Data Sheet, Rev. 1.01, April 2009 TLE8458Gx LIN Transceiver with integrated Low Drop Voltage Regulator LIN-LDO Automotive Power TLE8458Gx Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 5.2.1 5.2.2 5.2.2.1 5.2.2.2 5.2.3 5.2.4 5.2.5 5.2.5.1 5.2.5.2 5.2.5.3 5.2.6 5.2.7 5.3 5.4 5.5 Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Operation Mode State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Description of Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Stand-By Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Normal Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Normal Slope Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Software Flash Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Wake - Up Events in Sleep and Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Bus Wake - Up event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Local Wake - Up Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Mode Transition via EN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Over-Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical Characteristics EN and WK Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Power Up, Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6 6.1 6.2 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Description of Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Electrical Characteristics of the Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7 7.1 7.1.1 7.1.2 7.1.3 7.2 LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Under-Voltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TxD Time - Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIN Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics of the LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 22 23 23 24 8 8.1 8.1.1 8.2 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMC Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Compatibility to Stand-Alone LIN transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 30 30 30 9 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 10 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Data Sheet 2 6 6 7 7 Rev. 1.01, 2009-04-28 LIN Transceiver with integrated Low Drop Voltage Regulator LIN-LDO 1 TLE8458Gx Overview Features • • • • • • • • • • • • • • • • LIN Transceiver compliant to LIN 2.1 (20 kBit / s) or SAE J2602 (10.4 kbit / s) 5 V or 3.3 V Low Drop Voltage Regulator 50 mA output current capability Normal, Stop, and Sleep modes Wake - Up via bus from Sleep Mode Wake - Up from Local WK pin Very low quiescent current in Stop Mode Very low quiescent current in Sleep Mode Very high ESD Robustness ± 10 kV according IEC61000-4-2 Bus short to ground and VBat protection Software Flash mode Over-Temperature protection Pin- and function compatible to single LIN Transceivers, like TLE7259-2GE/GU Fully compatible to TLE8458E Green (RoHS compliant) product AEC Qualified PG-DSO-8-16 Description The TLE8458G and its derivatives TLE8458GV33, TLE8458GU and TLE8458GUV33, integrate a low drop voltage regulator and a LIN transceiver on one monolithic circuit. The device is suitable to supply microcontrollers and driving a LIN bus at the same time. The TLE8458Gx is pin compatible to stand-alone LIN transceivers like the TLE7259-2GE. The combination of a voltage regulator and a LIN transceiver on one circuit decreases the quiescent current for a typical application to a value of 8 µA, while the TLE8458G is still able to wake-up off a LIN bus signal or a signal change on the local wake-up input WK. Compliant to all LIN standards and with a wide operational supply range, the TLE8458G can be used in all automotive applications. Based on the Infineon Smart Power Technology SPT®, the TLE8458Gx provides excellent ESD robustness together with a very high electro-magnetic immunity (EMI). The TLE8458Gx reaches a very low level of electromagnetic emission (EME) within a broad frequency range. The TLE8458Gx family and the Infineon SPT® technology are AEC qualified and tailored to withstand the harsh conditions in the automotive environment. Type Package Marking Note TLE8458G PG-DSO-8-16 8458G TLE8458GV33 PG-DSO-8-16 8458GV3 TLE8458GU PG-DSO-8-16 8458GU TLE8458GUV33 PG-DSO-8-16 8458GUV3 VCC = 5 V; 20 kbit/s VCC = 3.3 V; 20 kbit/s VCC = 5 V; 10.4 kbit/s VCC = 3.3 V; 10.4 kbit/s Data Sheet 3 Rev. 1.01, 2009-04-28 TLE8458Gx Block Diagram 2 Block Diagram 8 VCC Overtem perature Shutdow n Bandgap R eference + 1 - VS C harge Pum p 7 Supply RBUS LIN Output Stage 6 D river M ode C ontrol T em p.Protection C urrent Lim it 2 EN R EN T xD Input 4 TxD T im eout R TxD R eceiver F ilter Vcc 1 W ake and Bus C om parator WK F ilter 5 3 Figure 1 Data Sheet RxD GND Block Diagram 4 Rev. 1.01, 2009-04-28 TLE8458Gx Pin Configuration 3 Pin Configuration 3.1 Pin Assignments RxD 1 8 VC C EN 2 7 VS WK 3 6 LIN TxD 4 5 GND Figure 2 Pin Configuration 3.2 Pin Definitions and Functions Table 1 Pin Definition Pin Symbol Function 1 RxD Receive Data Output; Low in dominant state, active low after a wake-up event on BUS or WK pin. 2 EN Enable Input; Integrated pull-down resistor, device set to normal operation mode when HIGH. 3 WK Wake-up Input; Active LOW, negative edge triggered, internal pull-up. 4 TxD Transmit Data Input; Integrated pull-down resistor, LOW in dominant state. Active LOW after wake-up via WK pin. 5 GND Ground 6 LIN Bus Output / Input; LIN bus input / Output, LOW in dominant state, Internal termination and pull - up current source. 