirements
for Stability
Junction Temperature
VI
CQ
470
ESR(CQ) –
Tj
-40
1) the minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%
2) relevant ESR value at f = 10 kHz
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Pos.
Thermal Resistance
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
Package PG-DSO-14
4.3.1
Junction to Soldering Point1)
RthJSP
–
30
–
K/W
measured to group
of pins 3, 4, 5, 10,
11, 12
4.3.2
Junction to Ambient1)
RthJA
–
53
–
K/W
2)
4.3.3
–
105
–
K/W
footprint only3)
4.3.4
–
74
–
K/W
300 mm2 heatsink
area on PCB3)
4.3.5
–
65
–
K/W
600 mm2 heatsink
area on PCB3)
Package PG-SSOP-14 Exposed Pad
4.3.6
Junction to Case1)
RthJC
–
14
–
K/W
measured to
exposed pad
4.3.7
Junction to Ambient1)
RthJA
–
47
–
K/W
2)
4.3.8
–
141
–
K/W
footprint only3)
4.3.9
–
66
–
K/W
300 mm2 heatsink
area on PCB3)
4.3.10
–
56
–
K/W
600 mm2 heatsink
area on PCB3)
1) not subject to production test, specified by design
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).
Data Sheet
7
Rev. 1.2, 2009-04-28
TLE7278-2
Block Description and Electrical Characteristics
5
Block Description and Electrical Characteristics
5.1
Circuit Description
5.1.1
Power On Reset and Reset Output
For an output voltage level VQ ≥ 1 V the reset output is hold low. When the level of VQ reaches the reset threshold
VRT, the signal at RO remains low for the power-up reset delay time tRD. The reset function and timing is illustrated
in Figure 4. The reset reaction time tRR avoids wrong triggering caused by short “glitches” on the VQ-line. In case
of VQ power down (VQ < VRT for t > tRR) a logic low signal is generated at the pin RO to reset an external micro
controller.
The TLE7278-2GV50 and TLE7278-2EV50 feature an integrated pull-up resistor on the reset output while the
TLE7278-2GV33 and TLE7278-2GV26 have an open drain output requiring an external pull-up resistor. When
connected to a voltage level of Vext = 5 V, a recommended value for this external resistor is ≥ 5.6 kΩ.
But it’s also possible calculating its value by using the following formula, based on the reset sink current (Example:
external pull-up resistor connected to Vext = 5 V):
Rextmin = ∆V / IRO = (Vext - VROmin) / IRO = (5 V - 0.25 V) / 1.0 mA = 4.75 kΩ
At low output voltage levels VQ < 1 V the integrated pull-up resistor of the TLE7278-2GV50 is switched off setting
the reset output high ohmic.
VI
VRTI
t
VQ
< tRR
VRT
VRO
t RR
tRD
tRR
t
VROH
VROL
t
AET03526NEW.VSD
Figure 4
Data Sheet
Reset Function and Timing Diagram
8
Rev. 1.2, 2009-04-28
TLE7278-2
Block Description and Electrical Characteristics
5.1.2
Watchdog Operation
The watchdog uses a fraction of the charge pump oscillator’s clock signal as timebase. The watchdog timebase
can be adjusted using the pins WM1 and WM2 (see Figure 5). The watchdog can be turned off setting WM1 and
WM2 to high level. The timing values used this text refer to typ. values with WM1 and WM2 connected to GND
(fast watchdog and reset timing).
If the timebase is switched by changing the condition on the WM pins, the new timing is valid from the beginning
of the new period on. From this time on, the frequency on the WDI pin must be adapted.
Figure 5 shows the state diagram of the watchdog (WD) and the mode selection. After power-on, the reset output
signal at the RO pin (microcontroller reset) is kept LOW for the reset delay time TRD of typ. 16 ms. With the LOW
to HIGH transition of the signal at RO the device starts the ignore window time tCW (32 ms). Next the WD starts
the Watchdog Period (time frame within a trigger at WDI must occur). From now on the timing of the signal on WDI
from the micro controller must correspond the WD-Period tWD,p correspondent the electrical characteristics and
based on the setting on the WM pins. A Re-Trigger of the WD-Period is done with a HIGH-to-LOW Transient at
the WDI-pin within the set tWD,p.
