ETC UNR911H

Transistors with built-in Resistor
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
(UN9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/911D/911E/
911F/911H/911L/911AJ/911BJ/911CJ)
Unit: mm
Silicon PNP epitaxial planer transistor
1.6±0.15
●
●
●
●
●
●
●
●
+0.1
0.5
0.5
1.6±0.1
■ Absolute Maximum Ratings
+0.1
0.15 -0.05
0 to 0.1
0.75±0.15
0.45±0.1 0.3
0.27±0.02
●
+0.05
0.85–0.03
+0.05
●
0.70–0.03
●
0 to 0.1
●
1.60±0.05
0.80
0.80±0.05
0.425 0.425
0.50
●
Unit: mm
0.50
●
1 : Base
2 : Emitter
3 : Collector
SS–Mini Type Pakage
0.80
●
(R2)
10kΩ
22kΩ
47kΩ
47kΩ
—
—
—
5.1kΩ
10kΩ
—
10kΩ
22kΩ
10kΩ
10kΩ
4.7kΩ
100kΩ
—
47kΩ
1.00±0.05
●
Marking Symbol (R1)
UNR9111
6A
10kΩ
UNR9112
6B
22kΩ
UNR9113
6C
47kΩ
UNR9114
6D
10kΩ
UNR9115
6E
10kΩ
UNR9116
6F
4.7kΩ
UNR9117
6H
22kΩ
UNR9118
6I
0.51kΩ
UNR9119
6K
1kΩ
UNR9110
6L
47kΩ
UNR911D
6M
47kΩ
UNR911E
6N
47kΩ
UNR911F
6O
4.7kΩ
UNR911H
6P
2.2kΩ
UNR911L
6Q
4.7kΩ
UNR911AJ
6X
100kΩ
UNR911BJ
6Y
100kΩ
UNR911CJ
6Z
—
0.2±0.1
+0.03
●
3
0.12–0.01
●
1
Resistance by Part Number
+0.05
■
0.4
2
Costs can be reduced through downsizing of the equipment and
reduction of the number of parts.
SS-Mini type package, allowing automatic insertion through tape
packing and magazine packing.
1.60–0.03
●
Features
0.80
●
1.0±0.1
For digital circuits
■
0.8±0.1
0.2 -0.05
0.4
1 : Base
2 : Emitter
3 : Collector
SS–Mini Flat Type Pakage (J type)
(Ta=25˚C)
Parameter
Symbol
Ratings
Unit
Collector to base voltage
VCBO
–50
V
Collector to emitter voltage
VCEO
–50
V
Collector current
IC
–100
mA
Total power dissipation
PT
125
mW
Junction temperature
Tj
125
˚C
Storage temperature
Tstg
–55 to +125
˚C
Internal Connection
R1
C
B
R2
E
Note.) The Part numbers in the Parenthesis show conventional part number.