7 VS VCC Battery Supply Input 8 Data Sheet Output Voltage; Decouple to GND with a capacitor CVcc ≥ 470 nF, ESR < 6 Ω at 10 kHz, Active during Normal Mode, disabled in Sleep Mode. 5 Rev. 1.01, 2009-04-28 TLE8458Gx General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 2 Absolute Maximum Ratings 1) All voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. -0.3 – 40 V LIN2.1 Param 11 P_4.1.1 -40 – 40 V – P_4.1.2 Logic Voltages at EN, TxD, RxD pin VL,max -0.3 – 5.5 V – P_4.1.3 Output Voltage at VCC pin VCC -0.3 – 5.5 V Static P_4.1.4 Tj Tstg -40 – 150 °C – P_4.1.5 -55 – 150 °C – P_4.1.6 – 2 kV HBM2) P_4.1.7 kV 2) P_4.1.8 3) P_4.1.9 Voltages Supply Voltage on VS pin VS Input Voltage on LIN, WK pin versus VLIN,G GND Temperatures Junction Temperature Storage Temperature ESD Resistivity VESD,HBM -2 ESD VS, WK, LIN versus GND VESD,HBM -8 ESD Resistivity all pins versus GND VESD,CDM -750 ESD all pins – – 8 750 V HBM CDM 1) Not subject to production test; specified by design. 2)ESD susceptibility “HBM” according to AEC-Q100-002D. 3)ESD susceptibility “CDM” according to ESDA STM 5.3.1 Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 6 Rev. 1.01, 2009-04-28 TLE8458Gx General Product Characteristics 4.2 Functional Range Table 3 Functional Range Parameter Symbol Min. Typ. Max. Extended Supply Range VS(EXT) 5.5 – Supply Voltage for Normal Operation VS(Nor) 7 Junction Temperature Tj -40 Values Unit Note / Test Condition Number 40 V Parameter deviations possible P_4.2.1 – 27 V LIN 2.1 Param. 11 P_4.2.3 – 150 °C – P_4.2.2 Note: Within the functional range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Characteristics Table 4 Thermal Resistance Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Thermal Resistance Junction to Case1) PG-DSO-8-16 RthJC,G – 55 – K/W 2) P_4.3.1 Junction to Ambient PG-DSO-8-16 RthJA,G – 120 – K/W 2)3) P_4.3.2 150 – 200 °C 4) P_4.3.5 K 4) P_4.3.6 °C 4) P_4.3.7 K 4) P_4.3.8 Thermal Shutdown Junction Temperature VCC Shutdown Temperature VCC Thermal Shutdown Hysteresis LIN Shutdown Temperature LIN Thermal Shutdown Hysteresis TSD,Vcc ∆TSD,Vcc TSD,LIN ∆TSD,LIN – 150 – 35 – 10 – 200 – 1) Device versions TLE8458G, TLE8458GV33, TLE8458GU, TLE8458GUV33 2) Not subject to production test. Simulated thermal resistance 3) The RthJA values are according to Jedec JESD51-2,-7 at natural convection on 2s2p board for 1 W. Package was simulated on a 76.2 × 114.3 × 1.5 mm³ board with 2 inner copper layers (70 µm thick). 4) Not subject to production test, specified by design. Data Sheet 7 Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 5 Mode Control 5.1 Operation Mode State Diagram 6WDUW8S 3RZHU8S :DNH8S6RXUFHLQGLFDWLRQRQWKH 3LQV5['7['LQ6WDQG%\0RGH 5[' 7[' 6WDQGE\0RGH 9FFRQ %86RII :DNH6RXUFH :.SLQ /,1%XV 3RZHUXS ZHDNSXOOGRZQWRVHHKLJKVLJQDOD H[WHUQDOSXOOXSUHVLVWRULVUHTXLUHG (1 *RWR 1RUPDO WUPRGH (1 1RUPDO2SHUDWLRQ0RGH 1RUPDO6ORSH0RGH (1 7[' 9FFRQ %86RQ (1 6RIWZDUH )ODVK0RGH 9FFRQ %86RQ (1 (1 7[' *RWR 6OHHS WPRGH (1 7[' *RWR 6WRS WPRGH (1 (1 7[' 6OHHS0RGH 9FFRII %86RII (1 Figure 3 Data Sheet 7[' *RWR 6OHHS WPRGH :.SLQRU :DNH8S%86 6WRS0RGH 7[' 9FFRQ %86RII (1 :.SLQRU :DNH8S%86 Operation Mode State Diagram 8 Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 5.2 Description of Mode Control The TLE8458Gx has 4 major operation modes: • • • • Normal Operation Mode Stand-By Mode Sleep Mode Stop Mode The Normal Operation mode contains 2 sub-operation modes, which differentiate by the slew rate control of the LIN Bus signal (see Figure 3). Sub-operation modes with different slew rates on the BUS pin: • • Normal Slope Mode, for data transmission rates up to 20 kBaud Software Flash mode, for programming of the external microcontroller The operation mode of the TLE8458Gx is selected by the EN pin and the TxD pin. (see Table 5, see Figure 4). Table 5 Operation Modes Mode EN TxD RxD VCC LIN Bus Termination Comments Normal Operation HIGH Mode LOW LOW HIGH1) HIGH ON 30 kΩ (typical) TxD drives the data to the bus, RxD indicates the data on the bus. Stand-By Mode LOW LOW LOW 2) HIGH HIGH ON 30 kΩ (typical) In Stand-By Mode the RxD and TxD pins indicate the wake-up source Sleep Mode LOW HIGH Float OFF High Impedance For Sleep Mode TxD needs to be HIGH for the time tmode1 Stop Mode LOW LOW Float ON High Impedance For Stop Mode TxD needs to be LOW for the time tmode1 1) The TxD pin acts as an input 2) The TxD pin acts as an output and indicates the wake-up source.The TxD input needs an external termination to indicate a HIGH or a LOW signal. The external termination could be a pull-up resistor or an active microcontroller output. Data Sheet 9 Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 6WDQG%\0RGHWR1RUPDO2SHUDWLRQ0RGH W0RGHB12 (1 WWRUHF 7[' (1 7[' (1 7[' (1 7[' WPRGH 6WRS0RGH Figure 4 Data Sheet 'RQ¶W&DUH 6OHHS0RGH 1RUPDO2SHUDWLRQ0RGHFDQEHHLWKHU1RUPDO6ORSH0RGHRU6RIWZDUH)ODVK0RGH