TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 D D D D D D D Wide Range of Supply Voltages 2 V to 8 V Fully Characterized at 3 V and 5 V Very-Low Supply-Current Drain 120 µA Typ at 3 V Output Compatible With TTL, MOS, and CMOS Fast Response Time . . . 200 ns Typ for TTL-Level Input Step D D High Input Impedance . . . 1012 Ω Typ Extremely Low Input Bias Current 5 pA Typ Common-Mode Input Voltage Range Includes Ground Built-In ESD Protection symbol (each comparator) description The TLV2352 consists of two independent, low-power comparators specifically designed for single power-supply applications and operates with power-supply rails as low as 2 V. When powered from a 3-V supply, the typical supply current is only 120 µA. IN + OUT IN – The TLV2352 is designed using the Texas Instruments LinCMOS technology and therefore features an extremely high input impedance (typically greater than 1012 Ω), which allows direct interfacing with high-impedance sources. The outputs are N-channel open-drain configurations that require an external pullup resistor to provide a positive output voltage swing, and they can be connected to achieve positive-logic wired-AND relationships. The TLV2352I is fully characterized at 3 V and 5 V for operation from – 40°C to 85°C. The TLV2352M is fully characterized at 3 V and 5 V for operation from – 55°C to 125°C. The TLV2352 has internal electrostatic-discharge (ESD)-protection circuits and has been classified with a 1000-V ESD rating using Human Body Model testing. However, care should be exercised in handling this device as exposure to ESD may result in degradation of the device parametric performance. AVAILABLE OPTIONS PACKAGED DEVICES TA VIO max at 25°C SMALL OUTLINE (D)† CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) TSSOP (PW)‡ PLASTIC DIP (U) – 40°C to 85°C 5 mV TLV2352ID — — TLV2352IP TLV2352IPWLE — – 55°C to 125°C 5 mV — TLV2352MFK TLV2352MJG — — TLV2352MU CHIP FORM (Y) TLV2352Y † The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLV2352IDR). ‡ The PW packages are only available left-ended taped and reeled (e.g., TLV2352IPWLE) These devices have limited built-in protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. LinCMOS is a trademark of Texas Instruments Incorporated. Copyright 1999, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 TLV2352I . . . D OR P PACKAGE TLV2352M . . . JG PACKAGE (TOP VIEW) 1OUT 1IN – 1IN + VDD– /GND 1 8 2 7 3 6 4 5 VDD+ 2OUT 2IN – 2IN + TLV2254M U PACKAGE (TOP VIEW) NC 1OUT 1IN – 1IN + VDD – /GND •1 10 2 9 3 8 4 7 5 6 TLV2352I . . . PW PACKAGE (TOP VIEW) NC VDD + 2OUT 2IN – 2IN + NC 1OUT NC VDD+ NC TLV2352M FK PACKAGE (TOP VIEW) 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN – NC NC VDD – /GND NC 2IN+ NC NC 1IN – NC 1IN + NC 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1OUT 1IN – 1IN + VDD– /GND 1 8 2 7 3 6 4 5 VDD+ 2OUT 2IN – 2IN + NC – No internal connection TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS GND Common to All Channels VDD equivalent schematic IN + IN – OUT SLCS011B – MAY 1992 – REVISED MARCH 1999 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 TLV2352Y chip information These chips, when properly assembled, display characteristics similar to the TLV2352. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip can be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (7) (6) IN + (3) (2) IN – 57 OUT (8) VDD (8) (5) + (1) OUT – + (7) – (4) (5) (6) IN + IN – (4) GND CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C (1) (2) (3) TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. 57 PIN (4) INTERNALLY CONNECTED TO BACKSIDE OF CHIP. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 8 V Input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 to 8 V Output voltage, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA Duration of output short-circuit current to GND (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: TLV2352I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C TLV2352M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, P, and PW Packages . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: FK, JG, and U Packages . . . . . . . . 300°C † Stress beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. 2. Differential voltages are at IN+ with respect to IN –. 3. Short circuits from outputs to VDD can cause excessive heating and eventual device destruction. DISSIPATION RATING TABLE PACKAGE D FK JG P PW U TA ≤ 25°C POWER RATING 725 mW 1375 mW 1050 mW 1000 mW 525 mW 700 mW DERATING FACTOR TA = 85°C POWER RATING TA = 125°C POWER RATING 5.8 mW/°C 11.0 mW/°C 8.4 mW/°C 8.0 mW/°C 4.2 mW/°C 5.5 mW/°C 377 mW 715 mW 546 mW 520 mW 273 mW 370 mW — 275 mW 210 mW — — 150 mW recommended operating conditions MIN MAX 2 8 0 1.75 0 3.75 TLV2352I – 40 85 TLV2352M – 55 125 Supply voltage, VDD Common mode input voltage, Common-mode voltage VIC Operating O erating free-air tem temperature erature, TA VDD = 3 V VDD = 5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT V V °C 5 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 electrical characteristics at specified free-air temperature† TLV2352I PARAMETER TA‡ TEST CONDITIONS VIO Input offset voltage VIC = VICRmin min, IIO Input offset current IIB Input bias current VICR Common-mode Common mode input voltage range IOH High-level g output current VID = 1 V VOL Low-level output voltage VID = – 1 V, V IOL = 2 mA IOL Low-level output current VID = – 1 V, VOL = 1.5 V IDD Supply current VID = 1 V V, No load VDD = 3 V MIN TYP MAX 25°C See Note 4 1 Full range VDD = 5 V MIN TYP MAX 5 1 7 25°C 7 1 85°C 1 5 85°C 2 25°C 0 to 2 0 to 4 Full range 0 to 1.75 0 to 3.75 25°C 0.1 Full range 25°C 115 25°C 1 150 600 6 25°C Full range 16 120 nA 0.1 300 400 700 6 250 nA V 1 Full range nA pA 5 2 mV pA 1 1 25°C 5 UNIT 16 140 350 µA mV mA 300 400 µA † All characteristics are measured with zero common-mode input voltages unless otherwise noted. ‡ Full range is – 40°C to 85°C. IMPORTANT: See Parameter Measurement Information. NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V with VDD = 5 V, 2 V with VDD = 3 V, or below 400 mV with a 10-kΩ resistor between the output and VDD. They can be verified by applying the limit value to the input and checking for the appropriate output state. switching characteristics, VDD = 3 V, TA = 25°C PARAMETER TEST CONDITIONS TLV2352I MIN TYP MAX UNIT Response time RL = 5.1 kΩ, CL = 15 pF§, See Note 5 100-mV input step with 5-mV overdrive 640 ns § CL includes probe and jig capacitance. NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses VO = 1 V with VDD = 3 V or VO = 1.4 V with VDD = 5 V. switching characteristics, VDD = 5 V, TA = 25°C PARAMETER Response time TEST CONDITIONS 5 1 kΩ RL = 5.1 kΩ, CL = 15 pF§, See Note 5 TLV2352I MIN TYP 100-mV input step with 5-mV overdrive 650 TTL-level input step 200 MAX UNIT ns § CL includes probe and jig capacitance. NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses VO = 1 V with VDD = 3 V or VO = 1.4 V with VDD = 5 V. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 electrical characteristics at specified free-air temperature† TLV2352M PARAMETER VIO Input offset voltage IIO Input offset current IIB Input bias current TA‡ TEST CONDITIONS VIC = VICRmin min, VDD = 3 V MIN TYP MAX 25°C See Note 4 1 Full range 25°C High-level g output current VID = 1 V VOL Low-level output voltage VID = – 1 V V, IOL = 2 mA IOL Low-level output current VID = – 1 V, VOL = 1.5 V IDD Supply current VID = 1 V V, No load 10 20 25°C 0 to 2 0 to 4 Full range 0 to 1.75 0 to 3.75 25°C Full range 25°C 1 300 150 600 6 25°C Full range 16 120 nA nA 0.1 1 115 nA V 0.1 25°C mV pA 5 20 UNIT pA 1 5 Full range 5 10 10 25°C IOH 1 1 125°C Common-mode Common mode input voltage range 5 10 125°C VICR VDD = 5 V MIN TYP MAX 400 700 6 16 250 140 350 µA mV mA 300 400 µA † All characteristics are measured with zero common-mode input voltages unless otherwise noted. ‡ Full range is – 55°C to 125°C. IMPORTANT: See Parameter Measurement Information. NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V with VDD = 5 V, 2 V with VDD = 3 V, or below 400 mV with a 10-kΩ resistor between the output and VDD. They can be verified by applying the