Data Sheet, Rev. 1.0, Sept. 2008 TLE4675 Low Drop Out Linear Voltage Regulator 5V Fixed Output Voltage Automotive Power TLE4675 Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 3.3 3.4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment TLE4675D (PG-TO252-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions TLE4675D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment TLE4675G (PG-TO263-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions TLE4675G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 5 6 6 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 8 9 5 5.1 5.2 5.3 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6.1 6.2 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7 7.1 7.2 7.3 Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8.1 8.2 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PG-TO252-5 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PG-TO263-5 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Data Sheet 2 10 10 11 12 16 16 20 21 Rev. 1.0, 2008-09-30 Low Drop Out Linear Voltage Regulator 5V Fixed Output Voltage 1 TLE4675 Overview Features • • • • • • • • • • • • • • Output Voltage 5 V ± 2% Output Current Capability 400 mA Ultra Low Current Consumption Very Low Drop Out Voltage Reset Circuit Sensing the Output Voltage with Programmable Delay Time Reset Output Active Low Down to VQ = 1 V Excellent Line Transient Robustness Maximum Input Voltage -42 V ≤ VI ≤ +45 V Reverse Polarity Protection Short Circuit Protected Overtemperature Shutdown Automotive Temperature Range -40 °C ≤ Tj ≤ 150 °C Green Product (RoHS compliant) AEC Qualified PG-TO252-5 PG-TO263-5 Description The TLE4675 is a monolithic integrated low drop out fixed output voltage regulator for loads up to 400 mA. An input voltage up to 45 V is regulated to an output voltage of 5 V. The integrated reset function, as well as several protection circuits combined with the wide operating temperature range offered by the TLE4675 make it suitable for supplying microprocessor system in automotive environments. Type Package Marking TLE4675D PG-TO252-5 TLE4675 TLE4675G PG-TO263-5 TLE4675 Data Sheet 3 Rev. 1.0, 2008-09-30 TLE4675 Block Diagram Block Diagram 6XSSO\ 7/( , 4 5HJXODWHG2XWSXW 9ROWDJH &4 3URWHFWLRQ &LUFXLWV %ORFNBGLDJUDPYVG Figure 1 Data Sheet %DQGJDS 5HIHUHQFH *1' 5HVHW *HQHUDWRU /RDG HJ 0LFUR &RQWUROOHU ;&[[ 52 *1' %OR FN'LD JUDP B$SS&LUFXLW YVG 2 ' Block Diagram and Simplified Application Circuit 4 Rev. 1.0, 2008-09-30 TLE4675 Pin Configuration 3 Pin Configuration 3.1 Pin Assignment TLE4675D (PG-TO252-5) GND 1 5 Ι RO D Q AEP02580 Figure 2 Pin Assignment (top view) TLE4675D 3.2 Pin Definitions and Functions TLE4675D Pin Symbol Function 1 I Regulator Input and IC Supply For compensating line influences, a capacitor to GND close to the IC pin is recommended. 2 RO Reset Output Open collector output; external pull up resistor required; Leave open if the reset function is not needed. 3 Internally connected to TAB 4 D Reset Delay Timing Connect a ceramic capacitor from D (Pin 4) to GND for the reset delay timing adjustment; Leave open, if reset functionality is not used. 5 Q 5 V Regulator Output Connect a capacitor between Q (Pin 5) and GND close to the IC pins, respecting capacitance and ESR requirements given in the Chapter 4.2 Functional Range. TAB GND Ground, Cooling TAB Connect to heatsink area Data Sheet 5 Rev. 1.0, 2008-09-30 TLE4675 Pin Configuration 3.3 Pin Assignment TLE4675G (PG-TO263-5) Ι GND Q D RO IEP02528 Figure 3 Pin Assignment (top view) TLE4675G 3.4 Pin Definitions and Functions TLE4675G Pin Symbol Function 1 I Regulator Input and IC Supply For compensating line influences, a capacitor to GND close