DATA SHEET MOS INTEGRATED CIRCUIT µPD30700,30700L,30710 VR10000TM, VR12000TM 64-BIT MICROPROCESSORS DESCRIPTION The µPD30700 and 30700L (VR10000) and µPD30710 (VR12000) are new members of NEC’s VR seriesTM RISC (Reduced Instruction Set Computer) microprocessors. These new high-performance 64-bit microprocessors employ a new RISC architecture developed by MIPSTM, ANDESTM architecture. The VR10000 and VR12000 are designed to be used in high-performance computers and achieve considerably higher processing speed through the employment of a super scalar pipeline. Remark ANDES: Architecture with Non-sequential Dynamic Execution Scheduling The functions of these microprocessors are described in detail in the following manuals. Be sure to read these manuals when designing systems. VR10000, VR12000 User’s Manual : U10278E VR5000TM, VR10000 User’s Manual - Instruction : U12754E FEATURES • MIPS 64-bit RISC architecture • High-speed operation processing • Operating frequency <VR10000> Super scalar pipeline executing five instructions in parallel • Internal: 250 MHz MAX. <VR10000> • External: 250 MHz MAX. • 14SPECint95, 23SPECfp95 • External/internal multiplication factor selectable from <VR12000> 1 to 4 • 17SPECint95, 27SPECfp95 • • <VR12000> Instruction set upward-compatible with V R4000 TM, • Internal: 300 MHz MAX. VR4200TM, • External: 150 MHz MAX. and VR4400TM (conforms to MIPS-I/II/III/IV) High-speed translation lookaside buffer (TLB) (64 double • External/internal multiplication factor selectable from entries) • 2 to 10 Address space Physical: 40 bits Virtual: 44 bits • Multi-processor function • Up to four buses of cluster connection can be connected. • • Supply voltage • Primary cache memory (32K bytes for each of instruction <VR10000> Floating-point unit (FPU) and data, 2-way set associative) • Secondary cache memory interface • 128-bit secondary cache interface • SSRAM interface (VR10000: 250 MHz MAX., VR12000: VDD = 3.3 V ±0.165 V (µPD30700) VDD = 2.6 V ±0.1 V (µPD30700L) <VR12000> VDD = 2.6 V ±0.1 V (µPD30710) 200 MHz MAX.) • Supports up to 16M bytes Unless otherwise specified, the VR10000 is treated as the representative model throughout this document. The information in this document is subject to change without notice. Date No. U12703EJ1V0DS00 (1st edition) Date Published June 1998 N CP(K) Printed in Japan 1998 © © MIPS Technologies Inc. 1998 µPD30700,30700L,30710 APPLICATIONS • UNIXTM servers • Windows NTTM servers • Desktop workstations, etc. ORDERING INFORMATION Part Number Maximum Internal Operating Frequency µPD30700RS-180 599-pin ceramic LGA 180 µPD30700RS-200 599-pin ceramic LGA 200 µPD30700LRS-225Note 599-pin ceramic LGA 225 µPD30700LRS-250Note 599-pin ceramic LGA 250 µPD30710RS-300Note 599-pin ceramic LGA 300 Note Under development Remark LGA: Land Grid Array 2 Package µPD30700,30700L,30710 PIN CONFIGURATION • 599-pin ceramic LGA µPD30700RS-180 µPD30700RS-200 µPD30700LRS-225 µPD30700LRS-250 µPD30710RS-300 Top View Bottom View AR AP AN AM AL AK AJ AH AG AF AE AD AC AB AA Y W V U T R P N M L K J H G F E D C B A 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 Index 3 µPD30700,30700L,30710 (1/4) No. No. Name No. Name No. Name A1 – B9 SCADCS C17 SysAD41 D25 VSS A2 VDD B10 SCAAddr5 C18 VDD D26 VDD A3 VSS B11 VSS C19 SysAD36 D27 SCData68 A4 VDDQSC B12 SCData78 C20 SysAD32 D28 SCData64 A5 SCData89 B13 SCClk0 C21 VSS D29 VSS A6 SCData85 B14 VDD C22 VSS D30 SCAAddr12 A7 VSS B15 SCData72 C23 SysClkRet D31 SCAAddr16 A8 SCADWr B16 SysAD44 C24 VSS D32 VSS A9 SCAAddr8 B17 VSS C25 VDDPa D33 SCDataChk0 A10 VDDQSC B18 SysAD40 C26 SCData71 D34 SCData29 A11 SCAAddr1 B19 VSS C27 VSS D35 VDDQSC A12 SCData76 B20 SysAD33 C28 SCData67 E1 SCClk5 A13 VSS B21 VSS C29 SCDataChk2 E2 VSS A14 SCData74 B22 DCOK C30 VDDQSC E3 VDD A15 SysAD46 B23 SysClkRet C31 SCAAddr13 E4 SCDataChk6 A16 VDDQSys B24 VSSPa C32 SCAAddr18 E5 VDD A17 SysAD42 B25 VSSPa C33 VDDQSC E6 SCData90 A18 SysAD37 B26 SCClk1 C34 VDD E7 SCData86 A19 SysAD35 B27 SCDataChk9 C35 VSS E8 VDDQSC A20 VDDQSys B28 VDD D1 VDDQSC E9 SCData80 A21 VSS B29 SCData65 D2 SCTCS E10 SCADWay A22 SysClk B30 SCAAddr9 D3 SCDataChk8 E11 VSS A23 SysClk B31 VSS D4 VSS E12 SCAAddr4 A24 VSSPa B32 SCAAddr15 D5 SCData92 E13 SCAAddr0 A25 NC B33 SCAAddr17 D6 SCData88 E14 VDDQSC A26 SCClk1 B34 VSS D7 VSS E15 SCClk0 A27 VSS B35 VDD D8 SCData82 E16 SysAD47 A28 SCData70 C1 VSS D9 SCADOE E17 VSS A29 VSS C2 VDD D10 VDD E18 SysAD39 A30 SCDataChk4 C3 VDDQSC D11 SCAAddr6 E19 VSS A31 SCAAddr11 C4 SCData94 D12 SCAAddr2 E20 SysCyc A32 VDDQSC C5 SCData91 D13 VSS E21 VSS A33 VSS C6 VDDQSC D14 SCData77 E22 VDDPd A34 VDD C7 SCData84 D15 SCData73 E23 VSS A35 VSS C8 SCData81 D16 VDD E24 VSS B1 VDD C9 VSS D17 SysAD43 E25 VSS B2 VSS C10 SCAAddr7 D18 SysAD38 E26 SCData69 B3 SCData95 C11 SCAAddr3 D19 SysAD34 E27 SCData66 B4 SCData93 C12 VDDQSC D20 VDD E28 VDDQSC B5 VSS C13 SCData79 D21 VSS E29 SCAAddr10 B6 SCData87 C14 SCData75 D22 VSSPd E30 SCAAddr14 B7 SCData83 C15 VSS D23 VSS E31 VDD B8 VDD C16 SysAD45 D24 VSS E32 SCData31 Note 4 Name Connect this pin via a100-Ω resistor. µPD30700,30700L,30710 (2/4) No. Name No. Name No. Name No. Name E33 VDD K1 VDDQSC P4 SCTag6 V32 SysAD6 E34 VSS K2 SCTag14 P5 VDDQSC V33 VDD E35 SCData27 K3 SCTag17 P31 VDDQSC V34 SysAD4 F1 VDD K4 VDD P32 SCData4 V35 SysAD2 F2 SCTWr K5 SCTag19 P33 SCData2 W1 SCClk4 F3 VDDQSC K31 SCData18 P34 VDD W2 VSS F4 SCClk5 K32 VDD P35 SysAD15 W3 SCTagChk1 F5 VSSNote K33 SCData16 R1 SCTag0 W4 SCClk4 F31 SCData30 K34 SCData11 R2 VDDQSC W5 VSS F32 SCData28 K35 VDDQSC R3 VSS W31 VSS F33 VDDQSC L1 SCTag12 R4 SCTag1 W32 SysAD1 F34 SCData25 L2 VSS R5 SCTag3 W33 JTCK F35 SCData23 L3 VDD R31 SCData0 W34 VSS G1 VSS L4 SCTag15 R32 SysAD13 W35 JTDI G2 SCTag22 L5 VSS R33 VSS Y1 VCCQSys G3 SCTag24 L31 VSS R34 SysAD14 Y2 SysCmd0 G4 VSS L32 SCData14 R35 SysAD12 Y3 SysCmd1 G5 SCTOE L33 SCData9 T1 VDDQSC Y4 VDD G31 SCData26 L34 VSS T2 NC Y5 SysCmd3 G32 VSS L35 SCData7 T3 SCTWay Y31 JTDO G33 SCData21 M1 SCTag7 T4 VDD Y32 VDD G34 SCData19 M2 SCTag9 T5 SCTagLSBAddr Y33 VrefSys G35 VSS M3 VDDQSC T31 SysAD11 Y34 SysAD0 H1 SCTag20 M4 SCTag11 T32 VDD Y35 VDDQSys H2 VDD M5 SCTag13 T33 SysAD9 AA1 SysCmd2 H3 VDDQSC M31 SCData12 T34 SysAD10 AA2 SysCmd4 H4 SCTag25 M32 SCData10 T35 VDDQSys AA3 VSS H5 VDDQSC M33 VDDQSC U1 SCTagChk6 AA4 SysCmd5 H31 VDDQSC M34 SCData5 U2 VSS AA5 SysCmd7 H32 SCData24 M35 SCData3 U3 SCTagChk5 AA31 SCClk2 H33 VDDQSC N1 VSS U4 VSSNote AA32 SCData32 H34 VDD N2 SCTag5 U5 VSS AA33 VSS H35 SCData17 N3 SCTag8 U31 VSS AA34 JTMS J1 SCTag16 N4 VSS U32 SysAD7 AA35 VrefSC J2 SCTag18 N5 SCTag10 U33 SysAD5 AB1 SysCmd6 J3 VSS N31 SCData8 U34 VSS AB2 VDD J4 SCTag21 N32 VSS U35 SysAD8 AB3 SysCmd8 J5 SCTag23 N33 SCData6 V1 SCTagChk4 AB4 SysCmd10 J31 SCData22 N34 SCData1 V2 SCTagChk2 AB5 VDDQSys J32 SCData20 N35 VSS V3 VDD AB31 VDDQSC J33 VSS P1 SCTag2 V4 SCTagChk0 AB32 SCData35 J34 SCData15 P2 VDD V5 SCTagChk3 AB33 SCClk2 J35 SCData13 P3 SCTag4 V31 SysAD3 AB34 VDD Note Connect this pin via a100-Ω resistor. 5 µPD30700,30700L,30710 (3/4) No. No. Name No. Name No. Name AB35 SCData33 AG3 VSS AL6 SCData124 AM14 SCData110 AC1 VSS AG4 SysGblPerf AL7 SCData120 AM15 SCClk3 AC2 SysCmd9 AG5 SysWrRdy AL8 VDDQSC AM16 VDD AC3 SysCmdPar AG31 SCData53 AL9 SCData114 AM17 SysAD58 AC4 VSS AG32 SCData51 AL10 SCBDOE AM18 SysAD54 AC5 SysReq AG33 VSS AL11 SCBAddr8 AM19 SysAD52 AC31 SCData39 AG34 SCData48 AL12 SCBAddr4 AM20 VDD AC32 VSS AG35 SCData46 AL13 SCBAddr0 AM21 SysADChk4 AC33 SCData37 AH1 SysResp2 AL14 VDDQSC AM22 SysAD30 AC34 SCData34 AH2 VDD AL15 SCData106 AM23 VSS AC35 VSS AH3 VDDQSys AL16 SCData104 AM24 SysAD26 AD1 SysCmd11 AH4 SysStatePar AL17 SysAD60 AM25 SysAD22 AD2 SysVal AH5 VDDQSys AL18 SysAD56 AM26 VDD AD3 VDDQSys AH31 VDDQSC AL19 SysAD50 AM27 SCData102 AD4 SysGnt AH32 SCData55 AL20 SysADChk6 AM28 SCData98 AD5 SysReset AH33 VDDQSC AL21 SysADChk2 AM29 VSS AD31 SCData43 AH34 VDD AL22 VDDQSys AM30 SCBAddr11 AD32 SCData41 AH35 SCData50 AL23 SysAD28 AM31 SCBAddr15 AD33 VDDQSC AJ1 VSS AL24 SysAD24 AM32 VSS AD34 SCData38 AJ2 SysResp0 AL25 SysAD20 AM33 SCData63 AD35 SCData36 AJ3 SysRdRdy AL26 SysAD16 AM34 SCData62 AE1 SysRel AJ4 VSS AL27 SCData100 AM35 VDDQSC AE2 VSS AJ5 SysState1 AL28 VDDQSC AN1 VSS AE3 VDD AJ31 SCData57 AL29 SCBAddr9 AN2 VDD AE4 SysRespPar AJ32 VSS AL30 SCBAddr13 AN3 VDDQSC AE5 VSS AJ33 SCData54 AL31 VDD AN4 SCDataChk7 AE31 VSS AJ34 SCData52 AL32 SCDataChk1 AN5 SCData125 AE32 SCData45 AJ35 VSS AL33 VDD AN6 VDDQSC AE33 SCData42 AK1 SysStateVal AL34 VSS AN7 SCData118 AE34 VSS AK2 SysState2 AL35 SCData60 AN8 SCData115 AE35 SCData40 AK3 VDDQSys AM1 VDDQSys AN9 VSS AF1 VDDQSys AK4 SysCorErr AM2 SysUncErr AN10 SCBDCS AF2 DCOk AK5 SysNMI AM3 VSSNote AN11 SCBAddr5 AF3 SysResp3 AK31 SCData61 AM4 VSS AN12 VDDQSC AF4 VDD AK32 SCData59 AM5 SCData126 AN13 SCData109 AF5 SysResp1 AK33 VDDQSC AM6 SCData122 AN14 SCData108 AF31 SCData49 AK34 SCData58 AM7 VSS AN15 VSS AF32 VDD AK35 SCData56 AM8 SCData116 AN16 SysAD62 AF33 SCData47 AL1 SysState0 AM9 SCData112 AN17 SysAD59 AF34 SCData44 AL2 VSS AM10 VDD AN18 VDD AF35 VDDQSC AL3 VDD AM11 SCBAddr6 AN19 SysAD51 AG1 SysRespVal AL4 VSSNote AM12 SCBAddr2 AN20 SysAD48 AG2 SysResp4 AL5 VDD AM13 VSS AN21 VSS Note 6 Name Connect this pin via a100-Ω resistor. µPD30700,30700L,30710 (4/4) No. Name No. Name No. Name No. Name AN22 SysADChk0 AP8 VDD AP29 SCData97 AR15 SysAD63 AN23 SysAD29 AP9 SCBDWr AP30 SCBAddr10 AR16 VDDQSys AN24 VDDQSys AP10 SCBAddr7 AP31 VSS AR17 SysAD57 AN25 SysAD21 AP11 VSS AP32 SCBAddr16 AR18 SysAD55 AN26 SysAD18 AP12 SCBAddr1 AP33 SCBAddr17 AR19 SysAD49 AN27 VSS AP13 SCData107 AP34 VSS AR20 VDDQSys AN28 SCData99 AP14 VDD AP35 VDD AR21 SysADChk5 AN29 SCData96 AP15 SCData105 AR1 VSS AR22 SysADChk1 AN30 VDDQSC AP16 SysAD61 AR2 VDD AR23 VSS AN31 SCBAddr14 AP17 VSS AR3 VSS AR24 SysAD27 AN32 SCBAddr18 AP18 SysAD53 AR4 VSSQSC AR25 SysAD23 AN33 VDDQSC AP19 VSS AR5 SCData123 AR26 VDDQSys AN34 VDD AP20 SysADChk7 AR6 SCData119 AR27 SysAD17 AN35 VSS AP21 SysADChk3 AR7 VSS AR28 SCData101 AP1 VDD AP22 VDD AR8 SCData113 AR29 VSS AP2 VSS AP23 SysAD31 AR9 SCBDWay AR30 SCDataChk3 AP3 SCDataChk5 AP24 SysAD25 AR10 VDDQSC AR31 SCBAddr12 AP4 SCData127 AP25 VSS AR11 SCBAddr3 AR32 VDDQSC AP5 VSS AP26 SysAD19 AR12 SCData111 AR33 VSS AP6 SCData121 AP27 SCData103 AR13 VSS AR34 VDD AP7 SCData117 AP28 VDD AR14 SCClk3 AR35 VSS 7 µPD30700,30700L,30710 PIN NAMES 8 DCOK : DC Voltage OK JTCK : JTAG Clock JTDI : JTAG Serial Data Input JTDO : JTAG Serial Data Output JTMS : JTAG Mode Select SCAAddr (18 : 0), SCBAddr (18 : 0) : Secondary Cache Address Bus SCADCS, SCBDCS : Secondary Cache Data Chip Select SCADOE, SCBDOE : Secondary Cache Data Output Enable SCADWay, SCBDWay : Secondary Cache Data Way SCADWr, SCBDWr : Secondary Cache Data Write Enable SCClk (5 : 0), SCClk (5 : 0) : Secondary Cache Clock SCData (127 : 0) : Secondary Cache Data Bus SCDataChk (9 : 0) : Secondary Cache Data Check Bus SCTag (25 : 0) : Secondary Cache Tag Bus SCTagChk (6 : 0) : Secondary Cache Tag Check Bus SCTagLSBAddr : Secondary Cache Tag LSB Address SCTCS : Secondary Cache Chip Select SCTOE : Secondary Cache Tag Output Enable SCTWay : Secondary Cache