1
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
■ Electrical Characteristics
(Ta=25˚C)
Parameter
Symbol
Collector cutoff current
Emitter
cutoff
current
Conditions
min
typ
Unit
ICBO
VCB = –50V, IE = 0
– 0.1
µA
ICEO
VCE = –50V, IB = 0
– 0.5
µA
UNR9111
– 0.5
UNR9112/9114/911E/911D
– 0.2
UNR9113/UNR911AJ
– 0.1
UNR9115/9116/9117/9110/UNR911BJ
IEBO
VEB = –6V, IC = 0
– 0.01
UNR911F/911H
–1.0
UNR9119
–1.5
UNR9118/911L/911CJ
mA
–2.0
Collector to base voltage
VCBO
IC = –10µA, IE = 0
–50
V
Collector to emitter voltage
VCEO
IC = –2mA, IB = 0
–50
V
Forward
current
transfer
ratio
UNR9111
35
UNR9112/911E
60
UNR9113/9114/UNR911AJ/911CJ
UNR9115*/9116*/9117*/9110*UNR911BJ
hFE
VCE = –10V, IC = –5mA
UNR911F/911D/9119/911H
160
460
20
Collector to emitter saturation voltage
VCE(sat)
IC = –10mA, IB = – 0.3mA
Output voltage high level
VOH
VCC = –5V, VB = – 0.5V, RL = 1kΩ
Output voltage low level
– 0.25
–4.9
– 0.2
VCC = –5V, VB = –3.5V, RL = 1kΩ
– 0.2
VCC = –5V, VB = –10V, RL = 1kΩ
– 0.2
UNR911E
VCC = –5V, VB = –6V, RL = 1kΩ
– 0.2
UNR911AJ
VCC = –5V, VB = –5.0V, RL = 1kΩ
– 0.2
UNR911D
VOL
Transition frequency
fT
UNR911AJ
150
VCB = –10V, IE = 2mA, f = 200MHz
10
UNR9112/9117
22
UNR9113/9110/911D/911E
47
UNR9116/911F/911L
4.7
R1
(–30%)
UNR9119
0.51
1
UNR911H
2.2
UNR911AJ/911BJ
100
* hFE rank classification (UNR9115/9116/9117/9110)
Rank
Q
R
S
hFE
160 to 260
210 to 340
290 to 460
V
MHz
80
UNR9111/9114/9115
UNR9118
V
V
VCC = –5V, VB = –2.5V, RL = 1kΩ
UNR9113/UNR911BJ
Input
resistance
80
30
UNR9118/911L
2
max
(+30%)
kΩ
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
■ Electrical Characteristics (continued)
Parameter
Resistance
ratio
Symbol
(Ta=25˚C)
Conditions
min
typ
max
UNR9111/9112/9113/911L
0.8
1.0
1.2
UNR9114
0.17
0.21
0.25
UNR9118/9119
0.08
0.1
0.12
UNR911D
4.7
R1/R2
UNR911E
2.14
UNR911F
0.47
UNR911H
0.17
UNR911AJ
Resistance between Emitter to Base
Unit
0.22
0.27
1.0
UNR911CJ
R2
–30%
47
30%
3
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
Common characteristics chart
PT — Ta
Total power dissipation PT (mW)
150
125
100
75
50
25
0
0
20
40
60
80 100 120 140 160
Ambient temperature Ta (˚C)
Characteristics charts of UNR9111
IC — VCE
VCE(sat) — IC
IB=–1.0mA
Collector current IC (mA)
–140
Ta=25˚C
–0.9mA
–120
–0.8mA
–0.7mA
–100
–0.6mA
–0.5mA
–80
–0.4mA
–60
–0.3mA
–40
–0.2mA
–20
–0.1mA
0
0
–2
–4
–6
–8
–10
–12
Collector to emitter saturation voltage VCE(sat) (V)
–100
IC/IB=10
–30
–10
–3
–1
–0.3
–25˚C
–0.03
–0.01
–0.1 –0.3
–10
–10000
–30
–25˚C
80
40
0
–1
–100
–3
4
3
2
–10
–30
–100 –300 –1000
Collector current IC (mA)
VIN — IO
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
Output current IO (µA)
Collector output capacitance Cob (pF)
–3
25˚C
120
IO — VIN
f=1MHz
IE=0
Ta=25˚C
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–0.03
–3
0
–0.1 –0.3
–1
–3
–10
Collector to base voltage
4
–1
Ta=75˚C
