INFINEON TLE4675D

Data Sheet, Rev. 1.0, Sept. 2008
TLE4675
Low Drop Out Linear Voltage Regulator
5V Fixed Output Voltage
Automotive Power
TLE4675
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
3.3
3.4
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment TLE4675D (PG-TO252-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions TLE4675D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment TLE4675G (PG-TO263-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions TLE4675G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5
5
6
6
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
7
8
9
5
5.1
5.2
5.3
Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
6.1
6.2
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Electrical Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7
7.1
7.2
7.3
Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Performance Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
8.1
8.2
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
PG-TO252-5 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
PG-TO263-5 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Data Sheet
2
10
10
11
12
16
16
20
21
Rev. 1.0, 2008-09-30
Low Drop Out Linear Voltage Regulator
5V Fixed Output Voltage
1
TLE4675
Overview
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Output Voltage 5 V ± 2%
Output Current Capability 400 mA
Ultra Low Current Consumption
Very Low Drop Out Voltage
Reset Circuit Sensing the Output Voltage
with Programmable Delay Time
Reset Output Active Low Down to VQ = 1 V
Excellent Line Transient Robustness
Maximum Input Voltage -42 V ≤ VI ≤ +45 V
Reverse Polarity Protection
Short Circuit Protected
Overtemperature Shutdown
Automotive Temperature Range -40 °C ≤ Tj ≤ 150 °C
Green Product (RoHS compliant)
AEC Qualified
PG-TO252-5
PG-TO263-5
Description
The TLE4675 is a monolithic integrated low drop out fixed output voltage regulator for loads up to 400 mA. An
input voltage up to 45 V is regulated to an output voltage of 5 V. The integrated reset function, as well as several
protection circuits combined with the wide operating temperature range offered by the TLE4675 make it suitable
for supplying microprocessor system in automotive environments.
Type
Package
Marking
TLE4675D
PG-TO252-5
TLE4675
TLE4675G
PG-TO263-5
TLE4675
Data Sheet
3
Rev. 1.0, 2008-09-30
TLE4675
Block Diagram
Block Diagram
6XSSO\
7/(
,
4
5HJXODWHG2XWSXW
9ROWDJH
&4
3URWHFWLRQ
&LUFXLWV
%ORFNBGLDJUDPYVG
Figure 1
Data Sheet
%DQGJDS
5HIHUHQFH
*1'
5HVHW
*HQHUDWRU
/RDG
HJ
0LFUR
&RQWUROOHU
;&[[
52
*1'
%OR FN'LD JUDP B$SS&LUFXLW YVG
2
'
Block Diagram and Simplified Application Circuit
4
Rev. 1.0, 2008-09-30
TLE4675
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment TLE4675D (PG-TO252-5)
GND
1
5
Ι RO
D Q
AEP02580
Figure 2
Pin Assignment (top view) TLE4675D
3.2
Pin Definitions and Functions TLE4675D
Pin
Symbol
Function
1
I
Regulator Input and IC Supply
For compensating line influences, a capacitor to GND close to the IC pin is
recommended.
2
RO
Reset Output
Open collector output; external pull up resistor required;
Leave open if the reset function is not needed.
3
Internally connected to TAB
4
D
Reset Delay Timing
Connect a ceramic capacitor from D (Pin 4) to GND for the reset delay timing
adjustment;
Leave open, if reset functionality is not used.
5
Q
5 V Regulator Output
Connect a capacitor between Q (Pin 5) and GND close to the IC pins, respecting
capacitance and ESR requirements given in the Chapter 4.2 Functional Range.
