匾也温室主壶室主- TOP232-234 TOPSwifch@ -FX 系列 采用 EcoSmart@ 节能技术的 离线式集成开关电源 产品特色 + 降低系统成本,提高设计灵活性 • 节约外国 )C 件成卒 • 集成了软启动功能,使启动压力/过冲 减至最小 • 外部可精确设定流限 占空比更宽,功率更大,输入电容更小 • 线欠压 (UV) 保护:消除 f 关断故障 • 线过压 (OV) 关断限制电涌现象 • 降低前馈的最大占空比 (DC MAx) ,防止也 • 压技波、并将高电压输入时,切定 DC MAx TOPSwitch-FX PI.2503.073099 图 1 、典型的反激式应用 通过同一电阻设定 OV/UV 门限、降低 DC MAx • 采用频率抖动降低 EMI 及 EMI 滤波费用 • 无需虚拟负载即可调节至零负载 • 频率 130kHz ,变压器/电源尺寸更小 • 为视频应用提供频率减半边项 • 滞后热关断使器件可臼动恢复工作 • 热滞后值较大,防止电路板过热 • 省略部分号|脚的标准工业封装加强了高压 号|脚的漏电距离 • 可用远程开关功能启动或关断 • 能与较低频率同步 输出JjJ 率表 器件序号3 230VAC 士 15% 注释 VAC 敞式搁架 2 适配器l 敞式搁架 ι 9W 才 5W 6.5W 10W 10W 25W 25W 7W 9W • 15W 丁 3W 20W 16W 50W 30W 15W 11W 30W 20W 30W 75W 20W 45W TOP232P TOP232G TOP232Y TOP233P TOP233G TOP233Y TOP234P TOP234G TOP234Y EcoSmart- 提高能效 85 到 265 适配器1 丁 5W 1 , 50 C 无通风豆豆闭环境下测得的典型持纯功率 J 0 2 , 50 C 带足够散热装置的敞式搁架设汁中测得 0 的实际最大持续功率细节请参见应用关挝 • 跳过周期能降低空载功耗 • 远程关断模式降低功耗 • 为高效待机应用提供频率减半边项 • 可以通过周域网 (LAN) /输入端口关 3 ,封装 P:DIP - 8B , G:SMD -8B , Y: 四 220-7B. 外部精确流限的设定,能用于远程通/断或使 振荡器与外部的较低频率的信号同步。另一项 断或启动 是频率 (F) 号|脚,仅 Y封装提供。通常此引!即与 源极相连,当它与控制l 弓!脚( C) 相连时,能提 说明 供频率减半边项。这两条新引!即提供的功能也 TOPSwitch-FX采用与 TOPSwitch 相同的拓扑电 路,并以高'陀{介比集成 f 多项新功能。这些功 能不仅能降低系统成本,同时还能提高设计的 灵活性、性能和效能.它不仅像 TOPSwitch 一样 在一片 CMOS 芯片中集成了高压功率 MOSFET 、 脉冲调宽 (PWM) 控制器、故障自动保护和所有 其它控制电路,还增加了两项。第一项是多功 能号|脚 (M) ,通过线电压实现可编程过压/欠压 关断设定和降低前馈 IDCMAXO 此弓|脚还能替代 可以通过将其与源极短路采取消, {吏器件以三 端的 TOPSwitch 模式工作,但具备以下新特性: 软启动、跳过周期、开关频率 130kHz 、频率抖 动、 DC MAx 更宽、热滞后关断且漏电电压更大 另外,频率、流限,、 P阳增益等重要参数与 TOPSwitch-1I 系列相比,植度和绝对容差更小。 高流限精度和大 DC MAX ,加上其它特性, TOPSwitch-FX与同等的 TOPSwitchll相比,在相 同输入/输出条件下功率高 10% 到 15% 。 ··皿且重宝y空军DRALN (口} CONTROL(C) "•5.8 V 4.8 V CURRENT LIMIT COMPARATOR RE 50URCE (5) PI-2535-083099 图 2 、功能框图 控制弓l 脚 (C) : 弓l 脚功能描述 用于占空比控制的误差放大器和反馈电流 的输入脚 2 漏极弓|脚 (0) : 与内部并联艳、压器相连接,捉 住正常工作时的内部偏置电流。也用作电 高压功率 MOSFETi届极号!脚的输出。通 ;原旁路和l 自动主启动/补偿电容的连接点. 过内部的开关式高压电流源 i是供启动偏 置电 tit:。漏极电流的内部流限检测点。 多功能弓l 脚 (M) : 源极弓|脚: 与高压功率回路连接的 MOSFET~.原极寻!脚 的输出.初级控制j 电路的公共点和参考点. 过压 (OV) ,欠压 (UV) ,降低 DC MAX 的前馈、流 限外部设毒、远程通 /Wf和同步的输入号| TO-220 (Y07B) 咽。嘈 ?'zuaaT 脚。连接源极寻|脚则取消此号!脚所有功 能,使 TOPSwitch-FX 以简单的三端 频率弓l 脚 (F) (仅限 Y封装) : E 模式工作(像 TOPSwitch-1/ )。 DFSMC / Tab Internally Connected to 50urce Pin 选择开关频率的输入引脚:如果连接源 DIP-8 (P08B) SMD-8 (G08B) M1 85 52 75 极寻|脚为 130kHz ,连接控制号|脚为 65 53 kHzo P 和 G 封装只能以 130kHz 升关频率 C4 工作。 PI.25 口 1.072199 罔 3 、弓 i 脚结构 2 5D 匾血温室主量宝~ TOPSwitch-FX 系列器件功能描述 TOPSwitchFX 是与 TOPSwitch Auto-restart / 样的 42 成 P\?附M Gain 式开关电源芯片,能将控制输入电流转化为 高月二功率 MOSFET 的源漏输山的占空比 C J二作情况下, 正'启 r)J 率 MOSFET 的占空比陆控制引 脚屯流的增加而线性减小,如同 4A斤 /J二 TOPSwitchFX 除了 f象三端 TOPSwitch 具有高n;:启动、逐周期流限、 '8 主 47 u -0=3h 一样, 1.5 M 路补位 l 包 1.5 1.9 路、自动重启动、热关断等特性,还综合了 5.55.9 'c(mA) PI-25 口 4-072799 i午多能降低系统成本、提高电源性能和设计 灵活性的附加功能。 TOPSwitchFX 采用了专利 因 4 、占空比与控制脚电流的关系 高压 CMOS 技术,能以占主高性价比将高吓功,仨 MOSFET 丰rl 所有低压控制电路集成到一片集成 电路中。 控制弓|脚工作 控制!即是接收电源和反馈组合屯 ifii 的低阻 TOPSwitch-FX 增加了两个用于实现某片 新功能的端脚频率(仅限 Y 封装)丰11 多功能引 抗节点。在 iE 常工作用间,用并耳其稳而器米分 脚。它们与源极寻|脚边按时,能使 TOPSwitch 离反馈信号和电源电流 O FX 以 TOPSwitch 二端模式工作相问的。{o ;\ìIJ 电路(包括 MOSFET i' ]驱动器在内)的电压 使在这种二揣模式中, HIJ TOPSwitch-FX 也能提 快许多下述功能而元需额外外})口外田元 件: 1. 源,直 t! 连接控制)郎和源脚的外接旁路屯容捉 快瞬时门驱动电流。连接到控制脚的全部电容 也用于设定自动重启动的定时,同时控制环路 集成完整的 10ms 软民动,削减启动时的 w年 的补{尝 O 值也流丰rl 电rr:并消除了大多数应用中的输 启动时,经整流的直流高压}Jn在漏极弓 1 1)却 出过冲 上, 2. 控制脚的电!王 V c 是控 DCMAxoJ 达 78% ,允许使用更小的输入有储 电容,所需输入电压更低或提供的输山 r)J 率更高 MOSFET lti 初关断,通过庄挂在漏极和l 控 制!因之间的内部高压开关电 idLj原比电流泪对控 制!即仁的电容充电。当控制!因电压 V c 接近 5.8V 时,控制电路被激活并开始软启动。在 10ms 左 3. 最小脉宽时以跳过周期实现调节,能使空 载功耗极低 4. 右时间内,软启动电路使 MOSFET 的占雪比从 零逐渐 1 :升到最大倪。在软启动结束时,如果 采用较高的 '130kHz 开关频率,可减小变 rF 没有外部反馈/电源电沈 iii 入控制弓|时,则高 器尺寸,而且对 EMI 和 l 效率几乎没有影响 压电流泪关断,控制!即开始根据控制电路消耗 5. 频率抖动功能可降低 EMI 电源电流的大小放电 O 6. 滞后过热关断功能确保它能从热故隙中自 动恢复。滞后时间较大,可防止电路板过 于A 7. 采用缺省部份引脚和号 l 线的主才装,能提供 更大的漏极漏电距离 如果电视;设计正确,而 且不存在开环写文输出短路等故障时,在控制脚 电压放电到接近 4.8V 下限屯!五值(内部电源欠 压锁定门限值)之前,反馈环路将闭台,提供 控制号 1 ,即外部电流。:':í外部注入的电流对控制 !即充电到 5.8V 并联程、压器电压时,超过芯片所 消耗的电流通过电阻 R E 分;在到源极引脚,如图 8. 绝对容差更小,温度变化到开关频率、流 限和 PWM 增益的影响减小 2 所后 O 流经 R E 的电流控制j 功率 MOSFET 的占全 比,实现闲合环路调节。在采用丰i)J 级反馈结构 3 ·血温室y空军E 时,并联稳压器很低的输出阻抗 Zc 决定误差放 大器的增益。控制脚的动态阻抗 Zc 和外接电阻 振荡器 内部的振荡器使内部的电容在两个设定 的电压值之间线性充放电,以产生脉宽调制 电容一起共同决定控制环路的主极点。 当出现开环或输出短路等故障而使外部电 流无法流入控制脚时,控制脚上的电容开始放 器所需的锯齿波电压。在每个周期的起点, 振荡器将脉克调制器/电流限制的门问电路琶 电,达到 4.8V 时激活自动重启动而关断 M08FET 输出,使控制电路进入低电流的待机模式,高 压电流源再次接通并对外接电容充电。内部的 滞后电源欠压比较器通过使高压电流源通断米 保持 Vd直处于典型的 4.8V到 5.8V 的区域内,如 罔 5 所示。自动重启动电路中有-个除 8 的计数 器,仅在计满( 87 )时才接通输出 M08FE了, 用以防止输出 M08FET在八个放电充电周期过 额走开关频率选择 130KHz , {吏变压器尺 寸最小日电磁寸二扰基频低于 150kHz 。频率寻| 脚(仅限 TO-220 封装)与控制脚短接时,开关频 率降至 65kHz (频率减半) ,这种特性在对噪声 敏恩的中见切;j J年用或高波率的待机模式中非常 有用:如果与源极引脚相连,则开关频率为 指定值 130kHz 。可调节基准电流米改善振荡 器的频率度,为 f 使 EMI 电平更低,开关频率以 去前重新导通此计数器通过将自动重启动的占 250Hz 速率(典刑值)采用大约:t 4kHz 抖动(频率调 空比减到典型值 4% 米有效地限制 TOP8witch 平X 制) ,如图 6 所示。图 28 中的测量,值显示了增加 的功耗。自动重启动模式将不断循环工作直 频率抖动后对 EMI 的改善。 到输出电压通过闭合反馈环路重新进入受控状 态为止。 \~ VL1NE 。v 56 ",-- 57 肝→一_5.8V .\r\::::;r-\:;.---\/←一 Vc 4.8V 。v ① 司, ① ④ Note: 50 through 57 are the output states of the auto-restart counter 图 5、 4 (1 )上电 (2) 正常工作 (3) 自动重启动和 (4) 电源关断时的典型波形 PI.2545ο82299 E血温室m空军E 误差放大器 脉宽调制器和最大占空比 在初级反馈应用中,并联稳!主器也能起到 脉宽调击IJ 器通过驱动输出 MOSFET 来实现电压 误差放大器的作用。 模式控制,其占空比与超过芯片内部电源电 见图 流而流经控制脚的电流成反比( 4 )。 这 L] 1川 们叼/ 部份电流在 R E 两端产生的反馈误差信号( 以降低芯片电 ~t~ 电 ijfi 中由 OSFET 门驱动器产生的开关噪声的影响。 流增大时, 产生占空比的波 Jl:; , 占空比减小。 电路 1ri 号 ñf 位在 V c 屯!五上。 可外部编程的片内流限 由振荡器产生的时 化前, 注意: 连同的峰值漏电流限制电路以输出 MOSFET 的导通电阳作为检测电阻。 在占空比开始变 但 最大占空比 DC MAx 为固定 78%( 典电值)。 ( V DS(ON) )与一个问值电压相比较" , 漏极电流大 大将使 VDS(O刊)阻过阀值电)主并在下一个时钟周 当多功能弓|脚通过怡当的电阻与 经整流的直流高压总线相连时, 流限比较器将输出 MOSFET 导通状态下的漏一源极间的电压 最小电流必须注入控制脚。 如图 8 所示, 控制脚电流扭过电 控制电 脉宽调制器使此门|习电路复位 f(iî 关断输出 MOSFET 0 控制引脚将外部 成误差电压信号。 钟信号将一个门问电路置位从而使输出 OSFET 导通。 误差放大器的增益 j原电流的部分通过并联稳压器分离,流经 R E 形 经 滤波的误差信号与内部振荡器产生的锯齿波 信号进行比较, 于借温度补偿的带隙基准 1 山控制弓|脚的动态阻抗决定 O 图 2 )通过一个截止频率典型值为 7KHz 的 RC 屯 路进行洁、泼, 精确的并耳其稳压电压来自 用开始 wr 关断输出 MOSFET o |始输入电压 TOPSwitch-FX的固 的增加,最大占空比可以从 78% 阵至 38%( 典明 定限 j;[ {直己在内部预先设定, 值)(参见 DC MAx 降低的纹路前馈 ) 多功能!由和明、!剧间的电阻, 0 从外部将 4}ii 限控制 在 40% 到 100% 固定限流但之间。 TOPS"witch-FX 的 R DSC 0 1\ ) 1直较小, 为保持电源输出稳定 脉宽调 fuiJ 器根据流入控制号|脚的电流按比例 降低占空比。 当控制引脚的电流增加时, 比统性降低到最小占空比 DC M1No 在选择阻但时 i青 参见"典电性能特性"中的图表。 最小占空比和跳过周期 当电 i原输出负载 1成小时, 也·可通过连接在 ←旷三r U 工二 由于较大的 可选择功率居过 所需功率的 TOPSwitch丑Yj丰设低其流限值来获得 更高的效率。 通过连接在多功能脚和经整流的 在 iyfi 高压总线间的电阻提供少量前馈电流, 如果达到 DC M1N 后控制电流再增加 O .4 mA ,则脉宽调制器如 ftilJ 占 种特性在输出负载的消耗功率小于最小占空比 的 TOPSwitch-FX 所提供的功率时, 允许电源 以跳过周期模式工作。随负载的增减, 回@-YN, O 。O 川剧的刷品也 空比以离散方式从 DC M1N 降至零(参见国 4 )。这 SWitching Frequency 电 i原能 同 4 ms 树 在正常工作和跳过周期模式间根据需要自动转 换, VDRAIN 无需其它控制。 在电源输出端连接一个最小负载, 保持占 空比始终高于 DC M1N ,就可以禁止跳过周期 O 图 6、 开关频率抖动 气 匾自liI宝y宝91 可实现真正的限制功率工作。在使用 RCD w 位 流高压总统|间的单电阻设定。电源接通后禁 电路的高反射电压的设计中,这种前馈技术能 用 UV ,使输入电压工作范围更宽。直到电源 降低高压线路上的最大茹位电压。流限比较器 失调并试图再次接通前都不再检测输入电 的问值采用温度补偿,这样可将输出 !主。过是通过仅在自动重启动电路中的除 8 的 MOSFET 的 RDS(ON) 随温度变化而引起的电流限制的变 计数器计满 (87) 时才接通 UV 比较器来实现的, 化;成至最小。 此时计数器也宣位到上电时的状态(见图 5) 。 前沿消隐电路使流限比较器在输 M08FET 从图 16 可见禁用 UV 特性与 OV 无关。 刚导通的一段很短的时间内不工作。前 m~肖阳、 时间是这样确定的:使初级端电容和次级端整 线路过压'关断 (OV) 流器反向恢复时间引起的电流尖峰脉冲不会引 起开关脉冲的提前结束。 用于 UV 的比电阻同时也用于设置过压 l' J 限,一旦且过此门限即强迫 TOPSwitch-FX 如图 33 所示,由于 M08FET 的动态特性, 前沿 i肖隐、后很短的一段时间内,电流限制可以 设得更低。为避免在正常工作使引起电流限 制,漏极电流的波形应在国示的箱形中。 线路欠压保护 (UV) 在上电时, UV使 TOPSwitch-FX 在输入 电压到达欠压阀值前保持关断。在掉电时, 输出关 i析。从图 8 可见 OV和 UV 的比率预设 为 4.5 ,这使得整流的直流高压超过 OVI、 j 限 时关断 TOPSwitch-FX 的功率 MOSFET ,此时 山于漏极没有反射电压和漏电尖峰,经整 J祀的直流高压的波动能力增大到 M08FET 的 额定电压( 700V ) 0 OVI、 I 限有少量滞后以 防止噪声引发关断。从图 15 可见禁周 OV特 性与 UV 无关。 UV 防止 TOPSwitch-FX在输出失调后自动重 启动。在待机电源等 J,!L 用中,它能防止关断 时由输入电容缓慢放电百IJ 产牛-的干扰。掉电 时的 UV 间值由连接在多功能脚和经整流的直 , 。scillator (SAW) DMAX 巾 n -m 叫 EM mP i- Time PI-255ι092999 图 7 、同步时序图解 6 ·皿盈盈~昼~ 降低 DC MAX 的线路前债 内部放电到 4.8V 内部欠压门限( (控制弓|脚电容 设置 UV 和 OV 的此电阻同时也用于产生电 压前馈,从而使输出纹 i皮最低并降低电源、输出 对统路瞬时现象的敏感。这种前馈工作方式在 图 4 中以 1 M 的不同值表示。值得注意的是,对于 同样的控制剖脚,电 l五更高会使占空比更小。 为更安全起见,最大占空比也从电压略高于 UV 门限值时的 78%( 38%( 典型值)降至 OV r' J 限值时的 典型值) (见图 4 , 8 ) 0 OV !'J限值时 DC MAX 为 38% 是为了确保 TOPSwitch-FX 的功率在 lE 47μF 时接近 32ms) ,则控制弓|脚进入滞后调节 模式。在此模式 1亨,控制l 弓 1 ,即在 4.8V到 5.8V 间 转换充电和放电周明( ~~上述控制!即工作原理 一节)并放完整个高压直流输入, 11..1. rj] 耗很低 ( 230VAC 多功能弓 l'即开路时典型值为 160mW) ο 进入这种模式后 , TOPSwitch-FX如果被远程 打开,它将在控制l 弓|脚电压再一次达到 5.8V 时 开始执行正常的软启动程序。在 ßj 差情况下, 从远程开指令到启动的延迟挝多与控制脚的整 个充/放电周期时间相同, 常工作时不会受到这种特性的限制 ~~ 47uF 控制Il却电容时 接近 125ms 。这种降低功耗的远程关模式开销 小,不会产生不可靠的内部机械开关。也可以 远程开/关和同步 用微处理器米控制j 接通和关断序列,在 l质率和 TOPSwitch-FX的开/关可通过控制流入或流出多 激光打印机等应用中常常使用这种方法。更多 能弓|脚的电流米接通或关断,这使得很容易 信息请参考应用举例后的图 270 通过儿种方式实现的 TOPSwitch-FX远程控制。 把二极管或光调器的输出连接到多功能引!郎和! 源极弓 11即可以"启动"这一功能(国 19 ) ;连 接到多功能号!脚和控制弓|脚可使此功能"取 消" (图 20) 启动 10ms (典型值)后,启动片内的软启 动功能。最大占空比在此 1 Oms Jl:Jj I同从零钱性增 加到最大缺省值 78% 。除启动时外,软启动在 多功能弓|脚接收到 OV 、 UV和远程开/关等 弓|脚功能产生的禁止输出信号'时 , TOPSwitch- FX完成当前开关周期后强制关断输出,如图 7 所示。内部振荡器在当前周明结束前轻轻停 顿,直到禁止信号结束 O 软启动 当多功能寻|脚上的信 号从禁止变为允许时,内部振荡器开始 F 一个 开关周刑。采用这种方法 , 每一次重启动时也会被激活,包括自动重启动 和远程关断或热关断后,控制号 1 ,因电压( Vc ) 进入滞后调节的重启动。这能使输出 MOSFET f否位电路和输出整流器在启动时的电流和电 压压力降至最低。 关断 l 重启动 TOPSwitch-FXJffJ. 过 此弓|脚能与任何频率低于内部开关频率的外部 信号同步。 为使 TO P Switch-FX 在故障情况下的功耗 最小,关断/重启动电路在输出尖调情况下, 一般按 4% 的自动重启动占空比接通和断开电 如上所述,远程开/关特性使 TOPSwitch-FX能适 周期接通/关断而延迟很小。远程开/关功能通 常被用作关断 TOPSwitch-FX的备用或电源开 关,使之极长时间内处于极低功耗状态。如果 处于远程关断状态的时间过长,能使控制弓|脚 源。失调不仅中断外部流入控制脚的电~t: , Vc 调节也从分流模式进入前面介绍过的滞后自动 重启动模式。当故障情况去除,电源输出稳定 后 , V c 调节又转回到分;在模式,电源又恢复正 常工作。 7 ··臣"埠'.oi悔~.&.oi四- 滞后的过热保护 关频率较低,如对噪声敏感的视频应用,这 TOPSwitch.♂X 由精密的模 f拟以电路提供温 时可通过将频率弓!脚与控制引脚短接来边佯 度保护。当输出 MOSFET 的结温 Jß 过热关断温 减半的开关频率 65kHz( 度(典型值 135 C )时,该电路就关断输出 所示电路可将待机模式时的开关频率从固定 0 MOSFET 。当结温冷却到低于滞后温度时,器 件恢复正常工作。此芯片采用 70 C 较大的滞后 0 的 130kHz 降为 65kHz ,使电源功耗最低。 运用多功能弓!脚 (M) 值,可以防止反复故障情况下 PCB 板过热。当 电洒、关断后, V c 的调节进入滞后模式,控制脚 上的波形为 4.8V 到 5.8V 间(典型值)的锯齿波。 因 11 )。另外,图 12 电流注入多功能习|脚时,它相当于最大 电流 +400uA (典型值)的 2.6V左右的电压源。 在 +400uA 时,这条号|脚转为吸收恒定电流。 电流从多功能弓|脚流出时,它相当于最大电 带隙基准 流 -240uA( 典型值)的 1.32V左右的电压源。在 TOPSwitch-FX 内部所有的关键电压均得自 于一个具有温度补偿的带隙基准 o 此基准电压 240uA 时,这条 SI 脚转为恒定电流源。请参见 图 9。 用多功能斗|脚能提供的功能共五种: 还用于产生一个具有温度补偿的电流基准,经 OV 、 调整后,此电流基准能精确设定开关频率、 MOSFET 门极驱动电流、流限和线路过压/欠!五 门限。 TOPSwitch-FX 改善了电路性能,使以上 UV 、降低 DC MAX 的自ÎJ 馈、外部流限丰rl 远程 开/关 o 短路多功能习|脚和 ìJ~ 极 sl 脚可以禁用 这五种功能,迫使 TOPSwitch-FX 以 TOPSwitch- 1I 一样的三端模式工作。通常在多功能 ~JI 脚和 这些重要参数的稳定性更高,相对于温度的容 整流的高压直流总线间连接→个电阻,用于 差更严格. 恰 ìwj 输入电压,并且实现 OV 、 UV和降低 DC MAX 的前馈功能。在此模式下,电阻值确定 OV/UV 高压偏置电流源 电压门限值,而且 DC MAX 从整形盲流高「巨刚超 在启动或滞后模式工作时,高压电流泪从 漏极引脚输入,为 TOPSwitch 器件提供偏置,并 对控制脚的外接电容 (C T ) 充电。在自动重启动 、远程关断和过热关断输出时,器件进入滞后 工作模式。此时电流源通断的有效占雪比约为 过 uv 门限值时开始统性降低。在高效率应用 中,此引脚也可用于外部 ~L 限模式,将此引 脚通过一个电阻连接到源极号|脚上,从外部 将流限值降低到接近峰值电流。在这两种模 式中,此弓!脚都可用于远程开/关和同步的输 入。表 2 是这些功能可能的组合,图 13 到 23 是 35% ,此占空地由控制脚充电 (I c)和放电电流 (I CD 电路学例。根据多功能弓 i 脚 I/V特性曲线对具 1 和 I CD2 ) 的比率决定。正常工作情况下,输出 体函数的描述如图 8 所示。横轴正极方向 51 示 MO 注入多功能弓|脚的电流,纵轴根据不同功能 SFET接通,此电流洒、关断。 代表不同的涵义。对于控制输出开/关的 UV 、 频率弓|脚和多功能弓|脚的使用 OV和远程开/关,纵轴代表输出的允许/禁止状 态。电流 luv( 典型值 +50uA )触发 UV , 运用频率弓i 脚 (F) 型值 +50uA )触发 OV 。降低 DC MAX 的电压前馈 将最大占空比从 IM(DC/ 频率寻|脚是一条数字输入弓|脚,仅限 TO-220 封装提供。频率引脚与源、极弓|脚短路 时选择了固定的开关频率 130kHz( 图 10 ) ,适 合于大多数应用。另外一些应用可能希望开 8 lov( 典 典型值 +90uA )时的 78% 降低为 Iov (典型伯 +225uA )时的 38% 。只有当 多功能弓|脚电流为负值时才能使用外部流 限。流限编程范围和如何选择恰当的阻值请 参见典型特性章节中的图示。 ·四盗盈盈宝~ 多功能弓|脚表 插图编号' J3 一端工作 J 14 15 欠压 J J 过压 J 输入前馈 (DC MAX ) J 输入前馈( IU MlT 16 17 18 19 20 23 J ~ i~ ~ J ) ~ 外部流限 ~ J 远程开/关 J ~ ~ ~ ~ ~ 此表格仅仅列举 f 多功能引脚可能采用的多种配置的一部分。 表 2 典型的多功能寻|脚配置 IREM(N) l:lV luv (Enabled) Output MOSFET Switching lM \J lfd i (Disabled) ←『卢---t ' 1 \VD 础 ledwh卢 s啊Iy 1M regulation ILl M1T (Delault) Current Li mit ' 1M DC MAX (78 .5%) Maximum Duty Cycle lliljl 二l , " 1M VBG + VTP MULTIFUNCTION Pin Vo~age VBG -250 -200 -150 -100 -50 0 50 100 150 200 250 300 350 4∞ 1M MULTI-FUNCTION Pin Current (μA) Note: "j" his ligure provides idealized lunctional characteristics 01 the MUL TI-FUNCTION pin with typi饲 I pe厅'ormance values Please reler to the parametric table and typical pe厅ormance characteristics sections 01 the data sheet lor measured data 同 2524, 081999 图 8 、多功能号|脚特性 9 匾血lil室主叠室主E CONTROL Pin TOPSwitch-FX ....(NegaJive Current~e~se- ON/OFF , Current Limit Adjustment) ~VBG +V丁 MUL TI-FUNCTION Pin …. (Positi~e Current Se~?e : Unde..r: -Voltage , Over-V.o ltage Maximum Duty Cydé Reduction) .L .……………… ………………………………………………………………………… E 。 1-2548-092399 因 9 、多功能 SI 脚输入简因 频率弓|脚的典塑使用方法 O O + + DC DC Input Voltage Input Voltage PI-25 口 6-081199 口 1-2505-08 才 199 因 10 、全频率工作 (130kHz) 图 11 、二|二频率工作 (65 O + Qs can be an optocoupler output DC Input Voltage STANDBY PI-2507-080699 图 12 、半频率待机模式(玫率待机可以更高) 10 kHz) 匾圄量宝~室主E 多功能弓|脚的典塑使用方法 。 + + V uv = luv X R LS V ov = lov X R LS For R LS = 2M\) V uv = 100 VDC V ov =450 VDC DC Input DC Input Voltage Voltage DC MAX @100VDC = 78% DC MAX @375 VDC = 47% PI-2509-081 才 99 PI-2508-081199 图 13 、三端工作(禁止多功能特性。 图才 4 、实现欠压、过压和降低最大占 空比的线路检测Ij 频率弓 11即与源极或控制极弓 l 脚 相连) + + 2MQ IR LS DC Input Voltage V uv = R LS X luv V ov = lov X RLS For Value Shown V uv =100VDC For Values Shown V ov = 450 VDC DC Input Voltage 22KQ I IN4148 6.2 V 同 -2515-081 才 99 PI-25 1O口 811 四 图 15 、仅实现欠压的线路检测(禁止过压) 因 16 、仅实现过斥的线路检测(禁止欠 Æ) , 。 + + For R 1L = 12 KQ I UM1T = 67% I Ll M1 了 = 90% @ 100 VDC ILl M1T = 55% @ 300 VDC For R1L = 25 KQ IUMIT = 40% DC Input Voltage See graph for other resistor values (R ILl DC Input Voltage R 1L R1L PI-2517 口 81199 图 17 、外部设定流限 PI-2518-081199 图 18 、流限随电 JE 降低而降低 11 ·皿量宝Z壶宝~ 多功能弓i 脚的典塑使用方法 O O + + OR can be an optocoupler output or can be replaced by a manual switch , OR can be an optocoupler output or can be replaced by a manual switch DC ON/OFF Input Voltage DC Input Voltage ON/OFF 间 .2522.081 才 99 PI.2519-081 才 9日 图 20 、取 j肖远程开/关 图 19 、启动(叮靠的)远程开/关 O O + + OR can be an optocoupler output or can be replaced by a manual switch For R 1L =12 KQ =67 % ILl M1T DC Input Voltage OR can be an optocoupler output or can be replaced by a manual switch DC Input Voltage For R 'L = 25 KQ ILl M1T = 40 % 24K (l R MC =2R 1L R" ON/OFF PI.2520-081 句 9" PI.2521.081199 因 21 、用外部设定限流启动远程开/关 图 22 、用外部设定限流取消远程开/关 , + RLS~2MQ DC Input Voltage OR can be an optocoupler output or can be replaced by a manual switch 一 ON/OFF For RL5 = 2M (l V uv = 100VDC V ov = 450 VDC PI.2523-081199 图 23 、用线路检测取消远程开/关 12 -.l!l.iI宝y室主E 应用举例 RCD1在位电路( R3 , C3 和 D 1 ) ,通过足够 余址,将最差条件 t.; TOPSwitch-FX 的漏极 高效的 30 瓦特通用电源 电压限定在安全范罔内。 国 24 所/)\电路利用 TOPSwitch-FX 的某 增大 TOPSwitch-FX f 最大占空比(确保至少 75% ,而 些特性降低系统成本,减小电源尺寸,提 TOPSwitch- 1I 的为 64%) ,因而可以使用更 高效率。此设计提供 12V 、 小的输入电容 (C1 )。随 RCDll在位而来的最大 30W输出,采用 i且用的 85V 到 265V 交流轴入,在 50 C 内以 }f d 空比增大和高反射电压{吏 T1 的初次级匣 架方式工作 c 敖比较大,降低次级整流管 D8 上的峰值反 0 使用 TOP234 时满载额定效率 口l 达 80% , 而J I l!.庄。因此, 通过电 IIfL R 丁和 R2 从外部设定的 TOPSwitch-FX 的流限{]'I 1又略高于低电 )f 工 作时的昨值 Ft!. ì杠,约为固定限流值的 70% 时比,对设定的输出电压,可以采用更 小的变!七器磁芯和/!iJ..允许变压器初级电忠、 豆豆高,降低了OPSwitch-FX 功耗,同时避免 15V 以「输出使用肖特基二 极管整流器,会极大地改善电源效率。 TO PSwitch-FXfrJ 跳过周期特性使电源在空 载调节时无需!韭负载,降低[ I l!.源的空载/ 待机功柱。频率抖动特性能使传导 EMI 的卢布 空符合 CISPR22 ( FCCB )标准。 ~l!.路采用简单的开纳感应电路米降低 启动和输出瞬态情况下变压器磁芯饱和。 成水。输出电压出齐纳二极管( 电阻 R1 捉供电 Ui 前馈信号,降低流限,提 反元桐台器( 高电压,以限定高输入电!长情况的最大过 也阻 R8 捉性进入开纳二极管的偏置电流?产 战功率。前 i费功能与 r J才带的软启动功能归 结合,可以用 J/. EH 电压较高的低成本的 R2 )电压 U2 )和电阻 R6 上的同降决定, 生对 12V 输出电平、过!王过载和元 {'I二变化时 :t 5% 的稳定度。 C3 4.7 nF 1KV RTN R1 4.7MD 1í2W R8 150 D C1 68 U2 ltF 呵、 : LTV817A 400V ) U1 TOP234Y VR2 1N5240C 10 V, 2% PI-2525-0823g9 国 24 、使用外部限流的 30W 电源 13 匾圄噩噩噩室主E 35 瓦特多组输出的电源 设计:ìi:利用软启动手fl 较尚 图 12 所呆的 35Wlî.陆输出次级陆在的电 iif;( 利用 TOP223 实现多输出, DVD 等应用巾。 VCR 、 交流 230V , 可用于机 JDf 盆、 所示 r b,赂的设计输入为 陀来 l),~ IJ 、变压器尺寸 J 进冲电路( I议 在采用 100fJj(; 115V 交流仅极输入 另外, 时, 也能提供 35Wì指战功字输出。 l 100V )、 过压关断( DC MAX 的[毡「王的 i贵特忏 c 如~ i果扩1 lîffJ i果车命 LU 能 *断特性在白;7t[输入超过 瞬间关断。 ii!t 450V 时关出Î TOPSwitch-F X. ìì'í I涂!乏与.j 1[1. fr 丰U i届 尖峰, 从而将 MOSFET 的制定扰电 illí 能与扩 大 flJ 700Vο 电 J.f R9. 由于在乡村地区 r lJ.庄常 tH f见证长 ;主持忡口 j 以防!l:.因此而王成的 I IJ. ì原 t~l R10 i 门 R 'i' . 在对悦顺眼 一 tí~ 户; 3 月!才(果忏 3 才 ~0 补 采用 J.x 嗣 f7 器通过电阿l 33V 和 5V~fJtr 出 íl~ í1!此 Jt 'Ë 4 白出屯!五出变f!,措 fl~ 功率 li05V输出 j且过 It!. PJl í;J 号.~ .t 句:主 2 千 11 齐 VR2 J了!仁调节 η "ζ 虑;以屯 I\tl f气 1 Itl It!. 1;11 R8fll ITI 容 C7',j~ .f见。 3 3V. 5V 1' 11 !J~ LC 日 ;ft 引( , C 17 ) 1;军 íl~ iZ ;j~ fJJ t反 由电 Iill. R5 丰fll丑行 C5 18V 大 sj] ;京输出 I 片1 第一 L2. L3, L4fll C 13 , C15 .~ i t'iC4ítì 入;中间内q:f ;r,íí, CJ1 1 iijf 与飞↑ 年J lglim fIF 「 llEl|且| VVV叭 mm 川W ') RTN 5V JTD 问 25 、 l斗 35W机 l 员企 I l!. ì}~( R1 fÎ! ;~ ~飞件下 30V~fJiì 白白屯, TL4 川、 f圭和 1 1'1 均唔 1,'; ;;iJ 切 ;1: 在尽量不影响边 [| 11 1:( .c 吃叮当二5%. 