VCE=–10V
Collector current IC (mA)
Cob — VCB
5
Ta=75˚C
25˚C
–0.1
Collector to emitter voltage VCE (V)
6
hFE — IC
160
Forward current transfer ratio hFE
–160
–30
–100
VCB (V)
–1
–0.4
–0.6
–0.8
–1.0
–1.2
Input voltage VIN (V)
–1.4
–0.01
–0.1 –0.3
–1
–3
–10
–30
Output current IO (mA)
–100
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
Characteristics charts of UNR9112
IC — VCE
VCE(sat) — IC
–100
Collector current IC (mA)
–140
–120
–100
–0.5mA
–80
–0.4mA
–60
–0.3mA
–40
–0.2mA
–20
–0.1mA
0
0
–2
–4
–6
–8
–10
–12
IC/IB=10
–30
–10
–3
–1
–0.3
–25˚C
–0.03
–0.01
–0.1 –0.3
–1
–10
–30
300
Ta=75˚C
200
25˚C
–25˚C
100
0
–1
–100
–3
4
3
2
–30
–100 –300 –1000
VIN — IO
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
f=1MHz
IE=0
Ta=25˚C
–10
Collector current IC (mA)
IO — VIN
–10000
Output current IO (µA)
Collector output capacitance Cob (pF)
–3
VCE=–10V
Collector current IC (mA)
Cob — VCB
5
Ta=75˚C
25˚C
–0.1
Collector to emitter voltage VCE (V)
6
hFE — IC
400
Forward current transfer ratio hFE
Ta=25˚C
IB=–1.0mA
–0.9mA
–0.8mA
–0.7mA
–0.6mA
Collector to emitter saturation voltage VCE(sat) (V)
–160
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–0.03
–3
0
–0.1 –0.3
–1
–3
–10
Collector to base voltage
–30
–1
–0.4
–100
–0.6
–0.8
–1.0
–1.2
–0.01
–0.1 –0.3
–1.4
–1
–3
–10
–30
–100
Output current IO (mA)
Input voltage VIN (V)
VCB (V)
Characteristics charts of UNR9113
IC — VCE
VCE(sat) — IC
–100
Collector current IC (mA)
Ta=25˚C
–0.9mA
–0.8mA
–0.7mA
–0.6mA
–120
–0.5mA
–100
–80
–0.4mA
–60
–0.3mA
–40
–0.2mA
–20
–0.1mA
0
0
–2
–4
–6
–8
–10
Collector to emitter voltage VCE (V)
–12
hFE — IC
400
IC/IB=10
–30
–10
–3
–1
–0.3
Ta=75˚C
25˚C
–0.1
–25˚C
–0.03
–0.01
–0.1 –0.3
–1
–3
–10
–30
Collector current IC (mA)
–100
VCE=–10V
Forward current transfer ratio hFE
IB=–1.0mA
–140
Collector to emitter saturation voltage VCE(sat) (V)
–160
Ta=75˚C
300
25˚C
200
–25˚C
100
0
–1
–3
–10
–30
–100 –300 –1000
Collector current IC (mA)
5
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
Cob — VCB
IO — VIN
4
3
2
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
f=1MHz
IE=0
Ta=25˚C
5
VIN — IO
–10000
Output current IO (µA)
Collector output capacitance Cob (pF)
6
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–3
0
–0.1 –0.3
–1
–3
–10
Collector to base voltage
–30
–1
–0.4
–100
VCB (V)
–0.03
–0.6
–0.8
–1.0
–1.2
–0.01
–0.1 –0.3
–1.4
Input voltage VIN (V)
–1
–3
–10
–30
–100
Output current IO (mA)
Characteristics charts of UNR9114
IC — VCE
VCE(sat) — IC
Ta=25˚C
Collector current IC (mA)
–140
IB=–1.0mA
–120
–0.9mA
–0.8mA
–0.7mA
–0.6mA
–100
–0.5mA
–80
–0.4mA
–60
–0.3mA
–0.2mA
–40
–0.1mA
–20
Collector to emitter saturation voltage VCE(sat) (V)
–100
0
0
–2
–4
–6
–8
–10
IC/IB=10
–30
–10
–3
–1
–0.3
Ta=75˚C
25˚C
–0.1
–0.03
Collector to emitter voltage VCE (V)
–1
–3
–10
–10000
–30
25˚C
–25˚C
100
0
–1
–100
–3
3
2
–10
–30
–100 –300 –1000
