DATA SHEET MOS INTEGRATED CIRCUIT µPD22100, 22148 CROSSPOINT SWITCH WITH CONTROL MEMORY CMOS IC The µPD22100 consists of 16 crosspoint switches organized in 4 rows and 4 columns, and the µPD22148 consists of 32 crosspoint switches organized in 4 row and 8 columns. Any of the 16 or 32 switches can be selected by applying appropriate address. The selected crosspoint turns on if during strobe and data In are high and turns off if during strobe and data In are low. FEATURES µPD22100 µPD22148 • 4 × 4 CROSSPOINT SWITCHES • INTERNAL POWER ON RESET FUNCTION • Low ON-RESISTANCE • 4 × 8 CROSSPOINT SWITCHES • Including the Level Shifter Circuit • Low ON-RESISTANCE 60 Ω Typ. (VDD = 15 V) 60 Ω Typ. (VDD = 15 V) • Wide operating temperature Range • Wide operating temperature Range −40 °C to +85 °C −40 °C to +85 °C ORDERING INFORMATION Part Number Package µPD22100C 16 pin plastic DIP (300 mil) µPD22100GS 16 pin plastic SOP (300 mil) µPD22148CA 22 pin plastic shrink DIP (300 mil) TRUTH TABLE µPD22100 INPUT SELECTED CHANNELS S D C B A DATA Y0 Y0 Y0 Y0 X0 X1 X2 X3 Y1 Y1 Y1 Y1 X0 X1 X2 X3 L H H H H H H H H NC NC X L L L L L L L L X L L L L L L L L X L L L L H H H H X L L H H L L H H X L H L H L H L H NC OFF ON NC NC NC NC NC NC H H H H H H H H H H L H NC NC Document No. IC-2128 (1st edition) Date Published March 1997 P Printed in Japan NC NC OFF NC ON NC OFF NC ON NC OFF ON Y2 Y2 Y2 Y2 Y3 Y3 Y3 Y3 X0 X1 X2 X3 X0 X1 X2 X3 OFF ON © 1987 µPD22100, 22148 µPD22148 INPUTS SELECTED CHANNELS S E D C B A DATA Y 0 Y0 Y0 Y 0 Y1 Y1 Y 1 Y1 Y2 Y2 Y2 Y2 Y3 Y3 Y3 Y3 Y4 Y4 Y4 Y4 Y5 Y5 Y 5 Y5 Y6 Y 6 Y6 Y6 Y 7 Y7 Y7 Y 7 X0 X1 X2 X3 X0 X1 X 2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 NC L X X X X X H L L L L L X L H L L L L L H L L L L H H L H L L L L H H L L L H L H L H L L L H L H L L L H H H L H L L L H H H L L H L L H L H L L H L L H L L H L H H L H L L H L H H NC NC H L L H H L H L L H H L L H NC NC H H H H H H H H H H H H L H NC OFF NC ON NC NC OFF NC NC ON NC OFF NC ON NC NC NC NC NC NC OFF NC ON NC OFF NC ON NC OFF NC ON NC OFF NC ON NC OFF ON NC TIMING DIAGRAM STROBE DATA IN ADDRESS DON'T CARE ON SWITCH 1 OFF ON SWITCH 2 OFF 2 ADDRESS 1 DON'T CARE ADDRESS 2 DON'T CARE µPD22100, 22148 BLOCK DIAGRAM µPD22100 STROBE DATA IN Y0 0 1 2 3 A 4 To 16 LINE DECODER B C 4 16 bit LATCH A D D R E S S Y1 5 6 7 Y2 8 9 10 11 Y3 12 13 14 15 NOTE) D X0 X1 X2 n : Analog switch X3 µPD22148 STROBE DATA IN