450V )和 1;平在t lii 、{ 什叶 用 检测( ff 干扰电视接 吁 fr TOPSwitch-FX 与;原 字的的'但下肘;法 ú 丰、民iI R1(2M Ç2)实现欠!王 ;咸小, 通过的颇丰;吨'1'边顷, 厅由 3 用单一电!王采样屯 ßtt ‘ 极 L.q 凹ì1}主的!际京 ';1 时改为与控制脚连接 在|述 E TOPSwitch-FX的优础性体现在以 卡 JL IY) r.~; HJ 中, i牛顿卒特 Jj 二关 i皮 1巴 Lr'1 dv/d tLU 收的恬身、j 视频 l噪声减毛最小。 iH.也可提供且用输入的 25W额 Iflítr 山。 R4 , C4 ) [ E皿温室Z叠室主E 满载玫率超过 75% 。初级再位元件 VR1 和 01 弓|脚闸的|同距增大 f 漏电距离,在采用风 扇冷却和计算机电源等高污染环境中特别 将峰值漏极电压限定在安全范围内。 有用, TOPSwitch-FX 的频率抖动特性也能降 低 EMI ,通过选择适当的 Y1 电容( 输入滤波器件( CY1 )和 CX 1 , L 1 )使辐射值低于 CI SPR22 ( FCCB )标准。为将 TOP223 的共模 暂态相合减至最小, Y1 电容连接在直流正 极输入上,通过 275V MOV (RV1) 能实现 3KV 电容 C1 为高压直流电源提供高频去调 合,当直流源到此待机电路距离不长时无 需此电容。线路检测电阻 R1 实现直流输入 的欠!压检测。当交流关断时 , TOPSwitch-FX 的欠压关 l析特性防止山于主转换器中大存 储电容放电缓慢|而在输出端产生自动重启 防雷击装置。 动尖脉冲。当输入电压低于保持输出受控 17W 计算机待机电源 所需值时关断电源,直到输入电压高于欠 提供 3.3V 和 5V 次级输出和 15V 初级输出的 压门限( V uv )时才重新接通电源。欠!五门 17W 计算机待机电源如图 26 所不,且中使用 限设定在 200VOC , 的 TOP223 司采用 230VAC 或 100/115VAC 电压工 能节约分立元件吗基于的设计所需的若干 作,无需输入倍!五器。此设计利用 ch-FX r TOPSwit 软启动、欠压检测、严格的流限变化 和更高开关频率特性,例如l 开关频率更高问 时流限尘化更严格能允许使用 EE19tí结芯。另 外 , TOPSwitch-FX 高压漏极电压引!即和{压压 170VAC Bt启动。此特性 个实现瞬间关断功能的外国元件。 偏置绕组经 02 和 C6 整流和ìr.t ì皮后产牛一 TOP232 的偏置电压,并为主电源初级控制 电路提供 15V 初级偏置输出电压 o R9 , R 怡 和 R11 通过如图所忌 TL431 ( U3 )电路检测 -l!l且也壶室主E 3.3V 和 5V 输出电压。电阻 R6 限制通过光润器 U2 在这种情况下,可以用简单的 RC 滤波器米产生 的电流并设定整个 AC 控制环路增益。电阻 R7 驱动 U4 的宣流电平信号(图 27 中未显示)。此 俯{果光惘合器在最小电流时 TL431 有足够的偏 远程接通特性方便计算机根据需要唤醒打印 'lf. r且流 O 机、扫描仪、外部调制解调器、磁盘驱动器等 电容 C8 提供软启动功能,消除 f 接通 电源时的过冲。 TO PSwitch-FX 的空载调节(跳过 间明)特性使电路能满足 PC 机的 BlueAngel标准对 外 ì~ 0 为 f 节电,外设通常设计为-段时间没 行使用后自动关断。 吁机电源的低功耗要求。 除 f 能使元件数最少 , TOPSwítch-FX在 以下应用中还具 {J 许多技术优势: 处理器控制电源开关 1 山 ri止于 j!1程关断模式时几乎不消耗能 {i二 i者如打印机等应用中,可能需要在做处理器 号c , 甜控制 f ,用廉价的瞬时接触开关来实现 的电沈 TOPSwitch-FX 式功琵特别低 的电源开关。低功耗远程关断特 性可以用很少几个外围兀件实现此功能,如国 27fi斤示。只要按钮式瞬时接触开关 P1 被用户归j M 脚 JF 路) , TOPSwítch-FX 的关断模 VACp ,t 为 160mW 2 fT ,光调 U3 被启动并通知微处理器。最初当电 ;原关断时( I币外部电路也不消耗高压直流总统上 110VACot 通常为 80mW , 230 c 可以使用曦价的、低电压/电流的瞬时接触 开关= Mt即悬空) ,闲合 P1 将通过二极宫' (1&程)使 TOPSwitch-FX 的 M 弓 1)郎和源极弓 I !.出l 3 瞬时挂触开关无需去抖动电路。在接通用 k 拔,挂通电源。当次级输出电压 VCCt耸立 间,电泊的启动时间(通常 10 到 20ms )与 后,微处理器被启动,通过由光鹊 U3 输出驱动 民处理器拍初始化时间起去抖动滤泣器的 的开关状态输入得知 P1 己闭合,此时它通过光 作用,保证只有当开关被按下至少达到伫 桐 U4 发出使电视;保持接通状态的控制信号 G 述时间才允许挂通。在关断阴间,微 Y.HfJl. 如 器在检测到开关的第→次闭合时开始关 l析 日:用户再次按下开关 P1 发出关断命令,微处理 杠序,尔后的开关反弹则不超作用。如果 ;窑通过光捐 U3 检测到此信号后启动产品特定的 关断程序。例如在喷墨打印机中,关断程序可 有必要,微处理器可以用软实现关断时的 r f[l头安全地停在存储位置。在带有 开关去抖动,或用洁、波电容作为开关状态 能包括将 f 也盘驱动的产品中,关断程序可能包括将数据 输入。 现设置存储到磁'盘上。当关断程序结束,电源、, 4 由于 M 号|脚电流提供内部流限,光制 U4 输出 被安全关断后,微处理器通过将光棉 U4 关断来 工作无需外部流限电路。 H 放 M 弓|脚。如果子动开关和l 光棉 U3 , U4 离 M 斗|凹的距离较远,则需要用一个电容 C M 来用防 5 元需用连接到输入直流电!五线的高压电阻 为初级的外部电路供电。甚至 U3 的 LED 电流 止在 M 号|脚开路时将噪卢调合到弓|脚中。 也可由控制引脚提供。这不仅节省 f 兀 电源也可遇过用逻辑信号驱动光捐台器 件,简 ít [电路布局,还消除 f 开关状态 U4 的输入二极管,剧本地同域网!iX:串仁l /Jt 口 米远程技通。有时通过电站传送 J 系列逻辑脉 冲(例如山电缆的交流隅合)作为启动 1iJ" ~~比 直流逻辑电平更容均实现。 时出高压电阻引起的功率损耗。 6 坚固耐用的设计:不含有会被瞬态;在扑触 发的开关门问,而是山次级端伯微处理器 使电 ìt9、保持接通状态 16 噩噩盟军E VCC (+5V) + EWE au lp 川、 、 「 YT「 pnEα M 刷…… mb 町、 dah eukg High Voltage DC Input 47 llF PI~2561 才 01399 国 27 、采用微控制器远程开关 , 17 匾压且直撞盈盈~ 应用中的关键考虑 TOPSwitch-FX 与 表 3 列主杀了 TOPSwitch- 1I对比 TOPSwitch-FX 与 TOPSwitch- 1I 的特点和性能差异 • TOPSwitch-FX 的多项主rr 特性减少了对昂贵的分立兀件的需求,另外一些忡忡增强了设计的强度,可以节 约变压器和其立功率 JL 件的成本。 功能 软启动 TOPSwitc~1I 无 TOPSwitc~FX 插罔 优点 ·限制启动期间的峰值 fl.!.流 10ms 和电门:对元件的压力 ·节约了 i午多应用中用于软 , 启动的外田元件 • {吏输出过冲最小 外部流限 无 从 100%到 40%缺; 8, 17, ·变压器更小 省流限值可编程 l1821 , ·玫率更高 22 , .在输出过载条件下的功率 限制更严恪 67% 民NlCIX 78% ·输入电容更小(动态m: 14 rUJ 更宦) I ·功率更高( j 使用 VOR 更大 的 RCOffi 位电路时) ·可用自特基次级整流二极 音高效提供高达 15V输出 降低D4仙〈的电 无 78%到 38% 压前馈 :4, 8, 14, 23 ·防止电压纹波 ·增加瞬态和电涌电庄的承 受力 过压关断 无 单电阻叮编程 8, 14, ·增加线路电涌的电压的承 受力 16, 23 l 单电阻r:tJ 编程 欠!王检测' 5.8.14 ·在电源关断时防止自动重 启动脉冲干扰 15,23 开关频率 11 ∞k陆土10% 130k陆土7% 10 ·变压器更小 • 开关频率选择 无 65k陆i:7% 11. 12 1专导 EMJ 的基 i皮小于 150 k陆 ·在视频应用中用 RC丰DRCO 缓冲器来降低噪声时损耗 (限 TO-220) 低 ·使待机模式的效率更高 • EMJ 更低(二次谐波低于 150 陆-tz 表 30 18 TOP-II 与 Ta> -FX 的比较 ) ·且且直昼rIt室主E 功能 TOPSwitch-1I 频率抖动 无 TOPSwitch-FX :t4 kHz@130 kHz 士2 周期跳过 无 优点 插图 6 , 28 ·降低(专寻 EMI kHz@130 kHz DCM1N ( 1.5% )时 4 ·零负载调节时无需虚 拟负载 ·空载时低功耗 远程开/关 无 单晶体管或光相 8 , 19 , ·快速开/关(逐周期) 接口或手动开关 20 ,21 , • fj 可j 与x:失效控制 22.23 ·远程关状态功艳低 27 ·防故|璋的启动控制 • )G 需嵌入昂贵的开关 转挽器 ·可以用处理器控制开/ 关 ·可以通过本地局域网 或并口关断/唤醒外设 同步 无 单晶体管或光相 接口 ·可与外部频率较低的 信号同步 ·可根据需要开始新开 关周期 门问式 热关断 j带后 (700C~带后) ·能从热故障中白动恢 复 ·滞后值较大,防止电 路板过热 :t 10%(@2 5 o c) 流限容差 -8%(OOCfU 100 , :t7%( @2 5 o c) ·由于杏差更小,功率 0 -4%(OOC 到 100 C) 可提高 10% 。c) 封装 DIP 0.03 7" /0.94mm 0.137"/3 .48mm ·对由尘埃、残渣与其 的漏 SMD 0.037"/0.94mm 0.13 7" /3 .4 8mm 它污染物引起的屯弧 极漏 T0- 220 0.046"/1.17mm 0.068"/1.73mm 具有强大的抵抗力 0.045"/ 1.14mm 0.113"/2.87mm ·预成型号|脚,可接受 电 TOP-220 的 PCB 漏极漏电 (寻|脚预成型) 的容忍 PCB 布局有更大 漏电 ·更易于符合安全规则( ULNDE) 19 ··血l.iI宝Z墨宝~ l主容差更严格, TOPSwitch-FX设计考虑 V OR 可达 165V 。在连续 模式的设计中,通过将外部流限功能简化 选择恰当的 TOPSwitch-FX器件 为一项输入电压功能, 在应用中,我们应该根据所需的最大 输出功率、效率、散热约束和成本目标来 选择最适当的 TOPSwitch-FX, 由于可以选 (见图 18) , V OR 还可增大到 185V RCDm 位比齐纳 m 位的效率更高 但设计需要更加仔细。 输出二极管 择外部降低流限,为满足需要更高效率或 散热条件很差的低功率应用的要求,可以 !五、输出电流和Jd.用的照条件(包括热吸 选用较大的 TOPSwitch-FX器件,均可提供 收、空气流通等)来确定。 所需的输出功率。当从 X 轴垂直移动时, 首先遇到的曲或是最小的、成本最低的器 件,而最后遇到的曲线是最大的、最适于 有妓提供所需的输出功率的 输出二极管的选择通常山峰值反向电 TOPSwitch-II 的 DC MAx 较高,只要变压器阿敬比恰当, 在高达才 5V 的输出电压上可使用 60V 肖特基 工极管获得更高效率(见图 24 ,一个使用 60V 肖持基输出二极管的 12V , 器件。 TOPSwitch-FX 30W设计) 软启动 输入电容 输入电容应能提供 TOPS 协 itch-FX 转换 器所需的最小直流电压,以保持最低额定 输入电压和最大输出功率条件下电压受控 由于 TOPSwitch-FX 的 DC MAx 比 TOPSwitch11 的高,它可以使用更小的输入电容。对而 言,只要变压器设计得当,通用输入的电 通常在启动时,电源在反馈回路稳定 前承受的压力最重。接通时,片内耳大-启动 在 10ms 内使占空比从零钱性增大到固定的 DC MAx ' 使初级电流和输出电 J.E 依次上升, 为反馈回路控制占空比提供时间。这不仅 降低 [ TOPSwitch-FX MOSFET 、筒位电路和 输出二极营的压力,也有助于防止变压器 容通常只需每瓦 2IJF 。 在启动期间过饱和。软启动同时还能限制 初级箱位和输出反射电压 V OR 输出电压过冲的数值,在大多数应用中都 初级路位电路限制 TOPSwitch-FX的峰 值漏极电压。元纳 m 位(如图 26 中 VR1 ) 无需软结束电容. 守 EMI 一电磁干扰 所需元件数少,所占电路板面积也较小 o 为提高效率,结位齐纳管的电压至少应是 输出反射电压的 1.5 倍,以缩短漏电尖峰的 传导时间。在通用输入应用中使用开纳哥 位, V OR 的值最好小于 135V ,以适应齐纳管 的绝对容差和随温度变动的特性。这样既 能确保 m 位电路有效工作,也使最大漏极 电压低于 TOPSwitch-FX的额定关断电压。 要完全发挥 DC MAx 范围更宽的优势, V OR 必须更高 , 20 RCDr奋位比开纳错位的结位 频率抖动特性是将开关频率调制在狭 窄的波段内,从而降低与基本开关频率的 各次谐波相关的 EMI 峰值。此特性对均值检 测模式特别有利。从图 28 我们可以看出, 由于频率偏离增大,开关谐波阶次越高, 抖动的益处就越明显。 通过 FREQUENCY 弓|脚可以选择 TOPSwi tch-FX 的开关频率为 130kHz 或 65kHz ,某些 应用为了降低高频辐射噪声,漏极节点需 匾圄量宝y空军E 12 电视札等军 飞 J OVO 、 , i主 1叶选;学 65kHzT 作频率 f1 J 以降低结冲器 1tl 耗, t.足高效率。 在全 JL wri 尺寸 jι 关紧雯的应用中, 提高过来。 Hz 也能降低 EMI , ~ ì欠 i皆{皮。H民于 150kHz , z(YJ 同样, 边择 65k 可以看到 65kH 而频率在 150k Hz 以 L 时 EMI 指妇、要求全严恪得多。 6 4 Quasi-Peak 2 阳- 对 10W n川 时 O 用简单的电感就可以满足全世 3c AU |而无需更昂贵 4th nunE UHa'' m 。 QUW av-- h 界?斗 f中关于 EMI 的限 ftjlj 圭件, 4ino nu ?ι 以干 J.:L 肘, 监视器 (∞它}E。zu33ωα02。2 ltj1 G'i ( 例如iVCR 、 安较大的 nH c 5th (a) 月二关谐 i皮 的交流输入共柏扼试图。 。。 @OFa‘ y阿 -刷刷A , 80 变压器设计 一一一…斗 TOPSwitch- J/ 70 变 11,器的 T 11"陆通密度最好不屈 H30 (no 60 ( 00 南斯, 后大流限时的峰值磁通密度不起 > 50 ::t m 40 它 ) 过 4200 ri,)其斤。 同去~比的选择山能满足以下 ω 30 3 2 !之身、J ~也 11 , 条件: 不超过 135V , ( VOR )在使用开纳 1在位时 使用 RCOm 位时不超过 165 , 噜J c. 20 ~ -10 使用说ilít~ 古íJ t贵的 RCO 距拉时不屈过 185V 自 10 -20 0.15 如果设计的工作电流 ci 边低于固定的 ìílt: ~~ 1旺, t!" 宁、 飞、 '2 HU 、 ii ) 在大多敬!占用中, 0 lt. TOPSwitch-ll 'E TOPSwitch-FX )"":恪的流限容;兰、 开关 l顷采和特白的软启动特性, 10 30 (b) 频率 (MHz) !Jt!. @opqh响 h叩-a 。。 图 17 30 Frequency (MHz) 品好用接近峰值工,作电 iyfi 的外部 降低峰1n昭通密度和峰值功率( 才O 80 更高的 都有助于 60 > 50 ::t m 减小变压器尺寸。 "0 , 40 ω 3 30 ,-Ec. 20 2 待机功耗 <t -10 跳过时用特性能显著降低空载工7J 耗, 特别足在使用齐纳 ffi 位时。 如果次级 rjJ 耗 {良低, 叮以使用 TL431 调节器米控制l 反馈。 另外, 从 130kHz 正常开关频率降至 65kHz轻 载条件下的开关频率, 损耗。 O 也能显著降低开关 -10 -20 0.15 Frequency (MHz) (C) 频率 (MHz) 图 28 、 (a) 用抖动降低了由低频 itf;皮引起的噪声 (b) TOPSwitch- 1I整个范围内的 EMI 扫 视 (100kHz ,无抖动), (c) 间半电路和条 件下 TOPSwitch-FX 尝个范围内仨 MI 扫视 (才 30kHz ,背抖动) 21 -.l!l.iI宝m且E Maximize hatched copper areas (区:za) for 叩timum heat sinking + HV TOPVIEW PI-2543-092199 图 29 、 DIP 或 SMD 封装 TOPSwitch-FX 的推荐布局连线方案(采用线路检测防 止低压和过压) Maximize hatched copper areas (医:z1 ) for optimum heat sinking HV TOPVIEW PI-2544'(国2199 图 30ι、 22 TO-220 封装 TOPSw 川it比 ch干.平X 的推荐布局连线方案(用线电压降低流限) 匾亘!lil蛙壶室主E TOPSwitch-FX 的布局考虑 快速设计核查表 在进行电源、设计时,所有 TOPSwitch-FX的 初级端连接 TOPSwitch-FX 源极号|脚的输入 ~l皮屯 容的负极端采用单点连接到偏置绕组回路, 使屯涌电流从偏置绕组直接返回输入滤 i皮电 容,增强了电涌的承受力。 设计校验均应在工作台上进行,以确保在革坏 条件下不超过元件指标。器件品少应经过以下 测试: 最大漏极电 Lli 一检验峰但最高输入电压和 1. 最大过载输出功率情况 f , VDS 足否扭过 控制引脚旁路电容应尽可能接近源极和 675V 。当输出过载到电 i原即将 ili 入自动重 控制号|脚,其洒、极连线上不应有电源 MOSFET 启动状态(失控)刑的功率即品大过载输 的开关电流流过。 出功率。 所有以源极为参考、连接到多功能弓 1 )因 I二的兀件同样也应尽可能在近源极和多功能 最大漏极电流一在最高环境温度、最高输 2 入电压和1 最大输出负载情况 f ,观察启动 弓|脚,而且单独连接到源、极弓|脚。多功能弓 i 时的漏极电流 i皮形,检验是否出现变压器 脚的连线应尽可能短,并且远离漏极连线以 坦和的征兆和过多的前 ìfj 电流尖峰 O 防止噪声锅台。线路检测电阻(图 29 和 30 中的 TOPSwitch-FX 的前沿消阳、|间为 200ns ,可以 R1) 应接近多功能号|脚,使多功能弓 11即端的连 防止接通用用过早地终止叫在 200ns~肖隐时 结长度最短。 间结束前,观察漏极电流 j皮彤,枪验前 iE 用一个高频旁路电容与 47μF 的控制!即电 电流是否在允许的 iffi 限范围内(见 容并联使用,能更好地预防噪卢。反馈'光锅 图 33 )。 合器的输出也应接近 TO P Switch-FX的控 制和源极号|脚 O #.在检查一在最大输出功率、品小输入电压 3 和最高环境温度条件下,检验 TOPSwitch-FX y- 电容 压器、输出二极管丰rl 输出容温度指标。为 f 能按数据于册上的规定变更 TOPSwitch-FX y- 电容的位置应接近变 J-E:贵的次级输出回 的 R DSC ON) ,够的国变空间 O 路号|脚和初级直流输入引脚。 此温度空间既 可以通过容差计算得出:也可以解释为将 主要吸收 , 一个外部电阻与漏极弓|脚串联,使用相同 的散热装置,得到的一个电阻值,它等放 Y 型封装 (TO-220) 的号!脚与源极弓!脚采 于在测试和最坏条件最大指标情况 F , 用内部电连接。为避免循环电流,在引脚上 得器件的 Rosc 附加的散热装置不应与电路板上任何点电气 连接。 使用 P(DIP-8) 刑或 G(SMD-8) 型封装时, 另外,输出二极管的正负极号!脚下的铜片 面积应足够大,以利于器件散热. ,的差异。 设计工具 l.技术文献:数据手册,应用手册,设计思 想等等 器件下靠近源极寻|脚的铜片区域可起有效的 散热作用 o ON ìWIJ 2. 变压器设计电子数据农恪 3. 工程原型板 Power Integration 司 ι的网站 M w.powerint.com 上提供设计工具的最新信息. 23 ·tru量室主墨宝~ 产品指'标和测试条件 额定最大值 1 国 0.3 至IJ 700V 漏极电压 漏极峰值电流 存储温度 lt 0 -65 到 125 C 0.8A 止: r,占 i晶 2 -40 flJ 150 oC TOP233 1. 6A 号!钱温度 3 260 0 C TOP234 2 .4 A TOP232 控制脚电压 -0.3V 到 9V 控制脚电流 100mA 洼洼 l. f斤有的~门;生以 T-\ 二 25 多功能脚电压 -0.31 IJ 9V 2. 多功能脚也压 -0.3 到 9 飞Y 3. 只能用 116" 焊接 5 秒。 JÆ 白受内部电路限制。 热阻抗 热阻抗: 注意: Y 封装: (8 JA )1 一一一- 0 70 C/W (OJC)2 一一一一 2 C/W 0 T 无须常 iZ 散 f,:飞片 O 2 在靠近型封表面或源极脚 的挝合烹川试。 2 3 焊在 0.36 干方英寸 (232mm ) 、 2盎同l P/G 封装: (610 克 1m2) 嗣皮上。 4 焊在 1 干方英寸 (645mm ) 、 2盎O'J 2 (8 JA ) 一一一_ 45 C1W 0 _ (OJC)5 一一 , 24 5 0 CIW 3 ; 35 0 CIW 4 (610 克 1m2) 铜反上 C 5 在靠近型料表面的源极寻 l 剧P ðiH导 c 匾也l血昼Z叠室主E 条件( 除非主j 行说 明 参数 最小值 见图 34 符号 典型值 最大值 单位 树主口立 fiEt1E 一 一- - 源极 =ov; 40 至IJ 125 0 C 控制功能 频率习|脚 与ìI~极引 Ic=4mA 开关频率(平均 124 130 140 脚相连 kHz fosc 值) 0 T)=25 C 频率习!脚 与;以极斗 l 3.8 5.0 6.2 脚相五 130k I-I z~ 作 频率抖动偏离 :t 4 M kHz 65kHz-[ 作 士 2 频率抖动调íI~J 率 最大占空比 250 DC MAX IC=J CD1 , IM~二 1 M 飞 DC) 75.0 78.0 82.0 1\1= 190μ 八 35 目。 47.0 57.0 0.8 1.5 2.7 -27 -22 -17 IIz % 最小占空比(在跳 过周期前) PWM 增益 , DC M1N Ic =4mA; TJ=25 Oc % %/ mA %/ PWM 增益;虽飘 见 i主释 A -0.01 mA/ 。c 25 ..臣"苗,暴~~暴壶- 条件( 除非另行说 明 参数 符号 见图 34 最小值 典型值 最大值 单位 1.2 1.9 2.8 mA 5.9 7.5 15 22 源极 =ov; 结温-0 40 到 125 C 控制功能( 外部基准电流 续 > 18 跳过周明开始时 见图 4 T j =25 0 C 的控制也流 Ic =4mA; T J=25 oC 动态阻抗 Zc 10 Ohms 见凶 32 动态阻抗温飘 0.18 % /oC 7 kHz 控制号|脚内部滤 波器极点 关断 I 自动重启动 控制脚充电电流 -5.0 -3.8 -2.6 Vc =5V -3.0 -1 9 -0.8 0 IC(CH) T j =25 C mA 见 if l'于 A 充电电流温 i票 白 Vc =OV o5 % /oC 5.8 V i}J 重启动上限 VC(AR) 也压 自动重启动 F 限 4.5 4.8 0.8 1.0 2 4 5.1 V 电压 内动重启动滞后 电rE , 自动重启动占空 V 8 % lt 自动重启动频来 26 S1 开路 1.2 Hz 匾血1盖率y室主E 多功能输入 欠压门限电流 T j =25 0 C luv 门限 欠压或远程开/关门 lov 54 210 225 240 10 ;带后 i' 远程开/关负门限屯 IREM(N) J ~R -43 VM = Vc VM = 0 300 400 520 正常模式 -300 240 -180 自动重启动模式 -110 -90 -70 2.00 2.60 3.00 1M VM IM(DC) = 50 l-l A 1M = 225μA 2.50 2.90 3.30 1M = -50μA 1.25 1.32 1.39 1.18 1.24 1.30 75 90 110 1M 降低最大占空比开始 -27 -7 i带后 IM(SC) -35 T J=25 0 C 流和滞后 多功能寻 i 脚也压 50 T J=25 0 C 限电流和滞后 多功能习 II如短路电流 44 = - 150 I-l A T j =25 0 C 的门限 l 包流 最大占空 tt 斜降 0.30 • 1M >IM(DC) 0.6 1 .1 1.0 1.8 1.5 2.5 4.0 1.5 2.5 4.0 见注释 B 1.0 2.9 V c- 1 .O V F = Vc 10 22 40 多功能脚悬空 远程关断;届极电源电 V DRAIN = 150V 流 多功能脚知拨到 控制寻|月t~ 上 从远程接通到漏极接通 远程接通延时 T RON 见注释 B , i届极接且到禁止前的最短时间 远程关断建立时间 T ROFF 见注释 B 2 频率输入 频率号 II那门限电压 频率号 I !即输入电流 VF 27 -I!lil室m宝~ 条件(除非另行说明) 参数 见图 14 符号 源极 =ov; 结温 =-40 到 125 0 段小值 典明值 0 .4 65 0.500 C 占主大 单位 值 电路保护 内部 ;d i/dt= TOP232 T)=25 0C 白保护流限 I UM1T 1 OOmA/ μs 参见注释 C 内部 ;di/dt=200mA/ TOP233 T)=25 0C μs 1.070 参见注释 C 内部 ;di/dt=300mA/ TOP234 T)=25 0C μs 见图 33 主自入 T ,=25 0C 二 ç :,- AC 1.605 L一→- A 整;在纹路 而 ilt 泊隐时间 t LEB 一一上 Ic=4mA 流限近迟 t lLo Ic=4mA 输入 :MINi ns 100 125 IC=4mA 热关断温度 075x 1Ll MIT (MINì 0.6 x A ?000 1.500 三二 85VAC IINIT o 193390 5i1 参见注释 C 主与沈找路 中开始流限 0.535 ns 135 。c 150 卜-一一→~ 。c K:~ 关断 i带日 七屯bL位门限屯 Ik V C(RESE T) ~J34 , S1 开路 3.3 4.3 15.6 25 .7 7.8 12.9 5.2 18.0 30.0 9.0 15.0 输出 导通电 ~Iî 关断状态电流 击穿电压 r: ROS(ON) loss BV oSS ;1 时间 , T J=25 0C TOP232 10=50mA Tl= 才 OOoC T =25 0C TO P233 10=100mA 丁 =100 TO P234 10= 150mA T ,=25 0C T J=100 oC , 0 C V M 悬空 , Ic=4mA V oc =560V , T A=125 0C V M 悬空 , 10 =100 μA , Q 6.0 10.0 150 μA Ic=4mA 700 V T A=25 oC 在一个典巾的反激 式变换器中·测得 c 下降时间 V 100 ns 50 ns 电压供应特性 漏极电源电压 分路调节器电陀 V C(SHUNT) 参!Jt!.注释 C 36 I c =4mA 5.6 28 6.10 V ppm/ 。c I C01 输出 MOSFET 导通 IC02 输出 MOSFET 关断 供/充电电 流 5.85 :t 50 分路调节器温 i票 控制脚提 V mA 1 .1 ··亘组监室Z壶宝~ 注释= A 对带有古1 号的技术指标, 负 ìM 度系敌对应于随温度增加其敬值增加, 日:温度系敌对 山 f 随温度增加其敖值减少 O 口水 , a1. , 证 丰疗 i 一事 '2 十1J f u日 B 生产时未经测试。 请参考典塑性能特性~ -Yî 中的图表( iIi 限与外)'jj; ìfrE限电阻) C 外部调节 m[ rí[~ 时, D TOPSwitch-FX 在漏极电压比 36V低 1~ 多的情况卡也可以启动和l 工作。 脚的充电电流会减少, 这会影响启动时间、 但是, 控制 自动重启动频率和自动是启动占空比。 请参阅低压工作特性曲线中控制脚充电电流( Ic )与漏极电压之间的关系曲线。 t2 t -F 二 t 一。 ι D 41 DRAIN VOLTAGE 才 0% o V ---…-主----------PI.2口 39.口 43097 国 31 、 占全比的度量力;去 2100 } 咱圃, 巳 ω 』 80 ‘" 60 」 。 c::: 40 。 20 •z υ 1.2 自 1.1 志 』』 HCω 30z-《匠。 Z a.. 1.3 舌 E g u= B2·OANON也 由白白F白DI 白白白Fl 一且 才 20 1.0 0.9 0.8 一」一 IINIT(MIN) 0.7 @ 85VAC =里 IINIT(MIN) @ 265VAC 0.6 0.5 0 .4 0 - - IUMIT(MAX) @25 C IUMIT(MIN) @ 25 oC 0.3 0 .2 O 才 O O 2 4 6 8 CONTROL Pin Voltage (V) 才O O O 2 3 4 5 6 7 8 Time (us) 因 32 、控制脚的电流电压特性 图 33 、漏极操作时的电流 29 匾豆豆崖昼Z叠叠~ 1; 470 n 5W 二三 V/ +lbp RJV RD<U 寸 l飞 VA呻v nuJ Qhv O-' 40V q SG > < O <U MK Q 470 n 。 -15 TOPSwitch-FX V NOTES: 1 This test circuit is not applicable for current limlt or output characteristic measurements 2. For P and G packages , short all SOURCE pins together PI.2538.09169S 图 34 、 TOPSwitch FX 一般的测试电路 [在测试器件的电气特性时需要注意的问题 在电源外对 TOPSwitch-FX 单拙进行测 时的电源,控制脚振荡处于正确状态(漏极 试时,应该注意下面的问题。因 34 是对 工作的状;在)、从而观察到连续的漏极 j皮恨 TOPSwitch -FX 进行实验宝测试时建议使用 的可能性只有 125% 的电路图。 纯的漏极;皮恨,就应先将 V c 的电源电压力 1] 当 j届极电源加上时,器件处于自动重启动 状态。控制脚的电压将以一个低的频率在 4.8 到 5.8V 间振荡,而漏极则在控制制振荡的每个第 八周期导通。在此自动重启动状态 F 接通控制 因此如果坦、要观察到连 上,然后再把漏极的电源撞通。上述的 12.5% 的可能性是 111 8: 1 it. 放器造成的。可用临时 将拧制脚和源极号 l 凹坦路才£复位 TOPSwitch- FX , 使之出现正确的状态。 典塑性能特征 , < ·咱!:: E 」 咱z 圃, ω ‘‘ 2 υ CURRENT Ll MIT VS. MUL TI-FUNCTION PIN CURRENT PI-2 5-4 0-0 91699 1.0 200 9 180 .8 160 古 7 忡。看 6 120 .5 100 E 刀 、‘. 4 1- 80 TOP233 1.00 TOP232 0.50 3 -250 -200 -150 -100 1M (1lÄ) 30 制 -50 '" 60 O "'c .巫且革矗立量室主E CURRENT Ll MIT vs. 亡EXTERNAL CURRENT Ll MIT RESISTANCE PI.2539-091699 200 (《 )tE32ω』』20 180 8 160 7 ?40 古 立 3 120 号 6 、‘ 一-1 5 "0 100 4 3 O 10K 5K 15K 20K 25K External Current Li mit Resistor BREAKDOWN VS. TEMPERA TURE ~L (0) FREQUENCYvs.TEMPERATURE n、。 Clf Lt可 。。 飞.嗡d ~ -g 1.0 ~N 。三 它何 苦E !1' 画 面三 0.9 Jl 啡。‘同。@n 。N ,F ,F 飞I 民- ωυ 咱圃'‘、. 丁 2 (υ Z) 。的 N 。#它ON--m』 E。 Aυcω=σ』 ωhH=S 』 h 。 H= @mwov 。oa -@寸m E 1.1 l 08642 4lnu(U [ U [ U O -50 -25 O 25 50 75 100 125 150 50 -25 Junction Temperature (OC) INTERNAL CURRENT Ll MIT V5. TEMPERA TURE 25 50 75 100 125 150 Junction Temperature (OC) 口 VS. 220 。, 比 ERa-- 坦E320 』』 20 。 (υ Z) 。的问。"ω 可N--m』E a' EXTERNAL CURRENT Ll MIT TEMPERATURE with RM = 12K n 1 .2 q的响NiE 。。。Nau响 1.2 0 8 6 4 2 1 0 0 0 0 O 才 O < - 咱... 0.8 E ...J ... φ 0.6 E ω ‘' :; 0 .4 0 0 .2 O O -50 -25 O 25 50 75 100 125 150 Junction Temperature (OC) -50 -25 0 25 50 75 100 125 150 Junction Temperature (OC) 31 匾且且直撞叠叠~ OVER-VOL TAGE THRESHOLD vs. TEMPERATURE UNDER-VOL TAGE THRESHOLD vs. TEMPERA TURE ::Q ~ 1.0 !2() -。 1 .2 3(1O .J::() ,^ 叨叨 ~N 5 。 o ãl 引 主<'1 0.8 e。@ωNeoiER也 ,。 "NeBTns比 2· 1.2 0.8 •.;:; ←制 &言 。冒 0.6 而.- 冒出 0.6 ......- ..... -= 有何 幸 §04 =手 F 0 .4 剧。 ‘- 」。 SE o ~Z S)O 2 0 .2 O O -50 -25 0 25 50 -50 -25 75 100 125 150 25 50 75 100 125 150 Junction Temperature (OC) Junction Temperature (o C) MUL TI-FUNCTION PIN VOL TAGE vs. ];URRENT (EXPANDED) MUL TI-FUNCTION PIN VOL TAGE vs. CURRENT RU J aotNZ2 比· {〉)三Z 民。-← DE υZDHKS 」E ,。由 VOOe rN也唾O 1.6 6 > ω1 .4 0 何 苦 1.2 > 4 = 1.0 a z 3 。 0.8 506 2 2 D I.L. 0 .4 •DJ 0 .2 E O -300 -200 斗 00 0 -300 (μA) i -50 -25 -150 -才 00 -50 O (μA) 。。呼 FDF4muenNI-s Z} 』。 』』 HZω 30 」。wh ←z。 υ (υ E 。的问。制ω 可N-而- 4lnunununu 08642 -200 MAX. DUTY CYCLE REDUCTION ONSET THRESHOLD CURRENT vs.TEMPERATURE 1 .2 {υ 。制响MONZm』 E。Z} 。山 N川 』』 =OE 。zωω』Z← "ωmc。 HZω mwa。 uF-P N@O也 N-- 1.2 -250 MUL TI-FUNC Tl ON Pin Current CONTROl. CURRENT at START of CYCLE SKIPPING vs.TEMPERATURE O O 100 200 300 400 500 MULTI-FUNC Tl ON Pin Current 4lnunununu 08642 O o 25 50 75 100 才 25 Junction Temperature (o C) 32 0 150 -50 -25 0 25 50 75 三 100 125 150 Junction Temperature (o C) ·皿量宝Z壶空军E IC vs. DRAIN VOL TAGE :。 句448 宁 tT q!nU :C ==RJnu AA CC SS EE 2 VC , {《 )HZ』ω 』 =υz-《筐。 <t 1.6 E =5V • ···F。"'@ 咱ON--s ···Pωweo--F·-a 一一 OUTPUT CHARACTERISTICS 1.5 i / Z 、d …嗡d c..c: ...J ~ 。与 1 .2 P:: ü BE08 TOP234 1.00 TOP233 0.67 TOP232 0.33 0.5 u~ m ε υ0 .4 O O 2 O 4 6 10 8 lLl O D 阳 。 QMQM VS 40 - 60 80 N V OL T-AGE DRAIN CAPACITANCE POWER (130 kHz) ···'"BZZTE 。 户、 eu au- nmMa era d ω a 1∞ nunu nunu 章。且 "~ 叫441 oz :t= Scaling Factors 300 {主EZω 。 gaEBTNZE-- ml TOP234 1.00 TOP233 0.67 TOP232 0.33 u园 100 DRAIN Voltage (V) DRAIN Voltage (V) cm 20 帽 υ Z E O 10 O 200 O 400 DRAIN Voltage (V) 600 O 200 400 600 DRAIN Voltage (V) , 33 ·.t'l~~幅画"Jc~_ P08B Plastic OIP-8B 厅→豆~~函豆1可-, Notes: 1. Package dimensions conform to JEDEC specification MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP) package with .300 inch row spacing. 2. Controlling dimensions are inches. Millimeter sizes are shown in parentheses. 3. Dimensions shown do not include mold flash or other protrusions. Mold flash or protrusions shall not exceed .006 (.15) on any side. 4. Pin locations start with Pin 1, and continue counter-clockwise to Pin 8 when viewed from the top. The notch and/or dimple are aidS in locating Pin 1. Pin 6 is omitted. 5. Minimum metal to metal spacing at the package body for the omitted lead location is .137 inch (3.48 mm). 6. Lead width measured at package body. 7. Lead spacing measured with the leads constrained to be perpendicular to plane T. bfL .2些 (6.221 255 (6.48) lPil'1J卜寸 「1」一些且明 (9.78) f二 」 .385 (1.45) 叶~~一一一一→刀画亘古.画bì (NOTE 6) 0.15 (.38) MINIMUM A 问,主些 (.~5) 015 (.38) .12翌旦」些) .135 (3.43) !UJ! 100 (2.54) BSC ~-~→"..1 _1 、 L些 4 (.~~l a;• U_~ 'J .048丛组 .053 (1.3 5) .300 (7β2)BSC (NOTE 7) +一些J!.~~---_ 390 (9.91) 画EBi 垒ffj面豆豆豆~旦血 PI-2551-101599 Plastic SMO:.a B G08B ELA A 些旦旱些) .388 (9.86) 险 E直至堕亘ÔJ L_ lQ Notes: 1. Controlling dimensions are inches. Millimeter sizes are shown in parentheses. 2. Dimensions shown do not include mold flash or other protrusions. Mold flash or protrusions shall nol exceed 006 (.15) on any side. 3. Pin locations start with Pin 1, and continue counterclock wise to Pin 8 when viewed from the lop. Pin 6 is omitted. 4. Minimum metal 10 metal spacing at the package body for the omitted lead location is .137 inch (3.48 mm). 5. Lead width measured at package body. 6. 0 and E are referenced datums on the package body. lP i nlL一一→ , 亟←一「一:;3372 些主二 Ii一n 11 一 -ifzi;12 11 n I (NOTE5) L一二 L牛牛一」ι斗↓斗牛J :黑jilJf!一骂自3+ 」 oω(.23) d b:QQ!í皿 些4 (.10) .012 (.30) L / 11-丁 些白0.91)U .044 (1.1-2) 立 11 PI.2546-101599 34 匾巫!l.it宝盟室主E Y078 Plastic TO-220-78 且引些卫 .156 (3.96) :;附(二制 |叫 引刊 1 1饨 5川 口川 (10 1佣 附 0.5 町 54 4 I一一一 丁 Ot 60 ) I二 u ~II 川俨 l 南盯宦育T i .050 (1.27) t1PIN11@ MOUNTING HOLE PATIERN 甲 叫一川口 |』〔 mm 叫阿|问 一- T I Notes: 1. Controlling dimensions are inches. Millimeter 己 dirnensions are shown in parentheses. 2. Pin locations start with Pin 1, and continue 口口 Ir创丁1 left to right when viewed Irom the fron t. Pins 2 and 6 are omitted. 3. Dimensions do not include mold flash or 巳 other protrusions. Mold flash or protrusions 口 shall not exceed .006 (.15mm) on any side. 巳 4. Minimum metal to metal spacing at the packJ age body lor omitted pin locations is .068 日 inch (1.73 mm). 5. Position 01 the fonned leads to be rneasured [ at the mounting plane , .670 inch (17.02 mrn) 口口 below the hole center. 6. AII terminals are solder plated. PI-2560-101599 , 35 -E且壶昼t.&l'~. Power Integrations Inc Headquarters 5245 Hellyer Avenue , San Jose , CA 95138 , US A. Main: (408) 414-9200 Website: www.powerin t. com 香港科汇(亚太)有限公司盈丰分部是 Power Integrations 公司唯→指定的牛 因和香港区代理商 O 所有经科汇公司购买的 IC ,→律得到 Power Integrations 公司的品质保证 O 香港科汇(亚太)有限公司盈丰分部中国各办事处: !妇 L~ 建国门北大街 8 号 fFi问大厦 1207 穿 电话 人民南路工段 18 号川信大厦 36 一(丁 -1 c主 毛沾 天日两路 218 母嘉里不夜城;江 电 i舌 应 3808-3809 4i 7~ J来南 :-IJ 路 3039 母国际文化大厦一」十气楼 2605 宅 电冶 武汉市武再也;中南路 7 号中尚「场日阵 2406 字: 电 i古 中山南路 224 甘南京诺 ~W 商务火厦 3108 房间 电话 I皂话 电 lt 高新技术产业开发区科技路 26 号质检大厦 402 宗 电话 www.insight-ap.com www.insight-ap.com.cn Rev 2 , 3/01 36 中国/香港·丰Ii国·东 EZ· 台湾地区 J 奇、十「 石桥铺科园一路 3 号重17:(渝洲)电脑域 703 室 湖滨南路国贸大厦第 l1fuA2 单元 8:1 2 2410 2780 86 10 8519 185~) 86 28 6190 198 86 21 62Lï 甘 935 86 755 3664 :38U 86 27 8732 26GO 86 25 420 4221 86 23 6879 0845 86 592 51G 3621 86 29 825 2934 t、 h 十盯丁、 斗川、中亏、乙、毛 事ri 界葵古兴九 IT'Ä 拓者1; 会广场 m 一年 3612 宅 EE(i 且二丘(斗门异口(真真 港京都海圳汉京庆门安 香北成上深武南重厦西 国gb.t 日 ~2 2/10 I 二;) 18 SG 10 S51Ú 1860 8fi 86 86 86 8b 86 86 86 28 6Hl9 01 ~J 21 6215 89 :3月 ~55 :3 564 38b 2 8732 2iG iJ 25 420 4:J 15 23 b87fl 1J 8~ :J 592 516 3620 29 825 2lJ 34 , ® TOP232-234 ® TOPSwitch-FX Family Design Flexible, EcoSmart®, Integrated Off-line Switcher Product Highlights Lower System Cost, High Design Flexibility • Features eliminate or reduce cost of external components • Fully integrated soft-start for minimum stress/overshoot • Externally settable accurate current limit • Wider duty cycle for more power, smaller input capacitor • Line under-voltage (UV) detection: no turn off glitches • Line overvoltage (OV) shutdown extends line surge limit • Line feed forward with maximum duty cycle (DCMAX) reduction rejects ripple and limits DCMAX at high line • Single resistor sets OV/UV thresholds, DCMAX reduction • Frequency jittering reduces EMI and EMI filtering costs • Regulates to zero load without dummy loading • 132 kHz frequency reduces transformer/power supply size • Half frequency option for video applications • Hysteretic thermal shutdown for automatic recovery • Large thermal hysteresis prevents PC board overheating • Standard packages with omitted pins for large creepage • Active-on and active-off remote ON/OFF capability • Synchronizable to a lower frequency ® EcoSmart - Energy Efficient • Cycle skipping reduces no-load consumption • Reduced consumption in remote off mode • Half frequency option for high efficiency standby • Allows shutdown/wake-up via LAN/input port Description TOPSwitch-FX uses the proven TOPSwitch topology and cost effectively integrates many new functions that reduce system cost and, at the same time, improve design flexibility, performance and energy efficiency. Like TOPSwitch, the high voltage power MOSFET, PWM control, fault protection and other control circuitry are all integrated onto a single CMOS chip, but with two added terminals. The first one is a MULTIFUNCTION (M) pin, which implements programmable line OV/UV shutdown and line feed forward/DCMAX reduction with line voltage. The same pin can be used instead to externally set an accurate current limit. In either case, this pin can also be used for remote ON/OFF or to synchronize the oscillator to an external, lower frequency signal. The second added terminal is the FREQUENCY (F) pin and is available only in the Y package. This pin provides the half frequency option when connected to CONTROL (C) instead of SOURCE (S). The features on the new pins can be disabled by shorting them to the SOURCE, which allows the device to operate in a three terminal + DC OUT - AC IN D M CONTROL C TOPSwitch-FX S F PI-2503-073099 Figure 1. Typical Flyback Application. OUTPUT POWER TABLE 230 VAC ±15% PART ORDER Open 1 NUMBER3 Adapter Frame2 TOP232P TOP232G 85-265 VAC Adapter1 Open Frame2 9W 15 W 6.5 W 10 W 10 W 25 W 7W 15 W 13 W 25 W 9W 15 W 20 W 50 W 15 W 30 W TOP234P TOP234G 16 W 30 W 11 W 20 W TOP234Y 30 W 75 W 20 W 45 W TOP232Y TOP233P TOP233G TOP233Y Table 1. Notes: 1. Typical continuous power in a non-ventilated enclosed adapter measured at 50 ˚C ambient. 2. Maximum practical continuous power in an open frame design with adequate heat sinking, measured at 50 ˚C ambient. See key applications section for detailed conditions. 3. Packages: P: DIP-8B, G: SMD-8B, Y: TO-220-7B. TOPSwitch mode, but with the following new transparent features: soft-start, cycle skipping, 132 kHz switching frequency, frequency jittering, wider DCMAX, hysteretic thermal shutdown and larger creepage. In addition, all critical parameters such as frequency, current limit, PWM gain, etc. have tighter temperature and absolute tolerances compared to the TOPSwitch-II family. Higher current limit accuracy and larger DCMAX, when combined with other features allow for a 10% to 15% higher power capability on the TOPSwitch-FX devices compared to equivalent TOPSwitch-II devices for the same input/output conditions. July 2001 TOP232-234 Section List Pin Functional Description ......................................................................................................................................... 3 TOPSwitch-FX Family Functional Description ......................................................................................................... 4 CONTROL (C) Pin Operation ................................................................................................................................. 4 Oscillator and Switching Frequency ....................................................................................................................... 5 Pulse Width Modulator and Maximum Duty Cycle ................................................................................................. 5 Minimum Duty Cycle and Cycle Skipping ............................................................................................................... 6 Error Amplifier ......................................................................................................................................................... 6 On-chip Current Limit with External Programability ................................................................................................ 6 Line Under-Voltage Detection (UV) ........................................................................................................................ 6 Line Overvoltage Shutdown (OV) ........................................................................................................................... 7 Line Feed Forward with DCMAX Reduction .............................................................................................................. 7 Remote ON/OFF and Synchronization ................................................................................................................... 7 Soft-Start ................................................................................................................................................................ 8 Shutdown/Auto-Restart .......................................................................................................................................... 8 Hysteretic Over-Temperature Protection ................................................................................................................ 8 Bandgap Reference ................................................................................................................................................ 8 High-Voltage Bias Current Source .......................................................................................................................... 8 Using FREQUENCY and MULTI-FUNCTION Pins ..................................................................................................... 9 FREQUENCY (F) Pin Operation............................................................................................................................. 9 MULTI-FUNCTION (M) Pin Operation .................................................................................................................... 9 Typical Uses of FREQUENCY (F) Pin ...................................................................................................................... 11 Typical Uses of MULTI-FUNCTION (M) Pin ............................................................................................................. 12 Application Examples ............................................................................................................................................... 14 A High Efficiency, 30 W, Universal Input Power Supply ........................................................................................ 14 35 W Multiple Output Power Supply ..................................................................................................................... 15 17 W PC Standby Power Supply .......................................................................................................................... 16 Processor Controlled Supply Turn On/Off ............................................................................................................ 17 Key Application Considerations .............................................................................................................................. 19 TOPSwitch-FX vs. TOPSwitch-ll ........................................................................................................................... 19 TOPSwitch-FX Design Considerations ................................................................................................................. 20 TOPSwitch-FX Selection ................................................................................................................................ 20 Input Capacitor ............................................................................................................................................... 20 Primary Clamp and Output Reflected Voltage VOR ......................................................................................... 20 Output Diode .................................................................................................................................................. 21 Soft-Start ........................................................................................................................................................ 21 EMI ................................................................................................................................................................. 21 Transformer Design ........................................................................................................................................ 21 Standby Consumption .................................................................................................................................... 23 TOPSwitch-FX Layout Considerations ................................................................................................................. 23 Primary Side Connections .............................................................................................................................. 23 Y-Capacitor..................................................................................................................................................... 23 Heat Sinking ................................................................................................................................................... 23 Quick Design Checklist ......................................................................................................................................... 23 Design Tools ......................................................................................................................................................... 