A HIGH to LOW transition of the watchdog trigger signal on pin WDI is taken as a trigger. To avoid wrong triggering
due to parasitic glitches two HIGH samples followed by two LOW samples (sample period tsam typ. 0.5 ms) are
decoded as a valid trigger. A reset is generated (RO goes LOW) if there is no trigger pulse during the Watchdog
Period.
VI
t
VQ
VRT
t
IQ
V RO
IQ, WD_OFF
IQ, WD_ON
t
TRD
TRD
Normal operation
No Reset during
Current shut down
trr
Power
Fail
trr
t
Trigger
Window
WDI
tsam
Ingnore
Wnd
Don’t care WDI
during IW
t
1. Correct Trigger
tWD,p
No Trigger
causing reset
Current Controlled
WD-turn off
t
WM1
L
L
H
H
WM2
L
H
L
H
Watchdog
Mode
Fast
Slow
Fast
Off
Reset Mode
Fast
Slow
Slow
Slow
7278 Timing
Figure 5
Data Sheet
Watchdog Timing Diagram, Watchdog and Reset Modes
9
Rev. 1.2, 2009-04-28
TLE7278-2
Block Description and Electrical Characteristics
5.2
Electrical Characteristics
Electrical Characteristics
VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
Output Q
5.2.1
Output voltage
VQ
4.90
5.00
5.10
V
TLE7278-2GV50,
TLE7278-2EV50
1 mA < IQ < 180 mA
6 V < VI < 16 V
5.2.2
Output voltage
VQ
4.90
5.00
5.10
V
TLE7278-2GV50,
TLE7278-2EV50
IQ = 10 mA
6 V < VI < 45 V
5.2.3
Output voltage
VQ
3.234
3.30
3.366
V
TLE7278-2GV33
1 mA < IQ < 180 mA
4.5 V < VI < 16 V
5.2.4
Output voltage
VQ
3.234
3.30
3.366
V
TLE7278-2GV33
IQ = 10 mA
4.5 V < VI < 45 V
5.2.5
Output voltage
VQ
2.548
2.60
2.652
V
TLE7278-2GV26
1 mA < IQ < 180 mA
4.5 V < VI < 16 V
5.2.6
Output voltage
VQ
2.548
2.60
2.652
V
TLE7278-2GV26
IQ = 10 mA
4.5 V < VI < 45 V
5.2.7
Output current limitation
IQ
200
–
500
mA
200
–
600
mA
–
250
500
mV
VQ = 2.0 V
VQ = 0 V
IQ = 180 mA1)
5.2.8
Dropout Voltage;
VDR = VI - VQ
VDR
TLE7278-2GV50,
TLE7278-2EV50
5.2.9
Load regulation
∆VQ,Lo
–
50
90
mV
1 mA < IQ < 180 mA
5.2.10
Line regulation
∆VQ,Li
–
10
50
mV
IQ = 1 mA;
10 V < VI < 32 V
5.2.11
Power-Supply-Ripple-Rejection
PSRR
–
60
–
dB
5.2.12
Reverse Output Current
Clamping
VQ,REV
–
–
5.5
V
fr = 100 Hz;
Vr = 0.5 Vpp
IQ,REV = -1 mA;
VEN = 0 V
Current Consumption
5.2.13
Quiescent current;
Iq = II - IQ
Iq
–
28
36
µA
5.2.14
Quiescent current;
Disabled
Iq
–
1
3
µA
VEN,H
3.0
–
–
V
IQ = 100 µA;
Tj < 80 °C
VEN = 0 V;
Tj < 80 °C
Enable Input EN
5.2.15
High Level Input Voltage
Data Sheet
10
VQ on
Rev. 1.2, 2009-04-28
TLE7278-2
Block Description and Electrical Characteristics
Electrical Characteristics (cont’d)
VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
VQ = 0.02 V;
IQ = 5 mA; Tj < 125 °C
VQ = 0.02 V
IQ = 5 mA
VEN = 5 V
Min.