Tag Way SCTWr : Secondary Cache Tag Write Enable SysAD (63 : 0) : System Address/Data Bus SysADChk (7 : 0) : System Address/Data Check Bus SysClk, SysClk : System Clock SysClkRet, SysClkRet : System Clock Return SysCmd (11 : 0) : System Command Bus SysCmdPar : System Command Bus Parity SysCorErr : System Correctable Error SysCyc : System Cycle SysGbPerf : System Globally Performed SysGnt : System Grant SysNMI : System Non-maskable Interrupt SysRdRdy : System Read Ready SysReset : System Reset SysResp (4 : 0) : System Response Bus SysRespPar : System Response Bus Parity SysRespVal : System Response Bus Valid SysUncErr : System Uncorrectable Error SysVal : System Valid SysWrRdy : System Write Ready SysRel : System Release SysReq : System Request µPD30700,30700L,30710 SysState (2 : 0) : System State Bus SysStatePar : System State Bus Parity SysStateVal : System State Bus Valid VDD : Power Supply VDDPa : VDD for the PLL Analog VDDPd : VDD for the PLL Digital VDDQSC : VDD for the Secondary Cache VDDQSys : VDD for the System Interface VrefSC : Voltage Reference for the Secondary Cache VrefSys : Voltage Reference for the System Interface VSS : Ground VSSPa : VSS for the PLL Analog VSSPd : VSS for the PLL Digital NC : No Connection 9 µPD30700,30700L,30710 Up to four VR10000s can be directly connected. System interface Secondary cache memory interface Instruction cache 32K bytes 2-way set associative 19 + way Secondary cache address Data cache 32K bytes 2-way set associative 26 + 7 Data 128 + 10 Address 32-bit instruction fetch × 4 Address 64-bit load/store Secondary cache (512K bytes to 16M bytes) SSRAM VR10000 FP queue Integer register × 64 Integer queue TLB FP register × 64 Address queue Instruction decode register mapping Clock Branch unit Switch 10 Secondary cache Tag System bus External agent/ cluster controller Main memory, I/O BLOCK DIAGRAM Address generation ALU1 ALU2 Adder Multiplier µPD30700,30700L,30710 TABLE OF CONTENTS 1. PIN FUNCTIONS ........................................................................................................................... 1.1 Pin Function List ................................................................................................................. 1.2 Recommended Connection of Unused Pins ................................................................... 13 13 16 2. CPU INTERNAL ARCHITECTURE .............................................................................................. 2.1 Pipeline ................................................................................................................................. 17 17 2.1.1 Configuration ............................................................................................................................. 17 2.1.2 Operation ................................................................................................................................... 18 2.2 CPU Registers (virtual registers) ...................................................................................... 2.3 System Control Coprocessor (CP0) ................................................................................. 19 20 CP0 registers ............................................................................................................................. 20 2.4 Data Format and Addressing ............................................................................................ 2.5 Virtual Storage ..................................................................................................................... 2.3.1 22 24 2.5.1 Virtual address space ................................................................................................................ 24 2.5.2 Address translation ................................................................................................................... 27 2.6 Cache .................................................................................................................................... 29 2.6.1 Primary cache ............................................................................................................................ 29 2.6.2 Secondary cache ....................................................................................................................... 29 INTERNAL ARCHITECTURE ............................................................................................... Internal Function Block ...................................................................................................... FPU Registers ...................................................................................................................... Data Format ......................................................................................................................... 30 30 30 31 4. INTERFACE ................................................................................................................................... 4.1 System Interface ................................................................................................................. 32 32 3. FPU 3.1 3.2 3.3 Setting operating frequency of system interface ..................................................................... 32 4.2 Secondary Cache Interface ............................................................................................... 4.3 Clock Interface .................................................................................................................... 4.1.1 33 33 4.3.1 System interface clock and processor clock ............................................................................ 33 4.3.2 Secondary cache clock ............................................................................................................. 33 4.4 System Configuration Example ........................................................................................ 33 4.4.1 Uni-processor system ............................................................................................................... 33 4.4.2 Multi-processor system ............................................................................................................. 35 4.5 BTMC Interface .................................................................................................................... 4.6 DSD (Delay Speculative Dirty) Mode (VR12000 only) ..................................................... 36 38 4.6.1 DSD mode delay ....................................................................................................................... 38 4.6.2 Secondary cache status in DSD mode .................................................................................... 38 4.6.3 Other features ............................................................................................................................ 38 5. INTERNAL/EXTERNAL CONTROL FUNCTIONS....................................................................... 5.1 Reset Function .................................................................................................................... 39 39 5.1.1 Power-ON reset and cold reset ................................................................................................ 39 5.1.2 Software reset ........................................................................................................................... 39 5.2 Interrupt Functions ............................................................................................................. 5.3 JTAG Function ..................................................................................................................... 39 40 11 µPD30700,30700L,30710 6. INSTRUCTION SET ...................................................................................................................... 6.1 Instruction Formats ............................................................................................................ 6.2 CPU Instruction Set List .................................................................................................... 6.3 FPU Instruction Set List ..................................................................................................... 6.4 Delay of Instruction ............................................................................................................ 41 41 41 46 49 7. ELECTRICAL SPECIFICATIONS ................................................................................................. 50 8. PUSH-PULL OUTPUT BUFFER CIRCUIT .................................................................................. 64 9. PACKAGE DRAWING ................................................................................................................... 65 12 µPD30700,30700L,30710 1. PIN FUNCTIONS 1.1 Pin Function List (1/3) Pin Name I/O Function SCClk (5 : 0) Output Secondary cache clock signals. SCClk (5 : 0) Output Secondary cache clock signals. Inverted SCClk (5:0) signals. SCAAddr (18 : 0), SCBAddr (18 : 0) Output Secondary cache address bus. 19-bit address bus for secondary cache. SCTagLSBAddr Output Secondary cache tag LSB address. Specifies the LSB address of a secondary cache tag. SCADWay, SCBDWay Output Secondary cache data way. Specifies a way of secondary cache data. SCData (127 : 0) I/O Secondary cache data bus. 128-bit bus to read or write data from or to the secondary cache. SCDataChk (9 : 0) I/O Secondary cache data check bus. 10-bit bus used to read or write ECC and even parity for secondary cache data. SCADOE, SCBDOE Output Secondary cache data output enable. Signals enabling output of secondary cache data. SCADWr, SCBDWr Output Secondary cache data write enable. Signals enabling writing of secondary cache data. SCADCS, Output Secondary cache data chip select. SCBDCS Signals enabling access of secondary cache data. SCTWay Output Secondary cache tag way. Specifies the way of a secondary cache tag. SCTag (25 : 0) I/O Secondary cache tag bus. 26-bit bus to read or write a tag to or from the secondary cache. SCTagChk (6 : 0) I/O Secondary cache tag check bus. 7-bit bus used to read or write ECC for secondary cache tag. SCTOE Output Secondary cache tag output enable. Signal enabling output of a secondary cache tag. SCTWr Output Secondary cache tag write enable. Signal enabling writing of a secondary cache tag. SCTCS Output Secondary cache tag chip select. Signal enabling access to a secondary cache tag. SysClk Input System clock. System clock input. SysClk Input System clock. System clock input. Inverted SysClk signal. SysClkRet Output System clock. System clock output used for termination of system clock. SysClkRet Output System clock. System clock output used for termination of system clock. Inverted SysClkReset signal. SysReq Output System request. Signal requesting enabling issuance of a processor request when the VR10000 serves as a slave. 