Mode Transition 10 Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 5.2.1 Stand-By Mode The Stand-By Mode is an idle operation mode, which disables the communication to the LIN bus. The TLE8458Gx enters automatically the Stand-By Mode after a power-up. By setting the EN pin to HIGH, the operation mode changes to Normal Operation Mode, regardless of the signal applied to the TxD pin. The TLE8458Gx can be transferred to Stand-By mode by the following options: • • • • After power - up on the supply VS, the TLE8458Gx starts in Stand-By Mode. From Sleep Mode or from Stop Mode the TLE8458Gx changes to Stand-By Mode if a Wake - Up event occurs on the LIN bus. From Sleep Mode or from Stop Mode the TLE8458Gx changes to Stand-By Mode if a Wake - Up event occurs on the local Wake input WK. In case of an under - voltage event on VS, the TLE8458Gx changes to Stand-By Mode regardless of selected operation mode. In Stand-By mode the external power supply VCC is active and LIN bus output stage is disabled. The TLE8458Gx provides the following functionality in Stand-By Mode: • • • • • • • The power supply VCC is active and functional. The LIN transceiver output stage is disabled, no communication to the LIN bus is possible. The LIN transceiver bus input receiver is disabled. The LIN bus is terminated by the 30 kΩ. Both digital pins, the TxD pin and the RxD pin act as output pins and indicate a Wake - Up or a Power - Up event2). The EN input pin is active. By setting the EN pin to HIGH the TLE8458Gx changes the operation mode to Normal Operation Mode (see Figure 3). The Wake - Up logic is disabled. Wake-Up events don’t trigger an operation mode change. Table 6 Logic table for Wake - Up monitoring1) Power - Up Wake - Up event RxD TxD2) Comments Yes No HIGH LOW Power Up event No Via LIN Bus LOW HIGH Wake - Up via LIN Bus No Via WK Pin LOW LOW Wake - Up via local Wake pin WK 1) The Wake - Up monitor is only active in Stand-By Mode 2) The TxD input needs an external termination to indicate a “High” or a “Low” signal. The external termination could be a pullup resistor or an active microcontroller output. 5.2.2 Normal Operation Mode The TLE8458Gx enters the Normal Operation Mode after the microcontroller sets EN to “High” (see Figure 4). In Normal Operation mode the LIN bus receiver and the LIN bus transmitter are active. The TLE8458Gx converts the logical HIGH and LOW signals on the TxD input pin to DOMINANT and RECESSIVE signals to the LIN bus. Simultaneously the input receiver of the TLE8458Gx converts the DOMINANT and RECESSIVE signals on the LIN bus to HIGH and LOW signals to the RxD output. In Normal Operation mode the output voltage VCC is active and the bus termination is set to 30 kΩ. Normal Slope Mode and the Software Flash Mode are Normal Operation Modes. In these two sub-modes the behavior of the power-supply VCC and the bus termination are the same. Per default the TLE8458G always enters into Normal Slope Mode, either from Sleep Mode, Stop Mode or from Stand-By Mode. The Software Flash Mode can only be entered from Normal Slope mode. In order to avoid any bus disturbance during a mode change, the output stage of the TLE8458Gx is disabled and set to recessive state during the mode change procedure. To release the TLE8458Gx for data communication on the LIN bus, the TxD pin needs to be set to HIGH for the time ttorec after the operation mode change. Data Sheet 11 Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 5.2.2.1 Normal Slope Mode In Normal Slope Mode the maximum data transmission rate of the LIN transceiver devices TLE8458G, TLE8458GV33, TLE8458GU and TLE8458GUV33 is limited by the slope control mechanism of LIN output signal. The limitation of the slew rate of the LIN output signal results in an optimized radiated emission fulfilling automotive EMC requirements. The data transmission rate of the TLE8458G and the TLE8458GV33 is limited to 20 kBaud in Normal Operation Mode and the devices are compliant to the specification LIN2.1 The data transmission rate of the TLE8458GU and the TLE8458GUV33 is limited to 10,4 kBaud in Normal Operation Mode. These two devices are compliant to the SAE-J2602-2 specification. 5.2.2.2 Software Flash Mode Software Flash Mode is a Normal Operation Mode and it is possible to transmit data to the LIN bus and receive data from the LIN bus. The slope control mechanism of the LIN transmitter output stage is disabled and therefore it is possible to reach higher data transmission rates, disregarding the EMC limitation of the LIN network. The Software Flash Mode can be used for programming the external microcontroller via the LIN bus, got example during the production flow of the ECU. The Software Flash Mode can only be entered from Normal Slope Mode (see Figure 3). By setting the EN pin to low for the time tfl1 and by generating a falling and a rising edge at the TxD pin with the time tfl2 and tfl3 during the low phase of the EN pin, the TLE8458Gx changes to the Software Flash Mode (see Figure 5). Vice versa, the TLE8458Gx changes from Software Flash Mode to Normal Slope Mode by applying the same sequence to the EN pin and the