Typ.
Max.
–
–
0.5
V
–
–
0.3
V
IEN,H
–
3
4
µA
VWM1,H
4.00
–
–
V
TLE7278-2GV50,
TLE7278-2EV50
5.2.20
2.65
–
–
V
TLE7278-2GV33
5.2.21
2.30
–
–
V
TLE7278-2GV26
VWM1,L
–
–
0.80
V
–
VWM2,H
4.00
–
–
V
TLE7278-2GV50,
TLE7278-2EV50
5.2.24
2.65
–
–
V
TLE7278-2GV33
5.2.25
2.30
–
–
V
TLE7278-2GV26
VWM2,L
–
–
0.80
V
–
VWDI,H
4.0
–
–
V
TLE7278-2GV50,
TLE7278-2EV50
5.2.28
2.65
–
–
V
TLE7278-2GV33
5.2.29
2.30
–
–
V
TLE7278-2GV26
–
–
0.80
V
–
–
3
4
µA
–
0.5
1
µA
VWDI = 5 V
VWDI = 0 V; Tj < 80 °C
0.40
0.50
0.60
ms
fast watchdog timing
0.80
1.00
1.20
ms
slow watchdog timing
25.6
32.0
38.4
ms
fast watchdog timing
5.2.16
Low Level Input Voltage
VEN,L
5.2.17
5.2.18
High Level Input Current
Watchdog Mode Bit 1
5.2.19
5.2.22
High Level Input Voltage
Low Level Input Voltage
Watchdog Mode Bit 2
5.2.23
5.2.26
High Level Input Voltage
Low Level Input Voltage
Watchdog Input WDI
5.2.27
High Level Input Voltage
5.2.30
Low Level Input Voltage
5.2.31
High Level Input Current
5.2.32
Low Level Input Current
5.2.33
Watchdog sampling time
VWDI,L
IWDI,H
IWDI,L
tsam
5.2.34
Ignore window time
tOW
5.2.35
Watchdog Period
tWD,p
5.2.36
Watchdog deactivation current
threshold
IQ,WD_off
51.2
64.0
76.8
ms
slow watchdog timing
25.6
32
38.4
ms
fast watchdog timing
51.2
64
76.8
ms
slow watchdog timing
0.5
–
–
mA
IQ decreasing
VI > VI, WD_on > 6.0 V
for TLE7278-2GV50,
TLE7278-2EV50
VI > VI,WD_on > 4.5 V
for TLE7278-2GV33,
TLE7278-2GV26
Data Sheet
11
Rev. 1.2, 2009-04-28
TLE7278-2
Block Description and Electrical Characteristics
Electrical Characteristics (cont’d)
VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
5.2.37
Parameter
Watchdog activation current
threshold
Symbol
IQ,WD_on
Limit Values
Min.
Typ.
Max.
–
–
5
Unit
Conditions
mA
IQ increasing
VI > VI,WD_on > 6.0 V
for TLE7278-2GV50,
TLE7278-2EV50
VI > VI,WD_on > 4.5 V
for TLE7278-2GV33,
TLE7278-2GV26
Reset Output RO
5.2.38
Output Voltage Reset Switching
Threshold
VRT
4.50
4.60
4.70
V
TLE7278-2GV50,
TLE7278-2EV50
VQ decreasing
5.2.39
3.00
3.07
3.13
V
TLE7278-2GV332)
VQ decreasing
5.2.40
2.35
2.38
2.45
V
TLE7278-2GV262)
VQ decreasing
5.2.41
Input Voltage Reset Switching
Threshold
VRT_VI
–
3.9
4.0
V
TLE7278-2GV262)
TLE7278-2GV332)
VQ > VRT,
VI decreasing
5.2.42
Reset Hysteresis
VRH
–
45
–
mV
TLE7278-2GV26
5.2.43
–
60
–
mV
TLE7278-2GV33
5.2.44
–
90
–
mV
TLE7278-2GV50,
TLE7278-2EV50
1.75
–
–
mA
TLE7278-2GV50,
TLE7278-2EV50
VQ = 4.5 V,
VRO = 0.25 V