13 µPD30700,30700L,30710 (2/3) Pin Name I/O Function SysGnt Input System enable. Signal used by an external agent to request the VR10000 for use of the system interface. SysRel I/O System release. The master side of the system interface asserts this signal active for the duration of 1 SysClk cycle when it releases the right to use the system interface in the subsequent SysClk cycle. SysRdRdy Input System read ready. Indicates that the external agent is ready to accept a processor read request and upgrade request. SysWrRdy Input System write ready. Indicates that the external agent is ready to accept a processor write request and processor eliminate request. SysAD (63 : 0) I/O System address/data bus. 64-bit address/data bus for communication between the VR10000 and external agent. SysADChk (7 : 0) I/O System address/data check bus. 8-bit ECC bus for SysAD bus. SysCmd (11 : 0) I/O System command bus. 12-bit bus for command communication between the VR10000 and external agent. SysCmdPar I/O System command bus parity. One odd parity bit for the system command bus. SysVal I/O System valid. Signal indicating that the master side of the system interface drives a valid address/ command/data onto the SysAD bus and SysCmd bus. SysState (2 : 0) Output System state bus. 3-bit bus indicating issuance or addition of a processor coherent status response. SysStatePar Output System state bus parity. One odd parity bit for the system state bus. SysStateVal Output System state bus valid. The VR10000 asserts this signal active for the duration of 1 SysClk cycle when it issues a processor coherent response status to the SysState bus. SysResp (4 : 0) Input System response bus. 5-bit bus used by the external agent to issue an external end response. SysRespPar Input System response bus parity. One odd parity bit for the system response bus. SysRespVal Input System response bus valid. The external agent asserts this signal active for 1 SysClk cycle when it issues an external end response to the SysResp bus. SysReset Input System reset. Signal used by the external agent to reset the VR10000. SysNMI Input System non-maskable interrupt. Signal used by the external agent to issue NMI. SysCorErr Output System correctable error. The VR10000 asserts this signal active for 1 SysClk cycle when it finds and correct a correctable error. SysUncErr Output System uncorrectable error. The VR10000 asserts this signal active for 1 SysClk cycle when it finds an uncorrectable tag error. 14 µPD30700,30700L,30710 (3/3) Pin Name I/O Function SysGblPerf Input System global perfect. An external agent uses this signal to indicate completion of a processor request to all external agents. SysCyc Input System cycle. The external agent uses this signal to define a virtual system interface clock in hardware emulation environment. JTDI Input JTAG data input. Inputs JTAG serial data. JTDO Output JTAG data output. Outputs JTAG serial data. JTCK Input JTAG clock input. Inputs JTAG serial clock. Keep this signal low when the JTAG interface is not used. JTMS Input JTAG mode select. Selects a mode of JTAG. DCOK Input DC voltage enable. The external agent asserts this signal active when the following signals are stable: VDD, VDDQSC, VDDQSys, VrefSC, VrefSys, VDDPa, VDDPd, SysClk VDD Input Power supply pin. Power supply for the CPU core. VDDQSC Input Secondary cache VDD. Power supply for the output driver of the secondary cache interface. VDDQSys Input System interface VDD. Power supply for the output driver of the system interface. VrefSC Input Secondary cache voltage. Reference voltage for the input pins of the secondary cache interface. VrefSys Input System interface voltage. Reference voltage for the input pins of the system interface. VDDPa Input PLL analog VDD. Power supply for the PLL analog circuit. VDDPd Input PLL digital VDD. Power supply for the PLL digital circuit. VSS Input Ground potential pin. Ground for the CPU core and output driver. VSSPa Input PLL analog GND. Ground for the PLL analog. VSSPd Input PLL digital GND. Ground for PLL digital. NC — No connection. Leave this pin unconnected. 15 µPD30700,30700L,30710 1.2 Recommended Connection of Unused Pins Table 1-1 shows the recommended connection of unused pins. Table 1-1. Recommended Connection of Unused Pins Pin Name JTDI I/O Input Recommended Connection Connect each of these pins to VDD via a resistor. JTCK JTMS SysNMI Connect this pin to VDDQSys via resistor of 100 Ω or more. SysRdRdy Connect each of these pins to VSS via a resistor of 100 Ω or more. SysWrRdy SysGblPerf SysCyc SysADChk (7 : 0) 16 I/O Connect each of these pins to VSS or VDDQSys via a resistor or 100 Ω or more. µPD30700,30700L,30710 2. CPU INTERNAL ARCHITECTURE 2.1 Pipeline 2.1.1 Configuration The VR10000 has a 5-way super scalar pipeline as illustrated below. This pipeline can simultaneously fetch and decode four instructions in 1 Pcycle. (1) FP addition pipeline (2) FP multiplication pipeline (3) Integer ALU1 pipeline (4) Integer ALU2 pipeline (5) Load/store pipeline Figure 2-1. Pipeline 7 pipeline stages Stage 1 Fetch 5-instruction parallel execution pipeline Stage 2 Decode Stage 3 Issue Stage 4 Execute Stage 5 Execute Stage 6 Execute FAdd-1 FAdd-2 FAdd-3 FP addition pipeline (FP queue) Issue FP multiplication pipeline (FP queue) Issue RF FMpy-1 Integer ALU1 pipeline (integer queue) Issue RF ALU1 Result Integer ALU2 pipeline (integer queue) Issue RF ALU2 Result Load/store pipeline (address queue) Issue RF Addr.Calc RF Result FP queue, FP register Queue Primary instruction cache Stage 7 Store FMpy-2 Data Cache FMpy-3 Result Integer register operand Result TLB Instruction decode Branch unit Instruction fetch, decode (4 instructions/1 cycle) Branch address Instruction execution 17 µPD30700,30700L,30710 2.1.2 Operation The pipeline of the VR10000 has seven stages. The operation of each stage is described below: (1) Stage 1 (fetch) Four instructions are fetched in 1 cycle and stored to the instruction register. (2) Stage 2 (decode) The four instructions fetched in stage 1 are decoded. (3) Stage 3 (issue) The decoded instructions are written to a queue. The VR10000 has an FP queue, integer queue, and address queue. In addition, an operand is read from the register file. (4) Stage 4 through stage 6 (execute) The instructions are executed. The execution pipeline and execution cycle differ depending on the type of instruction. (a) FP addition pipeline Executes floating-point addition instructions in 3 PCycle. (b) FP multiplication pipeline Executes floating-point multiplication, division, and square root instructions in 3 PCycle. (c) Integer ALU1 pipeline Executes integer addition, subtraction, shift, and logic instructions in 1 Pcycle. (d) Integer ALU2 pipeline Executes integer addition, subtraction, and logic instructions in 1 PCycle. (e) Load/store pipeline Generates a memory address used for integer or floating-point load/store instructions. (5) Stage 7 (store) The results of executing the instructions are stored to registers. 18 µPD30700,30700L,30710 2.2 CPU Registers (virtual registers) Figure 2-2 shows the CPU registers of the VR10000. Physically, sixty-four general-purpose registers are available. Of these, however, only thirty-two can be accessed by software or an external agent. Mapping of the other registers is automatically controlled by the CPU. The bit width of a register is determined by the operation mode of the VR10000 (32 bits in 32-bit mode, or 64 bits in 64-bit mode). Of the thirty-two general-purpose registers, the following two have special meanings. • Register r0 : The contents of this register are always 0. Register r0 can be used as the target register of an instruction when the result of an operation is to be discarded. This register can also be used as a source register when the value of 0 is necessary. • Register r31 : This is a link system for the JAL and JALR instructions. Therefore, do not use this register with any other instructions. Two multiplication/division registers (HI and LO) are used to store the result of integer multiplication, or quotient (LO) and remainder (HI) resulting from integer division. The load link register is used to synchronize two or more VR10000s in a multi-processor system. Figure 2-2. CPU Registers General-purpose registers 63 0 r0 = 0 Multiplication/division register 63 r1 r2 0 HI 63 0 LO Program counter 63 r29 0 PC r30 r31 (link address) Load link register 0 LLbit There is no program status word (PSW). The function of PSW is substituted by the status register and cause register incorporated into the system control coprocessor (CP0). 19 µPD30700,30700L,30710 2.3 System Control Coprocessor (CP0) The CP0 registers/CP0 instructions access the TLB and cache. Manipulating a mode in which the VR10000 is used, exceptions, and interrupts are also controlled by the CP0. In addition, the CP0 also has a test/debug function. 2.3.1 CP0 registers All the CP0 registers that can be used with the VR10000 are listed below. Writing or reading an unused register (RFU) is undefined. Figure 2-3. CPU0 Registers and TLB Registers used by memory management system Registers used for exception processing Entry Lo0 2* Context 4* BadVAddr 8* Random 1* Count 9* Compare 11* Page mask 5* Status 12* Cause 13* Wired 6* EPC 14* PRld 15* Config 16* LLAddr 17* Watch Lo 18* Watch Hi 19* X context 20* Diagnosis 22* ECC 26* Cache error 27* Tag Lo 28* Tag Hi 29* Error EPC 30* Index 0* Entry Hi 10* Entry Lo1 3* 63 TLB ("Safe" entry) 0 127/255 Frame mask 21* 0 PC 25* Remark “*” indicates a register number. 20 µPD30700,30700L,30710 Table 2-1. CP0 Register List No. Register Description 0 Index TLB entry programmable pointer 1 Random TLB entry random pointer 2 Entry Lo0 Second half of TLB entry for even number VPN 3 Entry Lo1 Second half of TLB entry for odd number VPN 4 Context Pointer to virtual PTE table of kernel in 32-bit mode 5 Page mask TLB page mask 6 Wired Number of wired TLB entries 7 — RFU (Reserved for Future Use) 8 BadVAddr Virtual address at which last error has occurred 9 Count Timer count 10 Entry Hi First half of TLB entry (including VPN and ASID) 11 Compare Timer comparison 12 Status Status register 13 Cause Cause of last exception 14 EPC Exception program counter 15 PRld Processor revision identifier 16 Config Configuration register 17 LLAddr Address of LL instruction 18 Watch Lo Low-order bits of memory reference trap address 19 Watch Hi High-order bits of memory reference trap address 20 X context Pointer to virtual PTE table of kernel in 64-bit mode 21 Frame mask Bit mask of entry Lo register 22 Diagnosis Branch diagnosis 23, 24 — RFU 25 PC Performance counter 26 ECC ECC of secondary cache and parity of primary cache 27 Cache error Index of cache error and status field 28 Tag Lo Cache tag register, low-order 29 Tag Hi Cache tag register, high-order 30 Error EPC Error exception program counter 31 — RFU 21 µPD30700,30700L,30710 2.4 Data Format and Addressing The VR10000 has the following four types of data formats: Double word (64 bits) Word (32 bit) Half word (16 bits) Byte (8 bits) If the data format is double word, word, or half word, the byte order can be set to bit endian or little endian by using the BE bit of the config register. Figure 2-4. Byte Address in Word: Big Endian 31 High-order address Low-order address Remarks 1. 