23 Product Specifications and Test Conditions .......................................................................................................... 24 Typical Performance Characteristics ...................................................................................................................... 30 Package Outlines ...................................................................................................................................................... 34 2 B 7/01 TOP232-234 DRAIN (D) 0 CONTROL (C) VC ZC INTERNAL SUPPLY 1 SHUNT REGULATOR/ ERROR AMPLIFIER + SOFT START 5.8 V 4.8 V - - 5.8 V + INTERNAL UV COMPARATOR IFB VI (LIMIT) CURRENT LIMIT ADJUST + SHUTDOWN/ AUTO-RESTART VBG + VT MULTIFUNCTION (M) - ÷8 ON/OFF CURRENT LIMIT COMPARATOR HYSTERETIC THERMAL SHUTDOWN VBG STOP OV/UV LINE SENSE DCMAX FREQUENCY (F) (Y Package Only) DCMAX CONTROLLED TURN-ON GATE DRIVER SOFTSTART DMAX CLOCK HALF FREQUENCY SAW - OSCILLATOR WITH JITTER + S Q R Q LEADING EDGE BLANKING PWM COMPARATOR RE SOURCE (S) PI-2535-083099 Figure 2. Functional Block Diagram. Pin Functional Description DRAIN (D) Pin: High voltage power MOSFET drain output. The internal startup bias current is drawn from this pin through a switched highvoltage current source. Internal current limit sense point for drain current. CONTROL (C) Pin: Error amplifier and feedback current input pin for duty cycle control. Internal shunt regulator connection to provide internal bias current during normal operation. It is also used as the connection point for the supply bypass and auto-restart/ compensation capacitor. MULTI-FUNCTION (M) Pin: Input pin for OV, UV, line feed forward with DCMAX reduction, external set current limit, remote ON/OFF and synchronization. A connection to SOURCE pin disables all functions on this pin and makes TOPSwitch-FX operate in simple three terminal mode (like TOPSwitch-II). The switching frequency is internally set for 132 kHz only operation in P and G packages. SOURCE (S) Pin: Output MOSFET source connection for high voltage power return. Primary side control circuit common and reference point. Tab Internally Connected to SOURCE Pin 7D 5F 4S 3M 1C Y Package (TO-220-7B) M1 8S S2 7S S3 C4 FREQUENCY (F) Pin: (Y package only) Input pin for selecting switching frequency: 132 kHz if connected to SOURCE pin and 66 kHz if connected to CONTROL pin. 5D P Package (DIP-8B) G Package (SMD-8B) PI-2501-031901 Figure 3. Pin Configuration. B 7/01 3 TOP232-234 TOPSwitch-FX Family Functional Description In addition to the three terminal TOPSwitch features, such as the high voltage start-up, the cycle-by-cycle current limiting, loop compensation circuitry, auto-restart, thermal shutdown, etc., the TOPSwitch-FX incorporates many additional functions that reduce system cost, increase power supply performance and design flexibility. A patented high voltage CMOS technology allows both the high voltage power MOSFET and all the low voltage control circuitry to be cost effectively integrated onto a single monolithic chip. Two terminals, FREQUENCY (available only in Y package) and MULTI-FUNCTION, have been added to implement some of the new functions. These terminals can be connected to the SOURCE pin to operate the TOPSwitch-FX in a TOPSwitchlike three terminal mode. However, even in this three terminal mode, the TOPSwitch-FX offers many new transparent features that do not require any external components: 1. A fully integrated 10 ms soft-start reduces peak currents and voltages during start-up and practically eliminates output overshoot in most applications. 2. DCMAX of 78% allows smaller input storage capacitor, lower input voltage requirement and/or higher power capability. 3. Cycle skipping at minimum pulse width achieves regulation and very low power consumption at no load. 4. Higher switching frequency of 132 kHz reduces the transformer size with no noticeable impact on EMI or on high line efficiency. 5. Frequency jittering reduces EMI. 6. Hysteretic over-temperature shutdown ensures automatic recovery from thermal fault. Large hysteresis prevents circuit board overheating. 7. Packages with omitted pins and lead forming provide large DRAIN creepage distance. 8. Tighter absolute tolerances and smaller temperature variations on switching frequency, current limit and PWM gain. The MULTI-FUNCTION pin is usually used for line sensing by connecting a resistor from this pin to the rectified DC high voltage bus to implement line over-voltage (OV)/under-voltage (UV) and line feed forward with DCMAX reduction. In this mode, the value of the resistor determines the OV/UV thresholds and the DCMAX is reduced linearly starting from a line voltage above the under-voltage threshold. In high efficiency applications, this pin can be used in the external current limit mode instead, to reduce the current limit externally (to a value 4 B 7/01 Auto-restart ICD1 IB 78 Duty Cycle (%) Like TOPSwitch, TOPSwitch-FX is an integrated switched mode power supply chip that converts a current at the control input to a duty cycle at the open drain output of a high voltage power MOSFET. During normal operation the duty cycle of the power MOSFET decreases linearly with increasing CONTROL pin current as shown in Figure 4. Slope = PWM Gain 47 IM = 140 µA IM < IM(DC) 1.5 IM = 190 µA 1.5 1.9 5.5 5.9 IC (mA) PI-2504-072799 Figure 4. Relationship of Duty Cycle to CONTROL Pin Current. close to the operating peak current), by connecting the pin to SOURCE through a resistor. The same pin can also be used as a remote ON/OFF and a synchronization input in both modes. The FREQUENCY pin in the TO-220 package sets the switching frequency to the default value of 132 kHz when connected to SOURCE pin. A half frequency option can be chosen by connecting this pin to CONTROL pin instead. Leaving this pin open is not recommended. CONTROL (C) Pin Operation The CONTROL pin is a low impedance node that is capable of receiving a combined supply and feedback current. During normal operation, a shunt regulator is used to separate the feedback signal from the supply current. CONTROL pin voltage VC is the supply voltage for the control circuitry including the MOSFET gate driver. An external bypass capacitor closely connected between the CONTROL and SOURCE pins is required to supply the instantaneous gate drive current. The total amount of capacitance connected to this pin also sets the auto-restart timing as well as control loop compensation. When rectified DC high voltage is applied to the DRAIN pin during start-up, the MOSFET is initially off, and the CONTROL pin capacitor is charged through a switched high voltage current source connected internally between the DRAIN and CONTROL pins. When the CONTROL pin voltage V C reaches approximately 5.8 V, the control circuitry is activated and the soft-start begins. The soft-start circuit gradually increases the duty cycle of the MOSFET from zero to the maximum value over approximately 10 ms. If no external feedback/supply current is fed into the CONTROL pin by the end of the soft-start, the high voltage current source is turned off and the CONTROL pin will start discharging in response to the supply current drawn by the control circuitry. If the power supply is designed properly, and no fault condition such as open loop or shorted output exists, the feedback loop will close, providing external TOP232-234 CONTROL pin current, before the CONTROL pin voltage has had a chance to discharge to the lower threshold voltage of approximately 4.8 V (internal supply under-voltage lockout threshold). When the externally fed current charges the CONTROL pin to the shunt regulator voltage of 5.8 V, current in excess of the consumption of the chip is shunted to SOURCE through resistor RE as shown in Figure 2. This current flowing through RE controls the duty cycle of the power MOSFET to provide closed loop regulation. The shunt regulator has a finite low output impedance ZC that sets the gain of the error amplifier when used in a primary feedback configuration. The dynamic impedance ZC of the CONTROL pin together with the external CONTROL pin capacitance sets the dominant pole for the control loop. Oscillator and Switching Frequency The internal oscillator linearly charges and discharges an internal capacitance between two voltage levels to create a sawtooth waveform for the pulse width modulator. The oscillator sets the pulse width modulator/current limit latch at the beginning of each cycle. The nominal switching frequency of 132 kHz was chosen to minimize transformer size while keeping the fundamental EMI frequency below 150 kHz. The FREQUENCY pin (available only in TO-220 package), when shorted to the CONTROL pin, lowers the switching frequency to 66 kHz (half frequency) which may be preferable in some cases such as noise sensitive video applications or a high efficiency standby mode. Otherwise, the FREQUENCY pin should be connected to the SOURCE pin for the default 132 kHz. Trimming of the current reference improves oscillator frequency accuracy. When a fault condition such as an open loop or shorted output prevents the flow of an external current into the CONTROL pin, the capacitor on the CONTROL pin discharges towards 4.8 V. At 4.8 V auto-restart is activated which turns the output MOSFET off and puts the control circuitry in a low current standby mode. The high-voltage current source turns on and charges the external capacitance again. A hysteretic internal supply undervoltage comparator keeps VC within a window of typically 4.8 to 5.8 V by turning the high-voltage current source on and off as shown in Figure 5. The auto-restart circuit has a divide-by8 counter which prevents the output MOSFET from turning on again until eight discharge/charge cycles have elapsed. This is accomplished by enabling the output MOSFET only when the divide-by-8 counter reaches full count (S7). The counter effectively limits TOPSwitch-FX power dissipation by reducing the auto-restart duty cycle to typically 4%. Auto-restart mode continues until output voltage regulation is again achieved through closure of the feedback loop. To further reduce the EMI level, the switching frequency is jittered (frequency modulated) by approximately ±4 kHz at 250 Hz (typical) rate as shown in Figure 6. Figure 28 shows the typical improvement of EMI measurements with frequency jitter. Pulse Width Modulator and Maximum Duty Cycle The pulse width modulator implements voltage mode control by driving the output MOSFET with a duty cycle inversely proportional to the current into the CONTROL pin that is in excess of the internal supply current of the chip (see Figure 4). The excess current is the feedback error signal that appears across RE (see Figure 2). This signal is filtered by an RC network with a typical corner frequency of 7 kHz to reduce the effect of switching noise in the chip supply current generated by ~ ~ ~ ~ VUV ~ ~ ~ ~ VLINE ~ ~ ~ ~ 0V S6 S7 S0 S1 S2 S6 S0 S7 S1 S2 ~ ~ S2 S6 S7 S7 5.8 V 4.8 V ~ ~ ~ ~ 0V S1 ~ ~ S0 ~ ~ S7 VC ~ ~ VDRAIN 0V VOUT 1 2 3 ~ ~ ~ ~ ~ ~ 0V 2 Note: S0 through S7 are the output states of the auto-restart counter 4 PI-2545-082299 Figure 5. Typical Waveforms for (1) Power Up (2) Normal Operation (3) Auto-restart (4) Power Down . B 7/01 5 the MOSFET gate driver. The filtered error signal is compared with the internal oscillator sawtooth waveform to generate the duty cycle waveform. As the control current increases, the duty cycle decreases. A clock signal from the oscillator sets a latch which turns on the output MOSFET. The pulse width modulator resets the latch, turning off the output MOSFET. Note that a minimum current must be driven into the CONTROL pin before the duty cycle begins to change. PI-2550-092499 TOP232-234 136 kHz Switching Frequency 128 kHz 4 ms VDRAIN The maximum duty cycle, DCMAX, is set at a default maximum value of 78% (typical). However, by connecting the MULTIFUNCTION pin to the rectified DC high voltage bus through a resistor with appropriate value, the maximum duty cycle can be made to decrease from 78% to 38% (typical) as shown in Figure 8 when input line voltage increases (see line feed forward with DCMAX reduction). Minimum Duty Cycle and Cycle Skipping To maintain power supply output regulation, the pulse width modulator reduces duty cycle as the load at the power supply output decreases. This reduction in duty cycle is proportional to the current flowing into the CONTROL pin. As the CONTROL pin current increases, the duty cycle reduces linearly towards a minimum value specified as minimum duty cycle, DCMIN. After reaching DCMIN, if CONTROL pin current is increased further by approximately 0.4 mA, the pulse width modulator will force the duty cycle from DCMIN to zero in a discrete step (refer to Figure 4). This feature allows a power supply to operate in a cycle skipping mode when the load at its output consumes less power than the power that TOPSwitch-FX delivers at minimum duty cycle, DCMIN. No additional control is needed for the transition between normal operation and cycle skipping. As the load increases or decreases, the power supply automatically switches between normal operation and cycle skipping mode as necessary. Cycle skipping may be avoided, if so desired, by connecting a minimum load at the power supply output such that the duty cycle remains at a level higher than DCMIN at all times. Error Amplifier The shunt regulator can also perform the function of an error amplifier in primary feedback applications. The shunt regulator voltage is accurately derived from a temperature-compensated bandgap reference. The gain of the error amplifier is set by the CONTROL pin dynamic impedance. The CONTROL pin clamps external circuit signals to the VC voltage level. The CONTROL pin current in excess of the supply current is separated by the shunt regulator and flows through RE as a voltage error signal. On-chip Current Limit with External Programmability The cycle-by-cycle peak drain current limit circuit uses the output MOSFET ON-resistance as a sense resistor. A current 6 B 7/01 Time Figure 6. Switching Frequency Jitter. limit comparator compares the output MOSFET on-state drain to source voltage, VDS(ON) with a threshold voltage. High drain current causes VDS(ON) to exceed the threshold voltage and turns the output MOSFET off until the start of the next clock cycle. The default current limit of TOPSwitch-FX is preset internally. However, with a resistor connected between MULTIFUNCTION pin and SOURCE pin, current limit can be programmed externally to a lower level between 40% and 100% of the default current limit. Please refer to the graphs in the typical performance characteristics section for the selection of the resistor value. By setting current limit low, a TOPSwitch-FX that is bigger than necessary for the power required can be used to take advantage of the lower RDS(ON) for higher efficiency. With a second resistor connected between the MULTI-FUNCTION pin and the rectified DC high voltage bus providing a small amount of feed forward current, a true power limiting operation against line variation can be implemented. When using an RCD clamp, this feed forward technique reduces maximum clamp voltage at high line allowing for higher reflected voltage designs. The current limit comparator threshold voltage is temperature compensated to minimize the variation of the current limit due to temperature related changes in RDS(ON) of the output MOSFET. The leading edge blanking circuit inhibits the current limit comparator for a short time after the output MOSFET is turned on. The leading edge blanking time has been set so that, if a power supply is designed