1.3
–
–
mA
5.2.45
Maximum Reset Sink Current
IRO
5.2.46
TLE7278-2GV33
VQ = 3.0 V,
VRO = 0.25 V
5.2.47
1.0
–
–
mA
TLE7278-2GV26
VQ = 2.35 V,
VRO = 0.25 V
VQ ≥ 1 V;
IRO < 200 µA
5.2.48
Reset output low voltage
VROL
–
0.15
0.25
V
5.2.49
Reset high voltage
VROH
4.5
–
–
V
TLE7278-2GV50,
TLE7278-2EV50
5.2.50
Reset high leakage current
IROLK
–
–
1
µA
TLE7278-2GV33
TLE7278-2GV26
Data Sheet
12
Rev. 1.2, 2009-04-28
TLE7278-2
Block Description and Electrical Characteristics
Electrical Characteristics (cont’d)
VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
5.2.51
Integrated reset pull-up resistor
RRO
10
20
40
kΩ
TLE7278-2GV50,
TLE7278-2EV50
internally connected
to VQ
5.2.52
Power-on Reset delay time
TRD
12.8
16.0
19.2
ms
fast reset timing
25.6
32.0
38.4
ms
slow reset timing
–
4
12
µs
–
5.2.53
Reset Reaction Time
TRR
1) measured when the output voltage has dropped 100 mV from the nominal Value obtained at VI = 13.5 V
2) reset output triggered when output voltage VQ is lower than output voltage reset switching threshold VRT or is also triggered,
when input voltage is decreasing to VI < 4.0 V and VQ > VRT
Data Sheet
13
Rev. 1.2, 2009-04-28
TLE7278-2
Typical Performance Characteristics
Current Consumption Iq versus
Junction Temperature Tj (EN=ON)
Current Consumption Iq versus
Output Current IQ (EN=ON)
1_Iq-Tj.vsd
2 _ IQ -IQ .V S D
45
Iq [µA]
T j = 2 5 °C
VI = 13.5V
40
35
100
IQ = 100 µA
T j = -4 0 °C
I q [µA]
30
10
25
20
15
10
1
5
0
0.01
-40 -20
0
0 ,1
20 40 60 80 100 120 140
1
Current Consumption Iq versus
Input Voltage VI at Tj=25°C (EN=ON)
3A_IQ-VI_25.VSD
3A_IQ-VI_-40.VSD
200
Tj = 25 °C
Tj = -40°C
Iq [µA]
150
150
100
100
IQ = 100mA
IQ = 100mA
I Q = 10mA
I Q = 10mA
50
IQ = 0.2mA
0
10
20
30
40
IQ = 0.2mA
0
VI [V]
Data Sheet
1000
Current Consumption Iq versus
Input Voltage VI at Tj=-40°C (EN=ON)
200
50
100
I Q [m A ]
Tj [°C]
Iq [µA]
10
10
20
30
40
VI [V]
14
Rev. 1.2, 2009-04-28
TLE7278-2
Typical Performance Characteristics (cont´d)
Load Regulation dVQ versus
Output Current Change dIQ
Load Regulation dVQ versus
Output Current Change dIQ
18b_dVQ-dIQ_Vi135V.vsd
0
VI = 13.5V
∆VQ
18a_dVQ-dIQ_Vi6V.vsd
0
VI = 6V
∆VQ
[mV]
[mV]
Tj = 25 °C
Tj = -40 °C
-2
Tj = 150 °C
-2
Tj = -40 °C
Tj = 25 °C
Tj = 150 °C
-3
-3
-4
-4
-5
-5
-6
0
-6
200
100
200
100
0
IQ [mA]
IQ [mA]
Power Supply Ripple Rejection PSRR
Load Regulation dVQ versus
Output Current Change dIQ
13_PSRR.VSD
80
PSRR