TAB
GND
Ground, Cooling TAB
Connect to heatsink area
Data Sheet
5
Rev. 1.0, 2008-09-30
TLE4675
Pin Configuration
3.3
Pin Assignment TLE4675G (PG-TO263-5)
Ι
GND Q
D
RO
IEP02528
Figure 3
Pin Assignment (top view) TLE4675G
3.4
Pin Definitions and Functions TLE4675G
Pin
Symbol
Function
1
I
Regulator Input and IC Supply
For compensating line influences, a capacitor to GND close to the IC pin is
recommended
2
RO
Reset Output
Open collector output; external pull up resistor required;
Leave open if the reset function is not needed
3
GND
Ground
Internally connected to TAB
4
D
Reset Delay Timing
Connect a ceramic capacitor from D (Pin 4) to GND for the reset delay timing
adjustment;
leave open, if reset functionality is not used
5
Q
5 V Regulator Output
Connect a capacitor between Q (Pin 5) and GND close to the IC pins, respecting
capacitance and ESR requirements given in the Chapter 4.2 Functional Range
TAB
Data Sheet
Cooling TAB
Connect to heatsink area and Ground
6
Rev. 1.0, 2008-09-30
TLE4675
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Absolute Maximum Ratings 1)
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Max.
-42
45
V
–
VQ
VRO
VD
-1
7
V
–
-0.3
7
V
–
-0.3
7
V
–
Tj
Tstg
-40
150
°C
–
-55
150
°C
–
VESD,HBM
VESD,CDM
-4
4
kV
Human Body Model 2)
-1
1
kV
Charged Device Model 3)
Voltages
4.1.1
Regulator Input and IC Supply I VI
4.1.2
Regulator Output Q
4.1.3
Reset Output RO
4.1.4
Reset Delay Timing D
Temperatures
4.1.5
Junction Temperature
4.1.6
Storage Temperature
ESD Susceptibility
4.1.7
ESD Resistivity
4.1.8
1) Not subject to production test, specified by design.
2) ESD susceptibility, HBM according to AEC-Q100-002 - JESD22-A114
3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
7
Rev. 1.0, 2008-09-30
TLE4675
General Product Characteristics
4.2
Pos.
Functional Range
Parameter
Symbol
VI(nor)
Limit Values
Unit
Conditions
Min.
Max.
VQ + Vdr
45
V
1)
3.3
45
V
2)
4.2.1
Input Voltage Range for
Normal Operation
4.2.2
Extended Input Voltage Range VI(ext)
4.2.3
Input Voltage Transient
Immunity
dVI/dt
-10
20
V/µs
dVI ≤ 10 V; VI > 9 V;
No trigger of RO.3)
4.2.4
Junction Temperature
-40
150
°C
–
4.2.5
Output Capacitor
Requirements
Tj
CQ
ESRCQ
22
–
µF
–4)
–
2.5
Ω
–5)
4.2.6
1) For specification of the input voltage VQ and the drop out voltage Vdr see Chapter 5 Voltage Regulator.
2) The output voltage VQ will follow the input voltage, but is outside the specified range.
For details see Chapter 5 Voltage Regulator.
3) Transient measured directly at the input pin. Not subject to production test, specified by design.
4) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%
5) Relevant ESR value at f = 10 kHz
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
Data Sheet
8
Rev. 1.0, 2008-09-30
TLE4675
General Product Characteristics
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go
to www.jedec.org.
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
–
3.7
–
K/W
1)
–
110
–
K/W
Footprint only 1)2)
4.3.3
–
57
–
K/W
300 mm2 heatsink
area on PCB 1)2)
4.3.4
–
42
–
K/W
600 mm2 heatsink
area on PCB 1)2)
4.3.5
–
27
–
K/W
2s2p PCB 1)3)
–
3.7
–
K/W
1)
–
123
–
K/W
Footprint only 1)2)
4.3.8
–
42
–
K/W
300 mm2 PCB
heatsink area 1)2)
4.3.9
–
33
–
K/W
600 mm2 PCB
heatsink area 1)2)
4.3.10
–
22
–
K/W
2s2p PCB 1)3)
TLE4675D Package PG-TO252-5
4.3.1
Junction to Case
4.3.2
Junction to Ambient
RthJC
RthJA
TLE4675G Package PG-TO263-5
4.3.6
Junction to Case
4.3.7
Junction to Ambient
RthJC
RthJA
1) Not subject to production test, specified by design
2) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
Data Sheet
9
Rev. 1.0, 2008-09-30
TLE4675
Voltage Regulator
5
Voltage Regulator
5.1
Description Voltage Regulator
The output voltage VQ is controlled by comparing a portion of it to an internal reference and driving a PNP pass
transistor accordingly. Saturation control as a function of the load current prevents any oversaturation of the pass
element. The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and
the poles/zeros introduced by the integrated circuit. To ensure stable operation, the output capacitor’s capacitance
and its equivalent series resistor ESR requirements given in the table “Operating Range” have to be maintained.
For details see also the typical performance graph “Output Capacitor Series Resistor ESRCQ vs. Output Current
IQ”. Also, the output capacitor shall be sized to buffer load transients.
An input capacitor CI is not needed for the control loop stability, but recommended to buffer line influences.
Connect the capacitors close to the IC terminals.
Protection circuitry prevent the IC as well as the application from destruction in case of catastrophic events. These
safeguards contain output current limitation, reverse polarity protection as well as thermal shutdown in case of
overtemperature.
In order to avoid excessive power dissipation that could never be handled by the pass element and the package,
the maximum output current is decreased at input voltages above VI = 22 V.
The thermal shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g. output
continuously short-circuited) by switching off the power stage. After the chip has cooled down, the regulator
restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, junction
temperatures above 150 °C are outside the maximum ratings and therefore reduce the IC lifetime.
The TLE4675 allows a negative supply voltage. However, several small currents are flowing into the IC increasing
its junction temperature. This has to be considered for the thermal design, respecting that the thermal protection
circuit is not operating during reverse polarity condition.
II
Supply
I
Q
+
IQ
Regulated
Output Voltage
+
Saturation Control
Current Limitation
CQ
CI
VI
Temperature
Shutdown
GND
BlockDiagram _VoltageRegulator .vsd
Figure 4
LOAD
VQ
Bandgap
Reference
Block Diagram Voltage Regulator Circuit
9
9,
9GU
94QRP
9,H[WPLQ
94
G94
,ORDG
§
&4
GW
G94
,4PD[,ORDG
§
&4
GW
'LDJUDPB2XWSXW,QSXW9ROWDJHVYJ
W
Figure 5
Data Sheet
Output Voltage vs. Input Voltage
10
Rev. 1.0, 2008-09-30
TLE4675
Voltage Regulator
5.2
Electrical Characteristics Voltage Regulator
Electrical Characteristics: Voltage Regulator
VI = 13.5 V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
4.9
5.0
5.1
V
200 µA ≤ IQ ≤ 400 mA;
8 V ≤ VI ≤ 18 V
5.2.2
4.9
5.0
5.1
V
200 µA ≤ IQ ≤ 300 mA;
6 V ≤ VI ≤ 18V
5.2.3
4.9
5.0
5.1
V
200 µA ≤ IQ ≤ 200 mA;
18 V ≤ VI ≤ 32 V1)
5.2.4
4.9
5.0
5.1
V
200 µA ≤ IQ ≤ 20 mA;
32 V ≤ VI ≤ 45 V1)
5.2.1
Output Voltage
VQ
5.2.5
Load Regulation
steady-state
dVQ,load
-30
-5
–
mV
5.2.14
Overtemperature Shutdown
Threshold
Tj,sd
151
–
200
°C
IQ = 1 mA to 300 mA;
VI = 6 V
VI = 6 V to 32 V;
IQ = 5 mA
fripple = 100 Hz;
Vripple = 1 Vpp2)
IQ = 100 mA3)
IQ = 300 mA3)
0 V ≤ VQ ≤ 4.8 V
VI = 0 V; VQ = 5 V
VI = -16 V; VQ = 0 V
VI = -42 V; VQ = 0 V
Tj increasing2)
5.2.6
Line Regulation
steady-state
dVQ,line
–
5
20
mV
5.2.7
Power Supply Ripple
Rejection
PSRR
60
65
–
dB
5.2.8
Drop Out Voltage
Vdr
–
120
250
mV
5.2.9
Vdr = VI - VQ
–
250
500
mV
5.2.10
Output Current Limitation
401
550
850
mA
5.2.11
Reverse Current
-2
-1
–
mA
5.2.12
Reverse Current
at Negative Input Voltage
-5
-2
–
mA
-10
-3
–
mA
5.2.15
Overtemperature Shutdown
Threshold Hysteresis
Tj,hy
–
25
–
K
Tj decreasing2)
5.2.13
IQ,max
IQ
II
1) See typical performance graph for details.