properly, current spikes caused by primary-side capacitances and secondary-side rectifier reverse recovery time will not cause premature termination of the switching pulse. The current limit can be lower for a short period after the leading edge blanking time as shown in Figure 33. This is due to dynamic characteristics of the MOSFET. To avoid triggering the current limit in normal operation, the drain current waveform should stay within the envelope shown. Line Under-Voltage Detection (UV) At power up, UV keeps TOPSwitch-FX off until the input line TOP232-234 voltage reaches the under-voltage threshold. At power down, UV prevents auto-restart attempts after the output goes out of regulation. This eliminates power down glitches caused by the slow discharge of input storage capacitor present in applications such as standby supplies. A single resistor connected from the MULTI-FUNCTION pin to the rectified DC high voltage bus sets UV threshold during power up. Once the power supply is successfully turned on, UV is disabled to allow extended input voltage operating range. Input voltage is not checked again until the power supply loses regulation and attempts another turn-on. This is accomplished by enabling the UV comparator only when the divide-by-8 counter used in auto-restart reaches full count (S7) which is also the state that the counter is reset to at power up (see Figure 5). The UV feature can be disabled independent of OV feature as shown in Figure 16. Line Overvoltage Shutdown (OV) The same resistor used for UV also sets an overvoltage threshold which, once exceeded, will force TOPSwitch-FX output into off-state. The ratio of OV and UV thresholds is preset at 4.5 as can be seen in Figure 8. This feature turns off the TOPSwitch-FX power MOSFET when the rectified DC high voltage exceeds the OV threshold. When the MOSFET is off, the rectified DC high voltage surge capability is increased to the voltage rating of the MOSFET (700 V), due to the absence of the reflected voltage and leakage spikes on the drain. Small amount of hysteresis is provided on the OV threshold to prevent noise triggering. The OV feature can be disabled independent of UV feature as shown in Figure 15. Line Feed Forward with DCMAX Reduction The same resistor used for UV and OV also implements line voltage feed forward which minimizes output line ripple and reduces power supply output sensitivity to line transients. This feed forward operation is illustrated in Figure 4 by the different values of IM. Note that for the same CONTROL pin current, higher line voltage results in smaller operating duty cycle. As an added safety measure, the maximum duty cycle DCMAX is also reduced from 78% (typical) at a voltage slightly higher than the UV threshold to 38% (typical) at the OV threshold (see Figures 4, 8). DCMAX of 38% at the OV threshold was chosen to ensure that the power capability of the TOPSwitch-FX is not restricted by this feature under normal operation. Remote ON/OFF and Synchronization TOPSwitch-FX can be turned on or off by controlling the current into or out from the MULTI-FUNCTION pin (see Figure 8). This allows easy implementation of remote ON/OFF control of TOPSwitch-FX in several different ways. A transistor or an optocoupler output connected between the MULTIFUNCTION pin and the SOURCE pin implements this function with “active-on” (Figure 19) while a transistor or an optocoupler output connected between the MULTI-FUNCTION pin and the CONTROL pin implements the function with “active-off” (Figure 20). When a signal is received at the MULTI-FUNCTION pin to disable the output through any of the MULTI-FUNCTION pin functions such as OV, UV and remote ON/OFF, TOPSwitch-FX always completes its current switching cycle as illustrated in Figure 7 before the output is forced off. The internal oscillator is stopped slightly before the end of the current cycle and stays there as long as the disable signal exists. When the signal at the MULTI-FUNCTION pin changes state from disable to enable, the internal oscillator starts the next switching cycle. This approach allows the use of this pin to synchronize TOPSwitch-FX to any external signal with a frequency lower than its internal switching frequency. Oscillator (SAW) DMAX Enable from M Pin (STOP) Time PI-2558-092999 Figure 7. Synchronization Timing Diagram. B 7/01 7 TOP232-234 As seen above, the remote ON/OFF feature allows the TOPSwitch-FX to be turned on and off instantly, on a cycle-bycycle basis, with very little delay. However, remote ON/OFF can also be used as a standby or power switch to turn off the TOPSwitch-FX and keep it in a very low power consumption state for indefinitely long periods. If the TOPSwitch-FX is held in remote off state for long enough time to allow the CONTROL pin to dishcharge to the internal supply under-voltage threshold of 4.8 V (approximately 32 ms for a 47 µF CONTROL pin capacitance), the CONTROL pin goes into the hysteretic mode of regulation. In this mode, the CONTROL pin goes through alternate charge and discharge cycles between 4.8 V and 5.8 V (see CONTROL pin operation section above) and runs entirely off the high voltage DC input, but with very low power consumption (160 mW typical at 230 VAC with M pin open). When the TOPSwitch-FX is remotely turned on after entering this mode, it will initiate a normal start-up sequence with softstart the next time the CONTROL pin reaches 5.8 V. In the worst case, the delay from remote on to start-up can be equal to the full discharge/charge cycle time of the CONTROL pin, which is approximately 125 ms for a 47 µF CONTROL pin capacitor. This reduced consumption remote off mode can eliminate expensive and unreliable in-line mechanical switches. It also allows for microprocessor controlled turn-on and turnoff sequences that may be required in certain applications such as inkjet and laser printers. See Figure 27 under application examples for more information. Soft-Start An on-chip soft-start function is activated at start-up with a duration of 10 ms (typical). Maximum duty cycle starts from zero and linearly increases to the default maximum of 78% at the end of the 10 ms duration. In addition to start-up, soft-start is also activated at each restart attempt during auto-restart and when restarting after being in hysteretic regulation of CONTROL pin voltage (VC), due to remote off or thermal shutdown conditions. This effectively minimizes current and voltage stresses on the output MOSFET, the clamp circuit and the output rectifier, during start-up. This feature also helps minimize output overshoot and prevents saturation of the transformer during start-up. Shutdown/Auto-Restart To minimize TOPSwitch-FX power dissipation under fault conditions, the shutdown/auto-restart circuit turns the power 8 B 7/01 supply on and off at an auto-restart duty cycle of typically 4% if an out of regulation condition persists. Loss of regulation interrupts the external current into the CONTROL pin. VC regulation changes from shunt mode to the hysteretic autorestart mode described above. When the fault condition is removed, the power supply output becomes regulated, VC regulation returns to shunt mode, and normal operation of the power supply resumes. Hysteretic Over-Temperature Protection Temperature protection is provided by a precision analog circuit that turns the output MOSFET off when the junction temperature exceeds the thermal shutdown temperature (135 ˚C typical). When the junction temperature cools to below the hysteretic temperature, normal operation resumes. A large hysteresis of 70 ˚C (typical) is provided to prevent overheating of the PC board due to a repeating fault condition. VC is regulated in hysteretic mode and a 4.8 V to 5.8 V (typical) sawtooth waveform is present on the CONTROL pin when the power supply is turned off. Bandgap Reference All critical TOPSwitch-FX internal voltages are derived from a temperature-compensated bandgap reference. This reference is also used to generate a temperature-compensated current reference which is trimmed to accurately set the switching frequency, MOSFET gate drive current, current limit, and the line OV/UV thresholds. TOPSwitch-FX has improved circuitry to maintain all of the above critical parameters within very tight absolute and temperature tolerances. High-Voltage Bias Current Source This current source biases TOPSwitch-FX from the DRAIN pin and charges the CONTROL pin external capacitance during start-up or hysteretic operation. Hysteretic operation occurs during auto-restart, remote off and over-temperature shutdown. In this mode of operation, the current source is switched on and off with an effective duty cycle of approximately 35%. This duty cycle is determined by the ratio of CONTROL pin charge (IC) and discharge currents (ICD1 and ICD2). This current source is turned off during normal operation when the output MOSFET is switching. TOP232-234 Using FREQUENCY and MULTIFUNCTION Pins FREQUENCY (F) Pin Operation The FREQUENCY pin is a digital input pin available in TO-220 package only. Shorting the FREQUENCY pin to SOURCE pin selects the nominal switching frequency of 132 kHz (Figure 10) which is suited for most applications. For other cases that may benefit from lower switching frequency such as noise sensitive video applications, a 66 kHz switching frequency (half frequency) can be selected by shorting the FREQUENCY pin to the CONTROL pin (Figure 11). In addition, an example circuit shown in Figure 12 may be used to lower the switching frequency from 132 kHz in normal operation to 66 kHz in standby mode for very low standby power consumption. for line sensing by connecting a resistor from this pin to the rectified DC high voltage bus to implement OV, UV and DCMAX reduction with line voltage functions. In this mode, the value of the resistor determines the line OV/UV thresholds, and the DCMAX is reduced linearly with rectified DC high voltage starting from just above the UV threshold. In high efficiency applications this pin can be used in the external current limit mode instead, to reduce the current limit externally to a value close to the operating peak current, by connecting the pin to the SOURCE pin through a resistor. The same pin can also be used as a remote on/off and a synchronization input in both modes. Please refer to Table 2 for possible combinations of the functions with example circuits shown in Figure 13 through Figure 23. A description of specific functions in terms of the MULTIFUNCTION pin I/V characteristic is shown in Figure 8. The horizontal axis represents MULTI-FUNCTION pin current with positive polarity indicating currents flowing into the pin. The meaning of the vertical axes varies with functions. For those that control the on/off states of the output such as UV, OV and remote ON/OFF, the vertical axis represents the enable/ disable states of the output. UV triggers at IUV (+50 µA typical) and OV triggers at IOV (+225 µA typical). Between +50 µA and +225 µA, the output is enabled. For external current limit and line feed forward with DCMAX reduction, the vertical axis represents the magnitude of the ILIMIT and DCMAX. Line feed forward with DCMAX reduction lowers maximum duty cycle from 78% at IM(DC) (+90 µA typical) to 38% at IOV (+225 µA). External current limit is available only with negative MULTI-FUNCTION pin current. Please see graphs in the typical performance characteristics section for the current limit programming range and the selection of appropriate resistor value. MULTI-FUNCTION (M) Pin Operation When current is fed into the MULTI-FUNCTION pin, it works as a voltage source of approximately 2.6 V up to a maximum current of +400 µA (typical). At +400 µA, this pin turns into a constant current sink. When current is drawn out of the MULTI-FUNCTION pin, it works as a voltage source of approximately 1.32 V up to a maximum current of –240 µA (typical). At –240 µA, it turns into a constant current source. Refer to Figure 9. There are a total of five functions available through the use of the MULTI-FUNCTION pin: OV, UV, line feed forward with DCMAX reduction, external current limit and remote ON/OFF. A short circuit between the MULTI-FUNCTION pin and SOURCE pin disables all five functions and forces TOPSwitch-FX to operate in a simple three terminal mode like TOPSwitch-II. The MULTI-FUNCTION pin is typically used MULTI-FUNCTION PIN TABLE* ▲ Figure Number 14 15 Under-Voltage ✔ ✔ Overvoltage ✔ Line Feed Forward (DCMAX) ✔ Three Terminal Operation 13 16 17 18 19 20 21 22 23 ✔ ✔ ✔ ✔ ✔ ✔ Line Feed Forward (ILIMIT) External Current Limit ✔ ✔ Remote ON/OFF ✔ ✔ ✔ ✔ ✔ ✔ ✔ *This table is only a partial list of many MULTI-FUNCTION pin configurations that are possible. Table 2. Typical MULTI-FUNCTION Pin Configurations. B 7/01 9 TOP232-234 IREM(N) IUV IOV (Enabled) Output MOSFET Switching (Disabled) Disabled when supply output goes out of regulation IM ILIMIT (Default) Current Limit IM DCMAX (78.5%) Maximum Duty Cycle IM VBG + VTP MULTIFUNCTION Pin Voltage VBG -250 -200 -150 -100 -50 0 50 100 150 200 250 300 350 400 IM MULTI-FUNCTION Pin Current (µA) Note: This figure provides idealized functional characteristics of the MULTI-FUNCTION pin with typical performance values. Please refer to the parametric table and typical performance characteristics sections of the data sheet for measured data. PI-2524-081999 Figure 8. MULTI-FUNCTION Pin Characteristics. CONTROL Pin TOPSwitch-FX 240 µA (Negative Current Sense - ON/OFF, Current Limit Adjustment) VBG + VT MULTI-FUNCTION Pin VBG (Positive Current Sense - Under-Voltage, Over-Voltage, Maximum Duty Cycle Reduction) 400 µA PI-2548-092399 Figure 9. MULTI-FUNCTION Pin Input Simplified Schematic. 10 B 7/01 TOP232-234 Typical Uses of FREQUENCY (F) Pin + + DC Input Voltage DC Input Voltage D CONTROL C S D CONTROL C S F F - - PI-2506-081199 PI-2505-081199 Figure 11. Half Frequency Operation (66 kHz). Figure 10. Full Frequency Operation (132 kHz). + DC Input Voltage QS can be an optocoupler output. D CONTROL C S - F RHF 20 kΩ STANDBY QS 47 kΩ 1 nF PI-2507-040401 Figure 12. Half Frequency Standby Mode (For High Standby Efficiency). B 7/01 11 TOP232-234 Typical Uses of MULTI-FUNCTION (M) Pin + + VUV = IUV x RLS VOV = IOV x RLS RLS DC Input Voltage For RLS = 2 MΩ VUV = 100 VDC VOV = 450 VDC 2 MΩ DC Input Voltage D M D CONTROL CONTROL C C S - DCMAX@100 VDC = 78% DCMAX@375 VDC = 47% M S PI-2508-081199 Figure 13. Three Terminal Operation (MULTI-FUNCTION Features Disabled. FREQUENCY Pin Tied to SOURCE or CONTROL Pin). + PI-2509-040401 Figure 14. Line Sensing for Under-Voltage, Overvoltage and Maximum Duty Cycle Reduction. + VUV = RLS x IUV 2 MΩ RLS DC Input Voltage For Value Shown VUV = 100 VDC D For Values Shown VOV = 450 VDC RLS DC Input Voltage 22 kΩ 30 kΩ IN4148 M D M CONTROL CONTROL C 6.2 V C S - VOV = IOV x RLS 2 MΩ S PI-2510-040401 Figure 15. Line Sensing for Under-Voltage Only (Overvoltage Disabled). PI-2516-040401 Figure 16. Line Sensing for Overvoltage Only (Under-Voltage Disabled). + + For RIL = 12 kΩ ILIMIT = 67% RLS For RIL = 25 kΩ ILIMIT = 40% DC Input Voltage See graph for other resistor values (RIL) D DC Input Voltage D M RIL CONTROL RIL - ILIMIT = 90% @ 100 VDC ILIMIT = 55% @ 300 VDC 2.5 MΩ C S - M CONTROL 6 kΩ C S PI-2518-040401 PI-2517-040401 Figure 17. Externally Set Current Limit. 