IQ = 0.1 mA
[dB]
18c_dVQ-dIQ_Vi28V.vsd
0
Tj = 25 °C
∆VQ
[mV]
IQ = 10 mA
VI = 28
IQ = 100 mA
60
-2
50
-3
40
-4
30
10
VRIPPLE = 1 V
VIN = 13.5 V
CQ = 470nF Ceramics
Tj = 25 °C
100
1k
Tj = 150 °C
-5
10k
-6
100k
0
100
200
IQ [mA]
f [Hz]
Data Sheet
Tj = -40 °C
15
Rev. 1.2, 2009-04-28
TLE7278-2
Typical Performance Characteristics (cont´d)
Line Regulation dVQ versus
Input Voltage Change dVI
Line Regulation dVQ versus
Input Voltage Change dVI
19_dVQ-dVI__150C.vsd
6
∆ VQ
Tj = 150 °C
IQ = 10mA
[mV]
19_dVQ-dVI_25C_.vsd
6
Tj = 25 °C
∆ VQ
IQ = 1mA
[mV]
IQ = 10mA
IQ = 1mA
2
2
IQ = 100mA
0
0
-2
-2
-4
-4
-6
0
5
-6
10 15 20 25 30 35 40 45
0
5
10 15 20 25 30 35 40 45
VI [V]
VI [V]
Line Regulation dVQ versus
Input Voltage Change dVI
Enable Input Current IEN versus
Enable Input Voltage VEN
24_IINH vs VINH.vsd
19_dVQ-dVI_-40C.vsd
6
Tj = -40 °C
∆VQ
IEN
[mV]
[µA]
50
2
40
Tj = 150°C
Tj = 25°C
Tj = -40°C
IQ = 100mA
IQ = 10mA
0
30
IQ = 1mA
-2
20
-4
10
-6
0
5
10
10 15 20 25 30 35 40 45
VI [V]
Data Sheet
20
30
40
VEN [V]
16
Rev. 1.2, 2009-04-28
TLE7278-2
Typical Performance Characteristics (cont´d)
Enable Input Current IEN versus
Input Voltage VI, EN=Off
Enable High Level / Low Level Input Voltage
VEN,H / VEN,L versus Junction Temperature Tj
25_IINH vs VIN INH_off.vsd
25a_VINH_Tj_ INH_on.vsd
IEN
[µA]
1.0
VEN
0.8
2.0
0.6
1.5
Tj = 150°C
0.4
1.0
Tj = 25°C
0.2
20
30
VEN
increasing
VEN
decreasing
0.5
Tj = -40°C
10
VI = 13.5V
[V]
2.5
EN = OFF
40
-40 -20
0
20 40 60 80 100 120 140
VIN [V]
Tj [°C]
Reset Threshold VRT versus
Junction Temperature Tj (5V-Version)
Reset Hysteresis versus
Junction Temperature Tj (5V-Version)
26_VRT_VS_TEMP_5V.VSD
VI = 13.5 V
VQ [V]
29_VRT_HYSTERESIS-_VS_TEMP_5V.VSD
120
VI = 13.5 V
∆V
[mV]
4.90
80
4.80
60
Reset Release
Threshold
40
4.70
20
4.60
Reset Trigger
Threshold
-40 -20
0
-40 -20
20 40 60 80 100 120 140
Data Sheet
0
20 40 60 80 100 120 140
Tj [°C]
Tj [°C]
17
Rev. 1.2, 2009-04-28
TLE7278-2
Typical Performance Characteristics (cont´d)
Reset Threshold VRT versus
Junction Temperature Tj (3.3V-Version)
Reset Hysteresis versus
Junction Temperature Tj (3.3V-Version)
26_VRT_VS_TEMP_33V.VSD
VI = 13.5 V
VQ [V]
29_VRT_HYSTERESIS-_VS_TEMP_33V.VSD
120
VI = 13.5 V
∆V
[mV]
3.20
80
Reset Release
Threshold
3.10
3.00
60
40
Reset Trigger
Threshold
2.90
20
-40 -20
0
20 40 60 80 100 120 140
-40 -20
0
20 40 60 80 100 120 140
Tj [°C]
Tj [°C]
Reset Threshold VRT versus