2. 24 23 16 15 8 7 0 Word address 12 13 14 15 12 8 9 10 11 8 4 5 6 7 4 0 1 2 3 0 The most significant byte is the least significant address. A word is addressed by the address of the most significant byte. Figure 2-5. Byte Address in Word: Little Endian 31 High-order address Low-order address Remarks 1. 2. 22 24 23 16 15 8 7 0 Word address 15 14 13 12 12 11 10 9 8 8 7 6 5 4 4 3 2 1 0 0 The least significant byte is the least significant address. A word is addressed by the address of the least significant byte. µPD30700,30700L,30710 Figure 2-6. Byte Address in Double Word: Big Endian Word Half word 63 High-order address Low-order address 32 31 Byte 16 15 8 7 0 Double word address 16 17 18 19 20 21 22 23 16 8 9 10 11 12 13 14 15 8 0 1 2 3 4 5 6 7 0 Remarks 1. The most significant byte is the least significant address. 2. A word is addressed by the address of the most significant byte. Figure 2-7. Byte Address in Double Word: Little Endian Word Half word 63 High-order address Low-order address Remarks 1. 2. 32 31 Byte 16 15 0 8 7 Double word address 23 22 21 20 19 18 17 16 16 15 14 13 12 11 10 9 8 8 7 6 5 4 3 2 1 0 0 The least significant byte is the least significant address. A word is addressed by the address of the least significant byte. 23 µPD30700,30700L,30710 2.5 Virtual Storage 2.5.1 Virtual address space The VR10000 has two operation modes, the 32-bit and 64-bit modes. In addition, it has three operating modes: the user mode, supervisor mode, and kernel mode. Figures 2-8 through 2-11 show the virtual address spaces in the respective modes. Figure 2-8. User Mode Address Space 32 bitsNote 64 bits 0xFFFF FFFF 0xFFFF FFFF FFFF FFFF Address error 0x8000 0000 0x0000 1000 0000 0000 0x7FFF FFFF 0x0000 0FFF FFFF FFFF 2G bytes w/TLB mapping 0x0000 0000 Note 24 Address error 16T bytes w/TLB mapping useg 0x0000 0000 0000 0000 In the 32-bit mode, the value of bit 31 is sign-extended to bits 32 through 63. xuseg µPD30700,30700L,30710 Figure 2-9. Supervisor Mode Address Space Note 64 bits 32 bits 0xFFFF FFFF 0xFFFF FFFF FFFF FFFF Address error Address error 0xE000 0000 0xFFFF FFFF E000 FFFF 0xDFFF FFFF 0xFFFF FFFF DFFF FFFF 0.5G bytes w/TLB mapping 0.5G bytes sseg w/TLB mapping 0xC000 0000 0xFFFF FFFF C000 0000 0xBFFF FFFF 0xFFFF FFFF BFFF FFFF csseg Address error 0x4000 1000 0000 0000 Address error 0x4000 0FFF FFFF FFFF 16T bytes w/TLB mapping 0x8000 0000 0x7FFF FFFF xsseg 0x4000 0000 0000 0000 0x3FFF FFFF FFFF FFFF Address error 2G bytes 0x0000 1000 0000 0000 0x0000 0FFF FFFF FFFF w/TLB mapping 16T bytesNote 2 w/TLB mapping suseg 0x0000 0000 xsuseg 0x0000 0000 0000 0000 Notes 1. In the 32-bit mode, the value of bit 31 is sign-extended to bits 32 through 63. 2. If the UX bit of the status register is 0, 0x0000 0000 8000 0000 through 0x0000 0FFF FFFF FFFF cause an address error. 25 µPD30700,30700L,30710 Figure 2-10. Kernel Mode Address Space 32 bitsNote 1 64 bits 0xFFFF FFFF 0xFFFF FFFF FFFF FFFF 0.5G bytes w/TLB mapping kseg3 0xE000 0000 0xDFFF FFFF ksseg 0xC000 0000 0xBFFF FFFF ckseg3 0.5G bytes w/TLB mapping cksseg 0.5G bytes w/o TLB mapping Non-cacheable ckseg1 0.5G bytes w/o TLB mapping Cacheable ckseg0 0xFFFF FFFF E000 0000 0xFFFF FFFF DFFF FFFF 0xFFFF FFFF C000 0000 0xFFFF FFFF BFFF FFFF 0.5G bytes w/TLB mapping 0.5G bytes w/TLB mapping 0xFFFF FFFF A000 0000 0xFFFF FFFF 9FFF FFFF 0xFFFF FFFF 8000 0000 0xFFFF FFFF 7FFF FFFF Address error 0.5G bytes w/o TLB mapping Non-cacheable kseg1 0xA000 0000 0x9FFF FFFF 0xC000 0FFF 0000 0000 0xC000 0FFE FFFF FFFF 0xC000 0000 0000 0000 0xBFFF FFFF FFFF FFFF 0.5G bytes w/o TLB mapping cacheable kseg0 0x8000 0000 0000 0000 0x7FFF FFFF FFFF FFFF w/TLB mapping xkseg w/o TLB mapping (For details, refer to Figure 2-11.) xkphys Address error 0x8000 0000 0x7FFF FFFF 0x4000 1000 0000 0000 0x4000 0FFF FFFF FFFF 2G bytes w/TLB mapping 16T bytesNote 2 w/TLB mapping xksseg 0x4000 0000 0000 0000 0x3FFF FFFF FFFF FFFF Address error kuseg 0x0000 1000 0000 0000 0x0000 0FFF FFFF FFFF 16T bytesNote 3 w/TLB mapping 0x0000 0000 xkuseg 0x0000 0000 0000 0000 Notes 1. In the 32-bit mode, the value of bit 31 is sign-extended to bits 32 through 63. 2. If the SX bit of the status register is 0, this area causes an address error. 3. If the UX bit of the status register is 0, 0x0000 0000 8000 0000 through 0x0000 0FFF FFFF FFFF cause an address error. 26 µPD30700,30700L,30710 Figure 2-11. Details of xkphys Area 0xBFFF FFFF FFFF FFFF Address error 0xB800 0001 0000 0000 0xB800 0000 FFFF FFFF 0xB800 0000 0000 0000 0xB7FF FFFF FFFF FFFF 4G bytes w/o TLB mapping Cacheable Address error 0xB000 0001 0000 0000 0xB000 0000 FFFF FFFF 0xB000 0000 0000 0000 0xAFFF FFFF FFFF FFFF 4G bytes w/o TLB mapping Cacheable Address error 0xA800 0001 0000 0000 0xA800 0000 FFFF FFFF 0xA800 0000 0000 0000 0xA7FF FFFF FFFF FFFF 4G bytes w/o TLB mapping Cacheable Address error 0xA000 0001 0000 0000 0xA000 0000 FFFF FFFF 0xA000 0000 0000 0000 0x9FFF FFFF FFFF FFFF 4G bytes w/o TLB mapping Cacheable Address error 0x9800 0001 0000 0000 0x9800 0000 FFFF FFFF 0x9800 0000 0000 0000 0x97FF FFFF FFFF FFFF 4G bytes w/o TLB mapping Cacheable Address error 0x9000 0001 0000 0000 0x9000 0000 FFFF FFFF 0x9000 0000 0000 0000 0x8FFF FFFF FFFF FFFF 4 G bytes w/o TLB mapping Non-cacheable Address error 0x8800 0001 0000 0000 0x8800 0000 FFFF FFFF 0x8800 0000 0000 0000 0x87FF FFFF FFFF FFFF 4G bytes w/o TLB mapping Cacheable Address error 0x8000 0001 0000 0000 0x8000 0000 FFFF FFFF 0x8000 0000 0000 0000 4G bytes w/o TLB mapping Cacheable 2.5.2 Address translation Virtual addresses are translated into physical addresses by the internal TLB (Translation Lookaside Buffer) in page units. The TLB is of full-associative configuration and has 64 entries at the virtual address side and 32 entries at the physical address side. The page size can be changed from 4K bytes to 16M bytes. If a hit of a TLB entry does not occur, a TLB non-coincidence exception occurs in the 32-bit mode and an XTLB non-coincidence exception occurs in the 64-bit mode. If this happens, replace the contents of the TLB by software. Figure 2-12 outlines address translation. 27 µPD30700,30700L,30710 Figure 2-12. Outline of Address Translation y+8 y+1 y ASID x+1 x x–1 VPN 0 Offset Virtual address <1> A virtual address page number (VPN) is compared with VPN in TLB. <2> If the two VPNs coincide, a page frame number (PFN) indicating the high-order bits of a physical address is output to the selector. <3> If the least significant bit of VPN is 0, an even page is selected; if it is 1, an odd page is selected. The selected page is output to the high-order bits of the physical address. <4> The offset is output to the low-order bits of the physical address without via TLB. <1> 63 0 TLB <2> Selector x = 12, 14, 16, 18, 20, 22, 24 y = 31 (in 32-bit mode) 63 (in 64-bit mode) <3> <4> Physical address 40 x x–1 0 TLB entries are read or written by loading/storing the TLB entry indicated by the index register and the random register from or to the entry Hi, entry Lo1, Entry Lo0, and page mask registers. Figure 2-13 outlines TLB manipulation. Figure 2-13. Outline of TLB Manipulation Page mask register Entry Hi register Entry Lo1 register Entry Lo0 register Index register Random register 28 µPD30700,30700L,30710 2.6 Cache The VR10000 has a primary instruction cache and primary data cache. In addition, it has a secondary cache interface to connect an external secondary cache. 2.6.1 Primary cache (1) Primary instruction cache Here are the features of the primary instruction cache: • Internal cache memory • Capacity: 32K bytes • 16-word cache line • 2-way set associative • Physical index address • Physical tag check (2) Primary data cache Here are the features of the primary data cache. • Internal cache memory • Capacity: 32K bytes • 8-word cache line • 2-bank configuration • 2-way set associative • Non-Blocking method • Write back method • Physical index address • Physical tag check 2.6.2 Secondary cache The VR10000 can use an external secondary cache. The features of the secondary cache are as follows: • Capacity: 512K to 16M bytes • 16-/32-word cache line • 2-way set associative • Way prediction table • Write back method • Non-Blocking method • Physical index address • Physical tag check 29 µPD30700,30700L,30710 3. FPU INTERNAL ARCHITECTURE 3.1 Internal Function Block Figure 3-1 shows the internal block of the FPU. The FPU can execute all the floating-point instructions defined by MIPS ISA. Figure 3-1. Internal Block of FPU VR10000 internal bus 64 FP queue 64 64 FP register file FP addition 64 FP multiplication FP division + FP square root 64 64 64 Data cache Internal bus 3.2 FPU Registers (1) Floating-point general-purpose registers (FGR) These are physical general-purpose registers that can be directly accessed. Thirty-two of these registers are available. The bit length of each register differs depending on the content of the FR bit of the status register. (2) Floating-point registers (FPR) These are logical 64-bit registers that hold a floating-point value when a floating-point operation is executed. The number of these registers varies depending on the content of the FR bit of the status register. 30 µPD30700,30700L,30710 Figure 3-2. Registers of FPU (a) When FR bit = 0 (b) When FR bit = 1 (MIPS I, MIPS II) Floating-point registers (FPR) Floating-point general-purpose registers (FGR) 31 FPR0 (MIPS III, MIPS IV) Floating-point registers Floating-point (FPR) general-purpose registers (FGR) 0 63 0 (low-order) FGR0 FPR0 FGR0 (high-order) FGR1 FPR1 FGR1 (low-order) FGR2 FPR2 FGR2 (high-order) FGR3 FPR3 FGR3 (low-order) FGR28 FPR28 FGR28 (high-order) FGR29 FPR29 FGR29 (low-order) FGR30 FPR30 FGR30 (high-order) FGR31 FPR31 FGR31 FPR2 FPR28 FPR30 3.3 Data Format (1) Floating-point format The FPU supports IEEE754 floating-point operations of 32 bits (single precision) and 64 bits (double precision). (2) Fixed-point format A fixed-point value is calculated in the form of 2’s complement. 31 µPD30700,30700L,30710 4. INTERFACE 4.1 System Interface The I/O timing of the VR10000 is as follows: • Output starts changing at the rising edge of SysClk. • Input is latched at the rising edge of SysClk. The following two buses are used for system interfacing. • SysAD (63:0) : This bus transfers addresses and data. • SysCmd (11:0) : This bus transfers command data identifiers. Both SysAD and SysCmd are bidirectional buses and are driven by the VR10000 or external agent. Depending on the direction in which they are driven, these buses are in the following two statuses. • Master status : Driven by the VR10000 to issue a processor request. • Slave status : Driven by the external agent to issue an external request. The following two cycles are used depending on the information included in the SysAD bus. • Address cycle : A valid address is included in the SysAD bus. • Data cycle : Valid data is included in the SysAD bus. Next, the interface control signals are briefly explained. • SysReq : Signal used by the VR10000 to request the right to use the system interface. • SysGnt : Signal used by the external agent to grant the VR10000 the right to use the system interface. • SysRel : Asserted active when the master of the system interface releases the right of use. • SysRdRdy : Indicates that the external agent is ready to accept a processor read request and upgrade • SysWrRdy : Indicates that the external agent is ready to accept a processor write request and processor • SysVal : Asserted active when the master of the system interface outputs valid data to the SysAD and request. eliminate request. SysCmd buses. • SysState (2:0) : Signal used by the VR10000 to issue a coherent status request. • SysResp (4:0) : Signal used by the external agent to issue an external end response. • SysGblPerf : Signal used by the external agent to indicate that all processor requests have been completed. 