12 B 7/01 Figure 18. Current Limit Reduction with Line Voltage. TOP232-234 Typical Uses of MULTI-FUNCTION (M) Pin (cont.) + + QR can be an optocoupler output or can be replaced by a manual switch. QR can be an optocoupler output or can be replaced by a manual switch. QR DC Input Voltage DC ON/OFF Input 47 kΩ Voltage M D RMC M 45 kΩ D CONTROL CONTROL C QR C ON/OFF 47 kΩ S - S PI-2519-040401 PI-2522-040401 Figure 19. Active-on (Fail Safe) Remote ON/OFF. Figure 20. Active-off Remote ON/OFF. + + QR can be an optocoupler output or can be replaced by a manual switch. QR can be an optocoupler output or can be replaced by a manual switch. For RIL = 12 kΩ QR ILIMIT = 67 % DC Input Voltage DC Input Voltage For RIL = 25 kΩ RIL D ILIMIT = 40 % M ON/OFF 47 kΩ RMC CONTROL RMC = 2RIL CONTROL C QR 24 kΩ M D RIL C 12 kΩ ON/OFF 47 kΩ - S S PI-2520-040401 PI-2521-040401 Figure 21. Active-on Remote ON/OFF with Externally Set Current Limit. Figure 22. Active-off Remote ON/OFF with Externally Set Current Limit. QR can be an optocoupler output or can be replaced by a manual switch. + RLS 2 MΩ QR DC ON/OFF Input 47 kΩ Voltage D For RLS = 2 MΩ M CONTROL C - VUV = 100 VDC VOV = 450 VDC S PI-2523-040401 Figure 23. Active-off Remote ON/OFF with Line Sense. B 7/01 13 TOP232-234 reflected voltage, by safely limiting the TOPSwitch-FX drain voltage, with adequate margin, under worst case conditions. The extended maximum duty cycle feature of TOPSwitch-FX (guaranteed minimum value of 75% vs. 64% for TOPSwitch-II) allows the use of a smaller input capacitor (C1). The extended maximum duty cycle and the higher reflected voltage possible with the RCD clamp also permit the use of a higher primary to secondary turns ratio for T1 which reduces the peak reverse voltage experienced by the secondary rectifier D8. As a result, a 60 V Schottky rectifier can be used for up to 15 V outputs, which greatly improves power supply efficiency. The cycle skipping feature of the TOPSwitch-FX eliminates the need for any dummy loading for regulation at no load and reduces the no load/standby consumption of the power supply. Frequency jitter provides improved margin for conducted EMI meeting the CISPR 22 (FCC B) specification. Application Examples A High Efficiency, 30 W, Universal Input Power Supply The circuit shown in Figure 24 takes advantage of several of the TOPSwitch-FX features to reduce system cost and power supply size and to improve efficiency. This design delivers 30 W at 12 V, from an 85 to 265 VAC input, at an ambient of 50 ˚C, in an open frame configuration. A nominal efficiency of 80% at full load is achieved using TOP234. The current limit is externally set by resistors R1 and R2 to a value just above the low line operating peak current of approximately 70% of the default current limit. This allows use of a smaller transformer core size and/or higher transformer primary inductance for a given output power, reducing TOPSwitch-FX power dissipation, while at the same time avoiding transformer core saturation during startup and output transient conditions. The resistor R1 provides a feed forward signal that reduces the current limit with increasing line voltage, which, in turn, limits the maximum overload power at high input line voltage. The feed forward function in combination with the built-in soft-start feature of TOPSwitch-FX, allows the use of a low cost RCD clamp (R3, C3 and D1) with a higher A simple Zener sense circuit is used for low cost. The output voltage is determined by the Zener diode (VR2) voltage and the voltage drops across the optocoupler (U2) LED and resistor R6. Resistor R8 provides bias current to Zener VR2 for typical regulation of ±5% at the 12 V output level, over line and load and component variations. CY1 2.2 nF C14 R15 1 nF 150 Ω L3 3.3 µH R3 68 kΩ 2W C3 4.7 nF 1KV BR1 600 V 2A D8 MBR1060 J1 C12 220 µF 35 V RTN D2 1N4148 R1 4.7 MΩ 1/2 W T1 C1 68 µF 400 V D U1 TOP234Y F1 3.15 A C11 560 µF 35 V D1 UF4005 L1 20 mH CX1 100 nF 250 VAC C10 560 µF 35 V 12 V @ 2.5 A R2 9.09 kΩ M TOPSwitch-FX CONTROL S F N C6 100 nF R8 150 Ω U2 LTV817A C R5 6.8 Ω C5 47 µF 10 V L R6 150 Ω VR2 1N5240C 10 V, 2% PI-2525-040401 Figure 24. 30 W Power Supply using External Current Limit. 14 B 7/01 TOP232-234 35 W Multiple Output Power Supply Figure 25 shows a five output, 35 W, secondary regulated power supply utilizing a TOP233 for multiple output applications such as set-top box, VCR, DVD, etc. The circuit shown is designed for a 230 VAC input but can be used over the universal range at a derated output power of 25 W. Alternatively, a doubler input stage can be used at 100 or 115 VAC for the full power rating of 35 W. TOPSwitch-FX provides several advantages in the above mentioned applications. pin instead of the SOURCE pin in video noise sensitive applications to allow for heavier snubbing without significant impact on efficiency. This design achieves ±5% load regulation on 3.3 V and 5 V outputs using dual sensed optocoupler feedback through resistors R9, R10 and R11. Other output voltages are set by the transformer turns ratio. Output voltage on the low power -5 V output is shunt regulated by resistor R12 and Zener diode VR2. Dummy load resistor R13 is required to maintain regulation of the 30 V output under light load conditions. Compensation of the TL431 (U3) is achieved with resistor R8 and capacitor C7. Primary side compensation and auto-restart frequency are determined by resistor R5 and capacitor C5. Second stage LC post-filtering is used on the 3.3 V, 5 V and 18 V high power outputs (L2, L3, L4 and C13, C15, C17) for low ripple. Full load operating efficiency exceeds 75% across the AC input range. Primary clamp components VR1 and D1 limit peak drain voltage to a safe value. A single line sense resistor R1 (2 MΩ) implements an undervoltage detect (at 100 V), over-voltage shutdown (at 450 V) and line feed forward with DCMAX reduction features. Undervoltage detect ensures that the outputs are glitch free on power down. The over-voltage shutdown turns off the TOPSwitch-FX MOSFET above 450 V on the DC input rail, eliminating reflected voltage and leakage inductance spikes, and hence, extending the surge withstand to the 700 VDC rating of the MOSFET. This feature prevents field failures in countries where prolonged line voltage surges are common. The frequency jittering in TOPSwitch-FX helps reduce EMI, maintaining emissions below CISPR 22 (FCC B) levels through proper choice of Y1 capacitor (CY1) and input filtering elements (CX1, L1). To minimize coupling of common mode transients to the TOP233, Y1 capacitor is tied to the positive input DC rail. Lightning strike immunity to 3 kV is attained with the addition of a 275 V MOV (RV1). This design also takes advantage of soft-start and higher operating frequency to reduce transformer size. A snubber circuit (R4, C4) is used to slowdown dv/dt of the switching waveform minimizing radiated video noise that could interfere with TV reception. The half frequency option of the TOPSwitch-FX can be used by connecting the FREQUENCY pin to the CONTROL 30 V @ 100 mA D8 MUR120 C10 100 µF 50 V C12 220 µF 25 V D9 UF5402 CY1 2.2 nF D10 MBR1045 VR1 P6KE200 BR1 400 V J1 L R4 2 kΩ R13 24 kΩ 5V @ 2.5 A 3.3 V @3A C17 100 µF 10 V TOP233Y U1 S M U2 LTV817 T1 RV1 275 V -5 V @ 100 mA R10 15.0 kΩ R7 510 Ω R9 9.53 kΩ TOPSwitch-FX CONTROL F C19 100 µF 10 V R6 51 Ω C6 100 nF D VR2 1N5231 R12 5Ω D2 1N4148 C4 47 pF F1 3.15 A 18 V @ 550 mA RTN C18 330 µF D12 1N5819 10 V R1 2 MΩ 1/2 W CX1 0.1 µF 250 VAC C15 100 µF 10 V L4 3.3 µH C16 1000 µF 25 V D1 UF4007 C13 100 µF 25 V L3 3.3 µH C14 1000 µF 25 V D11 BYW29100 C1 33 µF 400 V L1 20 mH C11 1 µF 50 V L2 3.3 µH C7 R8 10 Ω 0.1 µF C R5 6.8 Ω C5 47 µF C8 22 µF U3 TL431CLP R11 10.0 kΩ N PI-2536-040401 Figure 25. 35 W Set-Top Box Power Supply. B 7/01 15 TOP232-234 achieved by turning the power supply off when the input voltage goes below a level needed to maintain output regulation and keeping it off until the input voltage goes above the under-voltage threshold (VUV), when the AC is turned on again. The under voltage threshold is set at 200VDC, slightly below the required lowest operating DC input voltage, for start-up at 170VAC. This feature saves several components needed to implement the glitch free turn off with discrete or TOPSwitch-II based designs. 17 W PC Standby Power Supply Figure 26 shows a 17 W PC standby application with 3.3 V and 5 V secondary outputs and a 15 V primary output. The supply uses the TOP232 operating from 230 VAC or 100/115 VAC with doubler input. This design takes advantage of the softstart, line under-voltage detect, tighter current limit variation and higher switching frequency features of TOPSwitch-FX. For example, the higher switching frequency with tighter current limit variation allows use of an EE19 transformer core. Furthermore, the spacing between high voltage DRAIN pin and low voltage pins of the TOPSwitch-FX packages provides large creepage distance which is a significant advantage in high pollution environments such as fan cooled PC power supplies. The bias winding is rectified and filtered by D2 and C6 to create a bias voltage for the TOP232 and to provide a 15V primary bias output voltage for the main power supply primary control circuitry. Both 3.3V and 5V output voltages are sensed by R9, R10 and R11 using a TL431 (U3) circuit shown. Resistor R6 limits current through optocoupler U2 and sets overall AC control loop gain. Resistor R7 assures that there is sufficient bias current for the TL431 when the optocoupler is at a minimum current. Capacitor C8 provides a soft-finish function to eliminate turn-on overshoot. The no load regulation (cycle-skipping) of TOPSwitch-FX permits the circuit to meet the low standby power requirement of the Blue Angel specification for PCs. Capacitor C1 provides high frequency decoupling of the high voltage DC supply, and is necessary only if there is a long trace length from the source of the DC supply to the inputs of this standby circuit. The line sense resistor R1 senses the DC input voltage for line under-voltage. When AC is turned off, the under-voltage detect feature of the TOPSwitch-FX prevents auto-restart glitches at the output caused by the slow discharge of large storage capacitance in the main converter. This is CY1 1 nF L1 3.3 µH D3 SB540 + VR1 BZY97C-200 C10 1000 µF 10 V C12 1000 µF 10 V D4 SB540 200-375 VDC R1 3.9 MΩ D1 UF4005 5V @2A C11 L2 3.3 µH 100 µF 10 V 3.3 V @2A C13 100 µF 10 V RTN D2 BAV21 C1 0.01 µF 1 kV (optional) T1 D U1 TOP232Y M S F R7 510 Ω C6 35 V U2 SFH615-2 C R5 6.8 Ω C5 47 µF - R6 301 Ω TOPSwitch-FX CONTROL 15 V @ 30 mA C7 0.1 µF C8 10 µF 35 V U3 TL431CLP (Primary Referenced) R9 16.2 kΩ R10 12.1 kΩ R11 10 kΩ PI-2537-040401 Figure 26. 17 W PC Standby Supply. 16 B 7/01 TOP232-234 Processor Controlled Supply Turn On/Off A low cost momentary contact switch can be used to turn the TOPSwitch-FX power on and off under microprocessor control that may be required in some applications such as printers. The low power remote off feature allows an elegant implementation of this function with very few external components as shown in Figure 27. Whenever the push button momentary contact switch P1 is closed by the user, the optocoupler U3 is activated to inform the microprocessor of this action. Initially, when the power supply is off (M pin is floating), closing of P1 turns the power supply on by shorting the M pin of the TOPSwitch-FX to SOURCE through a diode (remote on). When the secondary output voltage VCC is established, the microprocessor comes alive and recognizes that the switch P1 is closed through the switch status input that is driven by the optocoupler U3 output. The microprocessor then sends a power supply control signal to hold the power supply in the on-state through the optocoupler U4. If the user presses the switch P1 again to command a turn off, the microprocessor detects this through the optocoupler U3 and initiates a shutdown procedure that is product specific. For example, in the case of the inkjet printer, the shutdown procedure may include safely parking the print heads in the storage position. In the case of products with a disk drive, the shutdown procedure may include saving data or settings to the disk. After the shutdown procedure is complete, when it is safe to turn off the power supply, the microprocessor releases the M pin by turning the optocoupler U4 off. If the manual switch and the optocouplers U3 and U4 are not located close to the M pin, a capacitor CM may be needed to prevent noise coupling to the pin when it is open. The power supply could also be turned on remotely through a local area network or a parallel or serial port by driving the optocoupler U4 input LED with a logic signal. Sometimes it is easier to send a train of logic pulses through a cable (due to AC coupling of cable, for example) instead of a DC logic level as a wake-up signal. In this case, a simple RC filter can be used to generate a DC level to drive U4 (not shown in Figure 27). This remote on feature can be used to wake-up peripherals such as printers, scanners, external modems, disk drives, etc., as needed from a computer. Peripherals are usually designed to turn off automatically if they are not being used for a period of time, to save power. VCC (+5 V) + External Wake-up Signal High Voltage DC Input 100 kΩ U2 27 kΩ D M TOPSwitch-FX CONTROL U3 Power Supply ON/OFF Control LOGIC LOGIC INPUT OUTPUT 1N4148 U4 MICRO PROCESSOR/ CONTROLLER 1N4148 6.8 kΩ C 6.8 kΩ CM S P1 1 nF F U1 - 47 µF U3 LTV817A P1 Switch Status U4 LTV817A RETURN PI-2561-040401 Figure 27. Remote ON/OFF Using Microcontroller. B 7/01 17 TOP232-234 In addition to using a minimum number of components, TOPSwitch-FX provides many technical advantages in this type of application: 1. Extremely low power consumption in the off mode: 80 mW typical at 110 VAC and 160 mW typical at 230 VAC. This is because in the remote/off mode the TOPSwitch-FX consumes very little power, and the external circuitry does not consume any current (M pin is open) from the high voltage DC input. 2. A very low cost, low voltage/current, momentary contact switch can be used. 3. No debouncing circuitry for the momentary switch is required. During turn-on, the start-up time of the power supply (typically 10 to 20 ms) plus the microprocessor initiation time act as a debouncing filter, allowing a turn-on only if the switch is depressed firmly for at least the above delay time. During turn-off, the microprocessor initiates the shutdown 18 B 7/01 sequence when it detects the first closure of the switch, and subsequent bouncing of the switch has no effect. If necessary, the microprocessor could implement the switch debouncing in software during turn-off, or a filter capacitor can be used at the switch status input. 4. No external current limiting circuitry is needed for the operation of the U4 optocoupler output due to internal limiting of M pin current. 5. No high voltage resistors to the input DC voltage rail are required to power the external circuitry in the primary. Even the LED current for U3 can be derived from the CONTROL pin. This not only saves components and simplifies layout, but also eliminates the power loss associated with the high voltage resistors in both on and off states. 