to the IC pin is recommended 2 RO Reset Output Open collector output; external pull up resistor required; Leave open if the reset function is not needed 3 GND Ground Internally connected to TAB 4 D Reset Delay Timing Connect a ceramic capacitor from D (Pin 4) to GND for the reset delay timing adjustment; leave open, if reset functionality is not used 5 Q 5 V Regulator Output Connect a capacitor between Q (Pin 5) and GND close to the IC pins, respecting capacitance and ESR requirements given in the Chapter 4.2 Functional Range TAB Data Sheet Cooling TAB Connect to heatsink area and Ground 6 Rev. 1.0, 2008-09-30 TLE4675 General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute Maximum Ratings 1) Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Max. -42 45 V – VQ VRO VD -1 7 V – -0.3 7 V – -0.3 7 V – Tj Tstg -40 150 °C – -55 150 °C – VESD,HBM VESD,CDM -4 4 kV Human Body Model 2) -1 1 kV Charged Device Model 3) Voltages 4.1.1 Regulator Input and IC Supply I VI 4.1.2 Regulator Output Q 4.1.3 Reset Output RO 4.1.4 Reset Delay Timing D Temperatures 4.1.5 Junction Temperature 4.1.6 Storage Temperature ESD Susceptibility 4.1.7 ESD Resistivity 4.1.8 1) Not subject to production test, specified by design. 2) ESD susceptibility, HBM according to AEC-Q100-002 - JESD22-A114 3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 7 Rev. 1.0, 2008-09-30 TLE4675 General Product Characteristics 4.2 Pos. Functional Range Parameter Symbol VI(nor) Limit Values Unit Conditions Min. Max. VQ + Vdr 45 V 1) 3.3 45 V 2) 4.2.1 Input Voltage Range for Normal Operation 4.2.2 Extended Input Voltage Range VI(ext) 4.2.3 Input Voltage Transient Immunity dVI/dt -10 20 V/µs dVI ≤ 10 V; VI > 9 V; No trigger of RO.3) 4.2.4 Junction Temperature -40 150 °C – 4.2.5 Output Capacitor Requirements Tj CQ ESRCQ 22 – µF –4) – 2.5 Ω –5) 4.2.6 1) For specification of the input voltage VQ and the drop out voltage Vdr see Chapter 5 Voltage Regulator. 2) The output voltage VQ will follow the input voltage, but is outside the specified range. For details see Chapter 5 Voltage Regulator. 3) Transient measured directly at the input pin. Not subject to production test, specified by design. 4) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30% 5) Relevant ESR value at f = 10 kHz Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. Data Sheet 8 Rev. 1.0, 2008-09-30 TLE4675 General Product Characteristics 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Pos. Parameter Symbol Limit Values Unit Conditions Min. Typ. Max. – 3.7 – K/W 1) – 110 – K/W Footprint only 1)2) 4.3.3 – 57 – K/W 300 mm2 heatsink area on PCB 1)2) 4.3.4 – 42 – K/W 600 mm2 heatsink area on PCB 1)2) 4.3.5 – 27 – K/W 2s2p PCB 1)3) – 3.7 – K/W 1) – 123 – K/W Footprint only 1)2) 4.3.8 – 42 – K/W 300 mm2 PCB heatsink area 1)2) 4.3.9 – 33 – K/W 600 mm2 PCB heatsink area 1)2) 4.3.10 – 22 – K/W 2s2p PCB 1)3) TLE4675D Package PG-TO252-5 4.3.1 Junction to Case 4.3.2 Junction to Ambient RthJC RthJA TLE4675G Package PG-TO263-5 4.3.6 Junction to Case 4.3.7 Junction to Ambient RthJC RthJA 1) Not subject to production test, specified by design 2) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu). 