limit value to the input and checking for the appropriate output state. switching characteristics, VDD = 3 V, TA = 25°C PARAMETER TEST CONDITIONS TLV2352M MIN TYP MAX UNIT Response time RL = 5.1 kΩ, CL = 100 pF§, See Note 5 100-mV input step with 5-mV overdrive 1400 ns § CL includes probe and jig capacitance. NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses VO = 1 V with VDD = 3 V or VO = 1.4 V with VDD = 5 V. switching characteristics, VDD = 5 V, TA = 25°C PARAMETER Response time TEST CONDITIONS RL = 5.1 5 1 kΩ kΩ, CL = 100 pF§, See Note 5 100-mV input step with 5-mV overdrive TTL-level input step TLV2352M MIN TYP MAX 1300 900 UNIT ns § CL includes probe and jig capacitance. NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses VO = 1 V with VDD = 3 V or VO = 1.4 V with VDD = 5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 electrical characteristics at specified free-air temperature, TA = 25°C† TLV2352Y PARAMETER TEST CONDITIONS VIC = VICRmin, VDD = 3 V MIN TYP MAX See Note 4 Input offset voltage Input offset current 1 1 pA IIB VICR Input bias current 5 5 pA IOH VOL High-level output current Low-level output voltage 5 0 to 2 VID = 1 V VID = – 1 V, 5 0 to 4 0.1 IOL = 2 mA VOL = 1.5 V 1 UNIT VIO IIO Common-mode input voltage range 1 VDD = 5 V MIN TYP MAX 115 V 0.1 300 mV 150 nA 400 mV IOL Low-level output current VID = – 1 V, 6 16 6 16 mA IDD Supply current VID = 1 V No load 120 250 140 300 µA † All characteristics are measured with zero common-mode input voltages unless otherwise noted. NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V with VDD = 5 V, 2 V with VDD = 3 V, or below 400 mV with a 10-kΩ resistor between the output and VDD. They can be verified by applying the limit value to the input and checking for the appropriate output state. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 TYPICAL CHARACTERISTICS LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT SUPPLY CURRENT vs FREE-AIR TEMPERATURE 190 VDD = 3 V TA = 25°C 990 No Load 180 880 170 I DD – Supply Current – µ A VOL – Low-Level Output Voltage – mV 1100 770 660 550 440 330 220 110 160 VDD = 5 V 150 140 VDD = 3 V 130 120 110 100 0 0 14 2 4 6 8 10 12 IOL – Low-Level Output Current – mA 90 –75 16 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 1 Figure 2 COMMON-MODE INPUT VOLTAGE RANGE vs FREE-AIR TEMPERATURE OUTPUT FALL TIME vs CAPACITIVE LOAD 3 50 VDD = 3 V 2.5 VDD = 3 V Overdrive = 10 mV RL = 5.1 kΩ (pullup to VDD) TA = 25°C 45 Positive Limit 40 tf – Output Fall Time – ns V ICR – Common-Mode Input Voltage Range – V 125 2 1.5 1 0.5 Negative Limit 0 35 30 25 20 15 10 – 0.5 –1 – 75 5 0 – 50 – 25 0 25 50 75 100 125 0 10 TA – Free-Air Temperature – °C 20 30 40 50 60 70 80 90 100 CL – Capacitive Load – pF Figure 3 Figure 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 TYPICAL CHARACTERISTICS HIGH-TO-LOW-LEVEL OUTPUT PROPAGATION DELAY FOR VARIOUS OVERDRIVE VOLTAGES HIGH-TO-LOW-LEVEL OUTPUT PROPAGATION DELAY FOR VARIOUS CAPACITIVE LOADS VDD = 3 V Overdrive = 10 mV RL = 5.1 kΩ (pullup to VDD) TA = 25°C VO – Output Voltage – V VO – Output Voltage – V VDD = 3 V CL = 15 pF RL = 5.1 kΩ (pullup to VDD) TA = 25°C 3 20 mV 5 mV 0 3 CL = 15 pF 0 CL = 50 pF VID – Differential Input Voltage – mV VID – Differential Input Voltage – mV 10 mV 100 0 100 0 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 tPHL – High-to-Low-Level Output Propagation Delay Time – ns tPHL – High-to-Low-Level Output Propagation Delay Time – ns Figure 5 Figure 6 VDD = 3 V CL = 15 pF RL = 5.1 kΩ (pullup to VDD) TA = 25°C 3 20 mV 5 mV LOW-TO-HIGH-LEVEL OUTPUT PROPAGATION DELAY FOR VARIOUS CAPACITIVE LOADS VO – Output Voltage – V VO – Output Voltage – V LOW-TO-HIGH-LEVEL OUTPUT PROPAGATION DELAY FOR VARIOUS OVERDRIVE VOLTAGES 0 VDD = 3 V Overdrive = 10 mV RL = 5.1 kΩ (pullup to VDD) TA = 25°C CL = 15 pF 0 CL = 100 pF VID – Differential Input Voltage – mV VID – Differential Input Voltage – mV CL = 50 pF 3 10 mV 100 0 0 100 200 300 400 500 600 700 800 900 1000 100 0 0 100 200 300 400 500 600 700 800 900 1000 tPLH – Low-to-High-Level Output Propagation Delay Time – ns