6. Robust design: There is no on/off latch that can be accidentally triggered by transients. Instead, the power supply is held in the on-state through the secondary side microprocessor. TOP232-234 Key Application Considerations TOPSwitch-FX vs. TOPSwitch-ll Table 3 compares the features and performance differences between TOPSwitch-FX and TOPSwitch-II. Many of the new features eliminate the need for costly discrete component. Other features increase the robustness of design allowing cost savings in the transformer and other power components. Function TOPSwitch-II TOPSwitch-FX Soft-Start N/A* 10 ms External Current Limit N/A* Programmable 100% to 40% of default current limit 8, 17, 18, 21, 22 DCMAX 67% 78% 4 Line Feed Forward with DCMAX Reduction N/A* 78% to 38% Line OV Shutdown N/A* Line UV Detection N/A* Single resistor programmable Single resistor programmable 8, 14, • Increases voltage withstand cap16, 23 ability against line surge 5, 8, 14, • Prevents auto-restart glitches 15, 23 during power down Switching Frequency 100 kHz ±10% 132 kHz ±7% 10 Switching Frequency Option (TO-220 only) N/A* 66 kHz ±7% 11, 12 Frequency Jitter N/A* 6, 28 • Reduces conducted EMI Cycle Skipping N/A* ±4 kHz@132 kHz ±2 kHz@66 kHz At DCMIN (1.5%) 4 • Zero load regulation without dummy load • Low power consumption at no load Figures Advantages • Limits peak current and voltage component stresses during start-up • Eliminates external components used for soft-start in most applications • Minimizes output overshoot • Smaller transformer • Higher efficiency • Allows tighter power limit during output overload conditions • Smaller input cap (wider dynamic range) • Higher power capability (when used with RCD clamp for large VOR) • Allows use of Schottky secondary rectifier diode for up to 15 V output for high efficiency 4, 8, 14, • Rejects line ripple 23 • Increases transient and surge voltage withstand capability • Smaller transformer • Fundamental below 150 kHz for conducted EMI • Lower losses when using RC and RCD snubber for noise reduction in video applications • Allows for higher efficiency in standby mode • Lower EMI (second harmonic below 150 kHz) *Not available Table 3. Comparison Between TOPSwitch-II and TOPSwitch-FX. (continued on next page) B 7/01 19 TOP232-234 Function TOPSwitch-II TOPSwitch-FX Figures Advantages Remote ON/OFF N/A* Single transistor or optocoupler interface or manual switch 8, 19, 20, 21, 22, 23, 27 • • • • • • • Synchronization Thermal Shutdown N/A* Latched Single transistor or optocoupler interface • Hysteretic (with 70 °C hysteresis) • Automatic recovery from thermal fault • Large hysteresis prevents circuit board overheating • 10% higher power capability due to tighter tolerance Current Limit Tolerance ±10% (@25 °C) ±7% (@25 °C) -8% (0 °C to100 °C) -4% (0 °C to 100 °C) DRAIN DIP Creepage at SMD Package TO-220 DRAIN Creepage at PCB for TO-220 0.037" / 0.94 mm 0.037" / 0.94 mm 0.046" / 1.17 mm 0.045" / 1.14 mm Fast on/off (cycle by cycle) Active-on or active-off control Low consumption in remote off state Active-on control for fail-safe Eliminates expensive in-line on/off switch Allows processor controlled turn on/ off Permits shutdown/wake-up of peripherals via LAN or parallel port Synchronization to external lower frequency signal Starts new switching cycle on demand 0.137" / 3.48 mm 0.137" / 3.48 mm 0.068" / 1.73 mm 0.113" / 2.87 mm (preformed leads) • • Greater immunity to arcing as a result of build-up of dust, debris and other contaminants • Preformed leads accommodate large creepage for PCB layout • Easier to meet Safety (UL/VDE) *Not available Table 3 (cont). Comparison Between TOPSwitch-II and TOPSwitch-FX. TOPSwitch-FX Design Considerations TOPSwitch-FX Selection Selecting the optimum TOPSwitch-FX depends upon required maximum output power, efficiency, heat sinking constraints and cost goals. With the option to externally reduce current limit, a larger TOPSwitch-FX may be used for lower power applications where higher efficiency is needed or minimal heat sinking is available. Input Capacitor The input capacitor must be chosen to provide the minimum DC voltage required for the TOPSwitch-FX converter to maintain regulation at the lowest specified input voltage and maximum output power. Since TOPSwitch-FX has a higher DCMAX than TOPSwitch-II, it is possible to use a smaller input capacitor. For TOPSwitch-FX, a capacitance of 2 µF per watt is usually sufficient for universal input with an appropriately designed transformer. 20 B 7/01 Primary Clamp and Output Reflected Voltage VOR A primary clamp is necessary to limit the peak TOPSwitch-FX drain to source voltage. A Zener clamp (see Figure 26, VR1) requires few parts and takes up little board space. For good efficiency, the clamp Zener should be selected to be at least 1.5 times the output reflected voltage VOR as this keeps the leakage spike conduction time short. When using a Zener clamp in a universal input application, a VOR of less than 135 V is recommended to allow for the absolute tolerances and temperature variations of the Zener. This will ensure efficient operation of the clamp circuit and will also keep the maximum drain voltage below the rated breakdown voltage of the TOPSwitch-FX MOSFET. A high VOR is required to take full advantage of the wider DCMAX of TOPSwitch-FX. An RCD clamp provides tighter clamp voltage tolerance than a Zener clamp and allows a VOR as high as 165 V. The VOR can be further increased in continuous mode designs up to 185 V by reducing the external current limit as a function of input line voltage (see Figure 18). The RCD clamp TOP232-234 Noise Reduction (dB) Output Diode The output diode is selected for peak inverse voltage, output current, and thermal conditions in the application (including heat sinking, air circulation, etc.). The higher DCMAX of TOPSwitch-FX along with an appropriate transformer turns ratio can allow the use of a 60 V Schoktty diode for higher efficiency on output voltages as high as 15 V (See Figure 24. A 12 V, 30 W design using a 60 V Schottky for the output diode). EMI The frequency jitter feature modulates the switching frequency over a narrow band as a means to reduce conducted EMI peaks associated with the harmonics of the fundamental switching frequency. This is particularly beneficial for average detection mode. As can be seen in Figure 28, the benefits of jitter increase with the order of the switching harmonic due to an increase in frequency deviation. 10 Average 8 6 4 Quasi-Peak 2 0 2nd 3rd 4th 5th Switching Harmonic (a) 70 PI-2576-010600 80 TOPSwitch-II (no jitter) 60 Amplitude (dBµV) Soft-Start Generally a power supply experiences maximum stress at startup before the feedback loop achieves regulation. For a period of 10 ms the on-chip soft-start linearly increases the duty cycle from zero to the default DCMAX at turn on, which causes the primary current and output voltage to rise in an orderly manner allowing time for the feedback loop to take control of the duty cycle. This reduces the stress on the TOPSwitch-FX MOSFET, clamp circuit and output diode(s), and helps prevent transformer saturation during start-up. Also, soft-start limits the amount of output voltage overshoot, and in many applications eliminates the need for a soft-finish capacitor. PI-2559-093099 12 is more cost effective than the Zener clamp but requires more careful design (see quick design checklist). 50 40 30 20 -10 0 VFG243B (QP) VF646B (AV) -10 -20 0.15 1 10 30 Frequency (MHz) (b) 70 PI-2577-010600 80 TOPSwitch-FX (with jitter) 60 Amplitude (dBµV) The FREQUENCY pin of TOPSwitch-FX offers a switching frequency option of 132 kHz or 66 kHz. In applications that require heavy snubbers on the drain node for reducing high frequency radiated noise (for example, video noise sensitive applications such as VCR, DVD, monitor, TV, etc.), operating at 66 kHz will reduce snubber loss resulting in better efficiency. Also, in applications where transformer size is not a concern, use of the 66 kHz option will provide lower EMI and higher efficiency. Note that the second harmonic of 66 kHz is still below 150 kHz, above which the conducted EMI specifications get much tighter. 50 40 30 20 -10 0 For 10 W or below, it is possible to use a simple inductor in place of a more costly AC input common mode choke to meet worldwide conducted EMI limits. Transformer Design It is recommended that the transformer be designed for maximum operating flux density of 3000 gauss and a peak flux density of 4200 gauss at maximum current limit. The turns ratio should be chosen for a reflected voltage (VOR) no greater than 135 V when VFG243B (QP) VF646B (AV) -10 -20 0.15 1 10 30 Frequency (MHz) (c) Figure 28. (a) Conducted noise improvement for low frequency harmonics due to jitter, (b) TOPSwitch-II full range EMI scan (100kHz, no jitter), (c) TOPSwitch-FX full range EMI scan (132 kHz, with jitter) with identical circuitry and conditions. B 7/01 21 TOP232-234 Maximize hatched copper areas ( ) for optimum heat sinking Safety Spacing Y1Capacitor + HV Output Filter Capacitor J1 Input Filter Capacitor T r a n s f o r m e r PRI - S S D BIAS TOPSwitch-FX TOP VIEW M S S SEC C Optocoupler R1 - DC + Out PI-2543-092199 Figure 29. Layout Considerations for TOPSwitch-FX using DIP or SMD (Using Line Sensing for Under-Voltage and Overvoltage). Maximize hatched copper areas ( ) for optimum heat sinking Safety Spacing Y1Capacitor + HV Output Filter Capacitor J1 Input Filter Capacitor PRI - D F S R1 BIAS M T r a n s f o r m e r SEC C Heat Sink TOP VIEW TOPSwitch-FX R2 Optocoupler - DC + Out PI-2544-092199 Figure 30. Layout Considerations for TOPSwitch-FX using TO-220 Package (Using Current Limit Reduction with Line Voltage). 22 B 7/01 TOP232-234 using a Zener clamp, 165 V when using an RCD clamp and 185 V when using RCD clamp with current limit feed forward. sink attached to the tab should not be electrically tied to any nodes on the PC board. For designs where operating current is significantly lower than the default current limit, it is recommended to use an externally set current limit close to the operating peak current to reduce peak flux density and peak power (see Figure 17). In most applications, the tighter current limit tolerance, higher switching frequency and soft-start features of TOPSwitch-FX contribute to a smaller transformer when compared to TOPSwitch-II. When using P (DIP-8) or G (SMD-8) packages, a copper area underneath the package connected to the SOURCE pins will act as an effective heat sink. In addition, sufficient copper area should be provided at the anode and cathode leads of the output diode(s) for heat sinking. Quick Design Checklist Standby Consumption Cycle skipping can significantly reduce power loss at zero load, especially when a Zener clamp is used. For very low secondary power consumption use a TL431 regulator for feedback control. Alternately, switching losses can be significantly reduced by switching from 132 kHz in normal operation to 66 kHz under light load conditions. TOPSwitch-FX Layout Considerations Primary Side Connections Use a single point (Kelvin) connection at the negative terminal of the input filter capacitor for TOPSwitch-FX SOURCE pin and bias winding return. This improves surge capabilities by returning surge currents from the bias winding directly to the input filter capacitor. The CONTROL pin bypass capacitor should be located as close as possible to the SOURCE and CONTROL pins and its SOURCE connection trace should not be shared by the main MOSFET switching currents. All SOURCE pin referenced components connected to the MULTI-FUNCTION pin should also be located close to SOURCE and MULTI-FUNCTION pins with dedicated SOURCE pin connection. The MULTI-FUNCTION pin's trace should be kept as short as possible and away from the DRAIN trace to prevent noise coupling. Line sense resistor (R1 in Figures 29 and 30) should be located close to the MULTI-FUNCTION pin to minimize the trace length on the MULTI-FUNCTION pin side. In addition to the 47 µF CONTROL pin capacitor, a high frequency bypass capacitor in parallel may be used for better noise immunity. The feedback optocoupler output should also be located close to the CONTROL and SOURCE pins of TOPSwitch-FX. Y-Capacitor The Y-capacitor should be connected close to the secondary output return pin(s) and the primary DC input pin of the transformer (see Figures 29 and 30). Heat Sinking The tab of the Y package (TO-220) is internally electrically tied to the SOURCE pin. To avoid circulating currents, a heat As with any power supply design, all TOPSwitch-FX designs should be verified on the bench to make sure that components specifications are not exceeded under worst case conditions. The following minimum set of tests is strongly recommended: 1. Maximum drain voltage – Verify that peak VDS does not exceed 675 V at highest input voltage and maximum overload output power. Maximum overload output power occurs when the ouput is overloaded to a level just before the power supply goes into auto-restart (loss of regulation). 2. Maximum drain current – At maximum ambient temperature, maximum input voltage and maximum output load, verify drain current waveforms at start-up for any signs of transformer saturation and excessive leading edge current spikes. TOPSwitch-FX has a leading edge blanking time of 200 ns to prevent premature termination of the on-cycle. Verify that the leading edge current spike is below the allowed current limit envelope (see Figure 33) for the drain current waveform at the end of the 200 ns blanking period. 3. Thermal check – At maximum output power, minimum input voltage and maximum ambient temperature, verify that temperature specifications are not exceeded for TOPSwitch-FX, transformer, output diodes and output capacitors. Enough thermal margin should be allowed for the part-to-part variation of the RDS(ON) of TOPSwitch-FX as specified in the data sheet. The margin required can either be calculated from the tolerances or it can be accounted for by connecting an external resistance in series with the DRAIN pin and attached to the same heatsink, having a resistance value that is equal to the difference between the measured RDS(ON) of the device under test and the worst case maximum specification. Design Tools 1. Technical literature: Data Sheet, Application Notes, Design Ideas, etc. 2. Transformer design spreadsheet. 3. Engineering prototype boards. Up to date information on design tools can be found at Power Integrations Web site: www.powerint.com B 7/01 23 TOP232-234 ABSOLUTE MAXIMUM RATINGS(1) DRAIN Voltage ............................................ -0.3 to 700 V DRAIN Peak Current: TOP232 ................................. 0.8 A TOP233 ................................. 1.6 A TOP234 ................................. 2.4 A CONTROL Voltage .......................................... -0.3 to 9 V CONTROL Current ...............................................100 mA MULTI-FUNCTION Pin Voltage .................... -0.3 to 9 V FREQUENCY Pin Voltage ............................... -0.3 to 9 V Storage Temperature ..................................... -65 to 150 °C Operating Junction Temperature(2) ................ -40 to 150 °C Lead Temperature(3) ................................................ 260 °C Notes: 1. All voltages referenced to SOURCE, TA = 25 °C. 2. Normally limited by internal circuitry. 3. 1/16" from case for 5 seconds. THERMAL IMPEDANCE Thermal Impedance: Y Package (θJA)(1) ............... 70 °C/W (θJC)(2) ................. 2 °C/W P/G Package: (θJA) ........ 45 °C/W(3); 35 °C/W(4) (θJC)(5) .......................... 11 °C/W Notes: 1. Free standing with no heatsink. 