TxD pin. In any case, regardless if the device is in Normal Slope Mode or in Software Flash Mode, a LOW signal on the EN pin changes the operation mode to Sleep Mode or Stop Mode. The slope control mechanism will be activated, when the device changes to the Normal Operation Mode again. Software Flash Mode Normal Mode tfl1 EN TxD Normal Mode tfl2 tfl3 tfl1 tfl2 tfl3 tfl3 tfl3 TO20070515.vsd Figure 5 Data Sheet Software Flash Mode 12 Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 5.2.3 Stop Mode The Stop Mode is a Low Power Mode, meaning the quiescent current of the TLE8458Gx is reduced to a minimum, while the device is still able to recognized wake - up events. The following functions are available in Stop Mode: • • • • • • • • The power supply VCC is active and functional. The LIN transceiver output stage is disabled, no communication to the LIN bus is possible. The LIN transceiver input receiver is disabled. The internal LIN bus termination is switched off. The TxD input and the RxD output is inactive. The EN input is active. A HIGH signal on the EN pin changes the operation mode to Normal Operation Mode. The LIN bus Wake - Up receiver is active, a Wake - Up event on the LIN bus changes the operation mode to Stand-By Mode. The wake input WK is active, a Wake - Up event on the WK pin changes the operation mode to Stand-By Mode. Entering Stop Mode is only possible from the Normal Operation Mode, regardless if the device is in Normal Slope Mode or Software Flash Mode. Setting the signal on the EN pin to LOW, followed by a LOW signal on the TxD pin for the time tMode1 changes the operation mode to Stop Mode (see Figure 4). 5.2.4 Sleep Mode The Sleep Mode is a Low Power Mode as well, in comparison to the Stop Mode, the quiescent current of the TLE8458Gx is even further reduced. In Sleep Mode the TLE8458Gx is able as well to recognized Wake - Up events. The Wake - Up behavior in Sleep Mode is the same as in Stop Mode. The only difference between Sleep Mode and Stop Mode is, that in Stop Mode the output voltage VCC is active, in Sleep Mode the output voltage VCC is disabled. Sleep Mode can be entered from Normal Operation Mode by setting the EN pin to LOW and simultaneously setting the TxD pin to HIGH for the time tMode1 (see Figure 4). The Sleep Mode can be also entered from Stop Mode, by setting the signal on the TxD pin to HIGH for the time tMode1. Data Sheet 13 Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 5.2.5 Wake - Up Events in Sleep and Stop Mode A Wake - Up event in Sleep Mode or Stop Mode changes the operation mode of the TLE8458Gx to Stand-By Mode. There are 3 different options to wake-up the TLE8458Gx from Sleep Mode or Stop Mode: • • • A bus Wake - Up event, caused by a message on the LIN bus. A local Wake - Up event, caused by a logical LOW signal on the WK pin. A signal change to logical HIGH on the EN pin. 5.2.5.1 Bus Wake - Up event A falling edge on the LIN bus, followed by a dominant bus signal for the time t > twk,Bus causes a bus Wake - Up or also called remote Wake - Up. The mode change becomes active with the following rising edge on the LIN bus (see Figure 6). In Stand-By Mode the Wake - Up source is indicated by the TxD and RxD pins (see Table 6). /,1%866LJQDO 9%86 9%86ZN 9%86GRP W:.%XV 6OHHS0RGH 6WDQG%\0RGH 6WRS0RGH 6WDQG%\0RGH 9&& 9&& 1RWH,Q6OHHS0RGHWKH2XWSXW9ROWDJH9&&LVGLVDEOHGDQGZLOOEHDFWLYHGE\ DPRGHFKDQJHWR6WDQG%\0RGH,Q6WRS0RGHWKH2XWSXW9ROWDJH9&&LV DFWLYHDQGUHPDLQVDFWLYHDIWHUWKHPRGHFKDQJHWR6WDQG%\0RGH Figure 6 Data Sheet Bus Wake - Up 14 Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 5.2.5.2 Local Wake - Up Event A wake - up via LOW signal on the pin WK is called local Wake - Up. A falling edge of the signal on the pin WK followed by a LOW signal for the time t > tWK change the operation mode from Sleep Mode or Stop Mode to StandBy Mode. In the case the LOW signal is shorter then the time t < tWk, the wake - up is ignored and the TLE8458G remains in Sleep Mode or Stop Mode. In Stand-By Mode the wake - up source is indicated by the TxD and RxD pins (see Table 6). :.6LJQDO 9:. 9:./ W:. 6OHHS0RGH 6WDQG%\0RGH 6WRS0RGH 6WDQG%\0RGH 9&& 1RWH,Q6OHHS0RGHWKH2XWSXW9ROWDJH9&&LVGLVDEOHGDQGZLOOEHDFWLYHGE\ DPRGHFKDQJHWR6WDQG%\0RGH,Q6WRS0RGHWKH2XWSXW9ROWDJH9&&LV DFWLYHDQGUHPDLQVDFWLYHDIWHUWKHPRGHFKDQJHWR6WDQG%\0RGH 9&& Figure 7 Local Bus Wake . Up 5.2.5.3 Mode Transition via EN pin The EN pin is used for the mode selection. In case the power supply VCC is present, like in Stop Mode or Sleep Mode, the TLE8458Gx can be directly transferred into Normal Operation Mode by setting the EN pin to HIGH. An integrated pull - down resistor at the EN pin avoids mode changes due to floating signals on the EN input. The TLE8458Gx changes the operation mode to Normal Operation Mode, from Stop Mode or from Sleep Mode if the EN pin is HIGH for the time t > tMode1 (see Figure 8). An integrated hysteresis on the EN pin avoids bit toggling. The mode transition via the EN pin will not be indicated in Stand-By Mode. (16LJQDO 9(1 9(121 (1+\VWHUHVLV 9(12)) W0RGHB12 6WRS0RGH 6WDQG%\0RGH Figure 8 Data Sheet W0RGH 1RUPDO2SHUDWLRQ0RGH 6OHHS0RGH Mode Transition via EN pin 15 Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 5.2.6 Power Up After a power - up the device enters per default into Stand - By Mode. Above VS,PU the VCC output voltage follows the supply VS closely. In Stand - By Mode, the power up is indicated by a HIGH signal on the RxD pin and a LOW signal on the TxD pin. 3RZHU'RZQ 6WDQGE\0RGH 3RZHU'RZQ 96 96 9&& 9638 9638 9&& 5[' 95['+ 7[' (1 Figure 9 Power Up Level 5.2.7 Over-Temperature Protection The TLE8458Gx is protected against thermal over-heating. Over-heating could be caused by a short circuit on the VCC power supply or by a permanent short on the LIN bus combined with a high ambient temperature. In case of an over-temperature event, the TLE8458Gx eliminates the root cause of the over-temperature event. Two different temperature sensors are implemented inside the TLE8458Gx. One temperature sensor protects the voltage regulator and controls the output voltage VCC, the second temperature sensor protects the LIN transmitter output stage. In case the junction temperature on the LIN output stage raises above the threshold T > TSD,LIN, the temperature sensor disables the LIN output stage. The TLE8458Gx is still able to receive data from the LIN bus. If the temperature falls below the threshold, T < TSD,LIN, the output stage will be enabled and the communication can start again. An integrated hysteresis on the temperature sensor avoids toggling during over-temperature events. An over-temperature event on the LIN bus will not cause any operation mode change. In case the junction temperature on the VCC power output stage raises above the threshold T > TSD,VCC, the temperature sensor shuts down the output voltage VCC. If the junction temperature falls below the threshold, T > TSD,VCC, the power supply VCC will be enabled again. An integrated hysteresis on the temperature sensor avoids toggling during over-temperature events. Data Sheet 16 Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 5.3 Current Consumption Table 7 Electrical Characteristics: Current Consumption VS = 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Current Consumption Current Consumption in Normal Mode at VS in LIN Recessive State IS_rec – 1.3 2.2 mA Recessive state, without RL; VTxD = VCC; ICC = 100 µA P_5.3.1 Current Consumption in Normal Mode at VS in LIN Dominant State IS_dom – 1.8 3.2 mA Dominant state, without RL; VTxD = 0 V; ICC = 100 µA P_5.3.2 Current Consumption at VS in Sleep Mode IS_sleep – 8 12 µA P_5.3.3 Sleep Mode, -40 °C < Tj < 85 °C; VLIN = VS; VCC = 0 V Current Consumption at VS in Stop Mode IS_stop – – 40 µA P_5.3.4 Stop Mode; -40 °C < Tj < 85 °C; VLIN = VS; VCC = 5 V 40 72 µA Current Consumption IS_sleep_short 6 in Sleep Mode, Bus Shorted to Ground Data Sheet 17 Sleep Mode, P_5.3.5 VLIN = 0 V VCC = 0 V Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 5.4 Electrical Characteristics EN and WK Pins Table 8 Electrical Characteristics: Mode Pins 7 V < VS < 27 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. VEN,H VEN,L VEN,hys REN tmode1 2 – – V – P_5.4.6 – – 0.8 V – P_5.4.7 – 0.3 – V – P_5.4.8 20 40 80 kΩ – P_5.4.9 50 – 150 µs – P_5.4.10 tmode2 tmode3 tMode_NO 0 – 50 µs Stop Mode transfer P_5.4.11 10 – – µs Stop Mode transfer P_5.4.12 – 10 – µs 1) Time for Flash Mode activation tfl1 25 – 50 µs 1) TxD Time for Flash Mode activation tfl2 5 – – µs 1) P_5.4.14 TxD Time for Flash Mode activation tfl3 10 – – µs 1) P_5.4.15 VS - 1 – V -60 -30 -3 µA High Level Leakage Current IWK,L -5 – 5 µA VS = 13.5 V VS = 13.5 V VWK = 0V VS = 13.5 V VS = 0 V; VWK = 40 V P_5.4.16 – VS + 3 VS - 4 V -0.3 Pull-up Current VWK,H VWK,L IWK,PU Dominant Time for Wake-up tWK 30 – 150 µs – P_5.4.20 EN Pin HIGH Level Input Voltage LOW Level Input Voltage EN Input Hysteresis EN pull-down Resistance Filter Time for Mode Change TxD low delay time TxD high time Time for Mode Change from Stop or Sleep Mode to Normal Operation Mode Transfer to Normal P_5.4.1 Operation Mode EN pin low P_5.4.13 WK Pin High Level Input Voltage Low Level Input Voltage P_5.4.17 P_5.4.18 P_5.4.19 1) Not subject to production test, specified by design Data Sheet 18 Rev. 1.01, 2009-04-28 TLE8458Gx Mode Control 5.5 Power Up, Power Down Table 9 Electrical Characteristics: Power Up Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Vs Pin VS Power Up Voltage Symbol VS,PU Values Min. Typ. Max. – – 3.5 Threshold Data Sheet 19 Unit Note / Test Condition Number V ICC = 40 mA, VCC > 3.0 V P_5.5.21 Rev. 1.01, 2009-04-28 TLE8458Gx Voltage Regulator 6 Voltage Regulator 6.1 Description of Voltage Regulator The TLE8458G has a monolithic integrated voltage regulator dedicated for microcontroller supplies under harsh automotive environment conditions. Due to its ultra low current consumption, the TLE8458Gx is perfectly suited for applications permanently connected to a battery. Additionally, the regulator is switched off in Sleep Mode to achieve a very low quiescent current. The TLE8458Gx is equipped with protection functions against overloading, short circuits, and over temperature. 6.2 Electrical Characteristics of the Voltage Regulator Table 10 Electrical Characteristics: Voltage Regulator VS = 5.5 V to 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. Output Voltage for TLE8458G, TLE8458GU VCC,5 4.9 5 5.1 V 1 mA < ICC < 50 mA; 5.5 V < VS < 18 V P_6.2.1 Output Voltage for TLE8458G, TLE8458GU VCC,5 4.9 5 5.1 V ICC = 10 mA; 5.5 V < VS < 40 V P_6.2.8 Output Voltage for TLE8458GV33,TLE8458GUV33 VCC,3.3 3.234 3.3 3.366 V 1 mA < ICC < 50 mA; 5.5 V < VS < 18 V P_6.2.2 Output Voltage for TLE8458GV33, VCC,3.3 TLE8458GUV33 3.234 3.3 3.366 V ICC = 10 mA; 5.5 V < VS < 40 V P_6.2.9 ICC,lim 50 – – mA P_6.2.3 Output Current Limitation ICC,lim TLE8458GV33, TLE8458GUV33 50 – – mA VCC,5 > 4.5V VS = 13.5 V VCC3,3 > 2.8V VS = 13.5 V ICC = 40 mA1) Output Current Limitation TLE8458G, TLE8458GU P_6.2.10 Output Voltage Drop VDR – 250 500 mV Load Regulation ∆VCC,LO – 25 50 mV 1 mA < ICC < 50 mA VS =13.5 V P_6.2.5 Line Regulation ∆VCC,LI – 25 50 mV ICC = 1 mA; 6 V < VS < 28 V P_6.2.6 PSRR – f = 100 Hz; Vr = 0.5 Vpp2)3) 1) Measured when the output voltage has dropped 100 mV from the nominal value obtained at VS = 13.5 V; Power Supply Ripple Rejection 60 – dB P_6.2.4 P_6.2.7 2) Voltage of ripple Vr is 0.5 V peak-to-peak 3) Not subject to production test; specified by design. Data Sheet 20 Rev. 1.01, 2009-04-28 TLE8458Gx LIN Transceiver 7 LIN Transceiver 7.1 Functional Description The LIN Bus is a single wire, bi-directional bus, used for in-vehicle networks. The LIN Transceiver implemented inside the TLE8458Gx is the interface between the microcontroller and the physical LIN Bus. (see Figure 1 and Figure 15). The digital output data from the microcontroller are driven to the LIN bus via the TxD input pin on the TLE8458Gx. The transmit data stream on the TxD input is converted to a LIN bus signal with optimized slew rate to minimize the EME level of the LIN network. The RxD output sends back the information from the LIN bus to the microcontroller. The receiver has an integrated filter network to suppress noise on the LIN Bus and to increase the EMI (Electro Magnetic Immunity) level of the transceiver. Two logical states are possible on the LIN bus according to the LIN Specification 2.1 (see Figure 10): In dominant state, the voltage on the LIN bus is set close to the GND level. In recessive state, the voltage on the LIN bus is set close to the supply voltage VS. By setting the TxD input of the TLE8458Gx to LOW the transceiver generates a dominant level on the LIN interface pin. The RxD output reads back the signal on the LIN bus and indicates a dominant LIN bus signal with a logical LOW to the microcontroller. Setting the TxD pin to HIGH the transceiver TLE8458Gx sets the LIN interface pin LIN to the recessive level, at the same time the recessive level on the LIN bus is indicated by a logical “High” on the RxD output. Every LIN network consists of a master node and one or more slave nodes. To configure the TLE8458Gx for master node applications, a resistor in the range of 1 kΩ and a reverse diode must be connected between the LIN bus and the power supply VS. (see Figure 15). 9&& 5HFHVVLYH 'RPLQDQW 5HFHVVLYH 7[' W 96 5HFHVVLYH 'RPLQDQW 5HFHVVLYH /,1 W 9&& 5HFHVVLYH 'RPLQDQW 5HFHVVLYH 5[' W Figure 10 Data Sheet LIN Bus Signals 21 Rev. 1.01, 2009-04-28 TLE8458Gx LIN Transceiver 7.1.1 Under-Voltage Detection A dropping power supply VS on a local ECU can effect the communication of the whole LIN network. To avoid any blocking of the LIN network by a local ECU the TLE8458Gx has an integrated Power - On reset at the supply VS and an Under-Voltage detection at the supply VS. In case the supply voltage VS is dropping below the Power-On reset level VS < VS,UV,PON, the TLE8458Gx changes the operation mode to Stand-By mode. In Stand-By mode the output stage of the TLE8458Gx is disabled and no communication to the LIN bus is possible. The internal bus termination remains active as well as the VCC output voltage. (see Figure 1 and Figure 11). In Stand-By mode the RxD pin indicates the low power supply condition with a logical HIGH signal. Setting the EN pin to logical HIGH changes the operation mode back to Normal Operation mode. In case the supply voltage VS is dropping below the under - voltage reset level VS < VSUV (see Figure 11), the TLE8458Gx disables the output and receiver stages. This feature secures the communication on the LIN bus. If the power supply VS reaches a higher level as the under - voltage reset level VS > VSUV the TLE8458Gx continues with normal operation. A mode change only applies if the power supply VS drops below the power on reset level (VS < VS,UV,PON). 6XSSO\YROWDJH9V 3RZHURQUHVHWOHYHO9689321 3RZHU2QUHVHW 1RUPDO2SHUDWLRQ 0RGH %ODQNLQJWLPHW89 5HVHWDQG &RPPXQLFDWLRQ EORFNHG 6WDQG%\ 0RGH 6XSSO\YROWDJH9V 8QGHU9ROWDJHOHYHO9689 8QGHU9ROWDJH 'HWHFWLRQ96 3RZHURQUHVHWOHYHO9689321 %ODQNLQJWLPHW89 1RUPDO2SHUDWLRQ 0RGH Figure 11 Data Sheet 1RUPDO2SHUDWLRQ 0RGH &RPPXQLFDWLRQ EORFNHG Under-Voltage Detection 22 Rev. 1.01, 2009-04-28 TLE8458Gx LIN Transceiver 7.1.2 TxD Time - Out If the TxD signal is dominant for the time t > ttimeout, the TxD time - out function deactivates the LIN transmitter output stage. The device remains in recessive state. The TxD time - out functions prevents the LIN bus from being blocked by a permanent LOW signal on the TxD pin, caused by a failure. The transmitter output stage is released again, after a rising edge on the TxD pin has been detected (see Figure 12). 