4.1.1 Setting operating frequency of system interface The VR10000 can select the operating frequency of the system interface. The clock (PClk) for pipeline operation is generated based on the clock (SysClk) input from an external source. The factor by which SysClk is multiplied to generate PClk is set by using the BTMC interface at reset. For details, refer to SysAD (9:12) in Table 4-1 Mode Setting in Boot Time Mode. 32 µPD30700,30700L,30710 4.2 Secondary Cache Interface The VR10000 has a secondary cache control circuit, so that an external secondary cache memory can be connected. The VR10000 can also selects the operating frequency of the secondary cache interface. SCClk, at which the secondary cache is to operate, is generated based on the operating clock (PClk) of the VR10000. The factor by which SysClk is multiplied to generate PClk is set by using the BTMC interface at reset. For details, refer to SysAD (9:12) in Table 4-1 Mode Setting in Boot Time Mode. 4.3 Clock Interface 4.3.1 System interface clock and processor clock The VR10000 generates a processor clock (PClk), which is the internal operating clock, from the clock (SysClk and SysClk) input to the VR10000, by using the PLL. It always samples the SysClk and SysClk signals during operation, in order to check to see if the following expression is satisfied. PClk = SysClk × (SysClkDiv + 1)/2 Example Where SysClk = 50 MHz and SysClkDiv = 7 PClk = 50 × 8/2 = 200 MHz 4.3.2 Secondary cache clock The VR10000 supplies clocks for secondary cache (SCClk (5:0) and SCClk (5:0)) to the external secondary cache. SCClk (5:0) are generated from SysClk. The relation between SCClk (5:0) and SysClk can be expressed by the following expression. SCClk = SysClk × (SysClkDiv + 1)/(SCClkDiv + 1) Example Where SysClk = 50 MHz, SysClkDiv = 7, and SCClkDiv = 2 SCClk = 50 × 8/3 = 133 MHz 4.4 System Configuration Example Because the VR10000 employs a cluster bus, it can also support a multi-processor system. Examples of configuration of a uni-processor system and a multi-processor system are shown below. 4.4.1 Uni-processor system This system uses only one VR10000, as shown in Figure 4-1. 33 µPD30700,30700L,30710 Figure 4-1. Example of Configuration of Uni-Processor System External agent SysReq SysGnt SysRel SysRdRdy SysWrRdy Main memory, I/O SysCmd (11 : 0) SysCmdPar SysAD (63 : 0) SysADChk (7 : 0) SysVal SysState(2 : 0) SysStatePar SysStateVal SysResp (4 : 0) SysRespPar SysRespVal 34 VR10000 SysReq SysGnt SysRel SysRdRdy SysWrRdy SCTWr SCTCS SCTOE SCTag(25 : 0) SCTagChk(6 : 0) SCTWay SCTagLSBAddr SysCmd (11 : 0) SysCmdPar SC(A, B)Addr(18 : 0) SysAD (63 : 0) SysADChk (7 : 0) SysVal SysState (2 : 0) SysStatePar SysStateVal SCData (127 : 0) SysResp (4 : 0) SysRespPar SysRespVal SCDataChk (9 : 0) SC(A, B)DWr SC(A, B)DCS SC(A, B)DOE SC(A, B)DWay Secondary cache tag Wr CS OE Data Addr Addr Data Wr CS OE Secondary cache data µPD30700,30700L,30710 4.4.2 Multi-processor system Up to four VR10000s can be connected to the cluster bus. While a VR10000 stands by for a response after it has issued a request, it can receive up to four processings. Figure 4-2 shows an example of multi-processor system configuration. Figure 4-2. Example of Configuration of Multi-Processor System SysRel SysRdRdy SysWrRdy SysCmd (11 : 0) SysCmdPar SysAD (63 : 0) SysADChk (7 : 0) SysVal SysResp (4 : 0) SysRespPar SysRespVal VR10000 SysReq SysGnt SysRel SysReq0 SysGnt0 SysRdRdy SysWrRdy Main memory, I/O SysState0 (2 : 0) SysStatePar0 SysStateVal0 SysReq1 SysGnt1 SysState1 (2 : 0) SysStatePar1 SysStateVal1 Cluster bus Cluster controller SCTWr SCTCS SCTOE SCTag (25 : 0) SCTagChk (6 : 0) SCTWay SCTagLSBAddr SysCmd (11 : 0) SysCmdPar SC (A, B) Addr (18 : 0) SysAD (63 : 0) SysADChk (7 : 0) SysVal SysState (2 : 0) SysStatePar SysStateVal Secondary cache tag Wr CS OE Data Addr Secondary cache data Addr SC (A, B) DWay SCData (127 : 0) SCDataChk (9 : 0) SysResp (4 : 0) SC (A, B) DWr SysRespPar SC (A, B) DCS SysRespVal SC (A, B) DOE VR10000 SCTWr SysReq SCTCS SysGnt SCTOE SysRel SCTag (25 : 0) SysRdRdy SCTagChk (6 : 0) SysWrRdy SCTWay SCTagLSBAddr SysCmd (11 : 0) SysCmdPar SC (A, B) Addr (18 : 0) SysAD (63 : 0) SysADChk (7 : 0) SysVal Data Wr CS OE Secondary cache tag Wr CS OE Data Addr Secondary cache data Addr SysState (2 : 0) SysStatePar SysStateVal SC (A, B) DWay SysResp (4 : 0) SysRespPar SysRespVal SCDataChk (9 : 0) SC (A, B) DWr SC (A, B) DCS SC (A, B) DOE SCData (127 : 0) Data Wr CS OE 35 µPD30700,30700L,30710 4.5 BTMC Interface The operation of the VR10000 is set by the mode bit. The content of the mode bit is stored to the processor via SysAD (63:0) at power-ON reset or by cold reset sequence while SysGnt is active. The content of the mode bit that is set via SysAD (24:0) is stored to bits 24 through 0 of the config register. Table 4-1 shows the correspondence between the SysAD bus and mode setting in the boot time mode. Table 4-1. Mode Setting in Boot Time Mode (1/2) SysAD Mode Setting VR10000 VR12000 0:2 Kseg0CA: Kseg0 cache status 0, 1: RFU 2: Non-cacheable 3: Cacheable, non-coherent 4: Cacheable, coherent exclusive 5: Cacheable, coherent exclusive on write 6: RFU 7: Non-cacheable, accelerate 3, 4 DevNum: Processor number 5 CohPrcReqTar: Issuance destination of processor coherent request 0: External agent 1: All 6 PrcElmReq: Enables processor eliminate request 0: Disabled 1: Enabled 7, 8 PrcReqMax: Number of processor requests that can be kept pending on system bus 0: 1 1: 2 2: 3 3: 4 9 : 12 SysClkDiv: Multiple of PClk in respect to SysClk 0: RFU 1: × 1 2: × 1.5 3: × 2 4: × 2.5 5: × 3 6: × 3.5 7: × 4 8 to F: RFU 13 SCBlkSize: Line size of secondary cache 0: 16 words 1: 32 words 36 SysClkDiv: Multiple of PClk in respect to SysClk 0: RFU 1: RFU 2: RFU 3: × 2 4: × 2.5 5: × 3 6: × 3.5 7: × 4 8: × 4.5 9: × 5 A: × 5.5 B: × 6 C: × 7 D: × 8 E: × 9 F: × 10 µPD30700,30700L,30710 Table 4-1. Mode Setting in Boot Time Mode (2/2) SysAD Mode Setting VR10000 14 SCCorEn: ECC error correction of secondary cache data 0: Re-access 1: Always access 15 MemEnd: Endian 0: Little endian 1: Big endian 16 : 18 SCSize: Secondary cache size 0: 512K 1: 1M bytes 2: 2M bytes 3: 4M bytes 4: 8M bytes 5: 16M bytes 6 and 7: RFU 19 : 21 SCClkDiv: Multiple of PClk in respect to SCClk 0: RFU 1: × 1 2: × 1.5 3: × 2 4: × 2.5 5: × 3 6 and 7: RFU VR12000 SCClkDiv: Multiple of PClk in respect to SCClk 0: RFU 1: × 1 2: × 1.5 3: × 2 4: × 2.5 5: × 3 6: RFU 7: × 4 DSDNote 1: DSD (Delay Speculative Dirty) mode 0 to 3: RFU 4: DSD 5 to 7: RFU 22 : 24 RFU 25 : 28 SCClkTap: Internal secondary cache: Phase comparison of clock and SysClk (5:0), SysClk (5:0) 0: Same phase 1: SCClk leads 1/12PClk cycle 2: SCClk leads 2/12PClk cycle 3: SCClk leads 3/12PClk cycle 4: SCClk leads 4/12PClk cycle 5: SCClk leads 5/12PClk cycle 6 and 7: Undefined 8: SCClk leads 6/12PClk cycle 9: SCClk leads 7/12PClk cycle A: SCClk leads 8/12PClk cycle B: SCClk leads 9/12PClk cycle C: SCClk leads 10/12PClk cycle D: SCClk leads 11/12PClk cycle E and F: Undefined 29 RFU 30 ODrainSys: Processing of system interface signalNote 2 31 : 63 RFU Notes 1. Refer to 4.6 DSD (Delay Speculative Dirty) mode. 2. SysReq, SysRel, SysCmd (11:0), SysCmdPar, SysAD (63: 0), SysADChk (7:0), SysVal, SysState (2:0), SysStatePar, SysStateVal, SysCorErr, SysUncErr 37 µPD30700,30700L,30710 4.6 DSD (Delay Speculative Dirty) Mode (VR12000 only) The DSD (Delay Speculative Dirty) mode prevents a dirty bit from being set by speculative storing. Bit 24 in the boot mode coincides with bit 24 of the config register and sets the DSD mode in the kernel mode and supervisor mode. However, the DSD mode can be also executed in the user mode by setting bit 24 of the status register. Bit 24 of the config register is read-only and can be set only during boot time. When the DSD mode has been set, the dirty bit of the secondary cache block of the VR12000 are not set until the store instruction has become the oldest instruction in the active list and ready to be executed (the dirty bit may be set by an interrupt (and the store instruction is no longer in the speculative status), but the store instruction is not immediately completed). 4.6.1 DSD mode delay The DSD mode delays setting of a dirty bit but slightly slows down the processing speed. This slowdown occurs each time a block is refilled from the main memory if it is necessary to set the dirty bit. It takes 10 cycles to set the dirty bit. During this time, the processor executes the other instructions in parallel. Once a block becomes dirty in the secondary cache, this mode does not affect the performance. 4.6.2 Secondary cache status in DSD mode The secondary cache in the DSD mode enters the Clean Exclusive status if a miss hit occurs when the store instruction is no longer the oldest instruction in the pipeline. Because the cache is upgraded to the Clean Exclusive status immediately after a hit occurs in a line in the Shared status, bus manipulation is started in the speculative status (the processing speed relatively slows down). 4.6.3 Other features The VR12000 delays loading of the non-coherent cache until this instruction becomes the oldest, regardless of the DSD mode. This is because speculative loading that accesses an address of the xkphys area not mapped as a noncoherent cache may send data to the secondary cache without appropriate coherency check. 38 µPD30700,30700L,30710 5. INTERNAL/EXTERNAL CONTROL FUNCTIONS 5.1 Reset Function The following three types of reset functions are available: • Power-ON reset • Cold reset • Software reset Cold reset and software reset are executed with the power turned on. As a result of reset, the internal status is initialized. However, software reset does not affect the internal clock and secondary cache clock. 5.1.1 Power-ON reset and cold reset Power-ON reset and cold reset are executed when the SysGnt and SysRespVal signals are deasserted inactive and the SysReset signal is asserted active. During reset, 64-bit data is received from the mode bit, and the internal status of the processor is initialized (for further information, refer to 4.5 BTMC Interface). 