2. Measured at the back surface of tab. 3. Soldered to 0.36 sq. inch (232 mm2), 2oz. (610 gm/m2) copper clad. 4. Soldered to 1 sq. inch (645 mm2), 2oz. (610 gm/m2) copper clad. 5. Measured on the SOURCE pin close to plastic interface. Conditions Parameter Symbol (Unless Otherwise Specified) See Figure 34 SOURCE = 0 V; TJ = -40 to 125 °C Min Typ Max FREQUENCY Pin Connected to SOURCE 124 132 140 FREQUENCY Pin Connected to CONTROL 61.5 Units CONTROL FUNCTIONS Switching Frequency (average) fOSC Frequency Jitter Deviation ∆f Frequency Jitter Modulation Rate fM Maximum Duty Cycle DCMAX Minimum Duty Cycle (Prior to Cycle Skipping) DCMIN Soft Start Time tSOFT PWM Gain 24 B 7/01 IC = 4 mA; TJ = 25 °C kHz 66 132 kHz Operation ±4 66 kHz Operation ±2 70.5 kHz 250 IC = ICD1 Hz IM ≤ IM(DC) 75.0 78.0 82.0 IM = 190 µA 35.0 47.0 57.0 0.8 1.5 2.7 % 10 14 ms -22 -17 %/mA TJ = 25 °C; DCMIN to DCMAX IC = 4 mA; TJ = 25 °C -27 % TOP232-234 Conditions Parameter Symbol (Unless Otherwise Specified) See Figure 34 SOURCE = 0 V; TJ = -40 to 125 °C Min Typ Max Units CONTROL FUNCTIONS (cont.) PWM Gain Temperature Drift External Bias Current lB See Figure 4 CONTROL Current at Start of Cycle Skipping Dynamic Impedance - 0.01 See Note A 1.2 TJ = 25 °C ZC IC = 4 mA; TJ = 25 °C See Figure 32 10 %/mA/°C 1.9 2.8 mA 5.9 7.5 mA 15 22 Ω Dynamic Impedance Temperature Drift 0.18 %/°C Control Pin Internal Filter Pole 7 kHz SHUTDOWN/AUTO-RESTART Control Pin Charging Current lC (CH) Charging Current Temperature Drift Auto-restart Upper Threshold Voltage TJ = 25 °C VC = 0 V -5.0 -3.8 -2.6 VC = 5 V -3.0 -1.9 -0.8 See Note A vC(AR) 0.5 %/°C 5.8 V Auto-restart Lower Threshold Voltage 4.5 4.8 Auto-restart Hysteresis Voltage 0.8 1.0 2 4 Auto-restart Duty Cycle Auto-restart Frequency mA 1.0 5.1 V V 8 % Hz B 7/01 25 TOP232-234 Conditions Parameter Symbol (Unless Otherwise Specified) See Figure 34 SOURCE = 0 V; TJ = -40 to 125 °C Min Typ Max Units 44 50 54 µA 210 225 240 µA MULTI-FUNCTION INPUT Line Under-Voltage Threshold Current lUV Line Over-Voltage or Remote ON/ OFF Threshold Current and Hysteresis IOV Remote ON/OFF Negative Threshold Current and Hysteresis IREM (N) MULTI-FUNCTION Pin Short Circuit Current MULTI-FUNCTION Pin Voltage Maximum Duty Cycle Reduction Onset Threshold Current TJ = 25 °C Threshold TJ = 25 °C Threshold -43 VM = VC VM = 0 V VM IM (DC) Maximum Duty Cycle Reduction Slope -27 300 400 520 Normal Mode -300 -240 -180 Auto-restart Mode lM = 50 µA lM = 225 µA -110 -90 -70 2.00 2.50 2.60 2.90 3.00 3.30 lM = -50 µA 1.25 1.32 1.39 lM = -150 µA 1.18 1.24 1.30 75 90 110 TJ = 25 °C 0.30 MULTI-FUNCTION Pin Floating VDRAIN = 150 V 0.6 µA µA -7 IM > IM (DC) Remote OFF DRAIN Supply Current -35 TJ = 25 °C Hysteresis IM (SC) µA 10 Hysteresis µA V µA %/µA 1.1 mA MULTI-FUNCTION Pin Shorted to CONTROL 1.0 1.8 Remote ON Delay TRON From Remote On to Drain Turn-On See Note B 1.5 2.5 4.0 µs Remote OFF Setup Time TROFF Minimum Time Before Drain Turn-On to Disable Cycle See Note B 1.5 2.5 4.0 µs 26 B 7/01 TOP232-234 Conditions Parameter Symbol (Unless Otherwise Specified) See Figure 34 SOURCE = 0 V; TJ = -40 to 125 °C Min Typ Max Units FREQUENCY INPUT FREQUENCY Pin Threshold Voltage VF See Note B 1.0 2.9 VC -1.0 V FREQUENCY Pin Input Current IF VF = VC 10 22 40 µA 0.465 0.500 0.535 0.930 1.000 1.070 1.500 1.605 CIRCUIT PROTECTION Self Protection Current Limit ILIMIT TOP232 Internal; di/dt = 100mA/µs TJ= 25 °C See Note C TOP233 Internal; di/dt = 200mA/µs TJ= 25 °C See Note C TOP234 TJ= 25 °C Internal; di/dt = 300mA/µs See Figure 33 TJ = 25 °C 1.395 See Note C ≤ 85 VAC 0.75 x (Rectified Line Input) ILIMIT(MIN) A Initial Current Limit IINIT Leading Edge Blanking Time tLEB IC = 4 mA 200 ns Current Limit Delay tILD IC = 4 mA 100 ns Thermal Shutdown Temperature 125 Thermal Shutdown Hysteresis Power-up Reset Threshold Voltage A 265 VAC 0.6 x (Rectified Line Input) ILIMIT(MIN) 135 150 °C 70 VC(RESET) Figure 34, S1 open 2.0 °C 3.3 4.3 V OUTPUT ON-State Resistance RDS(ON) TJ = 25 °C TOP232 ID = 50 mA TJ = 100 °C 15.6 25.7 18.0 30.0 TOP233 ID = 100 mA TJ = 25 °C TJ = 100 °C 7.8 12.9 9.0 15.0 TOP234 ID = 150 mA TJ = 25 °C TJ = 100 °C 5.2 8.6 6.0 10.0 Ω B 7/01 27 TOP232-234 Conditions Parameter Symbol (Unless Otherwise Specified) See Figure 34 SOURCE = 0 V; TJ = -40 to 125 °C Min Typ Max Units 150 µA OUTPUT (cont.) Off-State Current Breakdown Voltage IDSS VM = Floating; IC = 4mA VDS = 560 V; TJ = 125 °C BVDSS VM = Floating; IC = 4mA ID = 100 µA; TJ = 25 °C Rise Time tR Fall Time tF 700 Measured in a Typical V 100 ns 50 ns Flyback Converter Application SUPPLY VOLTAGE CHARACTERISTICS DRAIN Supply Voltage Shunt Regulator Voltage VC(SHUNT) See Note D 36 IC = 4 mA 5.60 Shunt Regulator Temperature Drift V 5.85 6.10 ±50 lCD1 Output MOSFET Enabled VM = 0 V 1.0 lCD2 Output MOSFET Disabled VM = 0 V 0.3 Control Supply/ Discharge Current 1.5 V ppm/°C 2.0 mA 0.6 1.0 NOTES: A. For specifications with negative values, a negative temperature coefficient corresponds to an increase in magnitude with increasing temperature, and a positive temperature coefficient corresponds to a decrease in magnitude with increasing temperature. B. Guaranteed by characterization. Not tested in production. C. For externally adjusted current limit values, please refer to the graph (Current Limit vs. External Current Limit Resistance) in the Typical Performance Characteristics section. D. It is possible to start up and operate TOPSwitch-FX at DRAIN voltages well below 36 V. However, the CONTROL pin charging current is reduced, which affects start-up time, auto-restart frequency, and auto-restart duty cycle. Refer to the characteristic graph on CONTROL pin charge current (IC) vs. DRAIN voltage for low voltage operation characteristics. 28 B 7/01 TOP232-234 t2 t1 HV 90% 90% DRAIN VOLTAGE t D= 1 t2 10% 0V PI-2039-033001 100 DRAIN Current (normalized) PI-1939-091996 CONTROL Pin Current (mA) 120 80 60 40 Dynamic 1 = Impedance Slope 20 tLEB (Blanking Time) 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 PI-2022-033001 Figure 31. Duty Cycle Measurement. IINIT(MIN) @ 85 VAC IINIT(MIN) @ 265 VAC ILIMIT(MAX) @ 25 °C ILIMIT(MIN) @ 25 °C 0 0 2 4 6 8 10 0 1 2 3 CONTROL Pin Voltage (V) 5 6 7 8 Time (us) Figure 33. Drain Current Operating Envelope. Figure 32. CONTROL Pin I-V Characteristic. S1 4 470 Ω 5W 100 kΩ S3 5-50 V 40 V 0-60 kΩ M 470 Ω D CONTROL C C TOPSwitch-FX S2 S4 0-15 V 47 µF F S 0.1 µF NOTES: 1. This test circuit is not applicable for current limit or output characteristic measurements. 2. For P and G packages, short all SOURCE pins together. PI-2538-040401 Figure 34. TOPSwitch-FX General Test Circuit. B 7/01 29 TOP232-234 BENCH TEST PRECAUTIONS FOR EVALUATION OF ELECTRICAL CHARACTERISTICS restart mode, there is only a 12.5% chance that the CONTROL pin oscillation will be in the correct state (drain active state) so that the continuous drain voltage waveform may be observed. It is recommended that the VC power supply be turned on first and the DRAIN pin power supply second if continuous drain voltage waveforms are to be observed. The 12.5% chance of being in the correct state is due to the divide-by-8 counter. Temporarily shorting the CONTROL pin to the SOURCE pin will reset TOPSwitch-FX, which then will come up in the correct state. The following precautions should be followed when testing TOPSwitch-FX by itself outside of a power supply. The schematic shown in Figure 34 is suggested for laboratory testing of TOPSwitch-FX. When the DRAIN pin supply is turned on, the part will be in the auto-restart mode. The CONTROL pin voltage will be oscillating at a low frequency between 4.8 and 5.8 V and the drain is turned on every eighth cycle of the CONTROL pin oscillation. If the CONTROL pin power supply is turned on while in this auto- Typical Performance Characteristics CURRENT LIMIT vs. MULTI-FUNCTION PIN CURRENT 1.0 200 .9 180 .8 160 .7 140 .6 120 100 Scaling Factors: TOP234 1.50 TOP233 1.00 TOP232 0.50 .5 .4 .3 -250 di/dt (mA/µs) Current Limit (A) PI-2540-033001 80 60 -200 -150 -100 -50 0 IM (µA) CURRENT LIMIT vs. EXTERNAL CURRENT LIMIT RESISTANCE PI-2539-033001 1.0 Scaling Factors: TOP234 1.50 TOP233 1.00 TOP232 0.50 Current Limit (A) .9 .8 .7 140 .6 120 Typical .5 100 Maximum and minimum levels are based on characterization. .4 80 .3 0 5K 10K 15K 20K External Current Limit Resistor RIL (Ω) 30 B 7/01 180 160 Maximum Minimum 200 25K 60 30K di/dt (mA/µs) 1.1 TOP232-234 Typical Performance Characteristics (cont.) BREAKDOWN vs. TEMPERATURE 1.0 1.0 0.8 0.6 0.4 0.2 0 0.9 0 25 50 75 100 125 150 -50 -25 Junction Temperature (°C) 50 75 100 125 150 EXTERNAL CURRENT LIMIT vs. TEMPERATURE with RIL = 12 kΩ PI-2555-033001 1.2 1.0 Current Limit (A) 0.8 0.6 0.4 0.2 0.8 0.6 Scaling Factors: TOP234 1.50 TOP233 1.00 TOP232 0.50 0.4 0.2 0 0 -50 -25 0 25 50 -50 -25 75 100 125 150 50 75 100 125 150 0.8 0.6 0.4 0.2 1.2 Under-Voltage Threshold (Normalized to 25 °C) PI-2553-033001 1.0 25 UNDER-VOLTAGE THRESHOLD vs. TEMPERATURE OVER-VOLTAGE THRESHOLD vs. TEMPERATURE 1.2 0 Junction Temperature (°C) Junction Temperature (°C) PI-2552-033001 Current Limit (Normalized to 25 °C) 1.0 25 Junction Temperature (°C) INTERNAL CURRENT LIMIT vs. TEMPERATURE 1.2 0 PI-2554-033001 -50 -25 Over-Voltage Threshold (Normalized to 25 °C) PI-1123A-033001 1.2 Output Frequency (Normalized to 25 °C) PI-176B-033001 Breakdown Voltage (Normalized to 25 °C) 1.1 FREQUENCY vs. TEMPERATURE 1.0 0.8 0.6 0.4 0.2 0 0 -50 -25 0 25 50 75 100 125 150 Junction Temperature (°C) -50 -25 0 25 50 75 100 125 150 Junction Temperature (°C) B 7/01 31 TOP232-234 Typical Performance Characteristics (cont.) MULTI-FUNCTION PIN VOLTAGE vs. CURRENT 4 3 2 See Expanded Version 1 0 -300 -200 -100 0 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 100 200 300 400 500 -300 -250 MULTI-FUNCTION Pin Current (µA) 0.8 0.6 0.4 0.2 1.0 0.8 0.6 0.4 0.2 25 50 75 100 125 150 -50 -25 Scaling Factors: TOP234 1.00 TOP233 0.67 TOP232 0.33 2 CONTROL Pin Charging Current (mA) 1 0.5 50 75 100 125 150 IC vs. DRAIN VOLTAGE PI-1940-033001 TCASE = 25 °C TCASE = 100 °C 25 Junction Temperature (°C) OUTPUT CHARACTERISTICS 1.5 0 PI-2564-101499 0 Junction Temperature (°C) DRAIN Current (A) 0 0 -50 -25 VC = 5 V 1.6 1.2 0.8 0.4 0 0 0 2 4 6 DRAIN Voltage (V) B 7/01 -50 1.2 0 32 -150 -100 MAX. DUTY CYCLE REDUCTION ONSET THRESHOLD CURRENT vs. TEMPERATURE Onset Threshold Current (Normalized to 25 °C) PI-2562-033001 CONTROL Current (Normalized to 25 °C) 1.0 -200 MULTI-FUNCTION Pin Current (µA) CONTROL CURRENT at START of CYCLE SKIPPING vs. TEMPERATURE 1.2 PI-2541-091699 1.6 PI-2563-033001 5 MULTI-FUNCTION Pin Voltage (V) PI-2542-091699 MULTI-FUNCTION Pin (V) 6 MULTI-FUNCTION PIN VOLTAGE vs. CURRENT (EXPANDED) 8 10 0 20 40 60 DRAIN Voltage (V) 80 100 TOP232-234 Typical Performance Characteristics (cont.) COSS vs. DRAIN VOLTAGE 100 10 PI-1942-033001 Scaling Factors: TOP234 1.00 TOP233 0.67 TOP232 0.33 Scaling Factors: TOP234 1.00 TOP233 0.67 TOP232 0.33 300 Power (mW) DRAIN Capacitance (pF) 1000 PI-1941-033001 DRAIN CAPACITANCE POWER (132 kHz) 200 100 0 0 200 400 DRAIN Voltage (V) 600 0 200 400 600 DRAIN Voltage (V) B 7/01 33 TOP232-234 TO-220-7B .165 (4.19) .185 (4.70) .400 (10.16) .415 (10.54) .146 (3.71) .156 (3.96) + .108 (2.74) REF .045 (1.14) .055 (1.40) .236 (5.99) .260 (6.60) .570 (14.48) REF. .467 (11.86) .487 (12.37) 7° TYP. .860 (21.84) .880 (22.35) .670 (17.02) REF. .095 (2.41) .115 (2.92) PIN 4 PIN 1 & 7 .028 (.71) .032 (.81) .050 (1.27) BSC PIN 1 .040 (1.02) .060 (1.52) .040 (1.02) .060 (1.52) .010 (.25) M .015 (.38) .020 (.51) .150 (3.81) BSC .190 (4.83) .210 (5.33) .050 (1.27) .050 (1.27) .050 (1.27) .050 (1.27) .180 (4.58) .200 (5.08) PIN 7 PIN 1 .150 (3.81) Y07B .150 (3.81) MOUNTING HOLE PATTERN Notes: 1. Controlling dimensions are inches. Millimeter dimensions are shown in parentheses. 2. Pin locations start with Pin 1, and continue from left to right when viewed from the front. Pins 2 and 6 are omitted. 3. Dimensions do not include mold flash or other protrusions. Mold flash or protrusions shall not exceed .006 (.15mm) on any side. 4. Minimum metal to metal spacing at the package body for omitted pin locations is .068 inch (1.73 mm). 5. Position of the formed leads to be measured at the mounting plane, .670 inch (17.02 mm) below the hole center. 6. All terminals are solder plated. PI-2560-033001 34 B 7/01 TOP232-234 DIP-8B ⊕ D S .004 (.10) Notes: 1. Package dimensions conform to JEDEC specification MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP) package with .300 inch row spacing. 2. Controlling dimensions are inches. Millimeter sizes are shown in parentheses. 3. Dimensions shown do not include mold flash or other protrusions. Mold flash or protrusions shall not exceed .006 (.15) on any side. 4. Pin locations start with Pin 1, and continue counter-clockwise to Pin 8 when viewed from the top. The notch and/or dimple are aids in locating Pin 1. Pin 6 is omitted. 5. Minimum metal to metal spacing at the package body for the omitted lead location is .137 inch (3.48 mm). 6. Lead width measured at package body. 7. Lead spacing measured with the leads constrained to be perpendicular to plane T. -E- .245 (6.22) .255 (6.48) Pin 1 -D- .375 (9.53) .385 (9.78) .128 (3.25) .132 (3.35) .057 (1.45) .063 (1.60) (NOTE 6) 0.15 (.38) MINIMUM -TSEATING PLANE .100 (2.54) BSC .010 (.25) .015 (.38) .125 (3.18) .135 (3.43) .300 (7.62) BSC (NOTE 7) .300 (7.62) .390 (9.91) .048 (1.22) .053 (1.35) .014 (.36) .022 (.56) ⊕ T E D S .010 (.25) M P08B PI-2551-033001 SMD-8B ⊕ D S .004 (.10) -E- .372 (9.45) .388 (9.86) ⊕ E S .010 (.25) .245 (6.22) .255 (6.48) Pin 1 .100 (2.54) (BSC) -D- .375 (9.53) .385 (9.78) .057 (1.45) .063 (1.60) (NOTE 5) .128 (3.25) .132 (3.35) .032 (.81) .037 (.94) .048 (1.22) .053 (1.35) Notes: 1. Controlling dimensions are inches. Millimeter sizes are shown in parentheses. 2. Dimensions shown do not include mold flash or other protrusions. Mold flash or protrusions shall not exceed .006 (.15) on any side. .420 3. Pin locations start with Pin 1, and continue counter-clock .046 .060 .060 .046 Pin 8 when viewed from the top. Pin 6 is omitted. 4. Minimum metal to metal .080 spacing at the package body Pin 1 for the omitted lead location is .137 inch (3.48 mm). .086 5. Lead width measured at .186 package body. .286 6. D and E are referenced Solder Pad Dimensions datums on the package body. Heat Sink is 2 oz. Copper As Big As Possible .004 (.10) .009 (.23) .004 (.10) .012 (.30) .036 (0.91) .044 (1.12) 0°- 8° G08B PI-2546-040501 B 7/01 35 TOP232-234 Revision Notes A Date 1/00 1) Corrected rounding of operating frequency (132/66 kHz). 2) Corrected spelling. B 7/01 3) Corrected Storage Temperature θJC and updated nomenclature in parameter table. For the latest updates, visit our Web site: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others. The PI Logo, TOPSwitch, TinySwitch and EcoSmart are registered trademarks of Power Integrations, Inc. ©Copyright 2001, Power Integrations, Inc. WORLD HEADQUARTERS AMERICAS Power Integrations, Inc. 5245 Hellyer Avenue San Jose, CA 95138 USA Main: +1 408-414-9200 Customer Service: Phone: +1 408-414-9665 Fax: +1 408-414-9765 e-mail: [email protected] EUROPE & AFRICA Power Integrations (Europe) Ltd. Centennial Court Easthampstead Road Bracknell Berkshire, RG12 1YQ United Kingdom Phone: +44-1344-462-300 Fax: +44-1344-311-732 e-mail: [email protected] TAIWAN Power Integrations International Holdings, Inc. 17F-3, No. 510 Chung Hsiao E. Rd., Sec. 5, Taipei, Taiwan 110, R.O.C. Phone: +886-2-2727-1221 Fax: +886-2-2727-1223 e-mail: [email protected] CHINA Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu Shenzhen, Guangdong 518031 China Phone: +86-755-367-5143 Fax: +86-755-377-9610 e-mail: [email protected] KOREA Power Integrations International Holdings, Inc. Rm# 402, Handuk Building 649-4 Yeoksam-Dong, Kangnam-Gu, Seoul, Korea Phone: +82-2-568-7520 Fax: +82-2-568-7474 e-mail: [email protected] JAPAN Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama 2-Chome Kohoku-ku, Yokohama-shi Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] INDIA (Technical Support) Innovatech #1, 8th Main Road Vasanthnagar Bangalore, India 560052 Phone: +91-80-226-6023 Fax: +91-80-228-9727 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 36 B 7/01 APPLICATIONS FAX World Wide +1-408-414-9760