5HFRYHU\RIWKH PLFURFRQWUROOHUHUURU 7['7LPH2XWGXHWR PLFURFRQWUROOHUHUURU 1RUPDO&RPPXQLFDWLRQ 5HOHDVHDIWHU7[' 7LPHRXW WWLPHRXW WWRUHF 1RUPDO&RPPXQLFDWLRQ 7[' W /,1 W Figure 12 TxD Time-Out function 7.1.3 LIN Specifications The LIN network is standardized by international regulations. The devices TLE8458G and the TLE8458GV33 are compliant to the specification LIN 2.1. The physical layer specification LIN 2.1 is a super set of the previous LIN specifications, like LIN 2.0 or LIN 1.3. The TLE8458G and the TLE8458GV33 have been qualified according to the LIN 2.1 standard, conformance test results are available on request. The devices TLE8458GU and TLE8458GUV33 are compliant to the physical layer standard SAE-J2602-2. The SAE-J2602-2 standard differs from the LIN 2.1 standard mainly by the lower data rate (10.4 kbit / s) and the higher hysteresis on the LIN output signals. The TLE8458GU and the TLE8458GUV33 have been qualified according to the SAE-J2602-2 standard, conformance test results are available on request. Data Sheet 23 Rev. 1.01, 2009-04-28 TLE8458Gx LIN Transceiver 7.2 Electrical Characteristics of the LIN Transceiver Table 11 Electrical Characteristics: LIN Transceiver Supply VS = 7 V to 27 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Unit Note / Test Condition Typ. Max. Number Voltage Supply Undervoltage switch-off Power-On Reset Level Blanking Time for UnderVoltage switch-off Vsuv 4 VS,UV,PON – tuv – – 5 V – P_7.2.1 3.5 – V 1) P_7.2.52 10 – µs 1) P_7.2.2 1) Not subject to production test; specified by design. Table 12 Electrical Characteristics: LIN Transceiver VS = 7 V to 27 V, Tj = -40 °C to +150 °C, RL = 500 Ω, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. VRxD,H 0.8 × – – V VRxD,L – – 0.2 × V HIGH Level Input Voltage VTxD,H 0.7 × – – TxD Input Hysteresis VTxD,hys – 0.12 × – VTxD,L – RTxD ITxD,L – 1.5 Number Receiver Output (RxD pin) HIGH Level Output Voltage LOW Level Output Voltage IRxD = -1.6 mA; Vbus = VS IRxD = 1.6 mA Vbus = 0 V P_7.2.3 V Recessive State P_7.2.5 mV – P_7.2.6 0.3 × V Dominant State P_7.2.7 300 – kΩ P_7.2.8 3 10 mA VTxD = 0 V VTxD = 0.9 V VCC VCC P_7.2.4 Transmission Input (TxD pin) LOW Level Input Voltage TxD Pull-down Resistance TxD Low Level Current (Standby Mode, after Wake-up via WK) Data Sheet VCC VCC – VCC 24 P_7.2.9 Rev. 1.01, 2009-04-28 TLE8458Gx LIN Transceiver Table 12 Electrical Characteristics: LIN Transceiver (cont’d) VS = 7 V to 27 V, Tj = -40 °C to +150 °C, RL = 500 Ω, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Note / Test Condition Number Max. LIN Bus Receiver (LIN Pin) Receiver Threshold Voltage, Recessive to Dominant Edge VBus,rd 0.4 × 0.45 × – Receiver Dominant State VBus,dom – – Receiver Threshold Voltage, Dominant to Recessive Edge VBus,dr – Receiver Recessive State VBus,rec Receiver Center Voltage Receiver Hysteresis V VBus,rec < VBus < 27 V P_7.2.10 V LIN2.1 Param. 17 P_7.2.11 0.55 × 0.60 × V VS VBus,rec < VBus < 27 V P_7.2.12 VS 0.6 × – – V LIN2.1 Param 18 P_7.2.13 VBus,c 0.475 × VS 0.5 × 0.525 × VS V LIN2.1 Param 19 P_7.2.14 VBus,hys 0.07 × 0.1 × 0.175 × VS V Vbus,hys = Vbus,rec - Vbus,dom P_7.2.15 VS VS 0.4 × VS VS VS VS VS LIN2.1 Param 20 VBus,wk 0.40 × 0.5 × – P_7.2.16 VS 0.6 × V VS tWK,Bus 30 – 150 µs – P_7.2.17 0.8 × – VS V VTxD = high Level P_7.2.18 Bus Dominant Output Voltage VBUS,do – – 1.2 V P_7.2.53 Bus Dominant Output Voltage VBUS,do – – 0.2 x V Bus Dominant Output Voltage VBUS,do – – 2.0 V 40 100 150 mA VTxD = 0 V; 6.0 V ≤ VS ≤ 7.3 V; VTxD = 0 V; 7.3 V ≤ VS ≤ 10.0 V; VTxD = 0 V; 10.0 V ≤ VS ≤ 18.0 V; VBUS = 13.5 V; Wake-up Threshold Voltage Dominant Time for Bus Wake-up VS LIN Bus Transmitter (LIN Pin) Bus Recessive Output Voltage Bus Short Circuit Current VBUS,ro IBUS,sc VS VS P_7.2.19 P_7.2.20 P_7.2.23 LIN2.1 Param 12 Leakage Current Loss of Ground IBUS,lk -1000 -450 0 µA VS = 0 V; VBUS = -12 V; P_7.2.24 LIN2.1 Param 15 Leakage Current Loss of Battery IBUS,lk – – 5 µA VS = 0 V; VBUS = 18 V; P_7.2.25 LIN2.1 Param 16 Leakage Current IBUS,lk -1 – – mA VS = 18 V; VBUS = 0 V; P_7.2.26 LIN2.1 Param 13 Leakage Current Driver Off IBUS,lk – – 5 µA VS = 8 V; VBUS = 18 V; P_7.2.27 LIN2.1 Param 14 Data Sheet 25 Rev. 1.01, 2009-04-28 TLE8458Gx LIN Transceiver Table 12 Electrical Characteristics: LIN Transceiver (cont’d) VS = 7 V to 27 V, Tj = -40 °C to +150 °C, RL = 500 Ω, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Min. Typ. Max. Bus Pull-up Resistance RBUS 20 30 LIN Output Current IBUS -60 -30 LIN Input Capacitance CBUS td(L),R Receiver propagation delay bus dominant to RxD LOW Values Unit Note / Test Condition Number 47 kΩ Normal Mode LIN2.1 Param 26 P_7.2.28 -5 µA Sleep Mode VS = 12 V; EN = 0 V;VLIN = 0 V P_7.2.29 pF 1) P_7.2.55 µs VCC = 5 V; CRxD = 20 pF; P_7.2.38 15 – 1 6 LIN2.1 Param 31 Receiver propagation delay bus recessive to RxD HIGH td(H),R – 1 6 µs VCC = 5 V; CRxD = 20 pF; P_7.2.39 LIN2.1 Param 31 Receiver delay symmetry tsym,R -2 – 2 µs tsym,R = td(L),R - td(H),R; LIN2.1 Param 