2) Parameter not subject to production test; specified by design.
3) Measured when the output voltage VQ has dropped 100 mV from its nominal value.
Data Sheet
11
Rev. 1.0, 2008-09-30
TLE4675
Voltage Regulator
5.3
Typical Performance Characteristics Voltage Regulator
Output Voltage VQ vs.
Junction Temperature Tj
Output Capacitor Series Resistor ESRCQ
vs. Output Current IQ
100
VQ -Tj. v s d
ESR 2 2 u-IQ .v s d
ESRCQ
VQ [V]
C Q ≥ 22 µF;
6 V ≤ VI ≤ 28 V;
-40 °C ≤ Tj ≤ 150 °C
[Ω]
10
5.02
5.00
1
Stable
Region
4.98
0 .1
4.96
-40 -20
0
20 40
60
0.01
80 100 120 140
0
80
160
400
320
240
T j [°C]
IQ [mA]
Output Current Limitation IQ,max
vs. Input Voltage VI
Power Supply Ripple Rejection PSRR
SO A.v s d
PSRR.VSD
IQ,ma x
PSRR
[dB]
[mA]
Tj = 25 °C
T J = -40 °C
TJ = 25 °C
T J = 150 °C
T j = 125 °C
70
400
60
300
50
40
200
30
I Q = 10 mA
C Q = 22 µF ceramic
20
100
VI = 13 .5 V
Vripple = 1 Vpp
10
0
10
20
30
0
40
0,01
VI [V]
Data Sheet
0,1
1
10
100
1000
f [kHz]
12
Rev. 1.0, 2008-09-30
TLE4675
Voltage Regulator
Dropout Voltage Vdr vs.
Output Current IQ
Dropout Voltage Vdr vs.
Junction Temperature Tj
500
Vd r-IQ .v s d
Vd r- Tj. v s d
Vdr [mV]
Vdr [mV]
200
IQ = 400 mA
300
250
100
T j = 125 °C
200
IQ = 200 mA
150
100
20
T j = 25 °C
1
2
0
100
10
-40 -20
I Q [mA]
0
20
40
60
80 100 120 140
Tj [°C]
Reverse Current II vs.
Input Voltage VI
Reverse Output Current IQ vs.
Input Voltage VQ
0
0
IQ-VQ @ VI=0 v. s d
IQ [mA]
IQ = 1 mA
50
II [mA]
VI = 0 V
II-VI@VQ =0 .v s d
VQ = 0 V
-1
-0.4
T j = -40 °C
-1.5
-0.6
Tj = -40 °C
T j = 150 °C
-2
-0.8
Tj = 25 °C
-2.5
T j = 150 °C
0
1.6
3.2
-32
6
4 .8
-16
-8
0
VI [V]
V Q [V]
Data Sheet
- 24
13
Rev. 1.0, 2008-09-30
TLE4675
Current Consumption
6
Current Consumption
6.1
Electrical Characteristics Current Consumption
Electrical Characteristics: Current Consumption
VI = 13.5 V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, directions of currents as shown in Figure 6 (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
IQ ≤ 200 µA; Tj ≤ 25 °C
IQ ≤ 200 µA; Tj ≤ 85 °C
IQ = 250 mA
IQ = 400 mA
Min.
Typ.
Max.