3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Data Sheet 9 Rev. 1.0, 2008-09-30 TLE4675 Voltage Regulator 5 Voltage Regulator 5.1 Description Voltage Regulator The output voltage VQ is controlled by comparing a portion of it to an internal reference and driving a PNP pass transistor accordingly. Saturation control as a function of the load current prevents any oversaturation of the pass element. The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the poles/zeros introduced by the integrated circuit. To ensure stable operation, the output capacitor’s capacitance and its equivalent series resistor ESR requirements given in the table “Operating Range” have to be maintained. For details see also the typical performance graph “Output Capacitor Series Resistor ESRCQ vs. Output Current IQ”. Also, the output capacitor shall be sized to buffer load transients. An input capacitor CI is not needed for the control loop stability, but recommended to buffer line influences. Connect the capacitors close to the IC terminals. Protection circuitry prevent the IC as well as the application from destruction in case of catastrophic events. These safeguards contain output current limitation, reverse polarity protection as well as thermal shutdown in case of overtemperature. In order to avoid excessive power dissipation that could never be handled by the pass element and the package, the maximum output current is decreased at input voltages above VI = 22 V. The thermal shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g. output continuously short-circuited) by switching off the power stage. After the chip has cooled down, the regulator restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, junction temperatures above 150 °C are outside the maximum ratings and therefore reduce the IC lifetime. The TLE4675 allows a negative supply voltage. However, several small currents are flowing into the IC increasing its junction temperature. This has to be considered for the thermal design, respecting that the thermal protection circuit is not operating during reverse polarity condition. II Supply I Q + IQ Regulated Output Voltage + Saturation Control Current Limitation CQ CI VI Temperature Shutdown GND BlockDiagram _VoltageRegulator .vsd Figure 4 LOAD VQ Bandgap Reference Block Diagram Voltage Regulator Circuit 9 9, 9GU 94QRP 9,H[WPLQ 94 G94 ,ORDG § &4 GW G94 ,4PD[,ORDG § &4 GW 'LDJUDPB2XWSXW,QSXW9ROWDJHVYJ W Figure 5 Data Sheet Output Voltage vs. Input Voltage 10 Rev. 1.0, 2008-09-30 TLE4675 Voltage Regulator 5.2 Electrical Characteristics Voltage Regulator Electrical Characteristics: Voltage Regulator VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Typ. Max. 4.9 5.0 5.1 V 200 µA ≤ IQ ≤ 400 mA; 8 V ≤ VI ≤ 18 V 5.2.2 4.9 5.0 5.1 V 200 µA ≤ IQ ≤ 300 mA; 6 V ≤ VI ≤ 18V 5.2.3 4.9 5.0 5.1 V 200 µA ≤ IQ ≤ 200 mA; 18 V ≤ VI ≤ 32 V1) 5.2.4 4.9 5.0 5.1 V 200 µA ≤ IQ ≤ 20 mA; 32 V ≤ VI ≤ 45 V1) 5.2.1 Output Voltage VQ 5.2.5 Load Regulation steady-state dVQ,load -30 -5 – mV 5.2.14 Overtemperature Shutdown Threshold Tj,sd 151 – 200 °C IQ = 1 mA to 300 mA; VI = 6 V VI = 6 V to 32 V; IQ = 5 mA fripple = 100 Hz; Vripple = 1 Vpp2) IQ = 100 mA3) IQ = 300 mA3) 0 V ≤ VQ ≤ 4.8 V VI = 0 V; VQ = 5 V VI = -16 V; VQ = 0 V VI = -42 V; VQ = 0 V Tj increasing2) 5.2.6 Line Regulation steady-state dVQ,line – 5 20 mV 5.2.7 Power Supply Ripple Rejection PSRR 60 65 – dB 5.2.8 Drop Out Voltage Vdr – 120 250 mV 5.2.9 Vdr = VI - VQ – 250 500 mV 5.2.10 Output Current Limitation 401 550 850 mA 5.2.11 Reverse Current -2 -1 – mA 5.2.12 Reverse Current at Negative Input Voltage -5 -2 – mA -10 -3 – mA 5.2.15 Overtemperature Shutdown Threshold Hysteresis Tj,hy – 25 – K Tj decreasing2) 5.2.13 IQ,max IQ II 1) See typical performance graph for details. 2) Parameter not subject to production test; specified by design. 3) Measured when the output voltage VQ has dropped 100 mV from its nominal value. Data Sheet 11 Rev. 1.0, 2008-09-30 TLE4675 Voltage Regulator 5.3 Typical Performance Characteristics Voltage Regulator Output Voltage VQ vs. Junction Temperature Tj Output Capacitor Series Resistor ESRCQ vs. Output Current IQ 100 VQ -Tj. v s d ESR 2 2 u-IQ .v s d ESRCQ VQ [V] C Q ≥ 22 µF; 6 V ≤ VI ≤ 28 V; -40 °C ≤ Tj ≤ 150 °C [Ω] 10 5.02 5.00 1 Stable Region 4.98 0 .1 4.96 -40 -20 0 20 40 60 0.01 80 100 120 140 0 80 160 400 320 240 T j [°C] IQ [mA] Output Current Limitation IQ,max vs. Input Voltage VI Power Supply Ripple Rejection PSRR SO A.v s d PSRR.VSD IQ,ma x PSRR [dB] [mA] Tj = 25 °C T J = -40 °C TJ = 25 °C T J = 150 °C T j = 125 °C 70 400 60 300 50 40 200 30 I Q = 10 mA C Q = 22 µF ceramic 20 100 VI = 13 .5 V Vripple = 1 Vpp 10 0 10 20 30 0 40 0,01 VI [V] Data Sheet 0,1 1 10 100 1000 f [kHz] 12 Rev. 1.0, 2008-09-30 TLE4675 Voltage Regulator Dropout Voltage Vdr vs. Output Current IQ Dropout Voltage Vdr vs. Junction Temperature Tj 500 Vd r-IQ .v s d Vd r- Tj. v s d Vdr [mV] Vdr [mV] 200 IQ = 400 mA 300 250 100 T j = 125 °C 200 IQ = 200 mA 150 100 20 T j = 25 °C 1 2 0 100 10 -40 -20 I Q [mA] 0 20 40 60 80 100 120 140 Tj [°C] Reverse Current II vs. Input Voltage VI Reverse Output Current IQ vs. Input Voltage VQ 0 0 IQ-VQ @ VI=0 v. s d IQ [mA] IQ = 1 mA 50 II [mA] VI = 0 V II-VI@VQ =0 .v s d VQ = 0 V -1 -0.4 T j = -40 °C -1.5 -0.6 Tj = -40 °C T j = 150 °C -2 -0.8 Tj = 25 °C -2.5 T j = 150 °C 0 1.6 3.2 -32 6 4 .8 -16 -8 0 VI [V] V Q [V] Data Sheet - 24 13 Rev. 1.0, 2008-09-30 TLE4675 Current Consumption 6 Current Consumption 6.1 Electrical Characteristics Current Consumption Electrical Characteristics: Current Consumption VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, directions of currents as shown in Figure 6 (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions IQ ≤ 200 µA; Tj ≤ 25 °C IQ ≤ 200 µA; Tj ≤ 85 °C IQ = 250 mA IQ = 400 mA Min. Typ. Max. – 65 80 µA – 70 85 µA 6.1.3 – 6 10 mA 6.1.4 – 15 25 mA 6.1.1 Current Consumption 6.1.2 Iq = II - IQ II Supply Iq I Q IQ Voltage Regulator + + VI CQ CI CurrentConsumption _ ParameterDefinition .vsd Regulated Output Voltage VQ LOAD GND Iq Figure 6 Data Sheet Parameter Definition 14 Rev. 1.0, 2008-09-30 TLE4675 Current Consumption 6.2 Typical Performance Characteristics Current Consumption Current Consumption Iq vs. Junction Temperature Tj Current Consumption Iq vs. Junction Temperature TjI 140 Iq -Tj .v s d Iq [mA] VI = 13 .5V Iq1 0 0 u _ Tj. v s d IQ = 200 µA VI = 13 .5 V Iq [µA] IQ = 40 0 mA 10 100 IQ = 100 mA 1 80 60 IQ = 2 mA 0.1 40 0.01 -40 -20 0 20 60 40 80 100 120 140 0 -40 40 120 80 Tj [°C] 150 T j [°C] Current Consumption Iq vs. Output Current IQ Current Consumption Iq vs. Input Voltage VI 36 Iq -IQ .v s d Iq [mA] Iq _ v s ._ VIN.v s d I q [mA] 10 Tj = 25 °C RL = 50 Ω 24 RL = 500 Ω 1 VI = 13 .5 V Tj = 125 °C 18 VI = 13.5 V T j = 25 °C 0.1 12 6 0.01 0.2 1 2 10 0 100 4 6 8 VI [V] IQ [mA] Data Sheet 2 15 Rev. 1.0, 2008-09-30 TLE4675 Reset Function 7 Reset Function 7.1 Description Reset Function The reset function contains several features: Output Undervoltage Reset: An output undervoltage condition is indicated by setting the reset output “RO” to “low”. This signal might be used to reset a microcontroller during a low supply voltage condition. Power-On Reset Delay Time The power-on reset delay time td,PWR-ON allows a microcontroller and oscillator to start up. This delay time is the time period from exceeding the upper reset switching threshold VRT,hi until the reset is released by switching the reset output “RO” from “low” to “high”. The power-on reset delay time td,PWR-ON is defined by an external delay capacitor CD connected to pin “D”, which is charged up by the delay capacitor charge current ID,ch starting from VD = 0 V. In case a power-on reset delay time td,PWR-ON different from the value for CD = 100nF is required, the delay capacitor’s value can be derived from the specified value given in Item 7.2.15: t d,PWR-ON C D = ----------------------------------- × 100 nF t