32 P_7.2.40 TxD Dominant Time Out ttimeout ttorec 6 12 20 ms VTxD = 0 V P_7.2.44 – 10 – µs 1) P_7.2.45 Duty Cycle D1 (For worst case at 20 kbit/s) Lin2.1 Normal Slope2) D1 0.396 – – THRec(max) = 0.744 × VS; P_7.2.46 THDom(max) = 0.581 × VS; VS = 7.0 … 18 V; tbit = 50 µs; D1 = tbus_rec(min)/2 tbit; LIN2.1 Param 27 Duty Cycle D2 (for worst case at 20 kbit/s) LIN2.1 Normal Slope D2 – – 0.581 3) THRec(min.) = 0.422 × VS; P_7.2.47 THDom(min.) = 0.284 × VS; VS = 7.6 … 18 V; tbit = 50 µs; D2 = tbus_rec(max)/2 tbit; LIN2.1 Param 28 Duty Cycle D3 (for worst case at 10.4 kbit/s) SAE J2602 Low Slope4) D3 0.417 – – 3) THRec(max) = 0.778 × VS; P_7.2.48 THDom(max) = 0.616 × VS; VS = 7.0 … 18 V; tbit = 96 µs; D3 = tbus_rec(min)/2 tbit; LIN2.1 Param 29 Duty Cycle D4 (for worst case at 10.4 kbit/s) SAE J2602 Low Slope D4 – – 0.590 3) TxD Dominant Time Out Recovery Time 3) THRec(min.) = 0.389 × VS; P_7.2.49 THDom(min.) = 0.251 × VS; VS = 7.6 … 18 V; tbit = 96 µs; D4 = tbus_rec(max)/2 tbit; LIN2.1 Param 30 1) Not subject to production test, specified by design. Data Sheet 26 Rev. 1.01, 2009-04-28 TLE8458Gx LIN Transceiver 2) Valid for TLE8458G and TLE8458GV33, 3) Bus load conditions concerning LIN spec 2.1 CLIN, RLIN = 1 nF, 1 kΩ / 6.8 nF, 660 Ω / 10 nF, 500 Ω 4) Valid for TLE8458GU and TLE8458GUV33 96 7[' Q) 5[' 5/,1 &5[' /,1 &/,1 Figure 13 Data Sheet :. *1' Simplified Test Circuit for Dynamic Characteristics 27 Rev. 1.01, 2009-04-28 TLE8458Gx LIN Transceiver W%LW 7[' W%LW W%LW LQSXWWR WUDQVPLWWLQJQRGH W%XVBGRPPD[ 9683 7UDQVFHLYHUVXSSO\ RIWUDQVPLWWLQJ QRGH W%XVBUHFPLQ 7+5HFPD[ 7+'RPPD[ 7KUHVKROGVRI UHFHLYLQJQRGH 7+5HFPLQ 7+'RPPLQ 7KUHVKROGVRI UHFHLYLQJQRGH W%XVBGRPPLQ W%XVBUHFPD[ 5[' RXWSXWRIUHFHLYLQJ QRGH WG/5 WG+5 5[' RXWSXWRIUHFHLYLQJ QRGH W/5 WG+U 'XW\&\FOH W%86BUHFPLQ[W%,7 'XW\&\FOH W%86BUHFPD[[W%,7 Figure 14 Data Sheet Timing Diagram for Dynamic Characteristics 28 Rev. 1.01, 2009-04-28 TLE8458Gx Application Information 8 Application Information Note: The following information is given as a hint for the implementation of the device only and should not be regarded as a description or warranty of a certain functionality, condition or quality o f the device. VBat LIN Bus Master Node TLE7259-2GE 100 nF VS EN RxD TxD 1 kΩ XC22XX Bus 1 nF INH GND VQ INH 100 nF WK GND 5V e. g. TLE 4263 22 µF 100 nF VI 22 µF GND ECU 1 Slave Node TLE8458G VS 22 µF 220 pF EN RxD TxD 100 nF LIN XC22XX Vcc WK GND 10 µF 100 nF GND ECU X Figure 15 Application Example Note: This is a simplified example of an application circuit. The function must be verified in the actual application. Data Sheet 29 Rev. 1.01, 2009-04-28 TLE8458Gx Application Information 8.1 ESD Tests Test for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 Ω) have been performed. The results and test conditions are available in a separate test report (see Table 13). Table 13 ESD “Gun test” Parameter Symbol Values Min. Unit Note / Test Condition Number Typ. Max. – 10 kV GUN1) P_8.1.1 – 7 kV GUN1) P_8.1.1 Performed Test ESD at VS, LIN versus GND VESD,GUN -10 VESD,GUN -7 ESD at WK PIN 1) ESD susceptibility “ESD GUN” according LIN EMC Test Specification, Section 4.3 (IEC 61000-4-2:2001-12), tested by external test house (IBEE Zwickau, EMC Test report Nr. 07-11-08) 8.1.1 EMC Measurement The EMC performance has been qualified by an external test house according to the LIN EMC Test specification Version 1.0 (August 1, 2004). For the DPI measurements according to the LIN EMC Test Specification, Section 4.2 (ISO62132 part 1: 2006, ISO62132 part 4: 2006) the verification limit for the output voltage VCC, was set to a limit of +/- 100 mV. External test reports are available on request. 8.2 Pin Compatibility to Stand-Alone LIN transceivers The TLE8458G is pin - and function compatible to the single LIN transceivers like the TLE7259-2GE and its derivative the TLE7259-2GU (see Figure 16). Instead of the INH output pin on the single LIN transceiver TLE7259-2GE the VCC power supply output can be connected to the external microcontroller. The TLE8458G provides the same operation modes and feature s as single LIN transceiver TLE7259-2GE. RxD 1 8 VCC RxD 1 8 INH EN 2 7 VS EN 2 7 VS WK 3 6 LIN WK 3 6 LIN TxD 4 5 GND TxD 4 5 GND TLE 8458G Figure 16 Data Sheet TLE 7259-2GE Pinning of TLE8458G versus the TLE7259-2GE 30 Rev. 1.01, 2009-04-28 TLE8458Gx Package Outlines 9 Package Outlines 0.1 2) 0.41+0.1 -0.06 0.2 8 5 1 4 5 -0.2 1) M B 0.19 +0.06 C 8 MAX. 1.27 4 -0.21) 1.75 MAX. 0.175 ±0.07 (1.45) 0.35 x 45˚ 0.64 ±0.25 6 ±0.2 A B 8x 0.2 M C 8x A Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Lead width can be 0.61 max. in dambar area GPS01181 Figure 17 PG-DSO-8-16 (SO-8 Standard, Green (RoHS compliant)) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet 31 Dimensions in mm Rev. 1.01, 2009-04-28 TLE8458Gx Revision History 10 Revision History Revision Date Changes 1.0 2009-03-23 Initial data sheet 1.01 2009-04-28 Editorial Change to the data sheet Update table 13 on page 30. P_8.1.1 performed test changed from: “ESD at LIN Pin” to: “ESD at VS, LIN versus GND” Data Sheet 32 Rev. 1.01, 2009-04-28 Edition 2009-04-28 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.