–
65
80
µA
–
70
85
µA
6.1.3
–
6
10
mA
6.1.4
–
15
25
mA
6.1.1
Current Consumption
6.1.2
Iq = II - IQ
II
Supply
Iq
I
Q
IQ
Voltage Regulator
+
+
VI
CQ
CI
CurrentConsumption _ ParameterDefinition .vsd
Regulated
Output Voltage
VQ
LOAD
GND
Iq
Figure 6
Data Sheet
Parameter Definition
14
Rev. 1.0, 2008-09-30
TLE4675
Current Consumption
6.2
Typical Performance Characteristics Current Consumption
Current Consumption Iq vs.
Junction Temperature Tj
Current Consumption Iq vs.
Junction Temperature TjI
140
Iq -Tj .v s d
Iq [mA]
VI = 13 .5V
Iq1 0 0 u _ Tj. v s d
IQ = 200 µA
VI = 13 .5 V
Iq [µA]
IQ = 40 0 mA
10
100
IQ = 100 mA
1
80
60
IQ = 2 mA
0.1
40
0.01
-40 -20
0
20
60
40
80 100 120 140
0
-40
40
120
80
Tj [°C]
150
T j [°C]
Current Consumption Iq vs.
Output Current IQ
Current Consumption Iq vs.
Input Voltage VI
36
Iq -IQ .v s d
Iq [mA]
Iq _ v s ._ VIN.v s d
I q [mA]
10
Tj = 25 °C
RL = 50 Ω
24
RL = 500 Ω
1
VI = 13 .5 V
Tj = 125 °C
18
VI = 13.5 V
T j = 25 °C
0.1
12
6
0.01
0.2
1
2
10
0
100
4
6
8
VI [V]
IQ [mA]
Data Sheet
2
15
Rev. 1.0, 2008-09-30
TLE4675
Reset Function
7
Reset Function
7.1
Description Reset Function
The reset function contains several features:
Output Undervoltage Reset:
An output undervoltage condition is indicated by setting the reset output “RO” to “low”. This signal might be used
to reset a microcontroller during a low supply voltage condition.
Power-On Reset Delay Time
The power-on reset delay time td,PWR-ON allows a microcontroller and oscillator to start up. This delay time is the
time period from exceeding the upper reset switching threshold VRT,hi until the reset is released by switching the
reset output “RO” from “low” to “high”. The power-on reset delay time td,PWR-ON is defined by an external delay
capacitor CD connected to pin “D”, which is charged up by the delay capacitor charge current ID,ch starting from
VD = 0 V.
In case a power-on reset delay time td,PWR-ON different from the value for CD = 100nF is required, the delay
capacitor’s value can be derived from the specified value given in Item 7.2.15:
t d,PWR-ON
C D = ----------------------------------- × 100 nF
t d,PWR-ON,100nF
with
td,PWR-ON: Desired power-on reset delay time
td,PWR-ON,100nF: Power-on reset delay time specified in Item 7.2.15
CD: Delay capacitor required
The formula is valid for CD ≥ 10nF.For a precise calculation consider also the delay capacitor’s tolerance.
•
•
•
Undervoltage Reset Delay Time
Unlike the power-on reset delay time, the undervoltage reset delay td time considers a short output undervoltage
event, where the delay capacitor CD is assumed to be discharged to VD = VDST,lo only before the charging
sequence starts. Therefore, the undervoltage reset delay time td is defined by the delay capacitor charge
current ID,ch starting from VD = VDST,lo and the external delay capacitor CD.
A delay capacitor CD for a different undervoltage reset delay time as specified in Item 7.2.14 can be calculated
similar as above:
td
C D = ---------------- × 100 nF
t d,100nF
with
td: Desired reset delay time
td,100nF: Reset delay time specified in Item 7.2.14
CD: Delay capacitor required
The formula is valid for CD ≥ 10nF.For a precise calculation consider also the delay capacitor’s tolerance.
•
•
•
Data Sheet
16
Rev. 1.0, 2008-09-30
TLE4675
Reset Function
Reset Reaction Time
In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,lo, the
delay capacitor CD is discharged rapidly. Once the delay capacitor’s voltage has reached the lower delay
switching threshold VDST,lo, the reset output RO will be set to “low”.
Additionally to the delay capacitor discharge time trr,d an internal time trr,int applies. Hence the total reset reaction
time trr,total becomes:
t rr,total = t rr,int + t rr,d
with
•
•
•
trr,total: total reset reaction time
trr,int: Internal reset reaction time; see Item 7.2.16
trr,d: Delay capacitor discharge time. For a capacitor CD different from the value specified in Item 7.2.17, see
typical performance graphs.
Reset Output Pull-Up Resistor RRO:
The Reset Output RO is an open collector output requiring an external pull-up resistor to a voltage VIO, e.g. VQ. In
Item 7.2.7 a minimum value for the external resistor RRO is given for the case it is connected to VQ.
For applications, where the external pull-up resistor RRO has to be connected to a different voltage rail VIO than
VQ, the minimum pull-up resistor RRO can be calculated out of the minimum sink current capability given in
Item 7.2.6:
:
V IO – V RO,low
R RO = --------------------------------I RO, max
with
RRO: Reset pull up resistor
VIO: Voltage rail, where the pull up resistor is connected
VRO,low: Maximum allowed voltage level for a logic “Low” signal inside the application
Please be aware, that VIO should not exceed the ratings for the RO pin given in Item 4.1.3.
•
•
•
Reset Output “RO” Low for VQ ≥ 1 V
In case of an undervoltage reset condition reset output “RO” is held “low” for VQ ≥ 1 V, even if the input voltage VI
is 0 V. This is achieved by supplying the reset circuit from the output capacitor.
Data Sheet
17
Rev. 1.0, 2008-09-30
TLE4675
Reset Function
VIO
e.g. +3.3V
Supply
I
Q
VDD
Int.
Supply
Control
CQ
RO
I D ,ch
RR O
Reset
IR O
VD ST
VR T
or
MicroController
ID R ,dsch
GND
D
BlockDiagram_Reset.vsd
GND
CD
Figure 7
Data Sheet
Block Diagram Reset Circuit
18
Rev. 1.0, 2008-09-30
TLE4675
Reset Function
VI
t
VQ
t < trr,blank
VR H
VR T,hi
VR T,lo
1V
t
td
VD
VD ST,hi
VD ST,lo
t
VR O
VR O,low
td,PWR-O N
trr,total
td,PWR-O N
trr,total
td,PWR-O N
trr,total
1V
t
Thermal
Shutdown
Input
Voltage Dip
Undervoltage
Spike at
output
Overload
TimingDiagram_Reset_in_work.v s
Figure 8
Timing Diagram Reset
The timing diagram assumes that the external pull up resistor RRO is connected to the output voltage VQ.
Data Sheet
19
Rev. 1.0, 2008-09-30
TLE4675
Reset Function
7.2
Electrical Characteristics Reset Function
Electrical Characteristics: Reset Function
VI = 13.5 V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure 7 (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
Output Undervoltage Reset Comparator Default Values
7.2.1
Output Undervoltage
Reset Lower Switching
Threshold
VRT,lo
4.6
4.7
4.8
V
VI = 0 V
VQ decreasing
7.2.2
Output Undervoltage
Reset Upper Switching
Threshold
VRT,hi
4.7
4.8
4.9
V
VI within operating range
VQ increasing
7.2.3
Output Undervoltage
Reset Switching
Hysteresis
VRT,hy
50
100
–
mV
VI within operating range
7.2.4
Output Undervoltage
Reset Headroom
VRH
250
300
–
mV
Calculated Value:
VQ - VRT,lo
VI within operating range
IQ = 50 mA
–
0.2
0.8
V
VI = 0V
1 V ≤ VQ < VRT,low;