tPLH – Low-to-High-Level Output Propagation Delay Time – ns Figure 7 10 CL = 100 pF Figure 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 PARAMETER MEASUREMENT INFORMATION The digital output stage of the TLV2352 can be damaged if it is held in the linear region of the transfer curve. Conventional operational amplifier/comparator testing incorporates the use of a servo loop that is designed to force the device output to a level within this linear region. Since the servo-loop method of testing cannot be used, the following alternatives for measuring parameters such as input offset voltage, common-mode rejection, etc., are offered. To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown in Figure 9(a). With the noninverting input positive with respect to the inverting input, the output should be high. With the input polarity reversed, the output should be low. A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages can be slewed as shown in Figure 9(b) for the VICR test, rather than changing the input voltages to provide greater accuracy. 5V + Applied VIO Limit 1V 5.1 kΩ – VO 5.1 kΩ + Applied VIO Limit – VO –4V (a) VIO WITH VIC = 0 (b) VIO WITH VIC = 4 V Figure 9. Method for Verifying That Input Offset Voltage Is Within Specified Limits A close approximation of the input offset voltage can be obtained by using a binary search method to vary the differential input voltage while monitoring the output state. When the applied input voltage differential is equal but opposite in polarity to the input offset voltage, the output changes states. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 PARAMETER MEASUREMENT INFORMATION Figure 10 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the comparator in the linear region. The circuit consists of a switching-mode servo loop in which U1a generates a triangular waveform of approximately 20-mV amplitude. U1b acts as a buffer with C2 and R4 removing any residual dc offset. The signal is then applied to the inverting input of the comparator under test while the noninverting input is driven by the output of the integrator formed by U1c through the voltage divider formed by R9 and R10. The loop reaches a stable operating point when the output of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or when the voltage at the noninverting input exactly equals the input offset voltage. Voltage dividers R9 and R10 provide a step up of the input offset voltage by a factor of 100 to make measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the reading; therefore, it is suggested that their tolerance level be 1% or lower. Measuring the extremely low values of input current requires isolation from all other sources of leakage current and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board leakage can be measured with no device in the socket. Subsequently, this open-socket leakage value can be subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the device. VDD U1b 1/4 TLC2344 Buffer + C2 1 µF U1c 1/4 TLC2344 R6 5.1 kΩ – – C3 0.68 µF R5 1.8 kΩ, 1% DUT R4 47 kΩ – R7 1 MΩ + Integrator R1 240 kΩ R8 1.8 kΩ, 1% U1a 1/4 TLC2344 C4 0.1 µF – C1 0.1 µF + Triangle Generator R10 100 Ω, 1% R3 100 Ω R9 10 kΩ, 1% R2 10 kΩ Figure 10. Circuit for Input Offset Voltage Measurement 12 VIO (×100) + POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 PARAMETER MEASUREMENT INFORMATION Propagation delay time is defined as the interval between the application of an input step function and the instant when the output crosses VO = 1 V with VDD = 3 V or when the output crosses VO = 1.4 V with VDD = 5 V. Propagation delay time, low-to-high-level output, is measured from the leading edge of the input pulse while propagation delay time, high-to-low-level output, is measured from the trailing edge of the input pulse. Propagation-delay-time measurement at low input signal levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input (as shown in Figure 11) so that the circuit is just at the transition point. Then a low signal, for example 105-mV or 5-mV overdrive, causes the output to change states. VDD 