Junction Temperature Tj (2.6V-Version)
Reset Hysteresis versus
Junction Temperature Tj (2.6V-Version)
26_VRT_VS_TEMP_26V.VSD
VI = 13.5 V
VQ [V]
2.50
Reset Release
Threshold
80
60
Reset Trigger
Threshold
40
2.20
-40 -20
20
0
20 40 60 80 100 120 140
-40 -20
Tj [°C]
Data Sheet
VI = 13.5 V
∆V
[mV]
2.40
2.30
29_VRT_HYSTERESIS-_VS_TEMP_26V.VS
D
120
0
20 40 60 80 100 120 140
Tj [°C]
18
Rev. 1.2, 2009-04-28
TLE7278-2
Typical Performance Characteristics (cont´d)
Reset Delay tRD Time versus
Junction Temperature Tj
Reset Reaction Time trr versus
Junction Temperature Tj
27_RESETDELAY VS
TEMP.VSD
60
VI = 13.5 V
tRD
[ms]
40
8
SLOW Timing
6
4
20
FAST Timing
2
10
-40 -20
VI = 13.5 V
tRR
[µs]
30
28_RESETREACTION_VS_TEMP.VSD
12
0
-40 -20
20 40 60 80 100 120 140
0
20 40 60 80 100 120 140
Tj [°C]
Tj [°C]
Reset Output Sink Current IRO versus
Junction Temperature Tj
Watchdog Timing tWD versus
Junction Temperature Tj
30_IRO_VS_TEMP.VSD
4,40
VI = 13.5 V
IRO
tWD
[mA]
[ms]
3,60
60
3,20
50
2,80
40
2,40
30
-40 -20
0
VI = 13.5 V
Timing for Ignore-,
Open- Closed- Window
-40 -20
20 40 60 80 100 120 140
SLOW Timing
FAST Timing
0
20 40 60 80 100 120 140
Tj [°C]
Tj [°C]
Data Sheet
44_TWD_VS_TEMP.VSD
80
19
Rev. 1.2, 2009-04-28
TLE7278-2
Typical Performance Characteristics (cont´d)
Region of Stability ESR(CQ) versus
Output Current IQ
12_ESR-IQ.VSD
100
CQ = 470nF
Tj = -40...150 °C
ESRCQ
[Ω]
10
1
Stable
Region
0.1
0.01
0
100
200
IQ [mA]
Data Sheet
20
Rev. 1.2, 2009-04-28
TLE7278-2
Package Outlines
6
Package Outlines
1.75 MAX.
C
1)
4 -0.2
B
1.27
0.64 ±0.25
0.1
2)
0.41+0.10
-0.06
6±0.2
0.2 M A B 14x
14
0.2 M C
8
1
7
1)
8.75 -0.2
8˚MAX.
0.19 +0.06
0.175 ±0.07
(1.47)
0.35 x 45˚
A
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Lead width can be 0.61 max. in dambar area
GPS01230
Figure 6
Data Sheet
PG-DSO-14 (Plastic/Plastic Green - Dual Small Outline Package)
21
Rev. 1.2, 2009-04-28
TLE7278-2
Package Outlines
0.19 +0.06
0.08 C
0.64 ±0.25
0.15 M C A-B D 14x
1
8
1
7
0.2
M
D 8x
Bottom View
3 ±0.2
A
14
6 ±0.2
D
Exposed
Diepad
B
0.1 C A-B 2x
14
7
8
2.65 ±0.2
0.25 ±0.05 2)
0.1 C D
8˚ MAX.
C
0.65
3.9 ±0.11)
1.7 MAX.
Stand Off
(1.45)
0 ... 0.1
0.35 x 45˚
4.9 ±0.11)
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion
PG-SSOP-14-1,-2,-3-PO V02
Figure 7
PG-SSOP-14 Exposed Pad
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on alternative packages, please visit our website:
http://www.infineon.com/packages.