IRO = 0.3 mA
Reset Output RO
7.2.5
Reset Output Low Voltage VRO,low
7.2.6
Reset Output
Sink Current Capability
IRO,max
0.3
–
–
mA
VI = 0V;
1 V ≤ VQ < VRT,low;
VRO = 5V
7.2.7
Reset Output
External Pull-up Resistor
to VQ
RRO
3.0
–
–
kΩ
1 V ≤ VQ < VRT;
VRO ≤ 0.4V 1)
7.2.8
Reset Output
Leakage Current
IRO,leak
–
5
10
µA
VRO = 5 V
VD
VDST,hi
–
–
5
V
–
–
1.1
–
V
–
Reset Delay Timing
7.2.9
Delay Pin Output Voltage
7.2.10
Upper Delay
Switching Threshold
7.2.11
Lower Delay
Switching Threshold
VDST,lo
–
0.3
–
V
–
7.2.12
Delay Capacitor
Charge Current
ID,ch
–
3.5
–
µA
VD = 1 V
7.2.13
Delay Capacitor
Reset Discharge Current
IDR,dsch
–
70
–
mA
VD = 1 V
7.2.14
Undervoltage Reset Delay td,100nF
Time
16
23
30
ms
Calculated value;
CD = 100 nF2)
CD discharged to VDST,lo
Data Sheet
20
Rev. 1.0, 2008-09-30
TLE4675
Reset Function
Electrical Characteristics: Reset Function (cont’d)
VI = 13.5 V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure 7 (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
7.2.15
Power-on Reset Delay
Time
td,PWR-ON,100nF 23
33
43
ms
7.2.16
Internal Reset Reaction
Time
trr,int
–
10
15
µs
Calculated value;
CD = 100 nF2)
CD discharged to 0 V
CD = 0 nF
7.2.17
Delay Capacitor Discharge trr,d
Time
–
1
2
µs
CD = 100 nF
7.2.18
Total Reset Reaction Time trr,total
–
11
17
µs
Calculated Value:
trr,total = trr,d + trr,int
CD = 100 nF2)
1) Parameter not subject of production test.
2) For programming a different delay and reset reaction time, see Chapter 7.1 for calculation.
7.3
Typical Performance Characteristics Reset Function
Reset Delay Time td, td,PWR_ON versus
Delay Capacitor CD
Undervoltage Reset Switching Thresholds
VRO,lo, VRO,hi versus Tj
VRT-Tj .v s d
td -CD .v s d
td ,
VQ [V],
VRT [V]
td ,PWR- ON
Pin RADJ = GND
[ms]
5.0
VQ
100
Output Undervoltage
Reset Headroom VRH
4,9
4,8
4,7
td (typ.)
VRT,hi
10
VRT,lo
-40 -20
0
20
40
60
1
10
80 100 120 140
100
1000
CD [nF]
Tj [°C]
Data Sheet
td,PWR-ON (typ.)
21
Rev. 1.0, 2008-09-30
TLE4675
Package Outlines
8
Package Outlines
8.1
PG-TO252-5 Package
!
"
-).
-!8
PERSIDE
›
›
›
-!8
X ›
"
- ! "
)NCLUDESMOLDFLASHESONEACHSIDE
!LLMETALSURFACESTINPLATEDEXCEPTAREAOFCUT
Figure 9
Package Outline PG-TO252-5
2.2
6.4
10.6
5.8
0.8
5.36
HLG09226
Figure 10
Footprint PG-TO252-5, Reflow Soldering Type
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet
22
Rev. 1.0, 2008-09-30
TLE4675
Package Outlines
8.2
PG-TO263-5 Package
›
›
!
"
›
›
›
›
X ›
›
X -
! "
-!8
4YPICAL
-ETALSURFACEMIN89
!LLMETALSURFACESTINPLATEDEXCEPTAREAOFCUT
Figure 11
"
'04
Package Outline PG-TO263-5
4.6
16.15
9.4
10.8
0.6
1.1
7.9
HLG09441
Figure 12
Footprint PG-TO263-5, Reflow Soldering Type
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on packages, please visit our website:
http://www.infineon.com/packages.
Data Sheet
23
Dimensions in mm
Rev. 1.0, 2008-09-30
TLE4675
Revision History
9
Revision History
Revision
Date
Changes
1.0
2009-09-30
Final Data Sheet
Data Sheet
24
Rev. 1.0, 2008-09-30
Edition 2008-09-30
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.