Collector current IC (mA)
VIN — IO
VO=–5V
Ta=25˚C
–1000
–3000
–300
–1000
–100
Input voltage VIN (V)
Output current IO (µA)
Collector output capacitance Cob (pF)
4
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–30
–10
–3
–1
1
–0.3
–3
0
–0.1 –0.3
–1
–3
–10
Collector to base voltage
6
Ta=75˚C
200
IO — VIN
f=1MHz
IE=0
Ta=25˚C
5
300
Collector current IC (mA)
Cob — VCB
6
VCE=–10V
–25˚C
–0.01
–0.1 –0.3
–12
hFE — IC
400
Forward current transfer ratio hFE
–160
–30
–100
VCB (V)
–1
–0.4
–0.6
–0.8
–1.0
–1.2
Input voltage VIN (V)
–1.4
–0.1
–0.1 –0.3
–1
–3
–10
–30
Output current IO (mA)
–100
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
Characteristics charts of UNR9115
IC — VCE
VCE(sat) — IC
–100
IB=–1.0mA
Collector current IC (mA)
–140
–120
–0.9mA
–0.8mA
–0.7mA
–0.6mA
–100
–0.5mA
–0.4mA
–80
–0.3mA
–60
–0.2mA
–40
–0.1mA
–20
0
0
–2
–4
–6
–8
–10
–12
IC/IB=10
–30
–10
–3
–1
Ta=75˚C
–0.3
25˚C
–0.1
–0.03
–25˚C
–0.01
–0.1 –0.3
–1
Cob — VCB
–30
300
Ta=75˚C
200
25˚C
–25˚C
100
0
–1
–100
–3
3
2
–30
–100 –300 –1000
VIN — IO
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
4
–10
Collector current IC (mA)
IO — VIN
Output current IO (µA)
Collector output capacitance Cob (pF)
–10
–10000
f=1MHz
IE=0
Ta=25˚C
5
–3
VCE=–10V
Collector current IC (mA)
Collector to emitter voltage VCE (V)
6
hFE — IC
400
Forward current transfer ratio hFE
Ta=25˚C
Collector to emitter saturation voltage VCE(sat) (V)
–160
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–3
0
–0.1 –0.3
–1
–3
–10
Collector to base voltage
–30
–1
–0.4
–100
VCB (V)
–0.03
–0.6
–0.8
–1.0
–1.2
–0.01
–0.1 –0.3
–1.4
Input voltage VIN (V)
–1
–3
–10
–30
–100
Output current IO (mA)
Characteristics charts of UNR9116
IC — VCE
VCE(sat) — IC
IB=–1.0mA
Collector current IC (mA)
–140
Ta=25˚C
–0.9mA
–0.8mA
–120
–0.7mA
–0.6mA
–100
–0.5mA
–80
–0.4mA
–60
–0.3mA
–40
–0.2mA
–20
–0.1mA
0
0
–2
–4
–6
–8
–10
Collector to emitter voltage VCE (V)
–12
Collector to emitter saturation voltage VCE(sat) (V)
–100
hFE — IC
400
IC/IB=10
–30
–10
–3
–1
–0.3
Ta=75˚C
25˚C
–0.1
–0.03
–25˚C
–0.01
–0.1 –0.3
–1
–3
–10
–30
Collector current IC (mA)
VCE=–10V
Forward current transfer ratio hFE
–160
–100
300
Ta=75˚C
200
25˚C
–25˚C
100
0
–1
–3
–10
–30
–100 –300 –1000
Collector current IC (mA)
7
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
Cob — VCB
IO — VIN
–10000
5
4
3
2
VIN — IO
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
f=1MHz
IE=0
Ta=25˚C
Output current IO (µA)
Collector output capacitance Cob (pF)
6
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–3
0
–0.1 –0.3
–1
–3
–10
–30
–1
–0.4
–100
Collector to base voltage VCB (V)
–0.03
–0.6
–0.8
–1.0
–1.2
–0.01
–0.1 –0.3
–1.4
Input voltage VIN (V)
–1
–3
–10
–30
–100
Output current IO (mA)
Characteristics charts of UNR9117
IC — VCE
VCE(sat) — IC
–100
IB=–1.0mA
–0.9mA
–0.8mA
–0.7mA
–0.6mA
–0.5mA
–0.4mA
Collector current IC (mA)
–100
–80
–60
–0.3mA
–40
–0.2mA
–20
–0.1mA
0
0
–2
–4
–6
–8
–10
–12
IC/IB=10
–30
–10
–3
Ta=75˚C
–1
–0.3
25˚C
–0.1
–25˚C
–0.03
–0.01
–0.1 –0.3
Collector to emitter voltage VCE (V)
–10
200
Ta=75˚C
25˚C
100
–25˚C
0
–1
–100
–3
4
3
2
–10
–30
–100 –300 –1000
Collector current IC (mA)
VIN — IO
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
f=1MHz
IE=0
Ta=25˚C
5
–30
300
IO — VIN
Output current IO (µA)
Collector output capacitance Cob (pF)
–3
–10000
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–3
0
–0.1 –0.3
–1
–3
–10
–30
–100
Collector to base voltage VCB (V)
8
–1
VCE=–10V
Collector current IC (mA)
Cob — VCB
6
hFE — IC
400
Forward current transfer ratio hFE
Ta=25˚C
Collector to emitter saturation voltage VCE(sat) (V)
–120
–1
–0.4
–0.03
–0.6
–0.8
–1.0
–1.2
Input voltage VIN (V)
–1.4
–0.01
–0.1 –0.3
–1
–3
–10
–30
Output current IO (mA)
–100
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
Characteristics charts of UNR9118
IC — VCE
VCE(sat) — IC
–100
Collector current IC (mA)
–200
IB=–1.0mA
–0.9mA
–160
–0.8mA
–0.7mA
–120
–0.6mA
–0.5mA
–80
–0.4mA
–0.3mA
–40
–0.2mA
–0.1mA
0
0
–2
–4
–6
–8
–10
–12
IC/IB=10
–30
–10
–3
–1
Ta=75˚C
–0.3
25˚C
–0.1
–0.03
–25˚C
–0.01
–0.1 –0.3
–1
Cob — VCB
–30
120
Ta=75˚C
80
25˚C
–25˚C
40
0
–1
–100
–3
3
2
–30
–100 –300 –1000
VIN — IO
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
4
–10
Collector current IC (mA)
IO — VIN
Output current IO (µA)
Collector output capacitance Cob (pF)
–10
–10000
f=1MHz
IE=0
Ta=25˚C
5
–3
VCE=–10V
Collector current IC (mA)
Collector to emitter voltage VCE (V)
6
hFE — IC
160
Forward current transfer ratio hFE
Ta=25˚C
Collector to emitter saturation voltage VCE(sat) (V)
–240
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–3
0
–0.1 –0.3
–1
–3
–10
Collector to base voltage
–30
–1
–0.4
–100
VCB (V)
–0.03
–0.6
–0.8
–1.0
–1.2
–0.01
–0.1 –0.3
–1.4
Input voltage VIN (V)
–1
–3
–10
–30
–100
Output current IO (mA)
Characteristics charts of UNR9119
IC — VCE
VCE(sat) — IC
–100
Collector current IC (mA)
–200
IB=–1.0mA
–0.9mA
–0.8mA
–0.7mA
–160
–120
–80
–0.6mA
–0.5mA
–0.4mA
–0.3mA
–40
–0.2mA
–0.1mA
0
0
–2
–4
–6
–8
–10
Collector to emitter voltage VCE (V)
–12
hFE — IC
–30
–10
–3
–1
Ta=75˚C
–0.3
25˚C
–0.1
–0.03
160
IC/IB=10
–25˚C
–0.01
–0.1 –0.3
–1
–3
–10
–30
Collector current IC (mA)
–100
VCE=–10V
Forward current transfer ratio hFE
Ta=25˚C
Collector to emitter saturation voltage VCE(sat) (V)
–240
120
Ta=75˚C
80
25˚C
–25˚C
40
0
–1
–3
–10
–30
–100 –300 –1000
Collector current IC (mA)
9
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
Cob — VCB
f=1MHz
IE=0
Ta=25˚C
Output current IO (µA)
5
4
3
2
VIN — IO
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
Collector output capacitance Cob (pF)
IO — VIN
–10000
6
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–3
0
–0.1 –0.3
–1
–3
–10
–30
–1
–0.4
–100
–0.03
–0.6
–0.8
–1.0
–1.2
–0.01
–0.1 –0.3
–1.4
Input voltage VIN (V)
Collector to base voltage VCB (V)
–1
–3
–10
–30
–100
Output current IO (mA)
Characteristics charts of UNR9110
IC — VCE
VCE(sat) — IC
–100
–60
–0.2mA
–40
–0.1mA
–20
0
0
–2
–4
–6
–8
–10
IC/IB=10
–30
–10
–3
–1
Ta=75˚C
–0.3
25˚C
–0.1
–0.03
–25˚C
–0.01
–0.1 –0.3
–12
Collector to emitter voltage VCE (V)
–10
Ta=75˚C
200
25˚C
–25˚C
100
0
–1
–100
–3
4
3
2
–10
–30
–100 –300 –1000
Collector current IC (mA)
VIN — IO
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
f=1MHz
IE=0
Ta=25˚C
5
–30
300
IO — VIN
Output current IO (µA)
Collector output capacitance Cob (pF)
–3
–10000
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–3
0
–0.1 –0.3
–1
–3
–10
Collector to base voltage
10
–1
VCE=–10V
Collector current IC (mA)
Cob — VCB
6
hFE — IC
400
Forward current transfer ratio hFE
Ta=25˚C
IB=–1.0mA
–0.9mA
–100
–0.8mA
–0.7mA
–0.6mA
–0.5mA
–80
–0.4mA
–0.3mA
Collector to emitter saturation voltage VCE(sat) (V)
Collector current IC (mA)
–120
–30
–100
VCB (V)
–1
–0.4
–0.03
–0.6
–0.8
–1.0
–1.2
Input voltage VIN (V)
–1.4
–0.01
–0.1 –0.3
–1
–3
–10
–30
Output current IO (mA)
–100
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
Characteristics charts of UNR911D
IC — VCE
VCE(sat) — IC
–100
Ta=25˚C
Collector current IC (mA)
–50
–40
–0.3mA
–30
–0.2mA
–0.7mA
–0.6mA
–0.5mA
–0.4mA
–20
–0.1mA
–10
0
–2
–4
–6
–8
–10
IC/IB=10
–30
–10
–3
–1
Ta=75˚C
–0.3
25˚C
–0.1
–0.03
–25˚C
–0.01
–0.1 –0.3
0
–12
–1
Cob — VCB
–30
25˚C
–25˚C
80
40
0
–1
–100
Ta=75˚C
120
–3
3
2
–30
–100 –300 –1000
VIN — IO
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
4
–10
Collector current IC (mA)
IO — VIN
Output current IO (µA)
Collector output capacitance Cob (pF)
–10
–10000
f=1MHz
IE=0
Ta=25˚C
5
–3
VCE=–10V
Collector current IC (mA)
Collector to emitter voltage VCE (V)
6
hFE — IC
160
Forward current transfer ratio hFE
IB=–1.0mA
–0.9mA
–0.8mA
Collector to emitter saturation voltage VCE(sat) (V)
–60
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–3
0
–0.1 –0.3
–1
–3
–10
Collector to base voltage
–30
–1
–1.5
–100
VCB (V)
–0.03
–2.0
–2.5
–3.0
–3.5
–4.0
–0.01
–0.1 –0.3
Input voltage VIN (V)
–1
–3
–10
–30
–100
Output current IO (mA)
Characteristics charts of UNR911E
IC — VCE
VCE(sat) — IC
–100
Ta=25˚C
Collector current IC (mA)
–50
–40
–0.3mA
–30
–0.6mA
–0.5mA
–0.4mA
–20
–0.2mA
–0.1mA
–10
0
0
–2
–4
–6
–8
–10
Collector to emitter voltage VCE (V)
–12
hFE — IC
–30
–10
–3
–1
Ta=75˚C
–0.3
25˚C
–0.1
–0.03
400
IC/IB=10
–25˚C
–0.01
–0.1 –0.3
–1
–3
–10
–30
Collector current IC (mA)
VCE=–10V
Forward current transfer ratio hFE
IB=–1.0mA
–0.9mA
–0.8mA –0.7mA
Collector to emitter saturation voltage VCE(sat) (V)
–60
–100
300
200
Ta=75˚C
100
0
–1
25˚C
–25˚C
–3
–10
–30
–100 –300 –1000
Collector current IC (mA)
11
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
Cob — VCB
f=1MHz
IE=0
Ta=25˚C
Output current IO (µA)
5
4
3
2
VIN — IO
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
Collector output capacitance Cob (pF)
IO — VIN
–10000
6
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–3
0
–0.1 –0.3
–1
–3
–10
–30
–1
–1.5
–100
–0.03
–2.0
–2.5
–3.0
–3.5
–4.0
–0.01
–0.1 –0.3
Input voltage VIN (V)
Collector to base voltage VCB (V)
–1
–3
–10
–30
–100
Output current IO (mA)
Characteristics charts of UNR911F
IC — VCE
VCE(sat) — IC
Ta=25˚C
IB=–1.0mA
–0.9mA
–0.8mA
–0.7mA
–0.6mA
Collector current IC (mA)
–200
–160
–120
–0.5mA
–80
–0.4mA
–0.3mA
–40
–0.2mA
–0.1mA
0
0
–2
–4
–6
–8
–10
–12
Collector to emitter saturation voltage VCE(sat) (V)
–100
IC/IB=10
–30
–10
–3
–1
Ta=75˚C
–0.3
25˚C
–0.1
–0.03
–25˚C
–0.01
–0.1 –0.3
Collector to emitter voltage VCE (V)
–10
–10000
–30
Ta=75˚C
25˚C
80
–25˚C
40
0
–1
–100
–3
3
2
–10
–30
–100 –300 –1000
Collector current IC (mA)
VIN — IO
–100
VO=–5V
Ta=25˚C
–3000
–30
–1000
–10
Input voltage VIN (V)
Output current IO (µA)
Collector output capacitance Cob (pF)
4
–300
–100
–30
–10
VO=–0.2V
Ta=25˚C
–3
–1
–0.3
–0.1
1
–0.03
–3
0
–0.1 –0.3
–1
–3
–10
Collector to base voltage
12
–3
120
IO — VIN
f=1MHz
IE=0
Ta=25˚C
5
–1
VCE=–10V
Collector current IC (mA)
Cob — VCB
6
hFE — IC
160
Forward current transfer ratio hFE
–240
–30
–100
VCB (V)
–1
–0.4
–0.6
–0.8
–1.0
–1.2
Input voltage VIN (V)
–1.4
–0.01
–0.1 –0.3
–1
–3
–10
–30
Output current IO (mA)
–100
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
Characteristics charts of UNR911H
IC — VCE
VCE(sat) — IC
–120
–80
IB=–0.5mA
–0.4mA
–60
–0.3mA
–40
–0.2mA
–20
–0.1mA
0
0
–2
–4
–6
–8
–10
IC/IB=10
–10
–1
Ta=75˚C
25˚C
–0.1
–25˚C
–0.01
–1
–12
Collector to emitter voltage VCE (V)
–3
–30
200
160
Ta=75˚C
120
25˚C
80
–25˚C
40
0
–0.1 –0.3
–100 –300 –1000
–1
–3
–10
–30
–100
Collector current IC (mA)
VIN — IO
–100
f=1MHz
IE=0
Ta=25˚C
Input voltage VIN (V)
5
–10
VCE= –10V
Collector current IC (mA)
Cob — VCB
6
240
Forward current transfer ratio hFE
Collector current IC (mA)
–100
Collector to emitter saturation voltage VCE(sat) (V)
Ta=25˚C
Collector output capacitance Cob (pF)
hFE — IC
–100
4
3
2
VO=–0.2V
Ta=25˚C
–10
–1
–0.1
1
0
–1
–3
–10
–30
Collector to base voltage
–0.01
–0.1 –0.3
–100
–1
–3
–10
–30
–100
Output current IO (mA)
VCB (V)
Characteristics charts of UNR911L
IC — VCE
VCE(sat) — IC
–100
Collector current IC (mA)
–200
–160
IB=–1.0mA
–120
–0.8mA
–0.6mA
–80
–0.4mA
–40
–0.2mA
0
0
–2
–4
–6
–8
–10
Collector to emitter voltage VCE (V)
–12
hFE — IC
–30
–10
–3
–1
Ta=75˚C
25˚C
–0.3
–25˚C
–0.1
–0.03
–0.01
–1
240
IC/IB=10
–3
–10
–30
–100 –300 –1000
Collector current IC (mA)
VCE=–10V
Forward current transfer ratio hFE
Ta=25˚C
Collector to emitter saturation voltage VCE(sat) (V)
–240
200
160
120
Ta=75˚C
80
25˚C
–25˚C
40
0
–1
–3
–10
–30
–100 –300 –1000
Collector current IC (mA)
13
UNR9111/9112/9113/9114/9115/9116/9117/9118/9119/9110/
Transistors with built-in Resistor
911D/911E/911F/911H/911L/911AJ/911BJ/911CJ
Cob — VCB
f=1MHz
IE=0
Ta=25˚C
5
4
3
2
VO=–0.2V
Ta=25˚C
–10
–1
–0.1
1
0
–1
–3
–10
Collector to base voltage
14
VIN — IO
–100
Input voltage VIN (V)
Collector output capacitance Cob (pF)
6
–30
–100
VCB (V)
–0.01
–0.1 –0.3
–1
–3
–10
–30
Output current IO (mA)
–100
Request for your special attention and precautions in using the technical information
and semiconductors described in this material
(1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the
"Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
(2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial
property, the granting of relative rights, or the granting of any license.
(3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:
• Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment,
combustion equipment, life support systems and safety devices) in which exceptional quality and
reliability are required, or if the failure or malfunction of the products may directly jeopardize life or
harm the human body.
• Any applications other than the standard applications intended.
(4) The products and product specifications described in this material are subject to change without
notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to
make sure that the latest specifications satisfy your requirements.
(5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, redundant design is recommended,
so that such equipment may not violate relevant laws or regulations because of the function of our
products.
(6) When using products for which dry packing is required, observe the conditions (including shelf life
and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
(7) No part of this material may be reprinted or reproduced by any means without written permission
from our company.
Please read the following notes before using the datasheets
A. These materials are intended as a reference to assist customers with the selection of Panasonic
semiconductor products best suited to their applications.
Due to modification or other reasons, any information contained in this material, such as available
product types, technical data, and so on, is subject to change without notice.
Customers are advised to contact our semiconductor sales office and obtain the latest information
before starting precise technical research and/or purchasing activities.
B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but
there is always the possibility that further rectifications will be required in the future. Therefore,
Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
C. These materials are solely intended for a customer's individual use.
Therefore, without the prior written approval of Panasonic, any other use such as reproducing,
selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.
2001 MAR