d,PWR-ON,100nF with td,PWR-ON: Desired power-on reset delay time td,PWR-ON,100nF: Power-on reset delay time specified in Item 7.2.15 CD: Delay capacitor required The formula is valid for CD ≥ 10nF.For a precise calculation consider also the delay capacitor’s tolerance. • • • Undervoltage Reset Delay Time Unlike the power-on reset delay time, the undervoltage reset delay td time considers a short output undervoltage event, where the delay capacitor CD is assumed to be discharged to VD = VDST,lo only before the charging sequence starts. Therefore, the undervoltage reset delay time td is defined by the delay capacitor charge current ID,ch starting from VD = VDST,lo and the external delay capacitor CD. A delay capacitor CD for a different undervoltage reset delay time as specified in Item 7.2.14 can be calculated similar as above: td C D = ---------------- × 100 nF t d,100nF with td: Desired reset delay time td,100nF: Reset delay time specified in Item 7.2.14 CD: Delay capacitor required The formula is valid for CD ≥ 10nF.For a precise calculation consider also the delay capacitor’s tolerance. • • • Data Sheet 16 Rev. 1.0, 2008-09-30 TLE4675 Reset Function Reset Reaction Time In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,lo, the delay capacitor CD is discharged rapidly. Once the delay capacitor’s voltage has reached the lower delay switching threshold VDST,lo, the reset output RO will be set to “low”. Additionally to the delay capacitor discharge time trr,d an internal time trr,int applies. Hence the total reset reaction time trr,total becomes: t rr,total = t rr,int + t rr,d with • • • trr,total: total reset reaction time trr,int: Internal reset reaction time; see Item 7.2.16 trr,d: Delay capacitor discharge time. For a capacitor CD different from the value specified in Item 7.2.17, see typical performance graphs. Reset Output Pull-Up Resistor RRO: The Reset Output RO is an open collector output requiring an external pull-up resistor to a voltage VIO, e.g. VQ. In Item 7.2.7 a minimum value for the external resistor RRO is given for the case it is connected to VQ. For applications, where the external pull-up resistor RRO has to be connected to a different voltage rail VIO than VQ, the minimum pull-up resistor RRO can be calculated out of the minimum sink current capability given in Item 7.2.6: : V IO – V RO,low R RO = --------------------------------I RO, max with RRO: Reset pull up resistor VIO: Voltage rail, where the pull up resistor is connected VRO,low: Maximum allowed voltage level for a logic “Low” signal inside the application Please be aware, that VIO should not exceed the ratings for the RO pin given in Item 4.1.3. • • • Reset Output “RO” Low for VQ ≥ 1 V In case of an undervoltage reset condition reset output “RO” is held “low” for VQ ≥ 1 V, even if the input voltage VI is 0 V. This is achieved by supplying the reset circuit from the output capacitor. Data Sheet 17 Rev. 1.0, 2008-09-30 TLE4675 Reset Function VIO e.g. +3.3V Supply I Q VDD Int. Supply Control CQ RO I D ,ch RR O Reset IR O VD ST VR T or MicroController ID R ,dsch GND D BlockDiagram_Reset.vsd GND CD Figure 7 Data Sheet Block Diagram Reset Circuit 18 Rev. 1.0, 2008-09-30 TLE4675 Reset Function VI t VQ t < trr,blank VR H VR T,hi VR T,lo 1V t td VD VD ST,hi VD ST,lo t VR O VR O,low td,PWR-O N trr,total td,PWR-O N trr,total td,PWR-O N trr,total 1V t Thermal Shutdown Input Voltage Dip Undervoltage Spike at output Overload TimingDiagram_Reset_in_work.v s Figure 8 Timing Diagram Reset The timing diagram assumes that the external pull up resistor RRO is connected to the output voltage VQ. Data Sheet 19 Rev. 1.0, 2008-09-30 TLE4675 Reset Function 7.2 Electrical Characteristics