Y0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Y1 A C D Y3 32 bit LATCH B 5 To 32 LINE DECODER A D D R E S S 5 To 15 V LEVEL SHIFT Y2 Y4 Y5 Y6 Y7 E NOTE) X0 X1 X2 n : Analog switch X3 3 µPD22100, 22148 CONNECTION DIAGRAM (TOP VIEW) µPD22100 4 µPD22148 Y3 1 22 VDD X1 2 21 Y0 VCC 3 20 Y1 DATA IN 4 19 Y2 C 5 18 X3 D 6 17 X2 Y3 E 7 16 Y5 10 Y2 B 8 15 Y7 9 X0 A 9 14 Y6 STROBE 10 13 Y4 VSS 11 12 X0 X1 1 16 VDD DATA IN 2 15 Y0 C 3 14 Y1 D 4 13 X3 B 5 12 X2 A 6 11 STROBE 7 VSS 8 µPD22100, 22148 µPD22100 ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C, VSS = 0 V) DC Supply Voltage Input Voltage VDD −0.5 to +20 V VI −0.5 to VDD + 0.5 V II 10 mA Power Dissipation PD 200 mW Operating Temperature Topt −40 to +85 °C Storage Temperature Tstg −65 to +125 °C Input Current RECOMMENDED OPERATING CONDITIONS (Ta = −40 to +85 °C) CHARACTERISTIC SYMBOL MIN. Operating Voltage VDD Input Voltage (Control) TYP. MAX. UNIT 3 18 V VIH 0.7 VDD VDD V Input Voltage (Control) VIL 0 0.3 VDD V Analog Input Voltage VIA VSS VDD V CONDITIONS Vxn − Vyn ≤ 0.5 V ELECTRICAL CHARACTERISTICS Ta = −40 °C Ta = 25 °C Ta = +85 °C CHARACTERISTIC SYMBOL UNIT MIN. On-State Resistance MAX. MIN. TYP. MAX. 530 160 100 MIN. VDD (V) 650 820 5 80 120 150 75 70 90 120 70 60 85 110 RON On-State Resistance Difference Between Ω Ω 18 Any Two Switches 15 ±300 IL Current Input Voltage ±1 VIS = VDD − VSS 2 VIS = VDD − VSS 2 12 5 20 ∆RON 10 15 35 Input Leakage CONDITIONS MAX. 10 12 15 ±300 ±10000 3.5 3.5 3.5 7 7 7 11 11 11 nA 18 All Switches OFF 5 Switch ON VIH V 10 RON < RON MAX. Input Voltage 15 1.5 1.5 1.5 3 3 3 4 4 4 5 Switch OFF VIL Input Current II Quiescent Current ±0.3 ±10−5 ±0.3 ±1 5 0.04 5 150 10 0.04 10 300 20 0.04 20 600 100 0.08 100 3000 IDD V 10 15 µA 18 IL < 0.2 µA VI = VSS, VDD 5 µA 10 VI = VSS, VDD 15 20 5 µPD22100, 22148 SWITCHING TIME CHARACTERISTICS (Ta = 25 °C) CHARACTERISTIC SYMBOL MIN. tPLH tPHL tPZH tPZH Propagation Delay tPZL Time tPHZ tPZL tPHZ Set Up Time tset up Hold Time thold Frequency fφmax. Strobe Pulse Width PW (STROBE) Crosstalk Voltage TYP. MAX. 30 60 15 30 10 20 300 600 125 250 5 ns 10 Capacitance 5 ns 10 RL = 1 kΩ CL = 50 pF 15 420 5 Data INPUT 110 220 10 → OUTPUT 100 150 15 350 700 5 135 270 90 180 165 330 85 170 70 140 210 420 110 220 100 150 435 870 210 420 160 320 ns ns 10 5 ns 10 ns Data INPUT → OUTPUT 15 5 ns 10 15 30 15 180 360 5 110 220 60 120 3.2 5 300 5 ns ns 10 10 15 5 MHz 10 Data INPUT → Strobe Address Data INPUT → Strobe INPUT Address INPUT R L = 1 kΩ, C L = 50 pF tr, tf = 20 ns 15 600 120 240 90 190 30 Address INPUT → OUTPUT 15 50 2.5 Strobe INPUT → OUTPUT 5 190 1.6 → OUTPUT 10 95 1.2 Address INPUT 15 25 0.6 tr, tf = 20 ns 15 5 ns mV (peak) 7.5 10 15 10 pF RL = 10 kΩ tr = tf = 20 ns Rectronglar Data, Strobe, Address INPUT pF CIN/OUT 0.4 pF − 40 MHz 10 − −80 dB 10 − 0.5 % 10 − 1.5 MHz 10 Signal Xn INPUT Yn RL = 1 kΩ, VIS = 5 V(p-p) (Switch ON) Feedthrough Attenuation Strobe INPUT → OUTPUT 160 Frequency Response RL = 10 kΩ, CL = 50 pF. tr = tf = 20 ns 15 30 Feedthrough CONDITIONS Signal INPUT → Signal OUTPUT 80 5 CIN VDD(V) 210 75 INPUT Capacitance UNIT 20 log VOS = −3 dB VIS RL = 1 kΩ, f = 1.6 kHz, VIS = 5 V(p-p) Sine Wave Input (Switch Off) Sine Wave Distortion Crosstalk Between Any Two Switches RL = 1 kΩ, VIS = 5 V(p-p) f = 1 kHz RL = 1 kΩ SW(A) = ON SW(B) = OFF 6 20 log VO (B) = −40 dB VI (A) µPD22100, 22148 µPD22148 ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C, VSS = 0 V) DC Supply Voltage 1 VDD VCC to +20 V DC Supply Voltage 2 VCC −0.5 to +6 V Input Voltage VI −0.5 to VCC + 0.5 V Input Voltage (Analog) VIA −0.5 to VDD + 0.5 V II ±10 mA Power Dissipation PD 200 mW Operating Temperature Topt −40 to +85 °C Storage Temperature Tstg −65 to +125 °C Input Current RECOMMENDED OPERATING CONDITIONS (Ta = −40 to +85 °C) CHARACTERISTIC SYMBOL MIN. Operating Voltage 1 VDD VCC Operating Voltage 2 VCC 4.5 Input Voltage (Control) VIH Input Voltage (Control) Analog Input Voltage TYP. MAX. UNIT 18 V 5.5 V 0.7 VCC VCC V VIL 0 0.3 VCC V VIA VSS VDD V 5 CONDITIONS Vxn − Vyn ≤ 0.5 V ELECTRICAL CHARACTERISTICS CHARACTERISTIC SYMBOL Ta = −40 °C MIN. On-State Resistance MAX. Ta = 25 °C MIN. Ta = +85 °C TYP. MAX. 530 160 100 MIN. 650 820 5 80 120 150 75 70 90 120 12 70 60 85 110 15 On-State ference Between Ω 35 Ω 18 Any Two Switches 15 ±300 IL Current ±1 3.5 ±300 ±10000 3.5 Current 12 VDD − VSS 2 18 All Switches OFF 3.5 V − VCC = 5 V VDD > 10 V 1.5 V − VCC = 5 V VDD > 10 V ±10−5 ±0.3 ±1 µA − VCC = 6 V VI = VSS, VCC 10 0.08 10 300 20 0.08 20 600 40 0.16 40 1200 1.5 II ±0.3 IDD VIS = 10 1.5 VIL Quiescent VDD − VSS 2 nA Input Voltage Input Current VIS = 15 Input Voltage VIH 10 5 20 ∆RON Input Leakage CONDITIONS VDD (V) RON Resistance Dif- UNIT MAX. 5 µA 10 VI = VSS, VDD 15 7 µPD22100, 22148 SWITCHING TIME CHARACTERISTICS (Ta = 25 °C) CHARACTERISTIC SYMBOL MIN. tPLH tPHL tPZH tPZH Propagation Delay tPZH Time tPHZ tP tPHZ Set Up Time tset up Hold Time thold Frequency fφmax. Strobe Pulse Width PW (STROBE) Crosstalk Voltage TYP. MAX. 30 60 15 30 10 20 5 ns 10 Capacitance 800 450 180 360 15 310 620 5 Data INPUT 220 440 10 → OUTPUT 200 400 15 450 900 5 235 470 190 380 265 530 185 370 170 340 310 620 210 420 200 400 535 1070 310 720 260 520 5 ns ns ns 10 10 5 ns 10 ns 15 ns 5 Address INPUT 10 → OUTPUT 15 120 15 270 540 5 180 360 110 220 5 300 5 ns ns 10 10 15 5 MHz 10 600 → Strobe Address Data INPUT → Strobe INPUT Address INPUT R L = 1 kΩ, C L = 50 pF tr, tf = 20 ns 240 90 190 5 ns mV (peak) 7.5 10 15 10 pF RL = 10 kΩ tr = tf = 20 ns Rectronglar Data, Strobe, Address INPUT pF CIN/OUT 1.1 pF − 15 MHz 10 − −60 dB 10 − 0.5 % 10 − 1.5 MHz 10 Signal Xn INPUT Yn RL = 1 kΩ, VIS = 5 V(p-p) (Switch ON) Feedthrough Attenuation Data INPUT 15 120 105 Strobe INPUT → OUTPUT Data INPUT 60 3.2 → OUTPUT → OUTPUT 280 2.5 Address INPUT 5 140 1.6 tr, tf = 20 ns 10 70 1.2 RL = 1 kΩ CL = 50 pF 15 140 0.6 Strobe INPUT → OUTPUT 15 Frequency Response RL = 10 kΩ, CL = 50 pF. tr = tf = 20 ns 15 75 Feedthrough CONDITIONS Signal INPUT → Signal OUTPUT 225 5 CIN VDD(V) 400 75 INPUT Capacitance UNIT 20 log VOS = −3 dB VIS RL = 1 kΩ, f = 1.6 kHz, VIS = 5 V(p-p) Sine Wave Input (Switch Off) Sine Wave Distortion Crosstalk Between Any Two Switches RL = 1 kΩ, VIS = 5 V(p-p) f = 1 kHz RL = 1 kΩ SW(A) = ON SW(B) = OFF 8 20 log VO (B) = −40 dB VI (A) VCC = 5 V µPD22100, 22148 TEST CIRCUITS PROPAGATION DELAY TIMES (1) SIGNAL INPUT → SIGNAL OUTPUT ON VIS VDD 50 % VOS SW VIS VSS tPLH CL RL tPHL VOH 50 % VOS VOL (2) STROBE INPUT → OUTPUT VDD STROBE DATA IN 50 % 50 % VSS STROBE tsetup thold VDD VIS VDD DATA IN VOS SW 50 % tPHZ RL VSS tPZH CL VOS VOH 90 % 10 % (3) DATA INPUT → OUTPUT (STROBE = VDD) VDD DATA IN VDD VDD VIS DATA IN 50 % VOS SW VDD RL DATA IN VIS VSS SW 50 % VOS tPZL tPZH RL CL VSS CL VOH VOS 90 % VOH VOS 10 % VOL VOL 9 VOL µPD22100, 22148 (4) ADDRESS INPUT → OUTPUT (STROBE = VDD) ADDRESS = L VDD ADDRESS = H VDD ADDRESS 50 % 50 % VDD VSS tsetup VOS1 SW RL CL thold VOS2 SW RL CL VDD DATA IN 50 % VSS tPZH 90 % VOS1 VOH VOL tPHZ VOH VOS2 10 % VOL CROSSTALK VOLTAGE CONTROL INPUT (DATA IN, ADDRESS, STROBE) VDD CONTROL VIS 1 kΩ VSS VOS SW RL 0V CROSSTALK FREQUENCY VIS 1 kΩ 10 ON OFF SW (A) SW (B) 1 kΩ 1 kΩ VOS 1 kΩ 20 log VOS VIS = −40 dB CROSSTALK VOLTAGE µPD22100, 22148 TYPICAL CHARACTERISTICS (Ta = 25 °C) ON-RESISTANCE RON (Ω) (A) RON − VIS Characteristics 200 VDD = −VSS = 2.5 V VDD = −VSS = 5 V 100 VDD = −VSS = 6 V VDD = −VSS = 7.5 V −7.5 −5 −2.5 0 2.5 5 7.5 INPUT VOLTAGE VIS (V) (B) Crosstalk Frequency Characteristics −40 Crosstalk (dB) −50 −60 −70 −80 −90 −100 1k 10 k 100 k 1M Crosstalk Frequency (Hz) 11 µPD22100, 22148 APPLICATION CIRCUITS µPD22100 A A B B C C D D µ PD22100C Yn STROBE DATA IN Yn STROBE DATA IN VDD 1/4µ PD4081BC R τ = RC > 50 ms Xn (For Power ON Reset Time) C µPD22100/22148 BIAS CIRCUIT VDD VDD VCC* = 5 V VDD R Xn R Xn Yn R = 10 kΩ to 100 kΩ Yn R R VSS VSS * µ PD22148 only VSS 12 µPD22100, 22148 16PIN PLASTIC DIP (300 mil) 16 9 1 8 A K P I L J H G C F D N M B NOTES 1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition. 2) Item "K" to center of leads when formed parallel. R M ITEM MILLIMETERS INCHES A 20.32 MAX. 0.800 MAX. B 1.27 MAX. 0.050 MAX. C 2.54 (T.P.) 0.100 (T.P.) D 0.50±0.10 0.020 +0.004 –0.005 F 1.2 MIN. 0.047 MIN. G 3.5±0.3 0.138±0.012 H 0.51 MIN. 0.020 MIN. I 4.31 MAX. 0.170 MAX. J 5.08 MAX. 0.200 MAX. K 7.62 (T.P.) 0.300 (T.P.) L 6.4 0.252 M 0.25 +0.10 –0.05 0.010 +0.004 –0.003 N 0.25 0.01 P 1.0 MIN. 0.039 MIN. R 0~15° 0~15° P16C-100-300A,C-1 13 µPD22100, 22148 16 PIN PLASTIC SOP (300 mil) 16 9 P detail of lead end 1 8 A H J E K F G I C N D M B L M NOTE Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 10.46 MAX. 0.412 MAX. B 0.78 MAX. 0.031 MAX. C 1.27 (T.P.) 0.050 (T.P.) D 0.40 +0.10 –0.05 0.016 +0.004 –0.003 E 0.1±0.1 0.004±0.004 F 1.8 MAX. 0.071 MAX. G 1.55 0.061 H 7.7±0.3 0.303±0.012 I 5.6 0.220 J 1.1 0.043 K 0.20 +0.10 –0.05 0.008 +0.004 –0.002 L 0.6±0.2 0.024 +0.008 –0.009 M 0.12 0.005 N 0.10 0.004 P 3° +7° –3° 3° +7° –3° P16GM-50-300B-4 14 µPD22100, 22148 22 PIN PLASTIC SHRINK DIP (300 mil) 22 12 1 11 K A H G J I L F D N C M B R M NOTES 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 23.12 MAX. 0.911 MAX. B 2.67 MAX. 0.106 MAX. C 1.778 (T.P.) 0.070 (T.P.) D 0.50±0.10 0.020 +0.004 –0.005 2) Item "K" to center of leads when formed parallel. F 0.85 MIN. 0.033 MIN. G 3.2±0.3 0.126±0.012 H 0.51 MIN. 0.020 MIN. I 4.31 MAX. 0.170 MAX. J 5.08 MAX. 0.200 MAX. K L 7.62 (T.P.) 6.5 0.300 (T.P.) 0.256 M 0.25 +0.10 –0.05 0.010 +0.004 –0.003 N 0.17 0.007 R 0~15° 0~15° S22C-70-300B-1 15 µPD22100, 22148 No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96.5