5.1.2 Software reset Software reset is executed when the SysGnt and SysRespVal signals are deasserted inactive and the SysReset signal is asserted active. As a result, all the statuses of the external interface are initialized, but the internal clock and secondary cache clock continues operating. Like the primary and secondary cache, the contents of the CP0 and FPU registers are retained. 5.2 Interrupt Functions There are two major types of interrupt requests: • Maskable interrupt request • Non-maskable interrupt (NMI) request (1) Maskable interrupt requests These interrupts can be masked by using the status register (each interrupt can be serviced independently, or all interrupts can be serviced in batch). There is no priority assigned to the interrupts. (a) Hardware interrupt requests (five sources) These interrupts are acknowledged when the corresponding external interrupt request is issued. (b) Software interrupt requests (two sources) These interrupts are acknowledged when the IP0 and IP1 bits of the cause register are set. (c) Timer interrupt request (1 source) This interrupt is acknowledged when the IP7 bit of the cause register is set because the value of the count register has become equal to the value of the compare register, or when one of the two performance counters has overflown. (2) NMI request (1 source) This is an interrupt request that cannot be masked and is acknowledged when the SysNMI signal is asserted active. 39 µPD30700,30700L,30710 5.3 JTAG Function The JTAG boundary scan function is a mechanism to test mutual connections among the VR10000 and other components, and not to test the processor itself. As the minimum functions of JTAG, the following functions are provided to the VR10000. Functionally, however, the VR10000 only has the external test function of the JTAG boundary scan register. • TAP controller • JTAG instruction register • JTAG bypass register • JTAG boundary scan register 40 µPD30700,30700L,30710 6. INSTRUCTION SET The instructions of the VR10000 consists of 1 word (32 bits) located at a word boundary, and come in three formats as shown in Figure 6-1. Because only three types of instructions are provided, decoding instructions is simplified. Complicated operations and addressing modes that are not so often used are implemented by a compiler. 6.1 Instruction Formats The instruction formats of the VR10000 are shown below. Figure 6-1. CPU Instruction Format I - type (immediate format) 31 26 25 op 21 20 rs 16 15 0 rt immediate J - type (jump format) 31 26 25 0 op target R - type (register format) 31 26 25 op 21 20 rs 16 15 rt 11 10 rd 6 5 sa op 6-bit instruction code rs 5-bit source register specifier rt 5-bit target (source/destination) register, or branch condition immediate 16-bit immediate value, branch displacement, or address displacement target 26-bit unconditional branch target address rd 5-bit destination register specifier sa 5-bit shift amount funct 6-bit function field 0 funct 6.2 CPU Instruction Set List The CPU instructions of the VR10000 can be classified into an instruction set common to all the VR series processors (ISA: Instruction Set Architecture), instruction set that is executed by the VR4000 series and VR10000 series (expanded ISA), and system control coprocessor instruction set. Tables 6-1 through 6-4 list each instruction set. 41 µPD30700,30700L,30710 Table 6-1. CPU Instruction Set: MIPS I (1/2) Instruction Description Load/store instruction op Format base rt offset LB Load Byte LB rt, offset (base) LBU Load Byte Unsigned LBU rt, offset (base) LH Load Halfword LH rt, offset (base) LHU Load Halfword Unsigned LHU rt, offset (base) LW Load Word LW rt, offset (base) LWL Load Word Left LWL rt, offset (base) LWR Load Word Right LWR rt, offset (base) SB Store Byte SB rt, offset (base) SH Store Halfword SH rt, offset (base) SW Store Word SW rt, offset (base) SWL Store Word Left SWL rt, offset (base) SWR Store Word Right SWR rt, offset (base) ALU immediate instruction op rs rt offset ADDI Add Immediate ADDI rt, rs, immediate ADDIU Add Immediate Unsigned ADDIU rt, rs, immediate SLTI Set On Less Than Immediate SLTI rt, rs, immediate SLTIU Set On Less Than Immediate Unsigned SLTIU rt, rs, immediate ANDI And Immediate ANDI rt, rs, immediate ORI Or Immediate ORI rt, rs, immediate XORI Exclusive Or Immediate XORI rt, rs, immediate LUI Load Upper Immediate LUI rt, immediate 3-operand type instruction op rs rt rd sa funct ADD Add ADD rd, rs, rt ADDU Add Unsigned ADDU rd, rs, rt SUB Subtract SUB rd, rs, rt SUBU Subtract Unsigned SUBU rd, rs, rt SLT Set On Less Than SLT rd, rs, rt SLTU Set On Less Than Unsigned SLTU rd, rs, rt AND And AND rd, rs, rt OR Or OR rd, rs, rt XOR Exclusive Or XOR rd, rs, rt NOR Nor NOR rd, rs, rt Shift instruction op rs rt rd sa funct SLL Shift Left Logical SLL rd, rt, sa SRL Shift Right Logical SRL rd, rt, sa SRA Shift Right Arithmetic SRA rd, rt, sa SLLV Shift Left Logical Variable SLLV rd, rt, rs SRLV Shift Right Logical Variable SRLV rd, rt, rs SRAV Shift Right Arithmetic Variable SRAV rd, rt, rs 42 µPD30700,30700L,30710 Table 6-1. CPU Instruction Set: MIPS I (2/2) Instruction Description Multiplication/division instruction Format op rs rt rd sa funct MULT Multiply MULT rs, rt MULTU Multiply Unsigned MULTU rs, rt DIV Divide DIV rs, rt DIVU Divide Unsigned DIVU rs, rt MFHI Move From HI MFHI rd MFLO Move From LO MFLO rd MTHI Move To HI MTHI rs MTLO Move To LO MTLO rs Jump instruction (1) op target J Jump J target JAL Jump And Link JAL target Jump instruction (2) op rs rt rd sa funct JR Jump Register JR rs JALR Jump And Link Register JALR rs JALR rs, rd Branch instruction (1) BEQ op rs rt offset Branch On Equal BEQ rs, rt, offset BNE Branch On Not Equal BNE rs, rt, offset BLEZ Branch On Less Than Or Equal To Zero BLEZ rs, offset BGTZ Branch On Greater Than Zero BGTZ rs, offset Branch instruction (2) REGIMM rs sub offset BLTZ Branch On Less Than Zero BLTZ rs, offset BGEZ Branch On Greater Than Or Equal to Zero BGEZ rs, offset BLTZAL Branch On Less Than Zero And Link BLTZAL rs, offset BGEZAL Branch On Greater Than Or Equal To Zero And Link BGEZAL rs, offset Special instruction SPECIAL rs rt rd sa SYSCALL System Call SYSCALL BREAK Breakpoint BREAK Coprocessor instruction (1) op base rt funct offset LWCz Load Word To Coprocessor z LWCz rt, offset (base) SWCz Store Word From Coprocessor z SWCz rt, offset (base) COPz cofun Coprocessor instruction (2) COPz Coprocessor z Operation COPz CO cofun 43 µPD30700,30700L,30710 Table 6-2. CPU Instruction Set: MIPS II Instruction Description Load/store instruction op Format base rt offset LL Load Linked LL rt, offset (base) SC Store Conditional SC rt, offset (base) Branch instruction (1) op rs rt offset BEQL Branch On Equal Likely BEQL rs, rt, offset BNEL Branch On Not Equal Likely BNEL rs, rt, offset BLEZL Branch On Less Than Or Equal To Zero Likely BLEZL rs, offset BGTZL Branch On Greater Than Zero Likely BGTZL rs, offset Branch instruction (2) REGIMM rs sub offset BLTZL Branch On Less Than Zero Likely BLTZL rs, offset BGEZL Branch On Greater Than Or Equal To Zero Likely BGEZL rs, offset BLTZALL Branch On Less Than Zero And Link Likely BLTZALL rs, offset BGEZALL Branch On Greater Than Or Equal To Zero And Link Likely BGEZALL rs, offset Exception instruction SPECIAL rs rt rd sa funct TGE Trap If Greater Than Or Equal TGE rs, rt TGEU Trap If Greater Than Or Equal Unsigned TGEU rs, rt TLT Trap If Less Than TLT rs, rt TLTU Trap If Less Than Unsigned TLTU rs, rt TEQ Trap If Equal TEQ rs, rt TNE Trap If Not Equal TNE rs, rt Exception immediate instruction REGIMM rs sub immediate TGEI Trap If Greater Than Or Equal Immediate TGEI rs, immediate TGEIU Trap If Greater Than Or Equal Immediate Unsigned TGEIU rs, immediate TLTI Trap If Less Than Immediate TLTI rs, immediate TLTIU Trap If Less Than Immediate Unsigned TLTIU rs, immediate TEQI Trap If Equal Immediate TEQI rs, immediate TNEI Trap If Not Equal Immediate TNEI rs, immediate Special instruction SYNC SPECIAL rs rt Synchronize Coprocessor instruction rd sa funct SYNC op base rt offset LDCz Load Doubleword To Coprocessor z LDCz rt, offset (base) SDCz Store Doubleword From Coprocessor z SDCz rt, offset (base) 44 µPD30700,30700L,30710 Table 6-3. CPU Instruction Set: MIPS III Instruction Description Load/store instruction op Format base rt offset LD Load Doubleword LD rt, offset (base) LDL Load Doubleword Left LDL rt, offset (base) LDR Load Doubleword Right LDR rt, offset (base) LLD Load Linked Doubleword LLD rt, offset (base) LWU Load Word Unsigned LWU rt, offset (base) SCD Store Conditional Doubleword SCD rt, offset (base) SD Store Doubleword SD rt, offset (base) SDL Store Doubleword Left SDL rt, offset (base) SDR Store Doubleword Right SDR rt, offset (base) ALU immediate instruction op rs rt immediate DADDI Doubleword Add Immediate DADDI rt, rs, immediate DADDIU Doubleword Add Immediate Unsigned DADDIU rt, rs, immediate 3-operand type instruction op rs rt rd sa DADD Doubleword Add DADDU Doubleword Add Unsigned DADDU rd, rs, rt DSUB Doubleword Subtract DSUB rd, rs, rt DSUBU Doubleword Subtract Unsigned DSUBU rd, rs, rt Shift instruction DADD funct op rs rt rd sa rd, rs, rt funct DSLL Doubleword Shift Left Logical DSLL rd, rt, sa DSRL Doubleword Shfit Right Logical DSRL rd, rt, sa DSRA Doubleword Shift Right Arithmetic DSRA rd, rt, sa DSLLV Doubleword Shift Left Logical Variable DSLLV rd, rt, rs DSRLV Doubleword Shift Right Logical Variable DSRLV rd, rt, rs DSRAV Doubleword Shift Right Arithmetic Variable DSRAV rd, rt, rs DSLL32 Doubleword Shift Left Logical + 32 DSLL32 rd, rt, sa DSRL32 Doubleword Shift Right Logical + 32 DSRL32 rd, rt, sa DSRA32 Doubleword Shift Right Arithmetic +32 DSRA32 rd, rt, sa Multiplication/division instruction op rs rt rd sa funct DMULT Doubleword Multiply DMULT rs, rt DMULTU Doubleword Multiply Unsigned DMULTU rs, rt DDIV Doubleword Divide DDIV rs, rt DDIVU Doubleword Divide Unsigned DDIVU rs, rt 45 µPD30700,30700L,30710 Table 6-4. CPU Instruction Set: MIPS IV Instruction Description 3-operand type instruction op Format rs rt rd sa funct MOVN Move Conditional On Not Zero MOVN rd, rs, rt MOVZ Move Conditional On Zero MOVZ rd, rs, rt Prefetch instruction PREF op base hint offset Prefetch PREF hint, offset (base) 6.3 FPU Instruction Set List All the FPU instructions are 32 bits long and located at a word boundary. Tables 6-5 through 6-8 list the FPU instruction set. Table 6-5. FPU Instruction Set: MIPS I Instruction Description Load/store instruction op Format base ft offset LWC1 Load Word To FPU LWC1 ft, offset (base) SWC1 Store Word From FPU SWC1 ft, offset (base) Transfer instruction COP1 sub rt fs 0 MTC1 Move Word To FPU MTC1 rt, fs MFC1 Move Word From FPU MFC1 rt, fs CTC1 Move Control Word To FPU CTC1 rt, fs CFC1 Move Control Word From FPU CFC1 rt, fs Conversion instruction COP1 fmt 0 fs fd funct CVT.S.fmt Floating-point Convert To Single Floating-point Format CVT.S.fmt fd, fs CVT.D.fmt Floating-point Convert To Double Floating-point Format CVT.D.fmt fd, fs CVT.W.fmt Floating-point Convert To Single Fixed-point Format CVT.W.fmt fd, fs Operation instruction ADD.fmt COP1 fmt ft fs Floating-point Add fd funct ADD.fmt fd, fs, ft SUB.fmt Floating-point Subtract SUB.fmt fd, fs, ft MUL.fmt Floating-point Multiply MUL.fmt fd, fs, ft DIV.fmt Floating-point Divide DIV.fmt fd, fs, ft ABS.fmt Floating-point Absolute Value ABS.fmt fd, fs MOV.fmt Floating-point Move MOV.fmt fd, fs NEG.fmt Floating-point Negate NEG.fmt fd, fs Compare instruction C.cond.fmt COP1 fmt ft fs Floating-point Compare FPU branch instruction cc 0 funct C.cond.fmt COP1 BC cc 0 cc, fs, ft offset BC1T Branch On FPU True BC1T cc, offset BC1F Branch On FPU False BC1F cc, offset 46 µPD30700,30700L,30710 Table 6-6. FPU Instruction Set: MIPS II Instruction Description Load/store instruction op Format base ft offset LDC1 Load Doubleword To FPU LDC1 ft, offset (base) SDC1 Store Doubleword From FPU SDC1 ft, offset (base) Conversion instruction COP1 fmt 0 fs fd funct ROUND.W.fmt Floating-point Round To Single Fixed-point Format ROUND.W.fmt fd, fs TRUNC.W.fmt Floating-point Truncate To Single Fixed-point Format TRUNC.W.fmt fd, fs CEIL.W.fmt Floating-point Ceiling To Single Fixed-point Format CEIL.W.fmt fd, fs FLOOR.W.fmt Floating-point Floor To Single Fixed-point Format FLOOR.W.fmt fd, fs Operation instruction SQRT.fmt COP1 fmt ft fs Floating-point Square Root fd funct SQRT.fmt FPU branch instruction COP1 BC cc 0 fd, fs offset BC1TL Branch On FPU True Likely BC1TL cc, offset BC1FL Branch On FPU False Likely BC1FL cc, offset Table 6-7. FPU Instruction Set: MIPS III Instruction Description Transfer instruction COP1 Format sub rt fs 0 DMTC1 Doubleword Move To FPU DMTC1 rt, fs DMFC1 Doubleword Move From FPU DMFC1 rt, fs Conversion instruction COP1 fmt 0 fs fd funct CVT.S.fmt Floating-point Convert To Single Floating-point Format CVT.S.fmt fd, fs CVT.D.fmt Floating-point Convert To Double Floating-point Format CVT.D.fmt fd, fs CVT.L.fmt Floating-point Convert To Long Fixed-point Format CVT.L.fmt fd, fs ROUND.L.fmt Floating-point Round To Long Fixed-point Format ROUND.L.fmt fd, fs TRUNC.L.fmt Floating-point Truncate To Long Fixed-point Format TRUNC.L.fmt fd, fs CEIL.L.fmt Floating-point Ceiling To Long Fixed-point Format CEIL.L.fmt fd, fs FLOOR.L.fmt Floating-point Floor To Long Fixed-point Format FLOOR.L.fmt fd, fs 47 µPD30700,30700L,30710 Table 6-8. FPU Instruction Set: MIPS IV Instruction Description Load index instruction op Format base index 0 fd funct LWXC1 Load Word Indexed To Floating-point LWXC1 fd, index (base) LDXC1 Load Doubleword Indexed To Floating-point LDXC1 fd, index (base) Store index instruction op base index fs 0 funct SWXC1 Store Word Indexed From Floating-point SWXC1 fs, index (base) SDXC1 Store Doubleword Indexed From Floating-point SDXC1 fs, index (base) Conversion instruction COP1 fmt 0 fs fd funct RECIP.fmt Reciprocal Approximation RECIP.fmt fd, fs RSQRT.fmt Reciprocal Square Root Approximation RSQRT.fmt fd, fs Multiplication instruction (1) COP1 fmt ft fs fd funct MSUB.fmt Floating-point Multiply Subtract MSUB.fmt fd, fr, fs, ft NMSUB.fmt Floating-point Negative Multiply Subtract NMSUB.fmt fd, fr, fs, ft MADD.fmt Floating-point Multiply Add MADD.fmt fd, fr, fs, ft NMADD.fmt Floating-point Negative Multiply Add NMADD.fmt fd, fr, fs, ft MOVN.fmt Floating-point Move Conditional On Not Zero MOVN.fmt fd, fs, ft MOVZ.fmt Floating-point Move Conditional On Zero MOVZ.fmt fd, fs, ft Operation instruction (2) COP1 fmt cc 0 fs fd funct MOVF.fmt Floating-point Move Conditional On FPU False MOVF.fmt fd, fs, cc MOVT.fmt Floating-point Move Conditional On FPU True MOVT.fmt fd, fs, cc Compare instruction C.cond.fmt COP1 fmt ft fs Floating-point Compare FPU branch instruction cc 0 funct C.cond.fmt COP1 BC cc 0 cc, fs, ft offset BC1T Branch On FPU True BC1T cc, offset BC1F Branch On FPU False BC1F cc, offset BC1TL Branch On FPU True Likely BC1TL cc, offset BC1FL Branch On FPU False Likely BC1FL cc, offset Conditional transfer instruction op rs cc tf rd funct MOVF Move Conditional On FPU False MOVF rd, rs, cc MOVT Move Conditional On FPU True MOVT rd, rs, cc Prefetch instruction PREFX 48 op Prefetch Indexed base index hint 0 PREFX funct hint, index (base) µPD30700,30700L,30710 6.4 Delay of Instruction (1) Delay of integer instructions Table 6-9 shows execution delay of the integer instructions. For details of each instruction, refer to VR5000, VR10000 User’s Manual – Instruction. Table 6-9. Integer Operation Instruction Delay Time Instruction Type Execution Unit PClk Repeat Rate 1 1 1 1 1 1 Conditional Branch 1 1 Conditional Move 1 1 ADD, SET, SUB, Logical ALU1, ALU2 MFHI, MTHI, MFLO, MTLO Shift, LUI ALU1 MULT ALU2 Remark 5/6 6 Delay of LO/HI MULTU 6/7 7 Delay of LO/HI DMULT 9/10 10 Delay of LO/HI DMULTU 10/11 11 Delay of LO/HI DIV, DIVU 34/35 35 Delay of LO/HI DDIV, DDIVU 66/67 67 Delay of LO/HI Load (except for CP1 instruction) Load/store Store 2 1 In the case of cache hit — 1 In the case of cache hit (2) Delay of floating-point instructions Table 6-10 shows the execution delay of the floating-point instruction. For details of each instruction, refer to VR5000, VR10000 User’s Manual – Instruction. Table 6-10. Floating-Point Instruction Delay Time Instruction Type Execution Unit PClk Repeat Rate Remark MTC1, DMTC1 ALU1 3 1 ADD, SUB, ABS, NEG, ROUND, TRUNC, CEIL, FLOOR, C.cond Fp adder 2 1 CVT.S.W, CVT.S.L 4 2 CVT (other than above) 2 1 2 1 MFC1, DMFC1 2 1 Conditional MOVE/CVT.S.L 2 1 DIV.S, RECIP.S 12 14 DIV.D, RECIP.D 19 21 SQRT.S 18 20 SQRT.D 33 35 RSQRT.S 30 20 RSQRT.D 52 35 2/4 1 “2” if other MADD instruction uses operation result 3 1 In the case of cache hit MUL Fp multiplier MADD Fp adder + Fp multiplier LWC1, LDC1, LWXC1, LDXC1 Load/store Average value of repeat rate 49 µPD30700,30700L,30710 7. ELECTRICAL SPECIFICATIONS (1) µPD30700RS-180 and 30700RS-200 Absolute Maximum Ratings (TA = 25 °C) Parameter Symbol Supply voltage VDD Input voltage VI Condition Pulse of less than 10 ns Storage temperature Tstg Rating Unit –0.5 to +3.8 V –0.5 to VDD + 0.3 V –1.5 to VDD + 0.3 V –40 to +125 °C Cautions 1. Do not short-circuit two or more outputs at the same time. 2. If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Use the product(s) with these rated values never exceeded. The specifications and conditions shown in DC Characteristics and AC Characteristics below are the range in which the product(s) operate normally and the quality of the product is guaranteed. Operating Case Temperature (VDD = 3.3 V ±0.165 V) Parameter Symbol Operating case temperature TC 50 Condition Rating Unit 0 to 70 °C µPD30700,30700L,30710 DC Characteristics (TC = 0 to 70 °C, VDD = 3.3 V ±0.165 V) (a) Common to CMOS/TTL and HSTL Parameter Symbol Condition MIN. MAX. Unit Input capacitance Cin 5 pF Output capacitance Cout 7 pF Power consumption PD 200 MHz (VDD = 3.3 V) 30 W 180 MHz (VDD = 3.3 V) 27 W Input leakage power ILI ±10 µA I/O leakage current ILIO ±10 µA MIN. MAX. Unit 3.135 3.465 V 1.2 1.6 V (b) CMOS/TTL Parameter Output supply Input supply Symbol voltageNote 1 VDDQ voltageNote 2 Condition VDDQ = VDD VREF High-level output voltage VOH VDD = MIN., IOH = –4 mA Low-level output voltage VOL VDD = MAX., IOL = 4 mA High-level input voltage VIH Low-level input voltage VIL 2.4 V 0.4 V 2.0 VDD + 0.3 V –0.5 +0.8 V MIN. MAX. Unit VDDQ 1.4 1.6 V VREF 0.65 0.75 V Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins. 2. VREF is applied to the VrefSC and VrefSys pins. (c) HSTL Parameter Output supply Input supply Symbol voltageNote 1 voltageNote 2 High-level output threshold voltageNote 3 Low-level output threshold voltageNote 3 Condition VOH IOH = –4 mA VOL IOL = 4 mA VDDQ/2 + 0.3 V VDDQ/2 – 0.3 V VREF + 0.1 VDD + 0.3 V VIL –0.3 VDD – 0.1 V VDIH VDIL + 0.8 VDD + 0.3 V VDIL –0.3 VDIH – 0.8 V High-level differential input threshold voltage 1Note 4 VIH Low-level differential input threshold voltage 1Note 4 High-level differential input threshold voltage 2Note 5 Low-level differential input threshold voltage 2Note 5 Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins. 2. VREF is applied to the VrefSC and VrefSys pins. 3. The VR10000 supports 1a and 1b of the HSTL specifications of SGI. 4. Applied to the input pins other than SysClk and SysClk. 5. Applied to the SysClk and SysClk pins. 51 µPD30700,30700L,30710 AC Characteristics (TC = 0 to 70 °C, VDD = 3.3 V ±0.165 V) Clock parameter Parameter Symbol Condition MIN. MAX. Unit System clock high-level width tCH tCR, tCF ≤ 2.0 ns 0.5 ns System clock low-level width tCL tCR, tCF ≤ 2.0 ns 0.5 ns 200-MHz model 50 200 MHz 180-MHz model 45 180 MHz 200-MHz model 5 20 ns 180-MHz model 5.56 22.2 ns tji ±125 ps tjo ±500 ps System clock rise time tCR 2.0 ns System clock fall time tCF 2.0 ns System clock frequencyNotes 1,2 System clock cycleNotes 1,2 Input system clock jitter Output system clock jitterNote 3 tCP Notes 1. The operation of the VR10000 is guaranteed only when PLL operates. 2. The operation is guaranteed when the internal operating frequency is 100 MHz or higher. 3. Changes between clock edges are undefined. 52 µPD30700,30700L,30710 System Interface Parameter (a) CMOS/TTL Parameter Symbol Condition MIN. MAX. Unit 2.0 ns Data output delay time tDO Data input setup time tDS 1.0 ns Data input hold time tDH 1.0 ns (b) HSTL Parameter Symbol Condition MIN. MAX. Unit 1.5 ns Data output delay time tDO Data input setup time tDS 1.0 ns Data input hold time tDH 1.0 ns Secondary Cache Tag Interface Parameter Applied to SCTag (25:0) and SCTagChk (6:0) (a) CMOS/TTL Parameter Symbol Condition MIN. MAX. Unit 2.0 ns Data output delay time tSDO Data input setup time tSDS 1.5 ns Data input hold time tSDH 0.5 ns (b) HSTL Parameter Symbol Condition MIN. MAX. Unit 1.5 ns Data output delay time tSDO Data input setup time tSDS 1.5 ns Data input hold time tSDH 0.5 ns 53 µPD30700,30700L,30710 (2) µPD30700LRS-225 and 30700LRS-250 (preliminary) Absolute Maximum Ratings (TA = 25 °C) Parameter Symbol Supply voltage VDD Input voltage VI Condition Pulse of less than 10 ns Storage temperature Tstg Rating Unit –0.5 to +3.3 V –0.5 to VDD + 0.3 V –1.5 to VDD + 0.3 V –40 to +125 °C Cautions 1. Do not short-circuit two or more outputs at the same time. 2. If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Use the product(s) with these rated values never exceeded. The specifications and conditions shown in DC Characteristics and AC Characteristics below are the range in which the product(s) operate normally and the quality of the product is guaranteed. Operating Case Temperature (VDD = 2.6 V ±0.1 V) Parameter Symbol Operating case temperature TC 54 Condition Rating Unit 0 to 70 °C µPD30700,30700L,30710 DC Characteristics (TC = 0 to 70 °C, VDD = 2.6 V ±0.1 V) (a) Common to CMOS/TTL and HSTL Parameter Symbol Condition MIN. MAX. Unit Input capacitance Cin 5 pF Output capacitance Cout 7 pF Power consumption PD 250 MHz (VDD = 2.6 V) 20 W 225 MHz (VDD = 2.6 V) 17 W Input leakage power ILI ±10 µA I/O leakage current ILIO ±10 µA MIN. MAX. Unit 2.5 2.7 V 1.2 1.6 V (b) CMOS/TTL Parameter Output supply Input supply Symbol voltageNote 1 VDDQ voltageNote 2 Condition VDDQ = VDD VREF High-level output voltage VOH VDD = MIN., IOH = –4 mA Low-level output voltage VOL VDD = MAX., IOL = 4 mA High-level input voltage VIH Low-level input voltage VIL 2.4 V 0.4 V 2.0 VDD + 0.3 V –0.5 +0.8 V MIN. MAX. Unit VDDQ 1.4 1.6 V VREF 0.65 0.75 V Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins. 2. VREF is applied to the VrefSC and VrefSys pins. (c) HSTL Parameter Output supply Input supply Symbol voltageNote 1 voltageNote 2 High-level output threshold voltageNote 3 Low-level output threshold voltageNote 3 Condition VOH IOH = –4 mA VOL IOL = 4 mA VDDQ/2 + 0.3 V VDDQ/2 – 0.3 V VREF + 1 VDD + 0.3 V VIL –0.3 VDD – 0.1 V VDIH VDIL + 0.8 VDD + 0.3 V VDIL –0.3 VDIH – 0.8 V High-level differential input threshold voltage 1Note 4 VIH Low-level differential input threshold voltage 1Note 4 High-level differential input threshold voltage 2Note 5 Low-level differential input threshold voltage 2Note 5 Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins. 2. VREF is applied to the VrefSC and VrefSys pins. 3. The VR10000 supports 1a and 1b of the HSTL specifications of SGI. 4. Applied to the input pins other than SysClk and SysClk. 5. Applied to the SysClk and SysClk pins. 55 µPD30700,30700L,30710 AC Characteristics (TC = 0 to 70 °C, VDD = 2.6 V ±0.1 V) Clock parameter Parameter Symbol Condition MIN. MAX. Unit System clock high-level width tCH tCR, tCF ≤ 2.0 ns 0.5 ns System clock low-level width tCL tCR, tCF ≤ 2.0 ns 0.5 ns 250-MHz model 62.5 250 MHz 225-MHz model 56.3 225 MHz 250-MHz model 4 16 ns 225-MHz model 4.44 17.8 ns tji ±125 ps tjo ±500 ps System clock rise time tCR 2.0 ns System clock fall time tCF 2.0 ns System clock frequencyNotes 1, 2 System clock cycleNotes 1, 2 Input system clock jitter Output system clock jitterNote 3 tCP Notes 1. The operation of the VR10000 is guaranteed only when PLL operates. 2. The operation is guaranteed when the internal operating frequency is 100 MHz or higher. 3. Changes between clock edges are undefined. 56 µPD30700,30700L,30710 System Interface Parameter (a) CMOS/TTL Parameter Symbol Condition MIN. MAX. Unit 2.0 ns Data output delay time tDO Data input setup time tDS 1.0 ns Data input hold time tDH 1.0 ns (b) HSTL Parameter Symbol Condition MIN. MAX. Unit 1.5 ns Data output delay time tDO Data input setup time tDS 1.0 ns Data input hold time tDH 1.0 ns Secondary Cache Tag Interface Parameter Applied to SCTag (25:0) and SCTagChk (6:0) (a) CMOS/TTL Parameter Symbol Condition MIN. MAX. Unit 2.0 ns Data output delay time tSDO Data input setup time tSDS 1.5 ns Data input hold time tSDH 0.5 ns (b) HSTL Parameter Symbol Condition MIN. MAX. Unit 1.5 ns Data output delay time tSDO Data input setup time tSDS 1.5 ns Data input hold time tSDH 0.5 ns 57 µPD30700,30700L,30710 (3) µPD30710RS-300 (preliminary) Absolute Maximum Ratings (TA = 25 °C) Parameter Symbol Supply voltage VDD Input voltage VI Condition Pulse of less than 10 ns Storage temperature Tstg Rating Unit –0.5 to +3.3 V –0.5 to VDD + 0.3 V –1.5 to VDD + 0.3 V –40 to +125 °C Cautions 1. Do not short-circuit two or more outputs at the same time. 2. If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Use the product(s) with these rated values never exceeded. The specifications and conditions shown in DC Characteristics and AC Characteristics below are the range in which the product(s) operate normally and the quality of the product is guaranteed. Operating Case Temperature (VDD = 2.6 V ±0.1 V) Parameter Symbol Operating case temperature TC 58 Condition Rating Unit 25 to 70 °C µPD30700,30700L,30710 DC Characteristics (TC = 25 to 70 °C, VDD = 2.6 V ±0.1 V) (a) Common to CMOS/TTL and HSTL Parameter Symbol Condition MIN. MAX. Unit Input capacitance Cin 5 pF Output capacitance Cout 7 pF Power consumption PD 30 W Input leakage power ILI ±10 µA I/O leakage current ILIO ±10 µA MIN. MAX. Unit 2.5 2.7 V 1.2 1.6 V 300 MHz (VDD = 2.6 V) (b) CMOS/TTL Parameter Output supply Input supply Symbol voltageNote 1 VDDQ voltageNote 2 Condition VDDQ = VDD VREF High-level output voltage VOH VDD = MIN., IOH = –4 mA Low-level output voltage VOL VDD = MAX., IOL = 4 mA High-level input voltage VIH Low-level input voltage VIL 2.4 V 0.4 V 2.0 VDD + 0.3 V –0.5 +0.8 V MIN. MAX. Unit VDDQ 1.4 1.6 V VREF 0.65 0.75 V Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins. 2. VREF is applied to the VrefSC and VrefSys pins. (c) HSTL Parameter Output supply Input supply Symbol voltageNote 1 voltageNote 2 High-level output threshold voltageNote 3 Low-level output threshold voltageNote 3 Condition VOH IOH = –4 mA VOL IOL = 4 mA VDDQ/2 + 0.3 V VDDQ/2 – 0.3 V VREF + 0.1 VDD + 0.3 V VIL –0.3 VDD – 0.1 V VDIH VDIL + 0.8 VDD + 0.3 V VDIL –0.3 VDIH – 0.8 V High-level differential input threshold voltage 1Note 4 VIH Low-level differential input threshold voltage 1Note 4 High-level differential input threshold voltage 2Note 5 Low-level differential input threshold voltage 2Note 5 Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins. 2. VREF is applied to the VrefSC and VrefSys pins 3. The VR12000 supports 1a and 1b of the HSTL specifications of SGI. 4. Applied to the input pins other than SysClk and SysClk. 5. Applied to the SysClk and SysClk pins. 59 µPD30700,30700L,30710 AC Characteristics (TC = 25 to 70 °C, VDD = 2.6 V ±0.1 V) Clock parameter Parameter Symbol Condition MIN. MAX. Unit System clock high-level width tCH tCR, tCF ≤ 2.0 ns 0.5 ns System clock low-level width tCL tCR, tCF ≤ 2.0 ns 0.5 ns 300-MHz model 30 300 MHz 300-MHz model 3.33 33.3 ns tji ±125 ps tjo ±500 ps System clock rise time tCR 2.0 ns System clock fall time tCF 2.0 ns System clock frequencyNotes 1, 2 System clock cycleNotes 1, 2 Input system clock jitter Output system clock jitterNote 3 tCP Notes 1. The operation of the VR12000 is guaranteed only when PLL operates. 2. The operation is guaranteed when the internal operating frequency is 100 MHz or higher. 3. Changes between clock edges are undefined. 60 µPD30700,30700L,30710 System Interface Parameter (a) CMOS/TTL Parameter Symbol Condition MIN. MAX. Unit 2.0 ns Data output delay time tDO Data input setup time tDS 1.0 ns Data input hold time tDH 1.0 ns (b) HSTL Parameter Symbol Condition MIN. MAX. Unit 1.5 ns Data output delay time tDO Data input setup time tDS 1.0 ns Data input hold time tDH 1.0 ns Secondary Cache Tag Interface Parameter Applied to SCTag (25:0) and SCTagChk (6:0) (a) CMOS/TTL Parameter Symbol Condition MIN. MAX. Unit 2.0 ns Data output delay time tSDO Data input setup time tSDS 1.5 ns Data input hold time tSDH 0.5 ns (b) HSTL Parameter Symbol Condition MIN. MAX. Unit 1.5 ns Data output delay time tSDO Data input setup time tSDS 1.5 ns Data input hold time tSDH 0.5 ns 61 µPD30700,30700L,30710 Timing Chart Secondary Cache Interface Timing SCCIk tDO SCData (127 : 0) SCDataChk (9 : 0) tDH tDS Output Input tDO tDO SCAAddr (18 : 0) SCBAddr (18 : 0) SCTagLSBAddr SCADOE SCBDOE SCADWr SCBDWr SCADCS SCBDCS SCTWay SCTOE SCTWr SCTCS tSDO SCTag (25 : 0) SCTagChk (6 : 0) Output Secondary cache clock jitter tJO SCCIk 62 (VOL + VOH)/2 tSDH tSDS tJO Input µPD30700,30700L,30710 System Interface Timing SysCIk tDO SysRel SysCmd (11 : 0) SysCmdPar SysAD (63 : 0) SysADChk (7 : 0) SysVal SysReq SysState (2 : 0) SysStatePar SysStateVal SysCorErr SysUncErr tDH tDS Output Input tDO tDO tDS tDH SysGnt SysRdRdy SysWrRdy SysResp (4 : 0) SysRespPar SysRespVal SysReset SysNMI SysGblPerf SysCyc Input System Clock tCP tCH VDIH tCL SysClk VDIL tCR tCF System Clock Jitter tji SysCIk tji (VDIL + VDIH)/2 63 µPD30700,30700L,30710 8. PUSH-PULL OUTPUT BUFFER CIRCUIT The configuration of the push-pull output buffer circuit is shown below. Push-pull output buffer circuit (without load of termination) VCCQ VCCQ VREF VREF Push-pull output buffer circuit (with load of termination) VCCQ VCCQ VREF 64 VREF µPD30700,30700L,30710 9. PACKAGE DRAWING 599 PIN CERAMIC LGA A A W1 U X S E F C W2 V Y T I J B D Index mark C G B R L QL NM C A S B S *1 C *2 H NOTE *1 Each land centerline is located within 0.30 mm (0.012 inch) of its true position (T.P.) at least material condition. *2 Each land centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 47.50±0.25 1.870±0.010 B 29.00 1.142 C 47.50±0.25 1.870±0.010 D 29.00 1.142 E 2.16 0.085 F 1.27 (T.P.) 0.050 (T.P.) G 1.27 (T.P.) 0.050 (T.P.) H 0.70 MAX. 0.028 MAX. I 2.54±0.25 0.100±0.010 J 3.81±0.38 0.150±0.015 L 0.76±0.13 0.030 +0.005 –0.006 N 0.20 0.008 Q 0.30 0.012 R 2.16 0.085 S 43.18 1.700 T 43.18 1.700 U 32.54 1.281 V 32.54 1.281 W1 37.00 1.457 W2 37.00 1.457 X 30.00 1.181 Y 30.00 1.181 X599RS-50A 65 µPD30700,30700L,30710 NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. 66 µPD30700,30700L,30710 Regional Information Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify: • Device availability • Ordering information • Product release schedule • Availability of related technical literature • Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth) • Network requirements In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country. NEC Electronics Inc. (U.S.) NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd. Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288 Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580 Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics Hong Kong Ltd. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99 Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411 NEC Electronics (France) S.A. NEC Electronics Singapore Pte. Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290 Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860 United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583 NEC Electronics Italiana s.r.1. NEC Electronics (Germany) GmbH Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics (France) S.A. NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490 NEC Electronics (UK) Ltd. NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951 NEC do Brasil S.A. Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829 J98. 2 67 µPD30700,30700L,30710 Related Documents: VR10000, VR12000 User’s Manual (U10278E) VR5000, VR10000 User’s Manual - Instruction (U12754E) The related documents referred to in this publication may include preliminary versions. However, preliminary versions are not marked as such. VR4000, VR4200, VR4400, VR5000, VR10000, VR12000, and VR series are trademarks of NEC Corporation. MIPS and ANDES are trademarks of MIPS Technologies, Inc. UNIX is a registered trademark licensed by X/Open Company Limited in the US and other countries. Windows NT is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. The export of this product from Japan is prohibited without governmental license. To export or re-export this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative. This product employs technology which is restricted by the export control regulations of the United States of America. Permission of the United States government might be required in case of exporting this product or products in which this product is installed. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96.5