Reset Function Electrical Characteristics: Reset Function VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 7 (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions Output Undervoltage Reset Comparator Default Values 7.2.1 Output Undervoltage Reset Lower Switching Threshold VRT,lo 4.6 4.7 4.8 V VI = 0 V VQ decreasing 7.2.2 Output Undervoltage Reset Upper Switching Threshold VRT,hi 4.7 4.8 4.9 V VI within operating range VQ increasing 7.2.3 Output Undervoltage Reset Switching Hysteresis VRT,hy 50 100 – mV VI within operating range 7.2.4 Output Undervoltage Reset Headroom VRH 250 300 – mV Calculated Value: VQ - VRT,lo VI within operating range IQ = 50 mA – 0.2 0.8 V VI = 0V 1 V ≤ VQ < VRT,low; IRO = 0.3 mA Reset Output RO 7.2.5 Reset Output Low Voltage VRO,low 7.2.6 Reset Output Sink Current Capability IRO,max 0.3 – – mA VI = 0V; 1 V ≤ VQ < VRT,low; VRO = 5V 7.2.7 Reset Output External Pull-up Resistor to VQ RRO 3.0 – – kΩ 1 V ≤ VQ < VRT; VRO ≤ 0.4V 1) 7.2.8 Reset Output Leakage Current IRO,leak – 5 10 µA VRO = 5 V VD VDST,hi – – 5 V – – 1.1 – V – Reset Delay Timing 7.2.9 Delay Pin Output Voltage 7.2.10 Upper Delay Switching Threshold 7.2.11 Lower Delay Switching Threshold VDST,lo – 0.3 – V – 7.2.12 Delay Capacitor Charge Current ID,ch – 3.5 – µA VD = 1 V 7.2.13 Delay Capacitor Reset Discharge Current IDR,dsch – 70 – mA VD = 1 V 7.2.14 Undervoltage Reset Delay td,100nF Time 16 23 30 ms Calculated value; CD = 100 nF2) CD discharged to VDST,lo Data Sheet 20 Rev. 1.0, 2008-09-30 TLE4675 Reset Function Electrical Characteristics: Reset Function (cont’d) VI = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 7 (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 7.2.15 Power-on Reset Delay Time td,PWR-ON,100nF 23 33 43 ms 7.2.16 Internal Reset Reaction Time trr,int – 10 15 µs Calculated value; CD = 100 nF2) CD discharged to 0 V CD = 0 nF 7.2.17 Delay Capacitor Discharge trr,d Time – 1 2 µs CD = 100 nF 7.2.18 Total Reset Reaction Time trr,total – 11 17 µs Calculated Value: trr,total = trr,d + trr,int CD = 100 nF2) 1) Parameter not subject of production test. 2) For programming a different delay and reset reaction time, see Chapter 7.1 for calculation. 7.3 Typical Performance Characteristics Reset Function Reset Delay Time td, td,PWR_ON versus Delay Capacitor CD Undervoltage Reset Switching Thresholds VRO,lo, VRO,hi versus Tj VRT-Tj .v s d td -CD .v s d td , VQ [V], VRT [V] td ,PWR- ON Pin RADJ = GND [ms] 5.0 VQ 100 Output Undervoltage Reset Headroom VRH 4,9 4,8 4,7 td (typ.) VRT,hi 10 VRT,lo -40 -20 0 20 40 60 1 10 80 100 120 140 100 1000 CD [nF] Tj [°C] Data Sheet td,PWR-ON (typ.) 21 Rev. 1.0, 2008-09-30 TLE4675 Package Outlines 8 Package Outlines 8.1 PG-TO252-5 Package ! " -). -!8 PERSIDE -!8 X " - ! " )NCLUDESMOLDFLASHESONEACHSIDE !LLMETALSURFACESTINPLATEDEXCEPTAREAOFCUT Figure 9 Package Outline PG-TO252-5 2.2 6.4 10.6 5.8 0.8 5.36 HLG09226 Figure 10 Footprint PG-TO252-5, Reflow Soldering Type Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Data Sheet 22 Rev. 1.0, 2008-09-30 TLE4675 Package Outlines 8.2 PG-TO263-5 Package ! " X X - ! " -!8 4YPICAL -ETALSURFACEMIN89 !LLMETALSURFACESTINPLATEDEXCEPTAREAOFCUT Figure 11 " '04 Package Outline PG-TO263-5 4.6 16.15 9.4 10.8 0.6 1.1 7.9 HLG09441 Figure 12 Footprint PG-TO263-5, Reflow Soldering Type Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on packages, please visit our website: http://www.infineon.com/packages. Data Sheet 23 Dimensions in mm Rev. 1.0, 2008-09-30 TLE4675 Revision History 9 Revision History Revision Date Changes 1.0 2009-09-30 Final Data Sheet Data Sheet 24 Rev. 1.0, 2008-09-30 Edition 2008-09-30 Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.