Data Sheet
22
Dimensions in mm
Rev. 1.2, 2009-04-28
TLE7278-2
Revision History
7
Revision History
Revision
Date
Changes
1.2
2009-04-28
2.6V version, 5V version in PG-SSOP-14 package and all related description
added:
In “Features” on Page 2 “or 2.6V” added
In “Features” on Page 2 package drawing for PG-DSO-14 updated, package
drawing for PG-SSOP-14 added
In “Overview” on Page 2 in table at the bottom types “TLE7278-2GV26” and
TLE7278-2EV50” added
In Table 3.2 “Pin Definitions and Functions (PG-DSO-14)” on Page 4 in
description for Pin 1 “, TLE7273-2GV26” added
In “Pin Assignment (PG-DSO-14)” on Page 4 “(PG-DSO-14)” added; In “Pin
Definitions and Functions (PG-DSO-14)” on Page 4 “(PG-DSO-14)” added;
In Table 3.2 “Pin Definitions and Functions (PG-DSO-14)” on Page 4 in
description for pin 8 “;
pull down to GND if not needed and turn off the watchdog with WM1 and WM2 pin”
added
“Pin Assignments (PG-SSOP-14 Exposed Pad)” on Page 5 and “Pin
Definitions and Functions (PG-SSOP-14 Exposed Pad)” on Page 5 added
In “Functional Range” on Page 7 Item 4.2.3 added, in Item 4.2.1 “, TLE72782EV50” added
In Table 4.3 “Thermal Resistance” on Page 7 above Item 4.3.1 line with
“Package PG-DSO-14” and values for PG-SSOP-14 package added: Item 4.3.6,
Item 4.3.7, Item 4.3.8, Item 4.3.9 and Item 4.3.10 added
In “Power On Reset and Reset Output” on Page 8 “and TLE7278-2EV50” in
description added
In “Electrical Characteristics” on Page 10 all specific items for 2.6V version
added: Item 5.2.5, Item 5.2.6, Item 5.2.21, Item 5.2.25, Item 5.2.29, Item 5.2.40,
Item 5.2.42 and Item 5.2.47 added; In Item 5.2.36, Item 5.2.37, Item 5.2.41 and
Item 5.2.50 conditions for 2.6V version added; In Item 5.2.1, Item 5.2.2,
Item 5.2.8, Item 5.2.19, Item 5.2.23, Item 5.2.27, Item 5.2.36, Item 5.2.37,
Item 5.2.38, Item 5.2.44, Item 5.2.45, Item 5.2.49 and Item 5.2.51 in conditions
“, TLE7278-2EV50” added
In “Typical Performance Characteristics” on Page 14 Graphs “Reset
Threshold VRT versus Junction Temperature Tj (3.3V-Version)” on Page 18,
“Reset Hysteresis versus Junction Temperature Tj (3.3V-Version)” on
Page 18, “Reset Threshold VRT versus Junction Temperature Tj (2.6VVersion)” on Page 18 and “Reset Hysteresis versus Junction Temperature
Tj (2.6V-Version)” on Page 18 added
In “Package Outlines” on Page 21 Outlines for PG-SSOP-14 package added:
Figure 7
Data Sheet
23
Rev. 1.2, 2009-04-28
TLE7278-2
Revision History
Revision
Date
Changes
1.1
2008-07-25
3.3V version and all related description added:
In “Features” on Page 2“ 3.3V” added
In “Overview” on Page 2 in table at the bottom type “TLE7273-2GV33” added
In “Pin Definitions and Functions (PG-DSO-14)” on Page 4 in description for
Pin 1 “TLE7273-2GV33: open drain output;” added
In “Functional Range” on Page 7 Item 4.2.2 added
In “Power On Reset and Reset Output” on Page 8 description for dimensioning
external pull-up resistor at RO added;
In “Electrical Characteristics” on Page 10 all specific Items for 3.3V version
added: Item 5.2.3, Item 5.2.4, Item 5.2.20, Item 5.2.24, Item 5.2.28, Item 5.2.39,
Item 5.2.41, Item 5.2.43, Item 5.2.46 and Item 5.2.50 added; In Item 5.2.36 and
Item 5.2.37 Conditions for 3.3V version added;
1.0
Data Sheet
2008-04-10
final version data sheet
24
Rev. 1.2, 2009-04-28
Edition 2009-04-28
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.