1 µF Pulse Generator 1V Input Offset Voltage Compensation Adjustment 5.1 kΩ 50 Ω + DUT 10 Ω 10 Turn – 1 kΩ –1V CL (see Note A) 0.1 µF TEST CIRCUIT Overdrive Input Overdrive Input 100 mV 100 mV 90% 90% Low-to-High Level Output VO = 1 V With VDD = 3 V or VO = 1.4 V With VDD = 5 V 10% tr High-to-Low Level Output 10% tf tPHL tPLH VOLTAGE WAVEFORMS NOTE A: CL includes probe and jig capacitance. Figure 11. Propagation Delay, Rise, and Fall Times Test Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 MECHANICAL INFORMATION D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN PINS ** 0.050 (1,27) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.244 (6,20) 0.228 (5,80) 0.008 (0,20) NOM 0.157 (4,00) 0.150 (3,81) 1 Gage Plane 7 A 0.010 (0,25) 0°– 8° 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) 0.004 (0,10) 4040047 / B 03/95 NOTES: A. B. C. D. E. 14 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Four center pins are connected to die mount pad. Falls within JEDEC MS-012 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 MECHANICAL INFORMATION FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 A B MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.740 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 25 5 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / C 11/95 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 MECHANICAL INFORMATION JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE 0.400 (10,20) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.063 (1,60) 0.015 (0,38) 0°–15° 0.023 (0,58) 0.015 (0,38) 0.015 (0,38) 0.008 (0,20) 0.100 (2,54) 4040107 / B 04/95 NOTES: A. B. C. D. E. 16 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only Falls within MIL-STD-1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 MECHANICAL INFORMATION P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0°– 15° 0.010 (0,25) M 0.010 (0,25) NOM 4040082 / B 03/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 MECHANICAL INFORMATION PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0,32 0,19 0,65 14 0,13 M 8 0,15 NOM 4,50 4,30 6,70 6,10 Gage Plane 0,25 1 7 0°– 8° 0,75 0,50 A Seating Plane 1,20 MAX 0,10 0,10 MIN PINS ** 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064 / D 10/95 NOTES: A. B. C. D. 18 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2352, TLV2352Y LinCMOS DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS SLCS011B – MAY 1992 – REVISED MARCH 1999 MECHANICAL INFORMATION U (S-GDFP-F10) CERAMIC DUAL FLATPACK 0.250 (6,35) 0.246 (6,10) 0.006 (0,15) 0.004 (0,10) 0.080 (2,03) 0.050 (1,27) 0.045 (1,14) 0.026 (0,66) 0.300 (7,62) 0.350 (8,89) 0.250 (6,35) 1 0.350 (8,89) 0.250 (6,35) 10 0.019 (0,48) 0.015 (0,38) 0.050 (1,27) 0.250 (6,35) 5 6 0.025 (0,64) 0.005 (0,13) 1.000 (25,40) 0.750 (19,05) 4040179 / B 03/95 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 PACKAGE OPTION ADDENDUM www.ti.com 22-Feb-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty 5962-9688101Q2A ACTIVE LCCC FK 20 1 None 5962-9688101QHA ACTIVE CFP U 10 1 None 5962-9688101QPA ACTIVE CDIP JG 8 1 TLV2352ID ACTIVE SOIC D 8 75 TLV2352IDR ACTIVE SOIC D 8 2500 TLV2352IP ACTIVE PDIP P 8 Lead/Ball Finish MSL Peak Temp (3) POST-PLATE Level-NC-NC-NC A42 SNPB Level-NC-NC-NC None A42 SNPB Level-NC-NC-NC Pb-Free (RoHS) CU NIPDAU Level-2-260C-1YEAR/ Level-1-220C-UNLIM Pb-Free (RoHS) CU NIPDAU Level-2-260C-1YEAR/ Level-1-220C-UNLIM 50 Pb-Free (RoHS) CU NIPDAU Level-NC-NC-NC 150 None CU NIPDAU Level-1-220C-UNLIM None Call TI CU NIPDAU TLV2352IPW ACTIVE TSSOP PW 8 TLV2352IPWLE OBSOLETE TSSOP PW 8 TLV2352IPWR ACTIVE TSSOP PW 8 2000 None TLV2352MFKB ACTIVE LCCC FK 20 1 None TLV2352MJG ACTIVE CDIP JG 8 1 None A42 SNPB Level-NC-NC-NC TLV2352MJGB ACTIVE CDIP JG 8 1 None A42 SNPB Level-NC-NC-NC TLV2352MUB ACTIVE CFP U 10 1 None A42 SNPB Level-NC-NC-NC Call TI Level-1-220C-UNLIM POST-PLATE Level-NC-NC-NC (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. None: Not yet available Lead (Pb-Free). Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight. (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated