www.ti.com TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION FEATURES • • • • • • • • • RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM) Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards Operates With 3-V to 5.5-V VCC Supply Operates up to 250 kbit/s Two Drivers and Two Receivers Low Standby Current . . . 1 μA Typical External Capacitors . . . 4 × 0.1 μF Accepts 5-V Logic Input With 3.3-V Supply Alternative High-Speed Pin-Compatible Device (1 Mbit/s) – TRSF3222 SLLS815 – JULY 2007 DB, DW, OR PW PACKAGE (TOP VIEW) EN C1+ V+ C1− C2+ C2− V− DOUT2 RIN2 ROUT2 1 20 2 3 19 18 4 17 5 16 6 7 15 14 8 9 13 12 10 11 PWRDOWN VCC GND DOUT1 RIN1 ROUT1 NC DIN1 DIN2 NC NC − No internal connection APPLICATIONS • • • • • • Battery-Powered Systems PDAs Notebooks Laptops Palmtop PCs Hand-Held Equipment DESCRIPTION/ORDERING INFORMATION The TRS3222 consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/μs driver output slew rate. The TRS3222 can be placed in the power-down mode by setting PWRDOWN low, which draws only 1 μA from the power supply. When the device is powered down, the receivers remain active while the drivers are placed in the high-impedance state. Also, during power down, the onboard charge pump is disabled; V+ is lowered to VCC, and V– is raised toward GND. Receiver outputs also can be placed in the high-impedance state by setting EN high. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2007, Texas Instruments Incorporated TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 ORDERING INFORMATION PACKAGE (1) (2) TA SOIC – DW 0°C to 70°C SSOP – DB TSSOP – PW SOIC – DW –40°C to 85°C SSOP – DB TSSOP – PW (1) (2) ORDERABLE PART NUMBER Tube of 25 TRS3222CDW Reel of 2000 TRS3222CDWR Tube of 70 TRS3222CDB Reel of 2000 TRS3222CDBR Tube of 70 TRS3222CPW Reel of 2000 TRS3222CPWR Tube of 25 TRS3222IDW SSOP – DB TRS3222IDWR Tube of 70 TRS3222IDB Reel of 2000 TRS3222IDBR Tube of 70 TRS3222IPW Reel of 2000 TRS3222IPWR TRS3222C RS22C RS22C TRS3222I RS22I RS22I Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. FUNCTION TABLES Each Driver (1) INPUTS DIN (1) PWRDOWN OUTPUT DOUT X L Z L H H H H L H = high level, L = low level, X = irrelevant, Z = high impedance Each Receiver (1) INPUTS (1) 2 TOP-SIDE MARKING RIN EN OUTPUT ROUT L L H H L L X H Z Open L H H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off Submit Documentation Feedback TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 LOGIC DIAGRAM (POSITIVE LOGIC) DIN1 DIN2 PWRDOWN EN ROUT1 ROUT2 13 17 12 8 20 DOUT1 DOUT2 Powerdown 1 15 16 10 9 Submit Documentation Feedback RIN1 RIN2 3 TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) MIN MAX VCC Supply voltage range (2) –0.3 6 V V+ Positive output supply voltage range (2) –0.3 7 V 0.3 –7 V 13 V V– Negative output supply voltage range V+ – V– Supply voltage difference (2) VI Input voltage range VO Output voltage range θJA Package thermal impedance (3) (4) (2) Tstg Storage temperature range (4) 6 Receivers –25 25 Receivers Operating virtual junction temperature (2) (3) –0.3 Drivers TJ (1) Drivers, EN, PWRDOWN –13.2 13.2 –0.3 VCC + 0.3 DB package 70 DW package 58 PW package 83 –65 UNIT V V °C/W 150 °C 150 °C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to network GND. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. Recommended Operating Conditions (1) See Figure 5 VCC = 3.3 V Supply voltage VCC = 5 V VIH Driver and control high-level input voltage DIN, EN, PWRDOWN VIL Driver and control low-level input voltage DIN, EN, PWRDOWN VI Driver and control input voltage DIN, EN, PWRDOWN VI Receiver input voltage TA Operating free-air temperature (1) VCC = 3.3 V VCC = 5 V TRS222C TRS222I MIN NOM MAX 3 3.3 3.6 4.5 5 5.5 UNIT V 2 V 2.4 0.8 V 0 5.5 V –25 25 V 0 70 –40 85 °C Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) PARAMETER II ICC (1) (2) 4 TEST CONDITIONS Input leakage current (EN, PWRDOWN) Supply current No load, PWRDOWN at VCC Supply current (powered off) No load, PWRDOWN at GND MIN TYP (2) MAX ±0.01 ±1 μA 0.3 1 mA 1 10 μA Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Submit Documentation Feedback UNIT TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 DRIVER SECTION Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) PARAMETER TEST CONDITIONS MIN TYP (2) VOH High-level output voltage DOUT at RL = 3 kΩ to GND, DIN = GND 5 5.4 VOL Low-level output voltage DOUT at RL = 3 kΩ to GND, DIN = VCC –5 –5.4 IIH High-level input current VI = VCC IIL Low-level input current VI at GND IOS Short-circuit output current (3) ro Output resistance Ioff (1) (2) (3) Output leakage current MAX V V ±0.01 ±1 μA ±0.01 ±1 μA ±35 ±60 mA VCC = 3.6 V, VO = 0 V VCC = 5.5 V, VO = 0 V VCC, V+, and V– = 0 V, VO = ±2 V PWRDOWN = GND, VCC = 3 V to 3.6 V VO = ±12 V ±25 PWRDOWN = GND, VCC = 4.5 V to 5.5 V VO = ±10 V ±25 300 UNIT Ω 10 M μA Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time. Switching Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) PARAMETER TEST CONDITIONS Maximum data rate CL = 1000 pF, One DOUT switching, tsk(p) Pulse skew (3) CL = 150 pF to 2500 pF, RL = 3 kΩ to 7 kΩ, See Figure 2 SR(tr) Slew rate, transition region (see Figure 1) RL = 3 kΩ to 7 kΩ, VCC = 3.3 V (1) (2) (3) RL = 3 kΩ, See Figure 1 MIN TYP (2) 150 250 kbit/s 300 ns MAX CL = 150 pF to 1000 pF 6 30 CL = 150 pF to 2500 pF 4 30 UNIT V/μs Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Pulse skew is defined as |tPLH – tPHL| of each channel of the same device. Submit Documentation Feedback 5 TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 RECEIVER SECTION Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) PARAMETER TEST CONDITIONS VOH High-level output voltage IOH = –1 mA VOL Low-level output voltage IOH = 1.6 mA TYP (2) VCC – 0.6 VCC – 0.1 MAX 1.5 2.4 VCC = 5 V 1.8 2.4 Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input hysteresis (VIT+ – VIT– ) Ioff Output leakage current EN = VCC rI Input resistance VI = ±3 V to ±25 V VCC = 3.3 V 0.6 1.2 VCC = 5 V 0.8 1.5 V V V 0.3 3 UNIT V 0.4 VCC = 3.3 V VIT+ (1) (2) MIN V ±0.05 ±10 μA 5 7 kΩ Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Switching Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER MIN TYP (2) MAX UNIT tPLH Propagation delay time, low- to high-level output CL = 150 pF, See Figure 3 300 ns tPHL Propagation delay time, high- to low-level output CL = 150 pF, See Figure 3 300 ns ten Output enable time CL = 150 pF, RL = 3 kΩ, See Figure 4 200 ns tdis Output disable time CL = 150 pF, RL = 3 kΩ, See Figure 4 200 ns tsk(p) Pulse skew (3) See Figure 3 300 ns (1) (2) (3) 6 TEST CONDITIONS Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V. All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Pulse skew is defined as |tPLH – tPHL| of each channel of the same device. Submit Documentation Feedback TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 PARAMETER MEASUREMENT INFORMATION 3V Input Generator (see Note B) 1.5 V RS-232 Output 50 Ω RL 1.5 V 0V CL (see Note A) tTHL 3V PWRDOWN tTLH VOH 3V 3V Output −3 V −3 V VOL TEST CIRCUIT VOLTAGE WAVEFORMS SR(tr) + t THL 6V or t TLH A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤10 ns, tf ≤ 10 ns. Figure 1. Driver Slew Rate 3V Generator (see Note B) RS-232 Output 50 Ω RL Input 1.5 V 1.5 V 0V CL (see Note A) tPHL tPLH VOH 3V PWRDOWN 50% 50% Output VOL TEST CIRCUIT VOLTAGE WAVEFORMS A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤10 ns, tf ≤ 10 ns. Figure 2. Driver Pulse Skew EN 0V 3V Input 1.5 V 1.5 V −3 V Output Generator (see Note B) 50 Ω tPHL CL (see Note A) tPLH VOH 50% Output 50% VOL TEST CIRCUIT VOLTAGE WAVEFORMS A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤10 ns, tf ≤ 10 ns. Figure 3. Receiver Propagation Delay Times Submit Documentation Feedback 7 TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 PARAMETER MEASUREMENT INFORMATION (continued) VCC GND S1 3V Input 1.5 V RL 3 V or 0 V 0V tPZH (S1 at GND) tPHZ Output CL (see Note A) EN S1 at GND) VOH Output 50% 0.3 V Generator (see Note B) 1.5 V 50 Ω tPLZ (S1 at VCC) 0.3 V Output 50% VOL tPZL (S1 at VCC) TEST CIRCUIT VOLTAGE WAVEFORMS A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤10 ns, tf ≤ 10 ns. Figure 4. Receiver Enable and Disable Times 8 Submit Documentation Feedback TRS3222 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION www.ti.com SLLS815 – JULY 2007 APPLICATION INFORMATION 1 EN 2 + C1 − 3 C3† + 20 Powerdown VCC C1+ V+ GND PWRDOWN 19 18 + C BYPASS − = 0.1 µF − 4 5 17 C1− 16 C2+ DOUT1 RIN1 + C2 − 6 7 C4 DOUT2 RIN2 ROUT2 − 15 C2− 14 V− ROUT1 NC + 8 13 9 12 10 11 DIN1 DIN2 NC † C3 can be connected to V CC or GND. NOTES: A. Resistor values shown are nominal. B. NC − No internal connection C. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. VCC vs CAPACITOR VALUES VCC 3.3 V " 0.3 V C1 0.1 µF C2, C3, and C4 0.1 µF 5 V " 0.5 V 0.047 µF 0.33 µF 3 V to 5.5 V 0.1 µF 0.47 µF Figure 5. Typical Operating Circuit and Capacitor Values Submit Documentation Feedback 9 PACKAGE OPTION ADDENDUM www.ti.com 24-Jul-2010 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) TRS3222CDB ACTIVE SSOP DB 20 TBD Call TI Call TI Purchase Samples TRS3222CDBG4 ACTIVE SSOP DB 20 TBD Call TI Call TI Purchase Samples TRS3222CDBR ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Request Free Samples TRS3222CDBRG4 ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Request Free Samples TRS3222CDW ACTIVE SOIC DW 20 TBD Call TI Call TI Purchase Samples TRS3222CDWG4 ACTIVE SOIC DW 20 TBD Call TI Call TI Purchase Samples TRS3222CDWR ACTIVE SOIC DW 20 TBD Call TI Call TI Purchase Samples TRS3222CDWRG4 ACTIVE SOIC DW 20 TBD Call TI Call TI Purchase Samples TRS3222CPW ACTIVE TSSOP PW 20 TBD Call TI Call TI Purchase Samples TRS3222CPWG4 ACTIVE TSSOP PW 20 TBD Call TI Call TI Purchase Samples TRS3222CPWR ACTIVE TSSOP PW 20 TBD Call TI Call TI Purchase Samples TRS3222CPWRG4 ACTIVE TSSOP PW 20 TBD Call TI Call TI Purchase Samples TRS3222IDB ACTIVE SSOP DB 20 TBD Call TI Call TI Purchase Samples TRS3222IDBG4 ACTIVE SSOP DB 20 TBD Call TI Call TI Purchase Samples TRS3222IDBR ACTIVE SSOP DB 20 TBD Call TI Call TI Purchase Samples TRS3222IDBRG4 ACTIVE SSOP DB 20 TBD Call TI Call TI Purchase Samples TRS3222IDW ACTIVE SOIC DW 20 TBD Call TI Call TI Purchase Samples TRS3222IDWG4 ACTIVE SOIC DW 20 TBD Call TI Call TI Purchase Samples TRS3222IDWR ACTIVE SOIC DW 20 TBD Call TI Call TI Purchase Samples TRS3222IDWRG4 ACTIVE SOIC DW 20 TBD Call TI Call TI Purchase Samples TRS3222IPW ACTIVE TSSOP PW 20 TBD Call TI Call TI Purchase Samples TRS3222IPWG4 ACTIVE TSSOP PW 20 TBD Call TI Call TI Purchase Samples TRS3222IPWR ACTIVE TSSOP PW 20 TBD Call TI Call TI Purchase Samples TRS3222IPWRG4 ACTIVE TSSOP PW 20 TBD Call TI Call TI Purchase Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 24-Jul-2010 OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 23-Jul-2010 TAPE AND REEL INFORMATION *All dimensions are nominal Device TRS3222CDBR Package Package Pins Type Drawing SSOP DB 20 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) 2000 330.0 16.4 Pack Materials-Page 1 8.2 B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 7.5 2.5 12.0 16.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 23-Jul-2010 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TRS3222CDBR SSOP DB 20 2000 346.0 346.0 33.0 Pack Materials-Page 2 MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,25 0,09 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0°–ā8° 0,95 0,55 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 /E 12/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Communications and Telecom www.ti.com/communications DSP dsp.ti.com Computers and Peripherals www.ti.com/computers Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Logic logic.ti.com Industrial www.ti.com/industrial Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Space, Avionics & Defense www.ti.com/space-avionics-defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated