NEC UPD22148

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD22100, 22148
CROSSPOINT SWITCH WITH CONTROL MEMORY
CMOS IC
The µPD22100 consists of 16 crosspoint switches organized in 4 rows and 4 columns, and the µPD22148 consists
of 32 crosspoint switches organized in 4 row and 8 columns. Any of the 16 or 32 switches can be selected by applying
appropriate address. The selected crosspoint turns on if during strobe and data In are high and turns off if during
strobe and data In are low.
FEATURES
µPD22100
µPD22148
• 4 × 4 CROSSPOINT SWITCHES
• INTERNAL POWER ON RESET FUNCTION
• Low ON-RESISTANCE
• 4 × 8 CROSSPOINT SWITCHES
• Including the Level Shifter Circuit
• Low ON-RESISTANCE
60 Ω Typ. (VDD = 15 V)
60 Ω Typ. (VDD = 15 V)
• Wide operating temperature Range
• Wide operating temperature Range
−40 °C to +85 °C
−40 °C to +85 °C
ORDERING INFORMATION
Part Number
Package
µPD22100C
16 pin plastic DIP (300 mil)
µPD22100GS
16 pin plastic SOP (300 mil)
µPD22148CA
22 pin plastic shrink DIP (300 mil)
TRUTH TABLE
µPD22100
INPUT
SELECTED CHANNELS
S D C B A DATA Y0 Y0 Y0 Y0
X0 X1 X2 X3
Y1 Y1 Y1 Y1
X0 X1 X2 X3
L
H
H
H
H
H
H
H
H
NC
NC
X
L
L
L
L
L
L
L
L
X
L
L
L
L
L
L
L
L
X
L
L
L
L
H
H
H
H
X
L
L
H
H
L
L
H
H
X
L
H
L
H
L
H
L
H
NC
OFF
ON
NC
NC
NC
NC
NC
NC
H H H H H
H H H H H
L
H
NC
NC
Document No. IC-2128 (1st edition)
Date Published March 1997 P
Printed in Japan
NC
NC
OFF NC
ON NC
OFF NC
ON NC
OFF
ON
Y2 Y2 Y2 Y2 Y3 Y3 Y3 Y3
X0 X1 X2 X3 X0 X1 X2 X3
OFF
ON
©
1987
µPD22100, 22148
µPD22148
INPUTS
SELECTED CHANNELS
S E D C B A DATA
Y 0 Y0 Y0 Y 0 Y1 Y1 Y 1 Y1 Y2 Y2 Y2 Y2 Y3 Y3 Y3 Y3 Y4 Y4 Y4 Y4 Y5 Y5 Y 5 Y5 Y6 Y 6 Y6 Y6 Y 7 Y7 Y7 Y 7
X0 X1 X2 X3 X0 X1 X 2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3
NC
L X X X X X
H L L L L L
X
L
H L L L L L
H L L L L H
H
L
H L L L L H
H L L L H L
H
L
H L L L H L
H L L L H H
H
L
H L L L H H
H L L H L L
H
L
H L L H L L
H L L H L H
H
L
H L L H L H
H
NC
NC
H L L H H L
H L L H H L
L
H
NC
NC
H H H H H H
H H H H H H
L
H
NC
OFF NC
ON NC
NC OFF NC
NC ON NC
OFF
NC
ON NC
NC
NC
NC
NC
NC
OFF NC
ON NC
OFF NC
ON NC
OFF NC
ON NC
OFF NC
ON NC
OFF
ON
NC
TIMING DIAGRAM
STROBE
DATA IN
ADDRESS
DON'T CARE
ON
SWITCH 1
OFF
ON
SWITCH 2
OFF
2
ADDRESS 1
DON'T CARE
ADDRESS 2
DON'T CARE
µPD22100, 22148
BLOCK DIAGRAM
µPD22100
STROBE DATA IN
Y0
0
1
2
3
A
4 To 16 LINE DECODER
B
C
4
16 bit LATCH
A
D
D
R
E
S
S
Y1
5
6
7
Y2
8
9
10
11
Y3
12
13
14
15
NOTE)
D
X0
X1
X2
n
: Analog switch
X3
µPD22148
STROBE DATA IN
Y0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Y1
A
C
D
Y3
32 bit LATCH
B
5 To 32 LINE DECODER
A
D
D
R
E
S
S
5 To 15 V LEVEL SHIFT
Y2
Y4
Y5
Y6
Y7
E
NOTE)
X0
X1
X2
n
: Analog switch
X3
3
µPD22100, 22148
CONNECTION DIAGRAM (TOP VIEW)
µPD22100
4
µPD22148
Y3
1
22
VDD
X1
2
21
Y0
VCC
3
20
Y1
DATA IN
4
19
Y2
C
5
18
X3
D
6
17
X2
Y3
E
7
16
Y5
10
Y2
B
8
15
Y7
9
X0
A
9
14
Y6
STROBE
10
13
Y4
VSS
11
12
X0
X1
1
16
VDD
DATA IN
2
15
Y0
C
3
14
Y1
D
4
13
X3
B
5
12
X2
A
6
11
STROBE
7
VSS
8
µPD22100, 22148
µPD22100
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C, VSS = 0 V)
DC Supply Voltage
Input Voltage
VDD
−0.5 to +20
V
VI
−0.5 to VDD + 0.5
V
II
10
mA
Power Dissipation
PD
200
mW
Operating Temperature
Topt
−40 to +85
°C
Storage Temperature
Tstg
−65 to +125
°C
Input Current
RECOMMENDED OPERATING CONDITIONS (Ta = −40 to +85 °C)
CHARACTERISTIC
SYMBOL
MIN.
Operating Voltage
VDD
Input Voltage (Control)
TYP.
MAX.
UNIT
3
18
V
VIH
0.7 VDD
VDD
V
Input Voltage (Control)
VIL
0
0.3 VDD
V
Analog Input Voltage
VIA
VSS
VDD
V
CONDITIONS
Vxn − Vyn ≤ 0.5 V
ELECTRICAL CHARACTERISTICS
Ta = −40 °C
Ta = 25 °C
Ta = +85 °C
CHARACTERISTIC SYMBOL
UNIT
MIN.
On-State
Resistance
MAX.
MIN.
TYP.
MAX.
530
160
100
MIN.
VDD (V)
650
820
5
80
120
150
75
70
90
120
70
60
85
110
RON
On-State
Resistance Difference Between
Ω
Ω
18
Any Two Switches
15
±300
IL
Current
Input Voltage
±1
VIS =
VDD − VSS
2
VIS =
VDD − VSS
2
12
5
20
∆RON
10
15
35
Input Leakage
CONDITIONS
MAX.
10
12
15
±300
±10000
3.5
3.5
3.5
7
7
7
11
11
11
nA
18
All Switches OFF
5
Switch ON
VIH
V
10
RON < RON MAX.
Input Voltage
15
1.5
1.5
1.5
3
3
3
4
4
4
5
Switch OFF
VIL
Input Current
II
Quiescent
Current
±0.3
±10−5
±0.3
±1
5
0.04
5
150
10
0.04
10
300
20
0.04
20
600
100
0.08
100
3000
IDD
V
10
15
µA
18
IL < 0.2 µA
VI = VSS, VDD
5
µA
10
VI = VSS, VDD
15
20
5
µPD22100, 22148
SWITCHING TIME CHARACTERISTICS (Ta = 25 °C)
CHARACTERISTIC
SYMBOL
MIN.
tPLH
tPHL
tPZH
tPZH
Propagation Delay
tPZL
Time
tPHZ
tPZL
tPHZ
Set Up Time
tset up
Hold Time
thold
Frequency
fφmax.
Strobe Pulse
Width
PW
(STROBE)
Crosstalk Voltage
TYP.
MAX.
30
60
15
30
10
20
300
600
125
250
5
ns
10
Capacitance
5
ns
10
RL = 1 kΩ
CL = 50 pF
15
420
5
Data INPUT
110
220
10
→ OUTPUT
100
150
15
350
700
5
135
270
90
180
165
330
85
170
70
140
210
420
110
220
100
150
435
870
210
420
160
320
ns
ns
10
5
ns
10
ns
Data INPUT
→ OUTPUT
15
5
ns
10
15
30
15
180
360
5
110
220
60
120
3.2
5
300
5
ns
ns
10
10
15
5
MHz
10
Data INPUT
→
Strobe
Address
Data INPUT
→
Strobe INPUT
Address INPUT
R L = 1 kΩ, C L = 50 pF
tr, tf = 20 ns
15
600
120
240
90
190
30
Address INPUT
→ OUTPUT
15
50
2.5
Strobe INPUT
→ OUTPUT
5
190
1.6
→ OUTPUT
10
95
1.2
Address INPUT
15
25
0.6
tr, tf = 20 ns
15
5
ns
mV
(peak)
7.5
10
15
10
pF
RL = 10 kΩ
tr = tf = 20 ns Rectronglar
Data, Strobe, Address INPUT
pF
CIN/OUT
0.4
pF
−
40
MHz
10
−
−80
dB
10
−
0.5
%
10
−
1.5
MHz
10
Signal
Xn
INPUT
Yn
RL = 1 kΩ, VIS = 5 V(p-p)
(Switch ON)
Feedthrough
Attenuation
Strobe INPUT
→ OUTPUT
160
Frequency
Response
RL = 10 kΩ, CL = 50 pF. tr = tf = 20 ns
15
30
Feedthrough
CONDITIONS
Signal INPUT → Signal OUTPUT
80
5
CIN
VDD(V)
210
75
INPUT Capacitance
UNIT
20 log
VOS
= −3 dB
VIS
RL = 1 kΩ, f = 1.6 kHz, VIS = 5 V(p-p)
Sine Wave Input
(Switch Off)
Sine Wave
Distortion
Crosstalk Between
Any Two Switches
RL = 1 kΩ, VIS = 5 V(p-p)
f = 1 kHz
RL = 1 kΩ
SW(A) = ON
SW(B) = OFF
6
20 log
VO (B)
= −40 dB
VI (A)
µPD22100, 22148
µPD22148
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C, VSS = 0 V)
DC Supply Voltage 1
VDD
VCC to +20
V
DC Supply Voltage 2
VCC
−0.5 to +6
V
Input Voltage
VI
−0.5 to VCC + 0.5
V
Input Voltage (Analog)
VIA
−0.5 to VDD + 0.5
V
II
±10
mA
Power Dissipation
PD
200
mW
Operating Temperature
Topt
−40 to +85
°C
Storage Temperature
Tstg
−65 to +125
°C
Input Current
RECOMMENDED OPERATING CONDITIONS (Ta = −40 to +85 °C)
CHARACTERISTIC
SYMBOL
MIN.
Operating Voltage 1
VDD
VCC
Operating Voltage 2
VCC
4.5
Input Voltage (Control)
VIH
Input Voltage (Control)
Analog Input Voltage
TYP.
MAX.
UNIT
18
V
5.5
V
0.7 VCC
VCC
V
VIL
0
0.3 VCC
V
VIA
VSS
VDD
V
5
CONDITIONS
Vxn − Vyn ≤ 0.5 V
ELECTRICAL CHARACTERISTICS
CHARACTERISTIC SYMBOL
Ta = −40 °C
MIN.
On-State
Resistance
MAX.
Ta = 25 °C
MIN.
Ta = +85 °C
TYP.
MAX.
530
160
100
MIN.
650
820
5
80
120
150
75
70
90
120
12
70
60
85
110
15
On-State
ference Between
Ω
35
Ω
18
Any Two Switches
15
±300
IL
Current
±1
3.5
±300
±10000
3.5
Current
12
VDD − VSS
2
18
All Switches OFF
3.5
V
−
VCC = 5 V
VDD > 10 V
1.5
V
−
VCC = 5 V
VDD > 10 V
±10−5
±0.3
±1
µA
−
VCC = 6 V
VI = VSS, VCC
10
0.08
10
300
20
0.08
20
600
40
0.16
40
1200
1.5
II
±0.3
IDD
VIS =
10
1.5
VIL
Quiescent
VDD − VSS
2
nA
Input Voltage
Input Current
VIS =
15
Input Voltage
VIH
10
5
20
∆RON
Input Leakage
CONDITIONS
VDD (V)
RON
Resistance Dif-
UNIT
MAX.
5
µA
10
VI = VSS, VDD
15
7
µPD22100, 22148
SWITCHING TIME CHARACTERISTICS (Ta = 25 °C)
CHARACTERISTIC
SYMBOL
MIN.
tPLH
tPHL
tPZH
tPZH
Propagation Delay
tPZH
Time
tPHZ
tP
tPHZ
Set Up Time
tset up
Hold Time
thold
Frequency
fφmax.
Strobe Pulse
Width
PW
(STROBE)
Crosstalk Voltage
TYP.
MAX.
30
60
15
30
10
20
5
ns
10
Capacitance
800
450
180
360
15
310
620
5
Data INPUT
220
440
10
→ OUTPUT
200
400
15
450
900
5
235
470
190
380
265
530
185
370
170
340
310
620
210
420
200
400
535
1070
310
720
260
520
5
ns
ns
ns
10
10
5
ns
10
ns
15
ns
5
Address INPUT
10
→ OUTPUT
15
120
15
270
540
5
180
360
110
220
5
300
5
ns
ns
10
10
15
5
MHz
10
600
→
Strobe
Address
Data INPUT
→
Strobe INPUT
Address INPUT
R L = 1 kΩ, C L = 50 pF
tr, tf = 20 ns
240
90
190
5
ns
mV
(peak)
7.5
10
15
10
pF
RL = 10 kΩ
tr = tf = 20 ns Rectronglar
Data, Strobe, Address INPUT
pF
CIN/OUT
1.1
pF
−
15
MHz
10
−
−60
dB
10
−
0.5
%
10
−
1.5
MHz
10
Signal
Xn
INPUT
Yn
RL = 1 kΩ, VIS = 5 V(p-p)
(Switch ON)
Feedthrough
Attenuation
Data INPUT
15
120
105
Strobe INPUT
→ OUTPUT
Data INPUT
60
3.2
→ OUTPUT
→ OUTPUT
280
2.5
Address INPUT
5
140
1.6
tr, tf = 20 ns
10
70
1.2
RL = 1 kΩ
CL = 50 pF
15
140
0.6
Strobe INPUT
→ OUTPUT
15
Frequency
Response
RL = 10 kΩ, CL = 50 pF. tr = tf = 20 ns
15
75
Feedthrough
CONDITIONS
Signal INPUT → Signal OUTPUT
225
5
CIN
VDD(V)
400
75
INPUT Capacitance
UNIT
20 log
VOS
= −3 dB
VIS
RL = 1 kΩ, f = 1.6 kHz, VIS = 5 V(p-p)
Sine Wave Input
(Switch Off)
Sine Wave
Distortion
Crosstalk Between
Any Two Switches
RL = 1 kΩ, VIS = 5 V(p-p)
f = 1 kHz
RL = 1 kΩ
SW(A) = ON
SW(B) = OFF
8
20 log
VO (B)
= −40 dB
VI (A)
VCC = 5 V
µPD22100, 22148
TEST CIRCUITS
PROPAGATION DELAY TIMES
(1) SIGNAL INPUT → SIGNAL OUTPUT
ON
VIS
VDD
50 %
VOS
SW
VIS
VSS
tPLH
CL
RL
tPHL
VOH
50 %
VOS
VOL
(2) STROBE INPUT → OUTPUT
VDD
STROBE
DATA IN
50 %
50 %
VSS
STROBE
tsetup
thold
VDD
VIS
VDD
DATA IN
VOS
SW
50 %
tPHZ
RL
VSS
tPZH
CL
VOS
VOH
90 %
10 %
(3) DATA INPUT → OUTPUT (STROBE = VDD)
VDD
DATA IN
VDD
VDD
VIS
DATA IN
50 %
VOS
SW
VDD
RL
DATA IN
VIS
VSS
SW
50 %
VOS
tPZL
tPZH
RL
CL
VSS
CL
VOH
VOS
90 %
VOH
VOS
10 %
VOL
VOL
9
VOL
µPD22100, 22148
(4) ADDRESS INPUT → OUTPUT (STROBE = VDD)
ADDRESS = L
VDD
ADDRESS = H
VDD
ADDRESS
50 %
50 %
VDD
VSS
tsetup
VOS1
SW
RL
CL
thold
VOS2
SW
RL
CL
VDD
DATA IN
50 %
VSS
tPZH
90 %
VOS1
VOH
VOL
tPHZ
VOH
VOS2
10 %
VOL
CROSSTALK VOLTAGE
CONTROL INPUT (DATA IN, ADDRESS, STROBE)
VDD
CONTROL
VIS
1 kΩ
VSS
VOS
SW
RL
0V
CROSSTALK FREQUENCY
VIS
1 kΩ
10
ON
OFF
SW
(A)
SW
(B)
1 kΩ 1 kΩ
VOS
1 kΩ
20 log
VOS
VIS
= −40 dB
CROSSTALK VOLTAGE
µPD22100, 22148
TYPICAL CHARACTERISTICS (Ta = 25 °C)
ON-RESISTANCE RON (Ω)
(A) RON − VIS Characteristics
200
VDD = −VSS = 2.5 V
VDD = −VSS = 5 V
100
VDD = −VSS = 6 V
VDD = −VSS = 7.5 V
−7.5
−5
−2.5
0
2.5
5
7.5
INPUT VOLTAGE VIS (V)
(B) Crosstalk Frequency Characteristics
−40
Crosstalk (dB)
−50
−60
−70
−80
−90
−100
1k
10 k
100 k
1M
Crosstalk Frequency (Hz)
11
µPD22100, 22148
APPLICATION CIRCUITS
µPD22100
A
A
B
B
C
C
D
D
µ PD22100C
Yn
STROBE
DATA IN
Yn
STROBE
DATA IN
VDD
1/4µ PD4081BC
R
τ = RC > 50 ms
Xn
(For Power ON Reset Time)
C
µPD22100/22148 BIAS CIRCUIT
VDD
VDD
VCC* = 5 V
VDD
R
Xn
R
Xn
Yn
R = 10 kΩ to 100 kΩ
Yn
R
R
VSS
VSS
* µ PD22148 only
VSS
12
µPD22100, 22148
16PIN PLASTIC DIP (300 mil)
16
9
1
8
A
K
P
I
L
J
H
G
C
F
D
N
M
B
NOTES
1) Each lead centerline is located within 0.25 mm (0.01 inch) of
its true position (T.P.) at maximum material condition.
2) Item "K" to center of leads when formed parallel.
R
M
ITEM
MILLIMETERS
INCHES
A
20.32 MAX.
0.800 MAX.
B
1.27 MAX.
0.050 MAX.
C
2.54 (T.P.)
0.100 (T.P.)
D
0.50±0.10
0.020 +0.004
–0.005
F
1.2 MIN.
0.047 MIN.
G
3.5±0.3
0.138±0.012
H
0.51 MIN.
0.020 MIN.
I
4.31 MAX.
0.170 MAX.
J
5.08 MAX.
0.200 MAX.
K
7.62 (T.P.)
0.300 (T.P.)
L
6.4
0.252
M
0.25 +0.10
–0.05
0.010 +0.004
–0.003
N
0.25
0.01
P
1.0 MIN.
0.039 MIN.
R
0~15°
0~15°
P16C-100-300A,C-1
13
µPD22100, 22148
16 PIN PLASTIC SOP (300 mil)
16
9
P
detail of lead end
1
8
A
H
J
E
K
F
G
I
C
N
D
M
B
L
M
NOTE
Each lead centerline is located within 0.12 mm (0.005 inch) of
its true position (T.P.) at maximum material condition.
ITEM
MILLIMETERS
INCHES
A
10.46 MAX.
0.412 MAX.
B
0.78 MAX.
0.031 MAX.
C
1.27 (T.P.)
0.050 (T.P.)
D
0.40 +0.10
–0.05
0.016 +0.004
–0.003
E
0.1±0.1
0.004±0.004
F
1.8 MAX.
0.071 MAX.
G
1.55
0.061
H
7.7±0.3
0.303±0.012
I
5.6
0.220
J
1.1
0.043
K
0.20 +0.10
–0.05
0.008 +0.004
–0.002
L
0.6±0.2
0.024 +0.008
–0.009
M
0.12
0.005
N
0.10
0.004
P
3° +7°
–3°
3° +7°
–3°
P16GM-50-300B-4
14
µPD22100, 22148
22 PIN PLASTIC SHRINK DIP (300 mil)
22
12
1
11
K
A
H
G
J
I
L
F
D
N
C
M
B
R
M
NOTES
1) Each lead centerline is located within 0.17 mm (0.007 inch) of
its true position (T.P.) at maximum material condition.
ITEM
MILLIMETERS
INCHES
A
23.12 MAX.
0.911 MAX.
B
2.67 MAX.
0.106 MAX.
C
1.778 (T.P.)
0.070 (T.P.)
D
0.50±0.10
0.020 +0.004
–0.005
2) Item "K" to center of leads when formed parallel.
F
0.85 MIN.
0.033 MIN.
G
3.2±0.3
0.126±0.012
H
0.51 MIN.
0.020 MIN.
I
4.31 MAX.
0.170 MAX.
J
5.08 MAX.
0.200 MAX.
K
L
7.62 (T.P.)
6.5
0.300 (T.P.)
0.256
M
0.25 +0.10
–0.05
0.010 +0.004
–0.003
N
0.17
0.007
R
0~15°
0~15°
S22C-70-300B-1
15
µPD22100, 22148
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96.5